U630H04D1C45 [CYPRESS]

512X8 NON-VOLATILE SRAM, 45ns, PDIP28, 0.600 INCH, PLASTIC, DIP-28;
U630H04D1C45
型号: U630H04D1C45
厂家: CYPRESS    CYPRESS
描述:

512X8 NON-VOLATILE SRAM, 45ns, PDIP28, 0.600 INCH, PLASTIC, DIP-28

静态存储器 光电二极管 内存集成电路
文件: 总14页 (文件大小:211K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Preliminary  
U630H04  
HardStore 512 x 8 nvSRAM  
Packages: PDIP28 (300 mil)  
PDIP28 (600 mil)  
des in EEPROM. Data transfers  
from the SRAM to the EEPROM  
(the STORE operation), or from the  
EEPROM to the SRAM (the  
RECALL operation) are initiated  
through the state of the NE pin.  
The U630H04 combines the high  
performance and ease of use of a  
fast SRAM with nonvolatile data  
integrity.  
Once a STORE cycle is initiated,  
further input or output are disabled  
until the cycle is completed.  
Internally, RECALL is a two step  
procedure. First, the SRAM data is  
cleared and second, the nonvola-  
tile information is transferred into  
the SRAM cells.  
Features  
SOP28 (300 mil)  
High-performance CMOS nonvo-  
latile static RAM 512 x 8 bits  
25 and 45 ns Access Times  
12 and 25 ns Output Enable  
Access Times  
Description  
The U630H04 has two separate  
modes of operation: SRAM mode  
and nonvolatile mode, determined  
by the state of the NE pin.  
In SRAM mode, the memory ope-  
rates as an ordinary static RAM. In  
nonvolatile operation, data is trans-  
ferred in parallel from SRAM to  
EEPROM or from EEPROM to  
SRAM. In this mode SRAM  
functions are disabled.  
Unlimited Read and Write to  
SRAM  
Hardware STORE Initiation  
(STORE Cycle Time < 10 ms)  
Automatic STORE Timing  
105 STORE cycles to EEPROM  
10 years data retention in  
EEPROM  
Automatic RECALL on Power Up  
Hardware RECALL Initiation  
(RECALL Cycle Time < 20 µs)  
Unlimited RECALL cycles from  
EEPROM  
The U630H04 is a fast static RAM  
(25 and 45 ns), with a nonvolatile  
The RECALL operation in no way  
alters the data in the EEPROM  
cells. The nonvolatile data can be  
recalled an unlimited number of  
times.  
electrically  
erasable  
PROM  
(EEPROM) element incorporated  
in each static memory cell. The  
SRAM can be read and written an  
unlimited number of times, while  
independent nonvolatile data resi-  
Single 5 V ± 10 % Operation  
Operating temperature ranges:  
0 to 70°C  
-40 to 85°C  
CECC 90000 Quality Standard  
ESD characterization according  
MIL STD 883C M3015.7-HBM  
Pin Configuration  
Pin Description  
NE  
n.c.  
A7  
VCC  
W
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
2
n.c.  
A8  
3
Signal Name Signal Description  
A6  
4
A0 - A8  
Address Inputs  
A5  
n.c.  
n.c.  
G
5
A4  
DQ0 - DQ7  
Data In/Out  
6
A3  
PDIP  
SOP  
Chip Enable  
7
E
A2  
n.c.  
E
8
Output Enable  
Write Enable  
G
A1  
9
W
DQ7  
DQ6  
DQ5  
DQ4  
DQ3  
A0  
10  
11  
12  
13  
14  
NE  
VCC  
VSS  
Nonvolatile Enable  
Power Supply Voltage  
Ground  
DQ0  
DQ1  
DQ2  
VSS  
Top View  
1
December 12, 1997  
U630H04  
Preliminary  
VCC  
VSS  
Block Diagram  
EEPROM Array  
16 x (32 x 8)  
STORE  
RECALL  
A5  
A6  
A7  
A8  
SRAM  
Array  
16 Rows x  
(32 x 8) Columns  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
Column I/O  
Store/  
Recall  
Control  
VCC  
Column Decoder  
A0 A1 A2 A3 A4  
G
NE  
E
W
Truth Table for SRAM Operations  
Operating Mode  
E
NE  
W
G
DQ0 - DQ7  
Standby/not selected  
Internal Read  
Read  
H
L
L
L
High-Z  
*
*
*
H
H
H
High-Z  
H
H
H
L
L
*
Data Outputs Low-Z  
Data Inputs High-Z  
Write  
* H or L  
Characteristics  
All voltages are referenced to VSS = 0 V (ground).  
All characteristics are valid in the power supply voltage range and in the operating temperature range specified.  
