U635H16BSK25G1 [CYPRESS]

2KX8 NON-VOLATILE SRAM, 25ns, PDSO24, 0.300 INCH, SOP-24;
U635H16BSK25G1
型号: U635H16BSK25G1
厂家: CYPRESS    CYPRESS
描述:

2KX8 NON-VOLATILE SRAM, 25ns, PDSO24, 0.300 INCH, SOP-24

静态存储器 光电二极管 内存集成电路
文件: 总13页 (文件大小:222K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
U635H16  
PowerStore 2K x 8 nvSRAM  
Description  
Features  
! High-performance CMOS non-  
volatile static RAM 2048 x 8 bits  
! 25, 35 and 45 ns Access Times  
! 12, 20 and 25 ns Output Enable  
Access Times  
The U635H16 has two separate  
modes of operation: SRAM mode  
and nonvolatile mode. In SRAM  
mode, the memory operates as an  
ordinary static RAM. In nonvolatile  
STORE cycles also may be initia-  
ted under user control via a soft-  
ware sequence.  
Once a STORE cycle is initiated,  
further input or output are disabled  
until the cycle is completed.  
! ICC = 15 mA at 200 ns Cycle Time operation, data is transferred in  
! Automatic STORE to EEPROM  
on Power Down using system  
capacitance  
parallel from SRAM to EEPROM or  
from EEPROM to SRAM. In this  
mode SRAM functions are disab-  
led.  
Because a sequence of addresses  
is used for STORE initiation, it is  
important that no other read or  
write accesses intervene in the  
sequence or the sequence will be  
aborted.  
! Software initiated STORE  
(STORE Cycle Time < 10 ms)  
! Automatic STORE Timing  
! 105 STORE cycles to EEPROM  
! 10 years data retention in  
EEPROM  
The U635H16 is a fast static RAM  
(25, 35, 45 ns), with a nonvolatile  
electrically  
erasable  
PROM  
RECALL cycles may also be initia-  
ted by a software sequence.  
Internally, RECALL is a two step  
procedure. First, the SRAM data is  
cleared and second, the nonvola-  
tile information is transferred into  
the SRAM cells.  
(EEPROM) element incorporated  
in each static memory cell. The  
! Automatic RECALL on Power Up SRAM can be read and written an  
! Software RECALL Initiation  
(RECALL Cycle Time < 20 µs)  
! Unlimited RECALL cycles from  
EEPROM  
unlimited number of times, while  
independent nonvolatile data resi-  
des in EEPROM. Data transfers  
from the SRAM to the EEPROM  
(the STORE operation) take place  
automatically upon power down  
using charge stored in system  
capacitance.  
The RECALL operation in no way  
alters the data in the EEPROM  
cells. The nonvolatile data can be  
recalled an unlimited number of  
times.  
! Single 5 V ± 10 % Operation  
! Operating temperature ranges:  
0 to 70 °C  
-40 to 85 °C  
! QS 9000 Quality Standard  
! ESD characterization according  
MIL STD 883C M3015.7-HBM  
(classification see IC Code  
Numbers)  
Transfers from the EEPROM to the  
SRAM (the RECALL operation)  
take place automatically on power  
up. The U635H16 combines the  
high performance and ease of use  
of a fast SRAM with nonvolatile  
data integrity.  
! Packages:PDIP24 (600 mil)  
SOP24 (300 mil)  
Pin Description  
Pin Configuration  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
DQ0  
DQ1  
DQ2  
VSS  
VCC  
A8  
A9  
W
G
Signal Name Signal Description  
A0 - A10  
DQ0 - DQ7  
Address Inputs  
Data In/Out  
PDIP  
SOP  
24  
A10  
E
Chip Enable  
E
Output Enable  
Write Enable  
Power Supply Voltage  
Ground  
G
W
VCC  
VSS  
DQ7  
DQ6  
DQ5  
DQ4  
DQ3  
9
10  
11  
12  
Top View  
1
April 20, 2004  
U635H16  
Block Diagram  
EEPROM Array  
32 x (64 x 8)  
VCC  
VSS  
STORE  
A5  
A6  
A7  
A8  
SRAM  
RECALL  
Power  
Array  
VCC  
Control  
32 Rows x  
64 x 8 Columns  
A9  
Store/  
Recall  
