U630H16D1C45 [CYPRESS]

2KX8 NON-VOLATILE SRAM, 45ns, PDIP28, 0.600 INCH, PLASTIC, DIP-28;
U630H16D1C45
型号: U630H16D1C45
厂家: CYPRESS    CYPRESS
描述:

2KX8 NON-VOLATILE SRAM, 45ns, PDIP28, 0.600 INCH, PLASTIC, DIP-28

静态存储器 光电二极管 内存集成电路
文件: 总15页 (文件大小:152K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Obsolete - Not Recommended for New Designs  
U630H16  
HardStore 2K x 8 nvSRAM  
Features  
Description  
High-performance CMOS nonvo- The U630H16 has two separate  
further input or output are disabled  
until the cycle is completed.  
latile static RAM 2048 x 8 bits  
25, 35 and 45 ns Access Times  
12, 20 and 25 ns Output Enable  
Access Times  
modes of operation: SRAM mode  
and nonvolatile mode, determined  
by the state of the NE pin.  
Internally, RECALL is a two step  
procedure. First, the SRAM data is  
cleared and second, the nonvola-  
tile information is transferred into  
the SRAM cells.  
The RECALL operation in no way  
alters the data in the EEPROM  
cells. The nonvolatile data can be  
recalled an unlimited number of  
times.  
In SRAM mode, the memory ope-  
rates as an ordinary static RAM. In  
nonvolatile operation, data is trans-  
ferred in parallel from SRAM to  
EEPROM or from EEPROM to  
SRAM. In this mode SRAM  
functions are disabled.  
Hardware STORE Initiation  
(STORE Cycle Time < 10 ms)  
Automatic STORE Timing  
106 STORE cycles to EEPROM  
100 years data retention in  
EEPROM  
Automatic RECALL on Power Up The U630H16 is a fast static RAM  
Hardware RECALL Initiation  
(RECALL Cycle Time < 20 ms)  
Unlimited RECALL cycles from  
EEPROM  
(25, 35, 45 ns), with a nonvolatile  
electrically erasable PROM  
(EEPROM) element incorporated  
in each static memory cell. The  
SRAM can be read and written an  
unlimited number of times, while  
independent nonvolatile data resi-  
des in EEPROM. Data transfers  
from the SRAM to the EEPROM  
(the STORE operation), or from the  
EEPROM to the SRAM (the  
RECALL operation) are initiated  
through the state of the NE pin.  
The U630H16 combines the high  
performance and ease of use of a  
fast SRAM with nonvolatile data  
integrity.  
Unlimited Read and Write to  
SRAM  
Single 5 V ± 10 % Operation  
Operating temperature ranges:  
0to70 ×C  
-40to85 ×C  
-40to125 °C(only 35 ns)  
QS 9000 Quality Standard  
ESD protection > 2000 V  
(MIL STD 883C M3015.7-HBM)  
RoHS compliance and Pb- free  
Packages:SOP28 (300 mil),  
PDIP28 (300/600 mil)  
Once a STORE cycle is initiated,  
Pin Configuration  
Pin Description  
1
NE  
n.c.  
A7  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
VCC  
W
2
Signal Name Signal Description  
3
n.c.  
A8  
4
A6  
A0 - A10  
Address Inputs  
Data In/Out  
5
A5  
A9  
DQ0 - DQ7  
6
A4  
n.c.  
G
Chip Enable  
E
7
A3  
PDIP  
SOP  
Output Enable  
Write Enable  
G
8
A2  
A10  
E
W
9
A1  
10  
11  
12  
13  
14  
NE  
VCC  
VSS  
Nonvolatile Enable  
Power Supply Voltage  
Ground  
A0  
DQ7  
DQ6  
DQ5  
DQ4  
DQ3  
DQ0  
DQ1  
DQ2  
VSS  
Top View  
March 31, 2006  
1
Rev 1.0  
STK Control #ML0036  
U630H16  
Block Diagram  
EEPROM Array  
32 x (64 x 8)  
VCC  
VSS  
STORE  
A5  
A6  
A7  
A8  
A9  
SRAM  
Array  
RECALL  
32 Rows x  
64 x 8 Columns  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
Column I/O  
Store/  
Recall  
Control  
VCC  
Column Decoder  
G
NE  
A0 A1 A2 A3 A4A10  
DQ7  
E
W
Truth Table for SRAM Operations  
Operating Mode  
E
NE  
W
G
DQ0 - DQ7  
Standby/not selected  