Dynamic measurements are based on a rise and fall time of 5 ns, measured between 10 % and 90 % of VI, as well as  
input levels of VIL = 0 V and VIH = 3 V. The timing reference level of all input and output signals is 1.5 V,  
with the exception of the tdis-times and ten-times, in which cases transition is measured ± 200 mV from steady-state voltage.  
Absolute Maximum Ratingsa  
Symbol  
Min.  
Max.  
Unit  
Power Supply Voltage  
Input Voltage  
VCC  
VI  
-0.5  
-0.3  
-0.3  
7
V
V
VCC+0.5  
VCC+0.5  
1
VO  
PD  
Output Voltage  
V
Power Dissipation  
Operating Temperature  
W
C-Type  
K-Type  
0
-40  
70  
85  
°C  
°C  
Ta  
Storage Temperature  
Tstg  
-65  
150  
°C  
a: Stresses greater than those listed under „Absolute Maximum Ratings“ may cause permanent damage to the device. This is a stress  
rating only, and functional operation of the device at condition above those indicated in the operational sections of this specification is  
not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.  
2
December 12, 1997  
Preliminary  
U630H04  
Recommended  
Operating Conditions  
Symbol  
VCC  
Conditions  
Min.  
4.5  
Max.  
Unit  
V
Power Supply Voltage  
Input Low Voltage  
Input High Voltage  
5.5  
0.8  
-2 V at Pulse Width  
10 ns permitted  
VIL  
-0.3  
2.2  
V
VIH  
VCC+0.3  
V
C-Type  
K-Type  
Symbol  
Conditions  
Unit  
DC Characteristics  
Min. Max. Min. Max.  
Operating Supply Currentb  
ICC1  
VCC  
VIL  
VIH  
= 5.5 V  
= 0.8 V  
= 2.2 V  
tc  
tc  
= 25 ns  
= 45 ns  
90  
75  
95  
80  
mA  
mA  
Average Supply Current during  
STOREc  
ICC2  
VCC  
E
W
VIL  
VIH  
= 5.5 V  
6
7
mA  
VCC-0.2 V  
VCC-0.2 V  
0.2 V  
VCC-0.2 V  
Standby Supply Currentd  
(Cycling TTL Input Levels)  
ICC(SB)1 VCC  
E
= 5.5 V  
VIH  
tc  
tc  
= 25 ns  
= 45 ns  
30  
20  
34  
23  
mA  
mA  
Average Supply Current  
at tCR = 200 nsb  
(Cycling CMOS Input Levels)  
ICC3  
VCC  
W
VIL  
VIH  
= 5.5 V  
VCC-0.2 V  
0.2 V  
15  
15  
mA  
VCC-0.2 V  
Standby Supply Currentd  
ICC(SB) VCC  
= 5.5 V  
1
1
mA  
(Stable CMOS Input Levels)  
E
VIL  
VIH  
VCC-0.2 V  
0.2 V  
VCC-0.2 V  
b: ICC1 and ICC3 are dependent on output loading and cycle rate. The specified values are obtained with outputs unloaded.  
The current ICC1 is measured for WRITE/READ - ratio of 1/2.  
c:  
ICC2 is the average current required for the duration of the STORE cycle (STORE Cycle Time).  
d: Bringing E VIH will not produce standby current levels until any nonvolatile cycle in progress has timed out. See MODE SELECTION  
table. The current ICC(SB)1 is measured for WRITE/READ - ratio of 1/2.  
3
December 12, 1997  
U630H04  
Preliminary  
C-Type  
K-Type  
Unit  
DC Characteristics  
Symbol  
Conditions  
Min. Max. Min. Max.  
VCC  
IOH  
IOL  
= 4.5 V  
=-4 mA  
= 8 mA  
Output High Voltage  
Output Low Voltage  
VOH  
VOL  
2.4  
8
2.4  
8
V
V
0.4  
-4  
0.4  
-4  
VCC  
VOH  
VOL  
= 4.5 V  
= 2.4 V  
= 0.4 V  
Output High Current  
Output Low Current  
IOH  
IOL  
mA  
mA  
Input Leakage Current  
VCC  
= 5.5 V  
High  
Low  
IIH  
IIL  
VIH  
VIL  
= 5.5 V  
1
1
µA  
µA  
=
0 V  
-1  
-1  
-1  
-1  
Output Leakage Current  
VCC  
= 5.5 V  
High at Three-State- Output  
Low at Three-State- Output  
IOHZ  
IOLZ  
VOH  
VOL  
= 5.5 V  
1
1
µA  
µA  
=
0 V  
SRAM MEMORY OPERATIONS  
Symbol  
25  
45  
Switching Characteristics  
No.  
Unit  
Read Cycle  
Alt.  
IEC  
Min.  
Max.  
Min.  
Max.  
1
2
3
4
5
6
7
8
9
Read Cycle Timef  
tAVAV  
tAVQV  
tELQV  
tGLQV  
tEHQZ  
tGHQZ  
tELQX  
tGLQX  
tAXQX  
tELICCH  
tEHICCL  
tcR  
25  
45  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address Access Time to Data Validg  