Control  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
Column I/O  
Software  
Detect  
A0 - A10  
Column Decoder  
G
A0 A1 A2 A3 A4A10  
DQ7  
E
W
Truth Table for SRAM Operations  
Operating Mode  
E
W
G
DQ0 - DQ7  
Standby/not selected  
Internal Read  
Read  
H
L
L
L
High-Z  
High-Z  
*
*
H
H
H
L
L
Data Outputs Low-Z  
Data Inputs High-Z  
Write  
*
H or L  
*
Characteristics  
All voltages are referenced to VSS = 0 V (ground).  
All characteristics are valid in the power supply voltage range and in the operating temperature range specified.  
Dynamic measurements are based on a rise and fall time of 5 ns, measured between 10 % and 90 % of VI, as well as input levels of  
V
IL = 0 V and VIH = 3 V. The timing reference level of all input and output signals is 1.5 V,  
with the exception of the tdis-times and ten-times, in which cases transition is measured ± 200 mV from steady-state voltage.  
Absolute Maximum Ratingsa  
Symbol  
Min.  
Max.  
Unit  
Power Supply Voltage  
Input Voltage  
VCC  
VI  
-0.5  
-0.3  
-0.3  
7
V
V
VCC+0.5  
VCC+0.5  
1
Output Voltage  
VO  
PD  
Ta  
V
Power Dissipation  
W
Operating Temperature  
C-Type  
K-Type  
0
70  
85  
°C  
°C  
-40  
Storage Temperature  
Tstg  
-65  
150  
°C  
a: Stresses greater than those listed under „Absolute Maximum Ratings“ may cause permanent damage to the device. This is a stress  
rating only, and functional operation of the device at condition above those indicated in the operational sections of this specification is  
not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.  
2
April 20, 2004  
U635H16  
Recommended  
Symbol  
Conditions  
Min.  
Max.  
Unit  
Operating Conditions  
Power Supply Voltage  
Input Low Voltage  
Input High Voltage  
VCC  
VIL  
4.5  
-0.3  
2.2  
5.5  
0.8  
V
V
V
-2 V at Pulse Width  
10 ns permitted  
VIH  
VCC+0.3  
C-Type  
K-Type  
DC Characteristics  
Symbol  
Conditions  
Unit  
Min. Max. Min. Max.  
Operating Supply Currentb  
ICC1  
VCC  
VIL  
= 5.5 V  
= 0.8 V  
= 2.2 V  
VIH  
tc  
tc  
tc  
= 25 ns  
= 35 ns  
= 45 ns  
90  
80  
75  
95  
85  
80  
mA  
mA  
mA  
Average Supply Current during  
STOREc  
ICC2  
VCC  
E
= 5.5 V  
6
7
mA  
0.2 V  
W
VCC-0.2 V  
0.2 V  
VIL  
VIH  
VCC-0.2 V  
Average Supply Current during  
ICC4  
VCC  
VIL  
= 4.5 V  
4
4
mA  
PowerStore Cyclec  
= 0.2 V  
VIH  
VCC-0.2 V  
Standby Supply Currentd  
(Cycling TTL Input Levels)  
ICC(SB)1  
VCC  
E
= 5.5 V  
= VIH  
tc  
= 25 ns  
= 35 ns  
= 45 ns  
30  
23  
20  
34  
27  
23  
mA  
mA  
mA  
tc  
tc  
Operating Supply Current  
at tcR = 200 nsb  
ICC3  
VCC  
W
= 5.5 V  
15  
15  
mA  
VCC-0.2 V  
0.2 V  
(Cycling CMOS Input Levels)  
VIL  
VIH  
VCC-0.2 V  
Standby Supply Curentd  
ICC(SB)  
VCC  
E
= 5.5 V  
3
3
mA  
(Stable CMOS Input Levels)  
VCC-0.2 V  
0.2 V  
VIL  
VIH  
VCC-0.2 V  
b: ICC1 and ICC3 are depedent on output loading and cycle rate. The specified values are obtained with outputs unloaded.  
The current ICC1 is measured for WRITE/READ - ratio of 1/2.  
c:  
ICC2 and ICC4 are the average currents required for the duration of the respective STORE cycles (STORE Cycle Time).  
d: Bringing E VIH will not produce standby current levels until any nonvolatile cycle in progress has timed out. See MODE SELECTION  
table. The current ICC(SB)1 is measured for WRITE/READ - ratio of 1/2.  
3
April 20, 2004  
U635H16  
C-Type  
K-Type  
DC Characteristics  
Symbol  
Conditions  
Unit  
Min. Max. Min. Max.  
VCC  
IOH  
IOL  
= 4.5 V  
=-4 mA  
= 8 mA  
Output High Voltage  
Output Low Voltage  
VOH  
VOL  
2.4  