Internal Read  
Read  
H
L
L
L
High-Z  
*
*
*
H
H
H
High-Z  
H
H
H
L
L
Data Outputs Low-Z  
Data Inputs High-Z  
Write  
*
* H or L  
Characteristics  
All voltages are referenced to VSS = 0 V (ground).  
All characteristics are valid in the power supply voltage range and in the operating temperature range specified.  
Dynamic measurements are based on a rise and fall time of 5 ns, measured between 10 % and 90 % of VI, as well as  
input levels of VIL = 0 V and VIH = 3 V. The timing reference level of all input and output signals is 1.5 V,  
with the exception of the tdis-times and ten-times, in which cases transition is measured ± ±200 mV from steady-state voltage.  
Absolute Maximum Ratingsa  
Symbol  
Min.  
Max.  
Unit  
Power Supply Voltage  
Input Voltage  
VCC  
VI  
-0.5  
-0.3  
-0.3  
7
V
V
VCC+0.5  
VCC+0.5  
1
Output Voltage  
VO  
PD  
V
Power Dissipation  
W
Operating Temperature  
C-Type  
K-Type  
A-Type  
0
-40  
-40  
70  
85  
85  
°C  
°C  
°C  
Ta  
Storage Temperature  
Tstg  
-65  
150  
°C  
a: Stresses greater than those listed under „Absolute Maximum Ratings“ may cause permanent damage to the device. This is a stress  
rating only, and functional operation of the device at condition above those indicated in the operational sections of this specification is  
not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.  
Rev 1.0  
March 31, 2006  
STK Control #ML0036  
2
U630H16  
Recommended  
Symbol  
VCC  
Conditions  
Min.  
4.5  
Max.  
Unit  
V
Operating Conditions  
Power Supply Voltage  
Input Low Voltage  
Input High Voltage  
5.5  
0.8  
-2 V at Pulse Width  
10 ns permitted  
VIL  
-0.3  
2.2  
V
VIH  
VCC+0.3  
V
C-Type  
K-Type  
A-Type  
Symbol  
Conditions  
Unit  
DC Characteristics  
Min. Max. Min. Max. Min. Max.  
Operating Supply Currentb  
ICC1  
VCC = 5.5 V  
VIL  
VIH  
= 0.8 V  
= 2.2 V  
tc  
tc  
tc  
= 25 ns  
= 35 ns  
= 45 ns  
90  
80  
75  
95  
85  
80  
-
85  
-
mA  
mA  
mA  
Average Supply Current during  
STOREc  
ICC2  
VCC = 5.5 V  
6
7
7
mA  
E
W
VCC-0.2 V  
VCC-0.2 V  
0.2 V  
VIL  
VIH  
VCC-0.2 V  
Standby Supply Currentd  
(Cycling TTL Input Levels)  
ICC(SB)1 VCC = 5.5 V  
E
≥±VIH  
tc  
tc  
tc  
= 25 ns  
= 35 ns  
= 45 ns  
30  
23  
20  
34  
27  
23  
-
27  
-
mA  
mA  
mA  
Average Supply Current  
at tcR = 200 nsb  
(Cycling CMOS Input Levels)  
ICC3  
VC  
W
VIL  
VIH  
= 5.5 V  
15  
15  
15  
mA  
C
VCC-0.2 V  
0.2 V  
VCC-0.2 V  
Standby Supply Currentd  
ICC(SB) VCC = 5.5 V  
1
1
2
mA  
(Stable CMOS Input Levels)  
E
VIL  
VIH  
VCC-0.2 V  
0.2 V  
VCC-0.2 V  
b: ICC1 and ICC3 are dependent on output loading and cycle rate. The specified values are obtained with outputs unloaded.  
The current ICC1 is measured for WRITE/READ - ratio of 1/2.  
c: ICC2 is the average current required for the duration of the STORE cycle (STORE Cycle Time).  
d: Bringing E ≥±VIH will not produce standby current levels until any nonvolatile cycle in progress has timed out. See MODE SELECTION  
table. The current ICC(SB)1 is measured for WRITE/READ - ratio of 1/2.  
March 31, 2006  
3
Rev 1.0  
STK Control #ML0036  
U630H16  
Symbol  
Conditions  
Min.  
Max.  
Unit  
DC Characteristics  
VCC  
IOH  
IOL  
= 4.5 V  
=-4 mA  
= 8 mA  
Output High Voltage  
Output Low Voltage  
VOH  
VOL  
2.4  
V
V
0.4  
-4  
VCC  
VOH  
VOL  
= 4.5 V  
= 2.4 V  
= 0.4 V  
Output High Current  
Output Low Current  
IOH  
IOL  
mA  
mA  
8
Input Leakage Current  
VCC  
= 5.5 V  