Chip Enable Access Time to Data Valid  
Output Enable Access Time to Data Valid  
E HIGH to Output in High-Zh  
ta(A)  
ta(E)  
25  
25  
12  
13  
13  
45  
45  
25  
20  
20  
ta(G)  
tdis(E)  
tdis(G)  
ten(E)  
ten(G)  
tv(A)  
G HIGH to Output in High-Zh  
E LOW to Output in Low-Z  
5
0
3
0
5
0
3
0
G LOW to Output in Low-Z  
Output Hold Time after Addr. Changeg  
10 Chip Enable to Power Activee  
tPU  
11 Chip Disable to Power Standbyd, e  
tPD  
25  
45  
e: Parameter guaranteed but not tested.  
f: Device is continuously selected with E and G both LOW.  
g: Address valid prior to or coincident with E transition LOW.  
h: Measured ± 200 mV from steady state output voltage.  
4
December 12, 1997  
Preliminary  
U630H04  
f
=
=
VIL, W = NE = VIH)  
Read Cycle 1: Ai-controlled (during Read cycle: E  
G
1
t
cR  
Ai  
Address Valid  
2
ta(A  
)
Previos  
Data Valid  
Output Data  
Valid  
DQi  
Output  
9
tv(A)  
Read Cycle 2: G-, E-controlled (during Read cycle: W = NE = VIH)g  
1
tcR  
Ai  
Address Valid  
2
ta(A)  
3
ta(E)  
5
tdis(E)  
E
7
ten(E)  
4
G
ta(G)  
6
tdis(G)  
8
ten(G)  
DQi  
Output  
High Impedance  
Output Data  
Valid  
11  
10  
tPD  
tPU  
ACTIVE  
ICC  
STANDBY  
Symbol  
Alt. #1 Alt. #2  
25  
45  
Switching Characteristics  
Write Cycle  
No.  
Unit  
IEC  
Min. Max. Min. Max.  
12 Write Cycle Time  
tAVAV  
tAVAV  
tcW  
tw(W)  
25  
20  
20  
0
45  
35  
35  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
13 Write Pulse Width  
tWLWH  
14 Write Pulse Width Setup Time  
15 Address Setup Time  
tWLEH  
tAVEL  
tAVEH  
tsu(W)  
tsu(A-WH)  
tsu(A-WH)  
tsu(E)  
tAVWL  
tAVWH  
tELWH  
16 Address Valid to End of Write  
17 Chip Enable Setup Time  
18 Chip Enable to End of Write  
19 Data Setup Time to End of Write  
20 Data Hold Time after End of Write  
21 Address Hold after End of Write  
22 W LOW to Output in High-Zh, i  
23 W HIGH to Output in Low-Z  
20  
20  
20  
12  
0
35  
35  
35  
20  
0
tELEH  
tDVEH  
tEHDX  
tEHAX  
tw(E)  
tDVWH  
tWHDX  
tWHAX  
tWLQZ  
tWHQX  
tsu(D)  
th(D)  
th(A)  
0
0
tdis(W)  
ten(W)  
10  
15  
5
5
5
December 12, 1997  
U630H04  
Preliminary  
Write Cycle #1: W-controlledj  
12  
tcW  
Ai  
E
Address Valid  
21  
th(A)  
17  
tsu(E)  
16  
tsu(A-WH)  
13  
tw(W)  
W
15  
19  
20  
tsu(A)  
tsu(D)  
th(D)  
DQi  
Input  
Input Data  
Valid  
22  
tdis(W)  
23  
ten(W)  
DQi  
Output  
High Impedance  
Previous Data  
Write Cycle #2: E-controlledj  
12  
tcW  
Ai  
Address Valid  
15  
21  
18  
tw(E)  
th(A)  
tsu(A)  
E
14  
tsu(W)  
W
19  
20  
tsu(D)  
th(D)  
DQi  
Input  
Input Data  
Valid  
DQi  
Output  
High Impedance  
undefined  
L- to H-level  
H- to L-level  
i: If W is LOW and when E goes LOW, the outputs remain in the high impedance state.  
>
j: E or W and NE must be  
VIH during address transitions.  
6
December 12, 1997  
Preliminary  
U630H04  
NONVOLATILE MEMORY OPERATIONS  
Symbol  
STORE CYCLE INHIBIT and  
No.  
Min.  
Max.  
Unit  
AUTOMATIC POWER UP RECALL  
Alt.  
IEC  
24 Power Up RECALL Durationk, e  
Low Voltage Trigger Level  
tRESTORE  
VSWITCH  
650  
4.5  
µs  
4.0  
V
k: tRESTORE starts from the time VCC rises above VSWITCH  
.
STORE CYCLE INHIBIT and AUTOMATIC POWER UP RECALL  
VCC  
5.0 V  
VSWITCH  
t
STORE inhibit  
24  
Power Up  
RECALL  
tRESTORE  
MODE SELECTION  
E
W
G
NE  
Mode  
Power  
Notes  
L
L
H
L
L
L
L
Nonvolatile RECALL  
Nonvolatile STORE  
Active  
ICC2  
l
H
L
L
L
H
L
H
L
*
No operation  
Active  
*
H or L  
l: An automatic RECALL also takes place at power up, starting when VCC exceeds VSWITCH and takes tRESTORE. VCC must not drop below  