8
2.4  
8
V
V
0.4  
-4  
0.4  
-4  
VCC  
VOH  
VOL  
= 4.5 V  
= 2.4 V  
= 0.4 V  
Output High Current  
Output Low Current  
IOH  
IOL  
mA  
mA  
Input Leakage Current  
VCC  
= 5.5 V  
High  
Low  
IIH  
IIL  
VIH  
VIL  
= 5.5 V  
1
1
1
1
µA  
µA  
=
0 V  
-1  
-1  
-1  
-1  
Output Leakage Current  
VCC  
= 5.5 V  
High at Three-State- Output  
Low at Three-State- Output  
IOHZ  
IOLZ  
VOH  
VOL  
= 5.5 V  
µA  
µA  
=
0 V  
SRAM Memory Operations  
Symbol  
25  
35  
45  
Switching Characteristics  
No.  
Unit  
Read Cycle  
Alt.  
IEC  
Min. Max. Min. Max. Min. Max.  
1
2
3
4
5
6
7
8
9
Read Cycle Timef  
tAVAV  
tAVQV  
tELQV  
tGLQV  
tEHQZ  
tcR  
ta(A)  
ta(E)  
ta(G)  
tdis(E)  
tdis(G)  
ten(E)  
ten(G)  
tv(A)  
tPU  
25  
35  
45  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address Access Time to Data Validg  
Chip Enable Access Time to Data Valid  
Output Enable Access Time to Data Valid  
E HIGH to Output in High-Zh  
25  
25  
12  
13  
13  
35  
35  
20  
17  
17  
45  
45  
25  
20  
20  
G HIGH to Output in High-Zh  
tGHQZ  
tELQX  
E LOW to Output in Low-Z  
5
0
3
0
5
0
3
0
5
0
3
0
G LOW to Output in Low-Z  
tGLQX  
Output Hold Time after Address Change  
tAXQX  
10 Chip Enable to Power Activee  
11 Chip Disable to Power Standbyd, e  
tELICCH  
tEHICCL  
tPD  
25  
35  
45  
e: Parameter guaranteed but not tested.  
f: Device is continuously selected with E and G both LOW.  
g: Address valid prior to or coincident with E transition LOW.  
h: Measured ± 200 mV from steady state output voltage.  
4
April 20, 2004  
U635H16  
f
=
=
VIL, W = VIH)  
Read Cycle 1: Ai-controlled (during Read cycle: E  
G
tcR  
(1)  
Ai  
Address Valid  
ta(A)  
(2)  
DQi  
Previous Data Valid  
Output  
Output Data Valid  
tv(A)  
(9)  
Read Cycle 2: G-, E-controlled (during Read cycle: W = VIH)g  
tcR  
(1)  
Ai  
E
Address Valid  
ta(A) (2)  
tPD  
(11)  
(5)  
ta(E)  
(3)  
tdis(E)  
ten(E)  
(7)  
G
ta(G)  
(4)  
tdis(G)  
(6)  
ten(G)  
(8)  
DQi  
High Impedance  
Output  
Output Data Valid  
t
PU (10)  
ACTIVE  
ICC  
STANDBY  
Symbol  
Alt. #1 Alt. #2  
25  
35  
45  
Switching Characteristics  
Write Cycle  
No.  
Unit  
IEC  
Min. Max. Min. Max. Min. Max.  
12 Write Cycle Time  
tAVAV  
tAVAV  
tcW  
tw(W)  
tsu(W)  
tsu(A)  
tsu(A-WH)  
tsu(E)  
tw(E)  
25  
20  
20  
0
35  
30  
30  
0
45  
35  
35  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
13 Write Pulse Width  
tWLWH  
14 Write Pulse Width Setup Time  
15 Address Setup Time  
tWLEH  
tAVEL  
tAVEH  
tAVWL  
tAVWH  
tELWH  
16 Address Valid to End of Write  
17 Chip Enable Setup Time  
18 Chip Enable to End of Write  
19 Data Setup Time to End of Write  
20 Data Hold Time after End of Write  
21 Address Hold after End of Write  
22 W LOW to Output in High-Zh, i  
23 W HIGH to Output in Low-Z  
20  
20  
20  
12  
0
30  
30  
30  
18  
0
35  
35  
35  
20  
0
tELEH  
tDVEH  
tEHDX  
tEHAX  
tDVWH  
tWHDX  
tWHAX  
tWLQZ  
tWHQX  
tsu(D)  
th(D)  
th(A)  
0
0
0
tdis(W)  
ten(W)  
10  
13  
15  
5
5
5
5
April 20, 2004  
U635H16  
Write Cycle #1: W-controlledj  
tcW  
(12)  
Ai  
Address Valid  
th(A)  
t
(21)  
su(E) (17)  
E
tsu(A-WH)  
(16)  
tw(W)  
W
(13)  
tsu(D)  
tsu(A)  
(15)  
th(D)  
(19)  
Input Data Valid  
ten(W)  
(20)  
DQi  
Input  
tdis(W)  
(22)  
(23)  
DQi  
High Impedance  
Previous Data  
Output  
Write Cycle #2: E-controlledj  
tcW  
(12)  
Address Valid  
tw(E)  
Ai  
E
tsu(A)  
(15)  
th(A)  
(21)  
(20)  
(18)  
tsu(W) (14)  
W
t
th(D)  
su(D) (19)  
DQi  
Input  
Input Data Valid  