High  
Low  
IIH  
IIL  
VIH  
VIL  
= 5.5 V  
1
μA  
μA  
=
0 V  
-1  
-1  
Output Leakage Current  
VCC  
= 5.5 V  
High at Three-State- Output  
Low at Three-State- Output  
IOHZ  
IOLZ  
VOH  
VOL  
= 5.5 V  
1
μA  
μA  
=
0 V  
SRAM Memory Operations  
Symbol  
25  
35  
45  
Switching Characteristics  
No.  
Unit  
Read Cycle  
Alt.  
IEC  
Min. Max. Min. Max. Min. Max.  
1
2
3
4
5
6
7
8
9
Read Cycle Timef  
tAVAV  
tAVQV  
tELQV  
tGLQV  
tEHQZ  
tGHQZ  
tELQX  
tGLQX  
tAXQX  
tELICCH  
tEHICCL  
tcR  
ta(A)  
ta(E)  
ta(G)  
tdis(E)  
tdis(G)  
ten(E)  
ten(G)  
tv(A)  
25  
35  
45  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address Access Time to Data Validg  
Chip Enable Access Time to Data Valid  
Output Enable Access Time to Data Valid  
E HIGH to Output in High-Zh  
25  
25  
12  
13  
13  
35  
35  
20  
17  
17  
45  
45  
25  
20  
20  
G HIGH to Output in High-Zh  
E LOW to Output in Low-Z  
5
0
3
0
5
0
3
0
5
0
3
0
G LOW to Output in Low-Z  
Output Hold Time after Addr. Changeg  
10 Chip Enable to Power Activee  
tPU  
11 Chip Disable to Power Standbyd, e  
tPD  
25  
35  
45  
e: Parameter guaranteed but not tested.  
f: Device is continuously selected with E and G both LOW.  
g: Address valid prior to or coincident with E transition LOW.  
h: Measured ± 200 mV from steady state output voltage.  
Rev 1.0  
March 31, 2006  
STK Control #ML0036  
4
U630H16  
f
=
=
VIL, W = NE = VIH)  
Read Cycle 1: Ai-controlled (during Read cycle: E  
G
tcR  
(1)  
Ai  
Address Valid  
(2)  
ta(A)  
DQi  
Output  
Output Data Valid  
Previous Data Valid  
tv(A)  
(9)  
Read Cycle 2: G-, E-controlled (during Read cycle: W = NE = VIH)g  
tcR  
(1)  
Ai  
E
Address Valid  
ta(A)  
(2)  
ta(E)  
(3)  
tdis(E)  
(5)  
ten(E)  
(7)  
G
ta(G)  
(4)  
tdis(G) (6)  
ten(G) (8)  
DQi  
Output  
High Impedance  
Output Data Valid  
tPD  
t
PU (10)  
(11)  
ACTIVE  
ICC  
STANDBY  
Symbol  
25  
35  
45  
Switching Characteristics  
Write Cycle  
No.  
Unit  
Alt. #1 Alt. #2 IEC Min. Max. Min. Max. Min. Max.  
12 Write Cycle Time  
tAVAV  
tAVAV  
tcW  
25  
20  
20  
0
35  
30  
30  
0
45  
35  
35  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
13 Write Pulse Width  
tWLWH  
tw(W)  
14 Write Pulse Width Setup Time  
15 Address Setup Time  
tWLEH tsu(W)  
tAVWL  
tAVEL  
tsu(A)  
tsu(A-WH)  
tsu(E)  
16 Address Valid to End of Write  
17 Chip Enable Setup Time  
18 Chip Enable to End of Write  
19 Data Setup Time to End of Write  
20 Data Hold Time after End of Write  
21 Address Hold after End of Write  
22 W LOW to Output in High-Zh, i  
23 W HIGH to Output in Low-Z  
tAVWH tAVEH  
tELWH  
20  
20  
20  
12  
0
30  
30  
30  
18  
0
35  
35  
35  
20  
0
tELE  
tw(E)  
H
tDVWH tDVEH  
tWHDX tEHDX  
tWHAX tEHAX  
tWLQZ  
tsu(D)  
th(D)  
th(A)  
0
0
0
tdis(W)  
ten(W)  
10  
13  
15  
tWHQX  
5
5
5
March 31, 2006  
5
Rev 1.0  
STK Control #ML0036  
U630H16  
Write Cycle #1: W-controlledj  
tcW  
(12)  
Ai  
Address Valid  
tsu(E)  
(17)  
th(A)  
(21)  
E
tsu(A-WH)  
(16)  
W
tw(W)  
(13)  
tsu(D) (19)  
Input Data Valid  
ten(W)  
tsu(A)  
(15)  
th(D) (20)  
DQi  
Input  
tdis(W)  
(22)  
(23)  
DQi  
Output  
High Impedance  
Previous Data  
Write Cycle #2: E-controlledj  
tcW  
(12)  
Ai  
E
Address Valid  
tsu(A)  
(15)  
tw(E)  
th(A)  
(21)  
(18)  
(14)  
tsu(W)  
W
th(D)  
tsu(D)  
(19)  
(20)  
DQi  
Input  
Input Data Valid  
High Impedance  
tdis(W) (22)  
ten(E) (7)  
DQi  
Output  
