STK16C68-W25 [CYPRESS]

8KX8 NON-VOLATILE SRAM, 25ns, PDIP28, 0.600 INCH, PLASTIC, DIP-28;
STK16C68-W25
型号: STK16C68-W25
厂家: CYPRESS    CYPRESS
描述:

8KX8 NON-VOLATILE SRAM, 25ns, PDIP28, 0.600 INCH, PLASTIC, DIP-28

可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器 静态存储器 光电二极管 内存集成电路
文件: 总10页 (文件大小:352K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STK16C68  
8K x 8 AutoStorePlus™ nvSRAM  
QuantumTrap™ CMOS  
Nonvolatile Static RAM  
Obsolete - Not Recommend for new Designs  
FEATURES  
DESCRIPTION  
• Internal Capacitor Guarantees AutoStore™  
Regardless of Power-Down Slew Rate  
• Nonvolatile Storage without Battery Problems  
• Directly Replaces 8K x 8 Static RAM, Battery-  
Backed RAM or EEPROM  
• 25ns, 35ns and 45ns Access Times  
STORE to Nonvolatile Elements Initiated by  
Software or AutoStorePlus™ on Power Down  
RECALL to SRAM Initiated by Software or  
Power Restore  
• 10mA Typical ICC at 200ns Cycle Time  
• Unlimited READ, WRITE and RECALL Cycles  
• 1,000,000 STORE Cycles to Nonvolatile Ele-  
ments  
• 100-Year Data Retention over Full Industrial  
Temperature Range  
• No Data Loss from Undershoot  
• Commercial and Industrial Temperatures  
• 28-Pin 600 mil PDIP Package  
The STK16C68 is a fast SRAM with a nonvolatile ele-  
ment incorporated in each static memory cell. The  
SRAM can be read and written an unlimited number of  
times, while independent nonvolatile data resides in  
Nonvolatile Elements. Data transfers from the SRAM to  
the Nonvolatile Elements (the STORE operation) can  
take place automatically on power down. An internal  
capacitor guarantees the STORE operation regardless  
of power-down slew rate. Transfers from the Nonvola-  
tile Elements to the SRAM (the RECALL operation) take  
place automatically on restoration of power. Initiation  
of STORE and RECALL cycles can also be controlled by  
entering control sequences on the SRAM inputs. The  
STK16C68 is pin-compatible with 8k x 8 SRAMs and  
battery-backed SRAMs, allowing direct substitution  
while enhancing performance. The STK12C68, which  
uses an external capacitor, and the STK15C68, which  
uses charge stored in system capacitance, are alter-  
natives for systems needing AutoStore™ operation.  
PIN CONFIGURATIONS  
BLOCK DIAGRAM  
1
NC  
28  
27  
26  
25  
24  
23  
22  
21  
20  
V
CC  
W
NC  
2
A
A
A
A
A
A
A
A
A
DQ  
DQ  
DQ  
12  
QUANTUM TRAP  
128 x 512  
3
7
6
5
4
3
2
VCC  
4
A
A
A
8
A5  
5
9
6
STORE  
11  
G
A6  
STORE/  
RECALL  
CONTROL  
7
POWER  
CONTROL  
8
A7  
A
E
10  
STATIC RAM  
ARRAY  
9
RECALL  
1
0
A8  
10  
11  
12  
13  
14  
19  
18  
17  
16  
15  
DQ  
DQ  
7
6
5
128 x 512  
A9  
0
DQ  
1
2
INTERNAL  
CAPACITOR  
28 - 600 PDIP  
A11  
A12  
DQ  
DQ  
4
3
V
SS  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
PIN NAMES  
COLUMN I/O  
SOFTWARE  
DETECT  
A0 - A12  
A
- A  
12  
Address Inputs  
Write Enable  
Data In/Out  
Chip Enable  
Output Enable  
Power (+ 5V)  
Ground  
COLUMN DEC  
0
W
DQ - DQ  
0
7
A0 A1 A2 A3 A4 A10  
G
E
G
E
V
W
CC  
V
SS  
March 2006  
1
Document Control # ML0010 rev 0.2  
STK16C68  
a
ABSOLUTE MAXIMUM RATINGS  
Note a: Stresses greater than those listed under “Absolute Maximum  
Ratings” may cause permanent damage to the device. This is a  
stress rating only, and functional operation of the device at condi-  
tions above those indicated in the operational sections of this  