High Impedance  
DQi  
Output  
undefined  
L- to H-level  
H- to L-level  
i: If W is LOW and when E goes LOW, the outputs remain in the high impedance state.  
j: E or W must be VIH during address transition.  
6
April 20, 2004  
U635H16  
Nonvolatile Memory Operations  
Mode Selection  
A10 - A0  
E
W
Mode  
I/O  
Power  
Notes  
(hex)  
H
L
L
L
X
H
L
X
X
X
Not Selected  
Read SRAM  
Write SRAM  
Output High Z  
Output Data  
Input Data  
Standby  
Active  
Active  
Active  
m
H
000  
555  
2AA  
7FF  
0F0  
70F  
Read SRAM  
Read SRAM  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output High Z  
k, l  
k, l  
k, l  
k, l  
k, l  
k
Read SRAM  
Read SRAM  
Read SRAM  
Nonvolatile STORE  
L
H
000  
555  
2AA  
7FF  
0F0  
70E  
Read SRAM  
Read SRAM  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output High Z  
Active  
k, l  
k, l  
k, l  
k, l  
k, l  
k
Read SRAM  
Read SRAM  
Read SRAM  
Nonvolatile RECALL  
k: The six consecutive addresses must be in order listed (000, 555, 2AA, 7FF, 0F0, 70F) for a Store cycle or (000, 555, 2AA, 7FF,0F0, 70E) for  
a RECALL cycle. W must be high during all six consecutive cycles.  
See STORE cycle and RECALL cycle tables and diagrams for further details.  
The following six-address sequence is used for testing purposes and should not be used: 000, 555, 2AA, 7FF, 0F0, 39C.  
l: Activation of nonvolatile cycles does not depend on the state of G.  
m: I/O state assumes that G VIL.  
Symbol  
PowerStore  
No.  
Conditions  
Min.  
Max.  
Unit  
Power Up RECALL  
Alt.  
IEC  
24 Power Up RECALL Durationn, e  
tRESTORE  
650  
µs  
the power supply vol-  
tage must stay above  
3.6 V at least  
25 STORE Cycle Durationf  
tPDSTORE  
10  
ms  
10 ms after the start  
of the STORE opera-  
tion  
26 time allowed to Complete SRAM Cyclef, e tDELAY  
1
µs  
Low Voltage Trigger Level  
VSWITCH  
4.0  
4.5  
V
n: tRESTORE starts from the time VCC rises above VSWITCH  
.
7
April 20, 2004  
U635H16  
PowerStore and automatic Power Up RECALL  
VCC  
5.0 V  
VSWITCH  
t
PowerStore  
(25)  
p
tPDSTORE  
Power Up  
RECALL  
(24)  
(24)  
tRESTORE  
tRESTORE  
W
(26)  
tDELAY  
DQi  
BROWN OUT  
NO STORE  
(NO SRAM WRITES)  
BROWN OUT  
PowerStore  
POWER UP  
RECALL  
Symbol  
25  
35  
45  
Software Controlled STORE/  
No.  
Unit  
RECALL Cyclek, o  
Alt.  
IEC  
Min. Max. Min. Max. Min. Max.  
27 STORE/RECALL Initiation Time  
28 Chip Enable to Output Inactivep  
29 STORE Cycle Timeq  
tAVAV  
tELQZ  
tcR  
25  
35  
45  
ns  
ns  
ms  
µs  
ns  
ns  
ns  
tdis(E)SR  
td(E)S  
600  
10  
600  
10  
600  
10  
tELQXS  
tELQXR  
tAVELN  
tELEHN  
tEHAXN  
30 RECALL Cycle Timer  
td(E)R  
20  
20  
20  
31 Address Setup to Chip Enables  
32 Chip Enable Pulse Widths, t  
33 Chip Disable to Address Changes  
tsu(A)SR  
tw(E)SR  
th(A)SR  
0
20  
0
0
25  
0
0
35  
0
o: The software sequence is clocked with E controlled READs.  
p: Once the software controlled STORE or RECALL cycle is initiated, it completes automatically, ignoring all inputs.  
q: Note that STORE cycles (but not RECALL) are aborted by VCC < VSWITCH (STORE inhibit).  
r: An automatic RECALL also takes place at power up, starting when VCC exceeds VSWITCH and takes tRESTORE. VCC must not drop below  
V
SWITCH once it has been exceeded for the RECALL to function properly.  
s: Noise on the E pin may trigger multiple READ cycles from the same address and abort the address sequence.  
t: If the Chip Enable Pulse Width is less than ta(E) (see Read Cycle) but greater than or equal tw(E)SR, than the data may not be valid at  