undefined  
L- to H-level  
H- to L-level  
i: If W is LOW and when E goes LOW, the outputs remain in the high impedance state.  
>
j: E or W and NE must be  
V
IH during address transitions.  
Rev 1.0  
March 31, 2006  
STK Control #ML0036  
6
U630H16  
Nonvolatile Memory Operations  
Symbol  
Alt. IEC  
STORE Cycle Inhibit and  
No.  
Min.  
Max.  
Unit  
Automatic Power Up RECALL  
24 Power Up RECALL Durationk, e  
tRESTORE  
VSWITCH  
650  
4.5  
μs  
Low Voltage Trigger Level  
4.0  
V
k: tRESTORE starts from the time VCC rises above VSWITCH  
.
STORE Cycle Inhibit and Automatic Power Up RECALL  
VCC  
5.0 V  
VSWITCH  
t
STORE inhibit  
(24)  
Power Up  
RECALL  
tRESTORE  
Mode Selection  
E
W
G
NE  
Mode  
Power  
Notes  
L
L
H
L
L
L
L
Nonvolatile RECALL  
Nonvolatile STORE  
Active  
ICC2  
l
H
L
L
L
H
L
H
L
No operation  
Active  
*
* H or L  
l: An automatic RECALL also takes place at power up, starting when VCC exceeds VSWITCH and takes tRESTORE. VCC must not drop below  
VSWITCH once it has been exceeded for the RECALL to function properly.  
March 31, 2006  
7
Rev 1.0  
STK Control #ML0036  
U630H16  
STORE Cycles  
Symbol  
No. STORE Cycle W-controlled  
Min.  
Max.  
Unit  
Alt.  
IEC  
25 STORE Cycle Timem  
26 STORE Initiation Cycle Timen  
27 Output Disable Setup to NE Fall  
28 NE Setup  
tWLQX  
tWLNH  
tGHNL  
tNLWL  
tELWL  
td(W)S  
tw(W)S  
tsu(G)S  
tsu(N)S  
tsu(E)S  
10  
ms  
ns  
ns  
ns  
ns  
25  
5
5
29 Chip Enable Setup  
5
STORE Cycle: W-controlledo  
NE  
G
tsu(G)S  
(27)  
tsu(N)S  
(28)  
tw(W)S  
(26)  
W
tsu(E)S  
(29)  
E
td(W)S  
(25)  
DQi  
High Impedance  
Output  
Symbol  
IEC  
No. STORE Cycle E-controlled  
Min.  
Max.  
Unit  
Alt.  
30 STORE Cycle Time  
31 STORE Initiation Cycle Time  
32 Output Disable Setup to E Fall  
33 NE Setup  
tELQXS  
tELNHS  
tGHEL  
tNLEL  
td(E)S  
tw(E)S  
10  
ms  
ns  
ns  
ns  
ns  
25  
5
tsu(G)S  
tsu(N)S  
tsu(W)S  
5
34 Write Enable Setup  
tWLEL  
5
STORE Cycle: E-controlledo  
tsu(N)S  
(33)  
NE  
G
t
su(G)S (32)  
tsu(W)S  
(34)  
W
E
tw(E)S (31)  
td(E)S  
(30)  
DQi  
High Impedance  
Output  
Rev 1.0  
March 31, 2006  
STK Control #ML0036  
8
U630H16  
RECALL Cycles  
Symbol  
No. RECALL Cycle NE-controlled  
Min.  
Max.  
Unit  
Alt.  
IEC  
35 RECALL Cycle Timep  
36 RECALL Initiation Cycle Timeq  
37 Output Enable Setup  
38 Write Enable Setup  
tNLQX  
tNLNH  
tGLNL  
tWHNL  
tELNL  
tNLQZ  
td(N)R  
20  
μs  
ns  
ns  
ns  
ns  
ns  
tw(N)R  
tsu(G)R  
tsu(W)R  
tsu(E)R  
tdis(N)R  
25  
5
5
39 Chip Enable Setup  
5
40 NE Fall to Output Inactive  
25  
RECALL Cycle: NE-controlledo  
tw(N)R  
(36)  
NE  
tsu(G)R  
(37)  
G
W
E
tsu(W)R  
(38)  
tdis(N)R  
(40)  
tsu(E)R  
td(N)R  
(35)  
(39)  
High Impedance  
DQi  
Output  
Symbol  
No. RECALL Cycle E-controlled  
Min.  
Max.  
Unit  
Alt.  
IEC  
41 RECALL Cycle Time  
42 RECALL Initiation Cycle Time  
43 NE Setup  
tELQXR  
tELNHR  
tNLEL  
td(E)R  
tw(E)R  
20  
μs  
ns  
ns  
ns  
ns  
25  
5
tsu(N)R  
tsu(G)R  
tsu(W)R  
44 Output Enable Setup  
45 Write Enable Setup  
tGLEL  
5
tWHEL  
5
RECALL Cycle: E-controlledo  
tsu(N)R  
(43)  
NE  
G
tsu(G)R (44)  
tsu(W)R  
(45)  
W
E
tw(E)R  
(42)  
td(E)R  
(41)  
DQi  
Output  
High Impedance  
March 31, 2006  
9
Rev 1.0  
STK Control #ML0036  
U630H16  
Symbol  
No. RECALL Cycle G-controlled  
Min.  
Max.  
Unit  
Alt.  
IEC  
46 RECALL Cycle Time  
47 RECALL Initiation Cycle Time  
48 NE Setup  
tGLQXR  