VSWITCH once it has been exceeded for the RECALL to function properly.  
7
December 12, 1997  
U630H04  
Preliminary  
STORE CYCLES  
Symbol  
No. STORE CYCLE W-controlled  
Min.  
Max.  
Unit  
Alt.  
IEC  
25 STORE Cycle Timem  
26 STORE Initiation Cycle Timen  
27 Output Disable Setup to NE Fall  
28 NE Setup  
tWLQX  
tWLNH  
tGHNL  
tNLWL  
tELWL  
td(W)S  
tw(W)S  
tsu(G)S  
tsu(N)S  
tsu(E)S  
10  
ms  
ns  
ns  
ns  
ns  
25  
5
5
29 Chip Enable Setup  
5
STORE CYCLE: W-controlledo  
NE  
G
27  
28  
26  
tw(W)S  
tsu(G)S  
tsu(N)S  
W
E
29  
tsu(E)S  
25  
td(W)S  
High Impedance  
DQi  
Output  
Symbol  
No. STORE CYCLE E-controlled  
Min.  
Max.  
Unit  
Alt.  
IEC  
30 STORE Cycle Time  
31 STORE Initiation Cycle Time  
32 Output Disable Setup to E Fall  
33 NE Setup  
tELQXS  
tELNHS  
tGHEL  
tNLEL  
td(E)S  
tw(E)S  
10  
ms  
ns  
ns  
ns  
ns  
25  
5
tsu(G)S  
tsu(N)S  
tsu(W)S  
5
34 Write Enable Setup  
tWLEL  
5
STORE CYCLE: E-controlledo  
33  
tsu(N)S  
NE  
G
32  
tsu(G)S  
34  
tsu(W)S  
W
E
31  
tw(E)S  
30  
td(E)S  
High Impedance  
DQi  
Output  
8
December 12, 1997  
Preliminary  
U630H04  
RECALL CYCLES  
Symbol  
No. RECALL CYCLE NE-controlled  
Min.  
Max.  
Unit  
Alt.  
IEC  
35 RECALL Cycle Timep  
36 RECALL Initiation Cycle Timeq  
37 Output Enable Setup  
38 Write Enable Setup  
tNLQX  
tNLNH  
tGLNL  
tWHNL  
tELNL  
tNLQZ  
td(N)R  
tw(N)R  
20  
µs  
ns  
ns  
ns  
ns  
ns  
25  
5
tsu(G)R  
tsu(W)R  
tsu(E)R  
tdis(N)R  
5
39 Chip Enable Setup  
5
40 NE Fall to Output Inactive  
25  
RECALL CYCLE: NE-controlledo  
36  
tw(N)R  
NE  
37  
tsu(G)R  
G
W
38  
tsu(W)R  
40  
tdis(N)R  
E
39  
tsu(E)R  
35  
td(N)R  
High Impedance  
DQi  
Output  
Symbol  
No. RECALL CYCLE E-controlled  
Min.  
Max.  
Unit  
Alt.  
IEC  
41 RECALL Cycle Time  
42 RECALL Initiation Cycle Time  
43 NE Setup  
tELQXR  
tELNHR  
tNLEL  
td(E)R  
tw(E)R  
tsu(N)R  
tsu(G)R  
tsu(W)R  
20  
µs  
ns  
ns  
ns  
ns  
25  
5
44 Output Enable Setup  
45 Write Enable Setup  
tGLEL  
5
tWHEL  
5
RECALL CYCLE: E-controlledo  
43  
tsu(N)R  
NE  
44  
tsu(G)R  
G
W
E
45  
tsu(W)R  
42  
tw(E)R  
41  
td(E)R  
High Impedance  
DQi  
Output  
9
December 12, 1997  
U630H04  
Preliminary  
Symbol  
No. RECALL CYCLE G-controlled  
Min.  
Max.  
Unit  
Alt.  
IEC  
46 RECALL Cycle Time  
47 RECALL Initiation Cycle Time  
48 NE Setup  
tGLQXR  
tGLNH  
tNLGL  
tWHGL  
tELGL  
td(G)R  
tw(G)R  
tsu(N)R  
tsu(W)R  
tsu(E)R  
20  
µs  
ns  
ns  
ns  
ns  
25  
5
49 Write Enable Setup  
50 Chip Enable Setup  
5
5
RECALL CYCLE: G-controlledo, r  
48  
tsu(N)R  
NE  
G
47  
tw(G)R  
49  
tsu(W)R  
W
50  
tsu(E)R  
E
46  
td(G)R  
High Impedance  
DQi  
Output  
m: Measured with W and NE both returned HIGH, and G returned LOW. Note that STORE cycles are inhibited/aborted by VCC < VSWITCH  
(STORE inhibit).  
n: Once tw(W)S has been satisfied by NE, G, W and E, the STORE cycle is completed automatically. Any of NE, G, W and E may be used to  
terminate the STORE initiation cycle.  
o: If E is LOW for any period of time in which W is HIGH while G and NE are LOW, than a RECALL cycle may be initiated.  
For E-controlled STORE during tw(E)S W, G, NE have to be static.  
p: Measured with W and NE both HIGH, and G and E LOW.  
q: Once tw(N)R has been satisfied by NE, G, W and E, the RECALL cycle is completed automatically. Any of NE, G or E may be used to  
terminate the RECALL initiation cycle.  
r:  
If W is LOW at any point in which both E and NE are LOW and G is HIGH, than a STORE cycle will be initiated instead of a RECALL.  
10  
December 12, 1997  
Preliminary  
U630H04  
Test Configuration for Functional Check  
5 V  
t