the end of the low pulse, however the STORE or RECALL will still be initiated.  
8
April 20, 2004  
U635H16  
Software Controlled STORE/RECALL Cycles, t, u, v (E = HIGH after STORE initiation)  
tcR  
tcR  
(27)  
(27)  
ADDRESS 1  
ADDRESS 6  
Ai  
E
th(A)SR  
(33)  
tdis(E)  
tw(E)SR  
(32)  
tw(E)SR  
(32)  
t
(31)  
tsu(A)SR  
(31)  
(5)  
th(A)SR  
(33)  
tsu(A)SR  
t
d(E)S(30)  
d(E)R (29)  
DQi  
High Impedance  
Output  
VALID  
dis(E)SR (28)  
VALID  
t
Software Controlled STORE/RECALL Cycles, t, u, v (E = LOW after STORE initiation)  
tcR  
(27)  
ADDRESS 1  
Ai  
E
ADDRESS 6  
th(A)SR  
(33)  
tw(E)SR  
(32)  
(31)  
tsu(A)SR  
tsu(A)SR  
High Impedance  
(31)  
th(A)SR  
(33)  
t
t
d(E)R (30)  
d(E)S (29)  
DQi  
VALID  
VALID  
dis(E)SR (28)  
Output  
t
u: W must be HIGH when E is LOW during the address sequence in order to initiate a nonvolatile cycle. G may be either HIGH or LOW  
throughout. Addresses 1 through 6 are found in the mode selection table. Address 6 determines whether the U635H16 performs a STORE  
or RECALL.  
v: E must be used to clock in the address sequence for the software controlled STORE and RECALL cycles.  
9
April 20, 2004  
U635H16  
Test Configuration for Functional Check  
5 V  
x
VCC  
A0  
A1  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
A2  
480  
A3  
A4  
VIH  
VIL  
A5  
A6  
A7  
A8  
A9  
A10  
VO  
30 pF w  
E
W
G
255  
VSS  
w: In measurement of tdis-times and ten-times the capacitance is 5 pF.  
x: Between VCC and VSS must be connected a high frequency bypass capacitor 0.1 µF to avoid disturbances.  
Capacitancee  
Conditions  
Symbol  
Min.  
Max.  
Unit  
VCC = 5.0 V  
Input Capacitance  
CI  
8
pF  
VI  
f
= VSS  
= 1 MHz  
= 25 °C  
Output Capacitance  
CO  
7
pF  
Ta  
All pins not under test must be connected with ground by capacitors.  
Ordering Code  
Example  
U635H16  
S
C
25  
Type  
Leadfree Option  
blank= Standard Package  
ESD Class  
G1 = Leadfree Green Package y  
blank > 2000 V  
B
> 1000 V  
Access Time  
25 = 25 ns  
Package  
35 = 35 ns y  
45 = 45 ns y  
D = PDIP24 (600 mil)  
S = SOP24 (300 mil)  
Operating Temperature Range  
C = 0 to 70 °C  
K = -40 to 85 °C  
y: on special request  
Device Marking (example)  
ZMD  
Product specification  
Internal Code  
Date of manufacture  
U635H16SC  
25 Z 0425  
G1  
(The first 2 digits indicating  
the year, and the last 2  
digits the calendar week.)  
Leadfree Green Package  
10  
April 20, 2004  
U635H16  
Device Operation  
WRITE operation has taken place since the most  
recent STORE or RECALL cycle. Software initiated  
STORE cycles are performed regardless of whether or  
not a WRITE operation has taken place.  
The U635H16 has two separate modes of operation:  
SRAM mode and nonvolatile mode. In SRAM mode,  
the memory operates as a standard fast static RAM. In  
nonvolatile mode, data is transferred from SRAM to  
EEPROM (the STORE operation) or from EEPROM to  
SRAM (the RECALL operation). In this mode SRAM  
functions are disabled.  
Automatic RECALL  
During power up an automatic RECALL takes place.  
After any low power condition (VCC < VSWITCH) an inter-  
nal RECALL request may be latched. When VCC once  
again exceeds the sense voltage of VSWITCH, a reque-  
sted RECALL cycle will automatically be initiated and  
will take tRESTORE to complete.  
STORE cycles may be initiated under user control via a  
software sequence and are also automatically initiated  
when the power supply voltage level of the chip falls  
below VSWITCH. RECALL operations are automatically  