tGLNH  
tNLGL  
tWHGL  
tELGL  
td(G)R  
tw(G)R  
tsu(N)R  
tsu(W)R  
tsu(E)R  
20  
μs  
ns  
ns  
ns  
ns  
25  
5
49 Write Enable Setup  
50 Chip Enable Setup  
5
5
RECALL Cycle: G-controlledo, r  
tsu(N)R  
(48)  
NE  
G
tw(G)R  
(47)  
tsu(W)R  
W
E
(49)  
tsu(E)R  
(50)  
td(G)R  
(46)  
High Impedance  
DQi  
Output  
m: Measured with W and NE both returned HIGH, and G returned LOW. Note that STORE cycles are inhibited/aborted by VCC < VSWITCH  
(STORE inhibit).  
n: Once tw(W)S has been satisfied by NE, G, W and E, the STORE cycle is completed automatically. Any of NE, G, W and E may be used to  
terminate the STORE initiation cycle.  
o: If E is LOW for any period of time in which W is HIGH while G and NE are LOW, than a RECALL cycle may be initiated.  
For E-controlled STORE during tw(E)S W, G, NE have to be static.  
p: Measured with W and NE both HIGH, and G and E LOW.  
q: Once tw(N)R has been satisfied by NE, G, W and E, the RECALL cycle is completed automatically. Any of NE, G or E may be used to  
terminate the RECALL initiation cycle.  
r: If W is LOW at any point in which both E and NE are LOW and G is HIGH, than a STORE cycle will be initiated instead of a RECALL.  
Rev 1.0  
March 31, 2006  
STK Control #ML0036  
10  
U630H16  
Test Configuration for Functional Check  
5 V  
t
VCC  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
480  
VIH  
VIL  
VO  
s
30 pF  
NE  
E
W
G
255  
VSS  
s: In measurement of tdis-times and ten-times the capacitance is 5 pF.  
t: Between VCC and VSS must be connected a high frequency bypass capacitor 0.1 μF to avoid disturbances.  
Capacitancee  
Conditions  
Symbol  
Min.  
Max.  
Unit  
VCC = 5.0 V  
Input Capacitance  
CI  
8
7
pF  
VI  
f
= VSS  
= 1 MHz  
= 25 °C  
Output Capacitance  
CO  
pF  
Ta  
All pins not under test must be connected with ground by capacitors.  
Ordering Code  
Example  
Type  
U630H16  
S
C
25 G1  
Leadfree Option  
blank= Standard Package  
Package  
D = PDIP28 (300 mil)  
G1 = Leadfree Green Package  
u
D1= PDIP28 (600 mil)  
S = SOP28 (300 mil)  
Access Time  
25 = 25 ns  
35 = 35 ns (C/K Type on special request)  
45 = 45 ns  
Operating Temperature Range  
C = 0 to 70 °C  
K = -40 to 85 °C  
A = -40 to 125 °C (only 35 ns and SOP28 package)  
u: on special request  
Device Marking (example)  
ZMD  
Product specification  
Date of manufacture  
U630H16SC  
25 Z 0425  
G1  
(The first 2 digits indicating  
the year, and the last 2  
digits the calendar week.)  
Internal Code  
Leadfree Green Package  
March 31, 2006  
11  
Rev 1.0  
STK Control #ML0036  
U630H16  
Device Operation  
disturb SRAM data. During a STORE cycle, previous  
nonvolatile data is erased and the SRAM contents are  
then programmed into nonvolatile elements. Once a  
STORE cycle is initiated, further input and output is  
disabled and the DQ0 - 7 pins are tristated until the  
cycle is completed.  
If E and G are LOW and W and NE are HIGH at the  
end of the cycle, a READ will be performed and the out-  
puts will go active, indicating the end of the STORE.  
The U630H16 has two separate modes of operation:  
SRAM mode and nonvolatile mode, determined by the  
state of the NE pin. In SRAM mode, the memory opera-  
tes as a standard fast static RAM. In nonvolatile mode,  
data is transferred from SRAM to EEPROM (the  
STORE operation) or from EEPROM to SRAM (the  
RECALL operation). In this mode SRAM functions are  
disabled.  
Hardware Nonvolatile RECALL  