specification is not implied. Exposure to absolute maximum rat-  
ing conditions for extended periods may affect reliability.  
Voltage on Input Relative to Ground. . . . . . . . . . . . . .0.5V to 7.0V  
Voltage on Input Relative to VSS . . . . . . . . . . –0.6V to (VCC + 0.5V)  
Voltage on DQ0-7. . . . . . . . . . . . . . . . . . . . . . –0.5V to (VCC + 0.5V)  
Temperature under Bias . . . . . . . . . . . . . . . . . . . . . –55°C to 125°C  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1W  
DC Output Current (1 output at a time, 1s duration). . . . . . . . 15mA  
DC CHARACTERISTICS  
(V = 5.0V 10%)  
CC  
COMMERCIAL  
INDUSTRIAL  
SYMBOL  
PARAMETER  
UNITS  
NOTES  
MIN  
MAX  
MIN  
MAX  
b
I
Average V  
Current  
90  
75  
65  
90  
75  
65  
mA  
mA  
mA  
t
t
t
= 25ns  
= 35ns  
= 45ns  
CC  
CC  
AVAV  
AVAV  
AVAV  
1
c
I
I
Average V  
Average V  
Current during STORE  
3
3
mA  
mA  
All Inputs Don’t Care, V = max  
CC  
CC  
CC  
CC  
CC  
2
3
b
Current at t  
AVAV  
= 200ns  
W (V  
– 0.2V)  
CC  
All Others Cycling, CMOS Levels  
10  
10  
5V, 25°C, Typical  
d
d
I
Average V Current  
27  
23  
20  
28  
24  
21  
mA  
mA  
mA  
t
t
t
= 25ns, E V  
= 35ns, E V  
= 45ns, E V  
SB  
SB  
CC  
(Standby, Cycling TTL Input Levels)  
AVAV  
AVAV  
AVAV  
IH  
IH  
IH  
1
2
I
I
I
V
Standby Current  
E (V  
– 0.2V)  
CC  
CC  
1.5  
1
1.5  
1
mA  
μA  
μA  
(Standby, Stable CMOS Input Levels)  
All Others V 0.2V or (V – 0.2V)  
IN CC  
Input Leakage Current  
V
V
= max  
CC  
ILK  
= V to V  
IN  
SS CC  
Off-State Output Leakage Current  
V
V
= max  
CC  
OLK  
5
5
= V to V , E or G V  
IN  
SS CC IH  
V
V
V
V
T
Input Logic “1” Voltage  
Input Logic “0” Voltage  
Output Logic “1” Voltage  
Output Logic “0” Voltage  
Operating Temperature  
2.2  
V
+ .5  
2.2  
– .5  
V
+ .5  
V
V
All Inputs  
All Inputs  
IH  
CC  
CC  
V
– .5  
0.8  
V
0.8  
IL  
SS  
SS  
2.4  
2.4  
V
I
I
=–4mA  
= 8mA  
OH  
OL  
OUT  
OUT  
0.4  
70  
0.4  
85  
V
0
40  
°C  
A
Note b: ICC and ICC3 are dependent on output loading and cycle rate. The specified values are obtained with outputs unloaded.  
Note c: ICC1 and ICC are the average currents required for the duration of the respective STORE cycles (tSTORE ).  
4
Note d: E 2VIH will not produce standby current levels until any nonvolatile cycle in progress has timed out.  
AC TEST CONDITIONS  
Input Pulse Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0V to 3V  
Input Rise and Fall Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ≤ 5ns  
Input and Output Timing Reference Levels . . . . . . . . . . . . . . . 1.5V  
5.0V  
Output Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .See Figure 1  
e
480 Ohms  
CAPACITANCE  
(TA = 25°C, f = 1.0MHz)  
SYMBOL  
PARAMETER  
MAX  
UNITS  
CONDITIONS  
ΔV = 0 to 3V  
ΔV = 0 to 3V  
OUTPUT  
30 pF  
C
Input Capacitance  
Output Capacitance  
8
7
pF  
IN  
INCLUDING  
SCOPE AND  
FIXTURE  
255 Ohms  
C
pF  
OUT  
Note e: These parameters are guaranteed but not tested.  
Figure 1: AC Output Loading  
March 2006  
2
Document Control # ML0010 rev 0.2  
STK16C68  
SRAM READ CYCLES #1 & #2  
(V = 5.0V 10%)  
CC  
SYMBOLS  
NO.  
STK16C68-25 STK16C68-35 STK16C68-45  
PARAMETER  
UNITS  
#1, #2  
Alt.  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
1
2
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Chip Enable Access Time  