initiated upon power up and may also occur when the  
VCC rises above VSWITCH, after a low power condition.  
RECALL cycles may also be initiated by a software  
sequence.  
If the U635H16 is in a WRITE state at the end of a  
power up RECALL, the SRAM data will be corrupted.  
To help avoid this situation, a 10 Kresistor should be  
connected between W and system VCC  
.
SRAM READ  
Software Nonvolatile STORE  
The U635H16 performs a READ cycle whenever E and  
G are LOW and W are HIGH. The address specified on  
pins A0 - A10 determines which of the 2048 data bytes  
will be accessed. When the READ is initiated by an  
address transition, the outputs will be valid after a delay  
of tcR. If the READ is initiated by E or G, the outputs will  
be valid at ta(E) or at ta(G), whichever is later. The data  
outputs will repeatedly respond to address changes  
within the tcR access time without the need for transition  
on any control input pins, and will remain valid until  
another address change or until E or G is brought  
HIGH or W is brought LOW.  
The U635H16 software controlled STORE cycle is  
initiated by executing sequential READ cycles from six  
specific address locations. By relying on READ cycles  
only, the U635H16 implements nonvolatile operation  
while remaining compatible with standard 2K x 8  
SRAMs. During the STORE cycle, an erase of the pre-  
vious nonvolatile data is performed first, followed by a  
parallel programming of all nonvolatile elements. Once  
a STORE cycle is initiated, further inputs and outputs  
are disabled until the cycle is completed.  
Because a sequence of addresses is used for STORE  
initiation, it is important that no other READ or WRITE  
accesses intervene in the sequence or the sequence  
will be aborted.  
SRAM WRITE  
To initiate the STORE cycle the following READ  
sequence must be performed:  
A WRITE cycle is performed whenever E and W are  
LOW. The address inputs must be stable prior to  
entering the WRITE cycle and must remain stable until  
either E or W goes HIGH at the end of the cycle. The  
data on pins DQ0 - 7 will be written into the memory if it  
is valid tsu(D) before the end of a W controlled WRITE or  
1.  
2.  
3.  
4.  
5.  
6.  
Read address  
Read address  
Read address  
Read address  
Read address  
Read address  
000  
555  
(hex) Valid READ  
(hex) Valid READ  
2AA (hex) Valid READ  
7FF  
0F0  
70F  
(hex) Valid READ  
(hex) Valid READ  
(hex) Initiate STORE  
t
su(D) before the end of an E controlled WRITE.  
It is recommended that G is kept HIGH during the en-  
tire WRITE cycle to avoid data bus contention on the  
common I/O lines. If G is left LOW, internal circuitry will  
turn off the output buffers tdis(W) after W goes LOW.  
Once the sixth address in the sequence has been  
entered, the STORE cycle will commence and the chip  
will be disabled. It is important that READ cycles and  
not WRITE cycles are used in the sequence, although it  
is not necessary that G is LOW for the sequence to be  
valid. After the tSTORE cycle time has been fulfilled, the  
SRAM will again be activated for READ and WRITE  
operation.  
Automatic STORE  
The U635H16 uses the intrinsic system capacitance to  
perform an automatic STORE on power down. As long  
as the system power supply take at least tPDSTORE to  
decay from VSWITCH down to 3.6 V the U635H16 will  
safely and automatically STORE the SRAM data in  
EEPROM on power down.  
In order to prevent unneeded STORE operations, auto-  