SRAM READ  
A RECALL cycle is performed when E, G and NE are  
LOW while W is HIGH. Like the STORE cycle, RECALL  
is initiated when the last of the three clock-signals goes  
to the RECALL state. Once initiated, the RECALL cycle  
will take „RECALL Cycle Time“ to complete, during  
which all inputs are ignored. When the RECALL com-  
pletes, any READ or WRITE state on the input pins will  
take effect.  
Internally, RECALL is a two step procedure. First, the  
SRAM data is cleared and second, the nonvolatile  
information is transferred into the SRAM cells. The  
RECALL in no way alters the data in the nonvolatile  
cells. The nonvolatile data can be recalled an unlimited  
number of times.  
The U630H16 performs a READ cycle whenever E and  
G are LOW while W and NE are HIGH. The address  
specified on pins A0 - A10 determines which of the  
2048 data bytes will be accessed. When the READ is  
initiated by an address transition, the outputs will be  
valid after a delay of tcR. If the READ is initiated by E or  
G, the outputs will be valid at ta(E) or at ta(G), whichever  
is later. The data outputs will repeatedly respond to  
address changes within the tcR access time without the  
need for transition on any control input pins, and will  
remain valid until another address change or until E or  
G is brought HIGH or W or NE is brought LOW.  
SRAM WRITE  
Like the STORE cycle, a transition must occur on some  
control pins to cause a RECALL, preventing inadver-  
tend multi-triggering.  
A WRITE cycle is performed whenever E and W are  
LOW and NE is HIGH. The address inputs must be sta-  
ble prior to entering the WRITE cycle and must remain  
stable until either E or W goes HIGH at the end of the  
cycle. The data on pins DQ0 - 7 will be written into the  
memory if it is valid tsu(D) before the end of a W control-  
led WRITE or tsu(D) before the end of an E controlled  
WRITE.  
It is recommended that G is kept HIGH during the en-  
tire WRITE cycle to avoid data bus contention on the  
common I/O lines. If G is left LOW, internal circuitry will  
turn off the output buffers tdis(W) after W goes LOW.  
Automatic Power Up RECALL  
On power up, once VCC exceeds the sense voltage of  
VSWITCH, a RECALL cycle is automatically initiated. The  
voltage on the VCC pin must not drop below VSWITCH  
once it has risen above it in order for the RECALL to  
operate properly. Due to this automatic RECALL,  
SRAM operation cannot commence until tRESTORE after  
VCC exceeds VSWITCH. If the U630H16 is in a WRITE  
state at the end of power up RECALL, the SRAM data  
will be corrupted.  
Noise Consideration  
To help avoid this situation, a 10 KΩ resistor should be  
connected between W and system VCC  
.
The U630H16 is a high speed memory and therefore  
must have a high frequency bypass capacitor of appro-  
ximately 0.1 μF connected between VCC and VSS using  
leads and traces that are as short as possible. As with  
all high speed CMOS ICs, normal carefull routing of  
power, ground and signals will help prevent noise pro-  
blems.  
Hardware Protection  
The U630H16 offers two levels of protection to sup-  
press inadvertent STORE cycles. If the control signals  
(E, G, W and NE) remain in the STORE condition at the  
end of a STORE cycle, a second STORE cycle will not  
be started. The STORE (or RECALL) will be initiated  
only after a transition on any one of these signals to the  