25  
35  
45  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ELQV  
ACS  
f
Read Cycle Time  
25  
35  
45  
AVAV  
RC  
AA  
g
3
Address Access Time  
25  
10  
35  
15  
45  
20  
AVQV  
4
Output Enable to Data Valid  
Output Hold after Address Change  
Chip Enable to Output Active  
Chip Disable to Output Inactive  
Output Enable to Output Active  
Output Disable to Output Inactive  
Chip Enable to Power Active  
Chip Disable to Power Standby  
GLQV  
OE  
OH  
LZ  
g
5
5
5
5
5
5
5
AXQX  
6
ELQX  
h
7
10  
10  
25  
13  
13  
35  
15  
15  
45  
EHQZ  
HZ  
8
0
0
0
0
0
0
GLQX  
OLZ  
OHZ  
PA  
h
9
GHQZ  
e
10  
11  
ELICCH  
EHICCL  
d, e  
PS  
Note f: W must be high during SRAM READ cycles and low during SRAM WRITE cycles.  
Note g: I/O state assumes E, G < VIL and W > VIH; device is continuously selected.  
Note h: Measured + 200mV from steady state output voltage.  
f, g  
SRAM READ CYCLE #1: Address Controlled  
2
t
AVAV  
ADDRESS  
3
t
AVQV  
5
t
AXQX  
DATA VALID  
DQ (DATA OUT)  
f
SRAM READ CYCLE #2: E Controlled  
2
t
AVAV  
ADDRESS  
E
1
11  
EHICCL  
t
ELQV  
t
6
t
ELQX  
7
t
EHQZ  
G
9
t
4
GHQZ  
t
GLQV  
8
t
GLQX  
DQ (DATA OUT)  
DATA VALID  
10  
ELICCH  
t
ACTIVE  
STANDBY  
I
CC  
March 2006  
3
Document Control # ML0010 rev 0.2  
STK16C68  
SRAM WRITE CYCLES #1 & #2  
(V = 5.0V 10%)  
CC  
SYMBOLS  
NO.  
STK16C68-25  
STK16C68-35  
STK16C68-45  
PARAMETER  
UNITS  
#1  
#2  
Alt.  
MIN  
25  
20  
20  
10  
0
MAX  
MIN  
35  
25  
25  
12  
0
MAX  
MIN  
45  
30  
30  
15  
0
MAX  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
t
t
t
t
t
t
Write Cycle Time  
Write Pulse Width  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
AVAV  
WC  
WP  
CW  
DW  
t
t
WLWH  
WLEH  
t
t
Chip Enable to End of Write  
Data Set-up to End of Write  
Data Hold after End of Write  
Address Set-up to End of Write  
Address Set-up to Start of Write  
Address Hold after End of Write  
Write Enable to Output Disable  
Output Active after End of Write  
ELWH  
DVWH  
WHDX  
ELEH  
DVEH  
EHDX  
t
t
t
t
t
DH  
t
t
t
20  
0
25  
0
30  
0
AVWH  
AVEH  
AW  
t
t
t
AS  
AVWL  
AVEL  
t
t
t
0
0
0
WHAX  
EHAX  
WR  
h, i  
t
t
10  
13  
15  
WLQZ  
WZ  
t
t
5
5
5
WHQX  
OW  
Note i: If W is low when E goes low, the outputs remain in the high-impedance state.  
Note j: E or W must be VIH during address transitions.  
j
SRAM WRITE CYCLE #1: W Controlled  
12  
AVAV  
t
ADDRESS  
19  
WHAX  
14  
ELWH  
t
t
E
17  
AVWH  
t
18  
AVWL  
t
13  
WLWH  
t
W
15  
DVWH  
16  
WHDX  
t
t
DATA IN  
DATA VALID  
20  
WLQZ  
t
21  
WHQX  
t
HIGH IMPEDANCE  
DATA OUT  
PREVIOUS DATA  
j
SRAM WRITE CYCLE #2: E Controlled  
12  
AVAV  
t
ADDRESS  
18  
AVEL  
19  
t
EHAX  
14  
ELEH  
t
t
E
1 7  
AVEH  
t
13  
WLEH  
t
W
16  
EHDX  
15  
DVEH  
t
t
DATA IN  
DATA VALID  
HIGH IMPEDANCE  
DATA OUT  
March 2006  
4
Document Control # ML0010 rev 0.2  
STK16C68  
AutoStorePlus™/POWER-UP RECALL  
(V = 5.0V 10%)  
CC  
SYMBOLS  
STK16C68  
NO.  
PARAMETER  
UNITS NOTES  
Standard  
RESTORE  
stg  
MIN  
MAX  
22  
23  
24  
25  
t
t
Power-up RECALL Duration  
550  
μs  
ns  
V
k
Maximum V Slew Time to Ground  
CC  
500  
4.0  
f, h  
V
Low Voltage Trigger Level  
Low Voltage Reset Level  
4.5  
3.6  
SWITCH  
RESET  
V
V
e
Note k: tRESTORE starts from the time VCC rises above VSWITCH  
.
AutoStorePlus™/POWER-UP RECALL  
V