matic STORE will be ignored unless at least one  
11  
April 20, 2004  
U635H16  
Software Nonvolatile RECALL  
Hardware Protection  
A RECALL cycle of the EEPROM data into the SRAM  
is initiated with a sequence of READ operations in a  
manner similar to the STORE initiation. To initiate the  
RECALL cycle the following sequence of READ opera-  
tions must be performed:  
The U635H16 offers hardware protection against inad-  
vertent STORE operation through VCC Sense. When  
VCC < VSWITCH all software controllod STORE operati-  
ons will be inhibited.  
Low Average Active Power  
1.  
2.  
3.  
4.  
5.  
6.  
Read address  
Read address  
Read address  
Read address  
Read address  
Read address  
000  
555  
(hex) Valid READ  
(hex) Valid READ  
The U635H16 has been designed to draw significantly  
less power when E is LOW (chip enabled) but the  
access cycle time is longer than 55 ns.  
When E is HIGH the chip consumes only standby cur-  
rent.  
2AA (hex) Valid READ  
7FF  
0F0  
70E  
(hex) Valid READ  
(hex) Valid READ  
(hex) Initiate RECALL  
The overall average current drawn by the part depends  
on the following items:  
Internally, RECALL is a two step procedure. First, the  
SRAM data is cleared and second, the nonvolatile  
information is transferred into the SRAM cells. The  
RECALL operation in no way alters the data in the  
EEPROM cells. The nonvolatile data can be recalled an  
unlimited number of times.  
1. CMOS or TTL input levels  
2. the time during which the chip is disabled (E HIGH)  
3. the cycle time for accesses (E LOW)  
4. the ratio of READs to WRITEs  
5. the operating temperature  
6. the VCC level  
The information describes the type of component and shall not be considered as assured characteristics. Terms of  
delivery and rights to change design reserved.  
12  
April 20, 2004  
U635H16  
LIFE SUPPORT POLICY  
ZMD products are not designed, intended, or authorized for use as components in systems intended for surgical  
implant into the body, or other applications intended to support or sustain life, or for any other application in which  
the failure of the ZMD product could create a situation where personal injury or death may occur.  
Components used in life-support devices or systems must be expressly authorized by ZMD for such purpose.  
LIMITED WARRANTY  
The information in this document has been carefully checked and is believed to be reliable. However Zentrum  
Mikroelektronik Dresden AG (ZMD) makes no guarantee or warranty concerning the accuracy of said information  
and shall not be responsible for any loss or damage of whatever nature resulting from the use of, or reliance upon  
it. The information in this document describes the type of component and shall not be considered as assured cha-  
racteristics.  
ZMD does not guarantee that the use of any information contained herein will not infringe upon the patent, trade-  
mark, copyright, mask work right or other rights of third parties, and no patent or licence is implied hereby. This  
document does not in any way extent ZMD’s warranty on any product beyond that set forth in its standard terms  
and conditions of sale.  
ZMD reserves terms of delivery and reserves the right to make changes in the products or specifications, or both,  
presented in this publication at any time and without notice.  
April 20, 2004  
Zentrum Mikroelektronik Dresden AG  
Grenzstraße 28 D-01109 Dresden P. O. B. 80 01 34 D-01101 Dresden Germany  
Phone: +49 351 8822 306 Fax: +49 351 8822 337 Email: memory@zmd.de http://www.zmd.de  

