W185 [CYPRESS]

Six Output Peak Reducing EMI Solution; 六个输出峰值抑制EMI解决方案
W185
型号: W185
厂家: CYPRESS    CYPRESS
描述:

Six Output Peak Reducing EMI Solution
六个输出峰值抑制EMI解决方案

文件: 总8页 (文件大小:119K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
W185  
Six Output Peak Reducing EMI Solution  
Features  
Table 1. Modulation Width Selection  
Cypress PREMIS™ family offering  
• Generates an EMI optimized clocking signal at the  
output  
• Selectable output frequency range  
• Six 1.25%, 3.75%, or 0% down or center spread outputs  
• One non-Spread output of Reference input  
• Integrated loop filter components  
W185  
W185-5  
Output  
SS%  
Output  
0
F
F
F F – 1.25%  
F + 0.625% F ≥  
– 0.625%  
in  
in  
out  
in  
in  
in  
1
F F – 3.75%  
F + 1.875% F ≥  
–1.875%  
out  
in  
in  
in  
• Operates with a 3.3V or 5V supply  
• Low power CMOS design  
Table 2. Frequency Range Selection  
• Available in 24-pin SSOP (Shrink Small Outline  
Package)  
• Outputs may be selectively disabled  
FS2  
0
FS1  
0
Frequency Range  
28 MHz F 38 MHz  
IN  
0
1
38 MHz F 48 MHz  
IN  
Key Specifications  
1
0
46 MHz F 60 MHz  
IN  
Supply Voltages: ...........................................V = 3.3V±5%  
DD  
1
1
58 MHz F 75 MHz  
IN  
or V = 5V±10%  
DD  
Frequency Range: ............................ 28 MHz F 75 MHz  
in  
Table 3. Output Enable  
Crystal Reference Range:................. 28 MHz F 40 MHz  
in  
EN1  
EN2  
CLK0:4  
CLK5  
Cycle to Cycle Jitter: ....................................... 300 ps (max.)  
Selectable Spread Percentage: ....................1.25% or 3.75%  
Output Duty Cycle: ............................... 40/60% (worst case)  
Output Rise and Fall Time: .................................. 5 ns (max.)  
0
0
1
1
0
1
0
1
Low  
Low  
Low  
Active  
Low  
Active  
Active  
Active  
Simplified Block Diagram  
Pin Configuration  
3.3V or 5.0V  
SSOP  
REFOUT  
FS2  
SSON#  
RESET  
1
2
3
4
5
6
7
8
9
24  
23  
22  
21  
20  
19  
X1  
X1  
FS1  
XTAL  
Input  
40MHz  
max.  
X2  
VDD  
VDD  
X2  
Spread Spectrum  
Output  
(EMI suppressed)  
W185  
GND  
NC  
SS%  
EN2  
GND  
18 EN1  
CLK5  
17  
3.3V or 5.0V  
VDD  
16  
CLK0  
VDD  
CLK1  
10  
11  
CLK4  
GND  
15  
14  
CLK2 12  
CLK3  
13  
Oscillator or  
Reference Input  
Spread Spectrum  
W185  
Output  
(EMI suppressed)  
PREMIS is a trademark of Cypress Semiconductor Corporation.  
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose  
CA 95134  
408-943-2600  
July 25, 2000, rev. *A  
W185  
Pin Definitions  
Pin  
Type  
Pin Name  
Pin No.  
Pin Description  
CLK0:5  
9, 11, 12, 13,  
15, 17  
O
I
Modulated Frequency Outputs: Frequency modulated copies of the unmod-  
ulated input clock (SSON# asserted).  
CLKIN or X1  
3
Crystal Connection or External Reference Frequency Input: This pin has  
dual functions. It may either be connected to an external crystal, or to an  
external reference clock.  
NC or X2  
SS%  
4
6
I
I
Crystal Connection: If using an external reference, this pin must be left un-  
connected.  
Modulation Width Selection: When Spread Spectrum feature is turned on,  
this pin is used to select the amount of variation and peak EMI reduction that  
is desired on the output signal. This pin has an internal pull-up resistor.  
Reset  
23  
1
I
ModulationProfileRestart: A rising edgeon thisinputrestarts the modulation  
pattern at the beginning of its defined path. This pin has an internal pull-down  
resistor.  
REFOUT  
O
Non-Modulated Output: This pin provides a copy of the reference frequency.  
This output will not have the Spread Spectrum feature enabled regardless of  
the state of logic input SSON#.  
EN1:2  
18, 7  
24  
I
I
Output Enable Select Pins: These pins control the activity of specific output  
buffers. See Table 3 on page 1.  