CC  
5V  
24  
V
SWITCH  
25  
RESET  
V
23  
t
stg  
AutoStore™  
POWER-UP RECALL  
22  
RESTORE  
t
W
DQ (DATA OUT)  
BROWN OUT  
BROWN OUT  
POWER-UP  
BROWN OUT  
AutoStorePlus™  
AutoStorePlus™  
RECALL  
NO STORE DUE TO  
NO SRAM WRITES  
NO RECALL  
RECALL WHEN  
NO RECALL  
(VCC DID NOT GO  
V
RETURNS  
CC  
(VCC DID NOT GO  
BELOW VRESET  
)
ABOVE VSWITCH  
BELOW VRESET  
)
March 2006  
5
Document Control # ML0010 rev 0.2  
STK16C68  
SOFTWARE STORE/RECALL MODE SELECTION  
E
W
G
A
- A (hex)  
MODE  
I/O with G Low  
I/O with G High  
NOTES  
12  
0
0000  
1555  
0AAA  
1FFF  
10F0  
0F0F  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output High Z  
Output High Z  
Output High Z  
Output High Z  
Output High Z  
Output High Z  
Output High Z  
L
H
X
l
Nonvolatile STORE  
0000  
1555  
0AAA  
1FFF  
10F0  
0F0E  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output High Z  
Output High Z  
Output High Z  
Output High Z  
Output High Z  
Output High Z  
Output High Z  
L
H
X
l
Nonvolatile RECALL  
Note l: The six consecutive addresses must be in the order listed. W must be high during all six consecutive cycles to enable a nonvolatile cycle.  
m, n  
SOFTWARE STORE/RECALL CYCLE  
(V = 5.0V 10%)  
CC  
STK16C68-25  
STK16C68-35  
STK16C68-45  
UNITS  
NO.  
SYMBOLS  
PARAMETER  
MIN  
25  
0
MAX  
MIN  
35  
0
MAX  
MIN  
45  
0
MAX  
26  
27  
28  
29  
30  
31  
t
t
t
t
t
t
STORE/RECALL Initiation Cycle Time  
Address Set-up Time  
ns  
ns  
ns  
ns  
μs  
ms  
AVAV  
m
m
AVEL  
Clock Pulse Width  
20  
20  
25  
20  
30  
20  
ELEH  
g, m  
Address Hold Time  
ELAX  
RECALL Cycle Duration  
STORE Cycle Duration  
20  
10  
20  
10  
20  
10  
RECALL  
STORE  
Note m: The software sequence is clocked with E controlled READs.  
Note n: The six consecutive addresses must be in the order listed in the Software STORE/RECALL Mode Selection Table: (0000, 1555, 0AAA, 1FFF,  
10F0, 0F0F) for a STORE cycle or (0000, 1555, 0AAA, 1FFF, 10F0, 0F0E) for a RECALL cycle. W must be high during all six consecutive  
cycles.  
n
SOFTWARE STORE/RECALL CYCLE: E Controlled  
26  
AVAV  
26  
t
AVAV  
t
ADDRESS #1  
ADDRESS #6  
ADDRESS  
27  
AVEL  
28  
t
ELEH  
t
E
29  
ELAX  
t
31  
30  
RECALL  
t
STORE / t  
HIGH IMPEDANCE  
DATA VALID  
DATA VALID  
DQ (DATA OUT)  
March 2006  
6
Document Control # ML0010 rev 0.2  
STK16C68  
DEVICE OPERATION  
The AutoStorePlus™ STK16C68 is a fast 8K x 8  
AutoStorePlus™ OPERATION  
SRAM that does not lose its data on power-down.  
The data is preserved in integral QuantumTrap™  
Nonvolatile Elements while power is unavailable.  
The nonvolatility of the STK16C68 does not require  
any system intervention or support: AutoStore-  
Plus™ on power-down and automatic RECALL on  
power-up guarantee data integrity without the use of  
batteries.  
The STK16C68’s automatic STORE on power-down  
is completely transparent to the system. The  
AutoStore™ initiation takes less than 500ns when  
power is lost (VCC < VSWITCH) at which point the part  
depends only on its internal capacitor for STORE  
completion. This safe transfer of data from SRAM to  
Nonvolatile Elements takes place regardless of  
power supply slew rate.  
In order to prevent unneeded STORE operations, the  
automatic STORE will be ignored unless at least one  
WRITE operation has taken place since the most  