required state. In addition to multi-trigger protection, the  
U630H16 offers hardware protection through VCC  
Sense. When VCC < VSWITCH the externally initiated  
STORE operation will be inhibited.  
Hardware Nonvolatile STORE  
A STORE cycle is performed when NE, E and W are  
LOW while G is HIGH. While any sequence to achieve  
this state will initiate a STORE, only W initiation and E  
initiation are practical without risking an unintentional  
SRAM WRITE that would  
Rev 1.0  
March 31, 2006  
STK Control #ML0036  
12  
U630H16  
Low Average Active Power  
The U630H16 has been designed to draw significantly 1. CMOS or TTL input levels  
less power when E is LOW (chip enabled) but the 2. the time during which the chip is disabled (E HIGH)  
access cycle time is longer than 55 ns.  
When E is HIGH the chip consumes only standby cur-  
rent.  
3. the cycle time for accesses (E LOW)  
4. the ratio of READs to WRITEs  
5. the operating temperature  
The overall average current drawn by the part depends 6. the VCC level  
on the following items:  
The information describes the type of component and shall not be considered as assured characteristics. Terms of  
delivery and rights to change design reserved.  
March 31, 2006  
13  
Rev 1.0  
STK Control #ML0036  
U630H16  
LIFE SUPPORT POLICY  
Simtek products are not designed, intended, or authorized for use as components in systems intended for surgical  
implant into the body, or other applications intended to support or sustain life, or for any other application in which  
the failure of the Simtek product could create a situation where personal injury or death may occur.  
Components used in life-support devices or systems must be expressly authorized by Simtek for such purpose.  
LIMITED WARRANTY  
The information in this document has been carefully checked and is believed to be reliable. However, Simtek makes  
no guarantee or warranty concerning the accuracy of said information and shall not be responsible for any loss or  
damage of whatever nature resulting from the use of, or reliance upon it. The information in this document descri-  
bes the type of component and shall not be considered as assured characteristics.  
Simtek does not guarantee that the use of any information contained herein will not infringe upon the patent, trade-  
mark, copyright, mask work right or other rights of third parties, and no patent or licence is implied hereby. This  
document does not in any way extent Simtek’s warranty on any product beyond that set forth in its standard terms  
and conditions of sale.  
Simtek reserves terms of delivery and reserves the right to make changes in the products or specifications, or both,  
presented in this publication at any time and without notice.  
March 31, 2006  
Change record  
Date/Rev  
Name  
Change  
01.11.2001 Ivonne Steffens  
format revision and release for „Memory CD 2002“  
11.08.2003 Matthias Schniebel  
adding A-Type with ICC1 = 85mA; ICC2 = 7mA; ICC3 = 15mA;  
ICC(SB) = 2mA; ICC(SB)1 = 27 mA  
20.04.2004 Matthias Schniebel  
adding „Leadfree Green Package“ to ordering information  
adding „Device Marking“  
6
7.4.2005  
Stefan Günther  
changing to 10 endurance cycles and 100a data retention, delete ESD  
classes, change ordering code, PDIP 300 on special request, RoHS  
and Pb- free added, C/K limitation for PDIP deleted  
31.3.2006  
1.0  
Troy Meester  
Simtek  
changed to obsolete status  
Assigned Simtek Document Control Number  