SSON#  
Spread Spectrum Control (Active LOW): Asserting this signal (active LOW)  
turns the internal modulation waveform on. This pin has an internal pull-down  
resistor.  
FS1:2  
22, 2  
I
Frequency Selection Bit 1 and 2: These pins select the frequency of opera-  
tion. Refer to Table 1. These pins have internal pull-up resistors.  
VDD  
GND  
NC  
10, 16, 20, 21  
5, 8, 14  
19  
P
G
Power Connection: Connected to 3.3V or 5V power supply.  
Ground Connection: This should be connected to the common ground plane.  
No Connect: This pin should be left floating.  
NC  
2
W185  
times the reference frequency. (Note: For the W184 the output  
frequency is nominally equal to the input frequency.) The  
unique feature of the Spread Spectrum Frequency Timing  
Generator is that a modulating waveform is superimposed at  
the input to the VCO. This causes the VCO output to be slowly  
swept across a predetermined frequency band.  
Overview  
The W185 products are one series of devices in the Cypress  
PREMIS family. The PREMIS family incorporates the latest  
advances in PLL spread spectrum frequency synthesizer tech-  
niques. By frequency modulating the output with a low-fre-  
quency carrier, peak EMI is greatly reduced. Use of this tech-  
nology allows systems to pass increasingly difficult EMI testing  
without resorting to costly shielding or redesign.  
Because the modulating frequency is typically 1000 times  
slower than the fundamental clock, the spread spectrum pro-  
cess has little impact on system performance.  
In a system, not only is EMI reduced in the various clock lines,  
but also in all signals which are synchronized to the clock.  
Therefore, the benefits of using this technology increase with  
the number of address and data lines in the system. The Sim-  
plified Block Diagram shows a simple implementation.  
Frequency Selection With SSFTG  
In Spread Spectrum Frequency Timing Generation, EMI re-  
duction depends on the shape, modulation percentage, and  
frequency of the modulating waveform. While the shape and  
frequency of the modulating waveform are fixed for a given  
frequency, the modulation percentage may be varied.  
Functional Description  
Using frequency select bits (FS1:2 pins), the frequency range  
can be set. Spreading percentage may be selected as either  
1.25% or 3.75% (see Table 1).  
The W185 uses a Phase-Locked Loop (PLL) to frequency  
modulate an input clock. The result is an output clock whose  
frequency is slowly swept over a narrow band near the input  
signal. The basic circuit topology is shown in Figure 1. The  
input reference signal is divided by Q and fed to the phase  
detector. A signal from the VCO is divided by P and fed back  
to the phase detector also. The PLL will force the frequency of  
the VCO output signal to change until the divided output signal  
and the divided reference signal match at the phase detector  
input. The output frequency is then equal to the ratio of P/Q  
A larger spreading percentage improves EMI reduction. How-  
ever, large spread percentages may either exceed system  
maximum frequency ratings or lower the average frequency to  
a point where performance is affected. For these reasons,  
spreading percentage options are provided.  
VDD  
Clock Input  
CLKOUT  
Freq.  
Divider  
Q
Phase  
Detector  
Charge  
Pump  
Post  
Dividers  
Reference Input  
(EMI suppressed)  
VCO  
Σ
Modulating  
Waveform  
Feedback  
Divider  
P
PLL  
GND  
Figure 1. Functional Block Diagram  
3
W185  
Where P is the percentage of deviation and F is the frequency  
in MHz where the reduction is measured.  
Spread Spectrum Frequency Timing  
Generation  
The output clock is modulated with a waveform depicted in  
. This waveform, as discussed in Spread Spectrum  
The device generates a clock that is frequency modulated in  
order to increase the bandwidth that it occupies. By increasing  
the bandwidth of the fundamental and its harmonics, the am-  
plitudes of the radiated electromagnetic emissions are re-  
Clock Generation for the Reduction of Radiated Emissionsby  
Bush, Fessler, and Hardin produces the maximum reduction  
in the amplitude of radiated electromagnetic emissions.  
details the Cypress spreading pattern. Cypress does offer  
options with more spread and greater EMI reduction. Contact  
your local Sales representative for details on these devices.  
duced. This effect is depicted in  
.
As shown in , a harmonic of a modulated clock has a  
much lower amplitude than that of an unmodulated signal. The  
reduction in amplitude is dependent on the harmonic number  
and the frequency deviation or spread. The equation for the  
reduction is:  
dB = 6.5 + 9*log (P) + 9*log (F)  
10  
10  
EMI Reduction  
SSFTG  
Typical Clock  
Spread  
Spectrum  
Enabled  
Non-  
Spread  
Spectrum  
Frequency Span (MHz)  
Down Spread  
Frequency Span (MHz)  
Center Spread  
Figure 2. Clock Harmonic with and without SSCG Modulation Frequency Domain Representation  
MAX.  