recent STORE or RECALL cycle. Software-initiated  
STORE cycles are performed regardless of whether  
or not a WRITE operation has taken place.  
NOISE CONSIDERATIONS  
Note that the STK16C68 is a high-speed memory  
and so must have a high-frequency bypass capaci-  
tor of approximately 0.1μF connected between VCC  
and VSS, using leads and traces that are as short as  
possible. As with all high-speed CMOS ICs, normal  
careful routing of power, ground and signals will  
help prevent noise problems.  
POWER-UP RECALL  
During power up, or after any low-power condition  
(VCC < VRESET), an internal RECALL request will be  
latched. When VCC once again exceeds the sense  
voltage of VSWITCH, a RECALL cycle will automatically  
be initiated and will take tRESTORE to complete.  
SRAM READ  
The STK16C68 performs a READ cycle whenever E  
and G are low and W is high. The address specified  
on pins A0-12 determines which of the 8,192 data  
bytes will be accessed. When the READ is initiated  
by an address transition, the outputs will be valid  
after a delay of tAVQV (READ cycle #1). If the READ is  
initiated by E or G, the outputs will be valid at tELQV or  
at tGLQV, whichever is later (READ cycle #2). The data  
outputs will repeatedly respond to address changes  
within the tAVQV access time without the need for tran-  
sitions on any control input pins, and will remain valid  
until another address change or until E or G is  
brought high or W is brought low.  
If the STK16C68 is in a WRITE state at the end of  
power-up RECALL, the SRAM data will be corrupted.  
To help avoid this situation, a 10kΩ resistor should  
be connected either between W and system VCC or  
between E and system VCC.  
SOFTWARE NONVOLATILE STORE  
The STK16C68 software STORE cycle is initiated by  
executing sequential READ cycles from six specific  
address locations. During the STORE cycle an erase  
of the previous nonvolatile data is first performed,  
followed by a program of the nonvolatile elements.  
The program operation copies the SRAM data into  
nonvolatile memory. Once a STORE cycle is initi-  
ated, further input and output are disabled until the  
cycle is completed.  
SRAM WRITE  
A WRITE cycle is performed whenever E and W are  
low. The address inputs must be stable prior to  
entering the WRITE cycle and must remain stable  
until either E or W goes high at the end of the cycle.  
The data on the common I/O pins DQ0-7 will be writ-  
ten into the memory if it is valid tDVWH before the end  
of a W controlled WRITE or tDVEH before the end of an  
E controlled WRITE.  
Because a sequence of READs from specific  
addresses is used for STORE initiation, it is impor-  
tant that no other READ or WRITE accesses inter-  
vene in the sequence or the sequence will be  
aborted and no STORE or RECALL will take place.  
It is recommended that G be kept high during the  
entire WRITE cycle to avoid data bus contention on  
the common I/O lines. If G is left low, internal circuitry  
will turn off the output buffers tWLQZ after W goes low.  
To initiate the software STORE cycle, the following  
READ sequence must be performed:  
March 2006  
7
Document Control # ML0010 rev 0.2  
STK16C68  
1. Read address  
2. Read address  
3. Read address  
4. Read address  
5. Read address  
6. Read address  
0000 (hex)  
1555 (hex)  
0AAA (hex)  
1FFF (hex)  
10F0 (hex)  