VCC  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
480  
VIH  
VIL  
VO  
30 pF s  
NE  
E
W
G
255  
VSS  
s: In measurement of tdis-times and ten-times the capacitance is 5 pF.  
t: Between VCC and VSS must be connected a high frequency bypass capacitor 0.1 µF to avoid disturbances.  
Capacitancee  
Conditions  
Symbol  
Min.  
Max.  
Unit  
VCC = 5.0 V  
Input Capacitance  
CI  
8
pF  
VI  
f
= VSS  
= 1MHz  
= 25 °C  
Output Capacitance  
CO  
7
pF  
Ta  
All pins not under test must be connected with ground by capacitors.  
IC Code Numbers  
Example  
U630H04  
B
D
C
25  
Type  
ESD Class  
blank > 2000 V  
B > 1000 V  
Package  
Access Time  
25 = 25 ns  
D
= PDIP (300 mil)  
D1 = PDIP (600 mil)  
= SOP (300 mil)  
45 = 45 ns (on special request)  
S
Operating Temperature Range  
C = 0 to 70 °C  
K = -40 to 85 °C  
The date of manufacture is given by the last 4 digits of the mark, the first 2 digits indication the year, and the last 2  
digits the calendar week.  
11  
December 12, 1997  
U630H04  
Preliminary  
Device Operation  
STORE cycle, previous nonvolatile data is erased and  
the SRAM contents are then programmed into nonvola-  
tile elements. Once a STORE cycle is initiated, further  
input and output is disabled and the DQ0 - 7 pins are  
tristated until the cycle is completed.  
If E and G are LOW and W and NE are HIGH at the  
end of the cycle, a READ will be performed and the out-  
puts will go active, indicating the end of the STORE.  
The U630H04 has two separate modes of operation:  
SRAM mode and nonvolatile mode, determined by the  
state of the NE pin. In SRAM mode, the memory opera-  
tes as a standard fast static RAM. In nonvolatile mode,  
data is transferred from SRAM to EEPROM (the  
STORE operation) or from EEPROM to SRAM (the  
RECALL operation). In this mode SRAM functions are  
disabled.  
HARDWARE NONVOLATILE RECALL  
SRAM READ  
A RECALL cycle is performed when E, G and NE are  
LOW while W is HIGH. Like the STORE cycle, RECALL  
is initiated when the last of the three clock-signals goes  
to the RECALL state. Once initiated, the RECALL cycle  
will take „RECALL Cycle Time“ to complete, during  
which all inputs are ignored. When the RECALL com-  
pletes, any READ or WRITE state on the input pins will  
take effect.  
Internally, RECALL is a two step procedure. First, the  
SRAM data is cleared and second, the nonvolatile  
information is transferred into the SRAM cells. The  
RECALL in no way alters the data in the nonvolatile  
cells. The nonvolatile data can be recalled an unlimited  
number of times.  
The U630H04 performs a READ cycle whenever E and  
G are LOW while W and NE are HIGH. The address  
specified on pins A0 - A8 determines which of the 512  
data bytes will be accessed. When the READ is initia-  
ted by an address transition, the outputs will be valid  
after a delay of tcR. If the READ is initiated by E or G,  
the outputs will be valid at ta(E) or at ta(G), whichever is  
later. The data outputs will repeatedly respond to  
address changes within the tcR access time without the  
need for transition on any control input pins, and will  
remain valid until another address change or until E or  
G is brought HIGH or W or NE is brought LOW.  
Like the STORE cycle, a transition must occur on some  
control pins to cause a RECALL, preventing inadver-  
tend multi-triggering.  
SRAM WRITE  
A WRITE cycle is performed whenever E and W are  
LOW and NE is HIGH. The address inputs must be sta-  
ble prior to entering the WRITE cycle and must remain  
stable until either E or W goes HIGH at the end of the  
cycle. The data on pins DQ0 - 7 will be written into the  