相关型号:

U630H16D1C45G1

HardStore 2K x 8 nvSRAM

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SIMTEK

U630H16D1C45G1

2KX8 NON-VOLATILE SRAM, 45ns, PDIP28, 0.600 INCH, GREEN, PLASTIC, DIP-28

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CYPRESS

U630H16D1K25

HardStore 2K x 8 nvSRAM

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SIMTEK

U630H16D1K25

2KX8 NON-VOLATILE SRAM, 25ns, PDIP28, 0.600 INCH, PLASTIC, DIP-28

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CYPRESS

U630H16D1K25G1

HardStore 2K x 8 nvSRAM

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SIMTEK

U630H16D1K25G1

2KX8 NON-VOLATILE SRAM, 25ns, PDIP28, 0.600 INCH, GREEN, PLASTIC, DIP-28

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CYPRESS

U630H16D1K35

HardStore 2K x 8 nvSRAM

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SIMTEK

U630H16D1K35

2KX8 NON-VOLATILE SRAM, 35ns, PDIP28, 0.600 INCH, PLASTIC, DIP-28

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CYPRESS

U630H16D1K35G1

HardStore 2K x 8 nvSRAM

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SIMTEK

U630H16D1K35G1

2KX8 NON-VOLATILE SRAM, 35ns, PDIP28, 0.600 INCH, GREEN, PLASTIC, DIP-28

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CYPRESS

U630H16D1K45

HardStore 2K x 8 nvSRAM

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SIMTEK

U630H16D1K45

2KX8 NON-VOLATILE SRAM, 45ns, PDIP28, 0.600 INCH, PLASTIC, DIP-28

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CYPRESS