0F0F (hex)  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Initiate STORE cycle  
tile information is transferred into the SRAM cells.  
After the tRECALL cycle time the SRAM will once again  
be ready for READ and WRITE operations. The  
RECALL operation in no way alters the data in the  
Nonvolatile Elements. The nonvolatile data can be  
recalled an unlimited number of times.  
The software sequence must be clocked with E  
controlled READs.  
HARDWARE PROTECT  
Once the sixth address in the sequence has been  
entered, the STORE cycle will commence and the  
chip will be disabled. It is important that READ  
cycles and not WRITE cycles be used in the  
sequence, although it is not necessary that G be  
low for the sequence to be valid. After the tSTORE  
cycle time has been fulfilled, the SRAM will again be  
activated for READ and WRITE operation.  
The STK16C68 offers hardware protection against  
inadvertent STORE operation and SRAM WRITEs  
during low-voltage conditions. When VCC < VSWITCH  
,
software STORE operations and SRAM WRITEs are  
inhibited.  
LOW AVERAGE ACTIVE POWER  
The STK16C68 draws significantly less current  
when it is cycled at times longer than 50ns. Figure 2  
shows the relationship between ICC and READ cycle  
time. Worst-case current consumption is shown for  
both CMOS and TTL input levels (commercial tem-  
perature range, VCC = 5.5V, 100% duty cycle on  
chip enable). Figure 3 shows the same relationship  
for WRITE cycles. If the chip enable duty cycle is  
less than 100%, only standby current is drawn  
when the chip is disabled. The overall average cur-  
rent drawn by the STK16C68 depends on the fol-  
lowing items: 1) CMOS vs. TTL input levels; 2) the  
duty cycle of chip enable; 3) the overall cycle rate  
for accesses; 4) the ratio of READs to WRITEs; 5)  
the operating temperature; 6) the VCC level; and 7) I/  
O loading.  
SOFTWARE NONVOLATILE RECALL  
A software RECALL cycle is initiated with a  
sequence of READ operations in a manner similar  
to the software STORE initiation. To initiate the  
RECALL cycle, the following sequence of READ  
operations must be performed:  
1. Read address  
2. Read address  
3. Read address  
4. Read address  
5. Read address  
6. Read address  
0000 (hex)  
1555 (hex)  
0AAA (hex)  
1FFF (hex)  
10F0 (hex)  
0F0E (hex)  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Initiate RECALL cycle  
Internally, RECALL is a two-step procedure. First,  
the SRAM data is cleared, and second, the nonvola-  
100  
80  
100  
80  
60  
60  
TTL  
CMOS  
40  
40  
TTL  
20  
20  
CMOS  
150 200  
0
0
50  
100  
150  
200  
50  
100  
Cycle Time (ns)  
Cycle Time (ns)  
Figure 3: I (max) Writes  
Figure 2: I (max) Reads  
CC  
CC  
March 2006  
8
Document Control # ML0010 rev 0.2  
STK16C68  
ORDERING INFORMATION  
- W F 45 I  
STK16C68  
Temperature Range  
Blank = Commercial (0 to 70°C)  
I = Industrial (–40 to 85°C)  
Access Time  
25 = 25ns  
35 = 35ns  
45 = 45ns  
Lead Finish  
Blank = 85%Sn/15%Pb  
F = 100% Sn (Matte Tin)  
Package  
W = Plastic 28-pin 600 mil DIP  
March 2006  
9
Document Control # ML0010 rev 0.2  
Document Revision History  
Revision  
0.0  
Date  
December 2002  
September 2003  
March 2006  
Summary  
Publish new datasheet  
0.1  
Added lead-free lead finish  
Marked as Obsolete, Not recommended for new design.  
0.2  