memory if it is valid tsu(D) before the end of a W control-  
led WRITE or tsu(D) before the end of an E controlled  
WRITE.  
It is recommended that G is kept HIGH during the en-  
tire WRITE cycle to avoid data bus contention on the  
common I/O lines. If G is left LOW, internal circuitry will  
turn off the output buffers tdis (W) after W goes LOW.  
AUTOMATIC POWER UP RECALL  
On power up, once VCC exceeds the sense voltage of  
V
SWITCH, a RECALL cycle is automatically initiated. The  
voltage on the VCC pin must not drop below VSWITCH  
once it has risen above it in order for the RECALL to  
operate properly. Due to this automatic RECALL,  
SRAM operation cannot commence until tRESTORE after  
VCC exceeds VSWITCH. If the U630H04 is in a WRITE  
state at the end of power up RECALL, the SRAM data  
will be corrupted.  
To help avoid this situation, a 10 Kresistor should be  
NOISE CONSIDERATION  
connected between W and system VCC.  
The U630H04 is a high speed memory and therefore  
must have a high frequency bypass capacitor of appro-  
ximately 0.1 µF connected between VCC and VSS using  
leads and traces that are as short as possible. As with  
all high speed CMOS ICs, normal carefull routing of  
power, ground and signals will help prevent noise pro-  
blems.  
HARDWARE PROTECTION  
The U630H04 offers two levels of protection to sup-  
press inadvertent STORE cycles. If the control signals  
(E, G, W and NE) remain in the STORE condition at the  
end of a STORE cycle, a second STORE cycle will not  
be started. The STORE (or RECALL) will be initiated  
only after a transition on any one of these signals to the  
required state. In addition to multi-trigger protection, the  
U630H04 offers hardware protection through VCC  
Sense. When VCC < VSWITCH the externally initiated  
STORE operation will be inhibited.  
HARDWARE NONVOLATILE STORE  
A STORE cycle is performed when NE, E and W are  
LOW while G is HIGH. While any sequence to achieve  
this state will initiate a STORE, only W initiation and E  
initiation are practical without risking an unintentional  
SRAM WRITE that would disturb SRAM data. During a  
12  
December 12, 1997  
Preliminary  
U630H04  
LOW AVERAGE ACTIVE POWER  
The U630H04 has been designed to draw significantly 1. CMOS or TTL input levels  
less power when E is LOW (chip enabled) but the 2. the time during which the chip is disabled (E HIGH)  
access cycle time is longer than 55 ns. 3. the cycle time for accesses (E LOW)  
When E is HIGH the chip consumes only standby cur- 4. the ratio of READs to WRITEs  
rent. 5. the operating temperature  
The overall average current drawn by the part depends 6. the VCC level  
on the following items:  
13  
December 12, 1997  
Memory Products 1998  
HardStore 512 x 8 nvSRAM U630H04  
LIFE SUPPORT POLICY  
ZMD products are not designed, intended, or authorized for use as components in  
systems intend for surgical implant into the body, or other applications intended to  
support or sustain life, or for any other application in which the failure of the ZMD  
product could create a situation where personal injury or death may occur.  
Components used in life-support devices or systems must be expressly authorized  
by ZMD for such purpose.  
The information describes the type of component and shall not be considered as  
assured characteristics.  
Terms of delivery and rights to change design reserved.  
Zentrum Mikroelektronik Dresden GmbH  
Grenzstraße 28 • D-01109 DresdenP. O.B. 800134 D-01101 DresdenGermany  
Phone: +49 351 88 22-3 06 • Fax: +49 351 88 22-3 37 • Email: sales@zmd.de  
Internet Web Site: http://www.zmd.de  