相关型号:

U635H16BSK35

Non-Volatile SRAM, 2KX8, 35ns, CMOS, PDSO24, 0.300 INCH, SOP-24
SIMTEK

U635H16BSK35G1

2KX8 NON-VOLATILE SRAM, 35ns, PDSO24, 0.300 INCH, SOP-24
SIMTEK

U635H16BSK45

NVRAM (EEPROM Based)
ETC

U635H16D1C25

2KX8 NON-VOLATILE SRAM, 25ns, PDIP28, 0.600 INCH, PLASTIC, DIP-28
CYPRESS

U635H16D1C25G1

Non-Volatile SRAM, 2KX8, 25ns, CMOS, PDIP28, 0.600 INCH, PLASTIC, DIP-28
CYPRESS

U635H16D1C35

Non-Volatile SRAM, 2KX8, 35ns, CMOS, PDIP28, 0.600 INCH, PLASTIC, DIP-28
CYPRESS

U635H16D1C35G1

2KX8 NON-VOLATILE SRAM, 35ns, PDIP28, 0.600 INCH, PLASTIC, DIP-28
CYPRESS

U635H16D1C45

2KX8 NON-VOLATILE SRAM, 45ns, PDIP28, 0.600 INCH, PLASTIC, DIP-28
CYPRESS

U635H16D1C45G1

2KX8 NON-VOLATILE SRAM, 45ns, PDIP28, 0.600 INCH, PLASTIC, DIP-28
CYPRESS

U635H16D1K25

Non-Volatile SRAM, 2KX8, 25ns, CMOS, PDIP28, 0.600 INCH, PLASTIC, DIP-28
CYPRESS

U635H16D1K35

Non-Volatile SRAM, 2KX8, 35ns, CMOS, PDIP28, 0.600 INCH, PLASTIC, DIP-28
CYPRESS

U635H16D1K35G1

2KX8 NON-VOLATILE SRAM, 35ns, PDIP28, 0.600 INCH, PLASTIC, DIP-28
CYPRESS