相关型号:

STK16C68-W25I

8K x 8 AutoStorePlus⑩ nvSRAM QuantumTrap⑩ CMOS Nonvolatile Static RAM
SIMTEK

STK16C68-W25I

8KX8 NON-VOLATILE SRAM, 25ns, PDIP28, 0.600 INCH, PLASTIC, DIP-28
CYPRESS

STK16C68-W35

8K x 8 AutoStorePlus⑩ nvSRAM QuantumTrap⑩ CMOS Nonvolatile Static RAM
SIMTEK

STK16C68-W35

8KX8 NON-VOLATILE SRAM, 35ns, PDIP28, 0.600 INCH, PLASTIC, DIP-28
CYPRESS

STK16C68-W35I

8K x 8 AutoStorePlus⑩ nvSRAM QuantumTrap⑩ CMOS Nonvolatile Static RAM
SIMTEK

STK16C68-W45

8K x 8 AutoStorePlus⑩ nvSRAM QuantumTrap⑩ CMOS Nonvolatile Static RAM
SIMTEK

STK16C68-W45

8KX8 NON-VOLATILE SRAM, 45ns, PDIP28, 0.600 INCH, PLASTIC, DIP-28
CYPRESS

STK16C68-W45I

8K x 8 AutoStorePlus⑩ nvSRAM QuantumTrap⑩ CMOS Nonvolatile Static RAM
SIMTEK

STK16C68-W45I

8KX8 NON-VOLATILE SRAM, 45ns, PDIP28, 0.600 INCH, PLASTIC, DIP-28
CYPRESS

STK16C68-WF25

8K x 8 AutoStorePlus⑩ nvSRAM QuantumTrap⑩ CMOS Nonvolatile Static RAM
SIMTEK

STK16C68-WF25

8KX8 NON-VOLATILE SRAM, 25ns, PDIP28, 0.600 INCH, PLASTIC, DIP-28
CYPRESS

STK16C68-WF25I

8K x 8 AutoStorePlus⑩ nvSRAM QuantumTrap⑩ CMOS Nonvolatile Static RAM
SIMTEK