相关型号:

U630H04D1C45G1

Non-Volatile SRAM, 512X8, 45ns, CMOS, PDIP28, 0.600 INCH, PLASTIC, DIP-28
CYPRESS

U630H04D1K45

Non-Volatile SRAM, 512X8, 45ns, CMOS, PDIP28, 0.600 INCH, PLASTIC, DIP-28
CYPRESS

U630H04D1K45G1

Non-Volatile SRAM, 512X8, 45ns, CMOS, PDIP28, 0.600 INCH, PLASTIC, DIP-28
CYPRESS

U630H04DC25

512X8 NON-VOLATILE SRAM, 25ns, PDIP28, 0.300 INCH, PLASTIC, DIP-28
CYPRESS

U630H04DC25G1

Non-Volatile SRAM, 512X8, 25ns, CMOS, PDIP28, 0.300 INCH, PLASTIC, DIP-28
CYPRESS

U630H04DC45

Non-Volatile SRAM, 512X8, 45ns, CMOS, PDIP28, 0.300 INCH, PLASTIC, DIP-28
CYPRESS

U630H04DC45G1

Non-Volatile SRAM, 512X8, 45ns, CMOS, PDIP28, 0.300 INCH, PLASTIC, DIP-28
CYPRESS

U630H04DK25

Non-Volatile SRAM, 512X8, 25ns, CMOS, PDIP28, 0.300 INCH, PLASTIC, DIP-28
SIMTEK

U630H04DK25

Non-Volatile SRAM, 512X8, 25ns, CMOS, PDIP28, 0.300 INCH, PLASTIC, DIP-28
CYPRESS

U630H04DK25G1

512X8 NON-VOLATILE SRAM, 25ns, PDIP28, 0.300 INCH, PLASTIC, DIP-28
SIMTEK

U630H04DK25G1

Non-Volatile SRAM, 512X8, 25ns, CMOS, PDIP28, 0.300 INCH, PLASTIC, DIP-28
CYPRESS

U630H04DK45

512X8 NON-VOLATILE SRAM, 45ns, PDIP28, 0.300 INCH, PLASTIC, DIP-28
SIMTEK