MIN.  
Figure 3. Typical Modulation Profile  
4
W185  
Absolute Maximum Ratings  
Stresses greater than those listed in this table may cause per-  
manent damage to the device. These represent a stress rating  
above those specified in the operating sections of this specifi-  
cation is not implied. Maximum conditions for extended peri-  
ods may affect reliability.  
only. Operation of the device at these or any other conditions  
.
Parameter  
Description  
Voltage on any pin with respect to GND  
Storage Temperature  
Rating  
0.5 to +7.0  
65 to +150  
0 to +70  
Unit  
V
V
, V  
DD IN  
T
°C  
°C  
°C  
W
STG  
T
Operating Temperature  
A
T
Ambient Temperature under Bias  
Power Dissipation  
55 to +125  
0.5  
B
P
D
: 0°C < T < 70°C, V = 3.3V ±5%  
DC Electrical Characteristics  
A
DD  
Parameter  
Description  
Supply Current  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
mA  
ms  
I
18  
32  
5
DD  
ON  
t
Power Up Time  
First locked clock cycle after Power  
Good  
V
V
V
V
Input Low Voltage  
0.8  
0.4  
V
V
IL  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
Input Low Current  
2.4  
IH  
V
OL  
OH  
2.4  
V
I
I
I
I
Note 1  
Note 1  
50  
µA  
µA  
mA  
mA  
pF  
kΩ  
IL  
Input High Current  
Output Low Current  
Output High Current  
Input Capacitance  
Input Pull-Up Resistor  
Clock Output Impedance  
50  
7
IH  
@ 0.4V, V = 3.3V  
15  
15  
OL  
OH  
DD  
@ 2.4V, V = 3.3V  
DD  
C
R
I
500  
25  
P
Z
OUT  
Note:  
1. Inputs FS1:2 have a pull-up resistor; Input SSON# has a pull-down resistor.  
5
W185  
DC Electrical Characteristics: 0°C < T < 70°C, V = 5V ±10%  
A
DD  
Parameter  
Description  
Supply Current  
Test Condition  
Min.  
Typ.  
Max.  
50  
Unit  
mA  
ms  
I
t
30  
DD  
ON  
Power Up Time  
First locked clock cycle after  
Power Good  
5
V
V
V
V
Input Low Voltage  
0.15V  
0.4  
V
V
IL  
DD  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
Input Low Current  
0.7V  
DD  
IH  
V
OL  
OH  
2.4  
V
I
I
I
I
Note 1  
Note 1  
100  
µA  
µA  
mA  
mA  
pF  
kΩ  
IL  
Input High Current  
Output Low Current  
Output High Current  
Input Capacitance  
Input Pull-Up Resistor  
Clock Output Impedance  
50  
7
IH  
@ 0.4V, V = 5V  
24  
24  
OL  
OH  
DD  
@ 2.4V, V = 5V  
DD  
C
R
I
500  
25  
P
Z
OUT  
AC Electrical Characteristics: T = 0°C to +70°C, V = 3.3V ±5% or 5V±10%  
A
DD  
Symbol  
Parameter  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
f
Internal Xtal Oscillator  
Frequency  
Xtal connected to X1, X2  
28  
40  
MHz  
OSC  
f
f
Input Frequency  
External reference  
28  
28  
75  
75  
MHz  
MHz  
IN  
Output Frequency  
Spread Off, FS2:1 per  
OUT  
Table 2  
t
t
t
t
t
Output Rise Time  
Output Fall Time  
15-pF load 0.8V2.4V  
15-pF load 2.4 0.8V  
15-pF load  
2
2
5
5
ns  
ns  
%
R
F
Output Duty Cycle  
Input Duty Cycle  
40  
40  
60  
60  
300  
OD  
ID  
%
Jitter, Cycle-to-Cycle  
Harmonic Reduction  
250  
ps  
dB  
JCYC  
EMI  
f
= 40 MHz, third harmonic  
8
RED  
out  
measured, reference board,  
15-pF load  
t
Output to Output Skew  
300  
ps  
SK  
6
W185  
creased trace inductance will negate its decoupling capability.  
The 10-µF decoupling capacitor shown should be a tantalum  
Application Information  
Recommended Circuit Configuration  
type. For further EMI protection, the V  
made via a ferrite bead, as shown.  
connection can be  
DD  
For optimum performance in system applications the power  
supply decoupling scheme shown in Figure 4 should be used.  
Recommended Board Layout  
V
decoupling is important to both reduce phase jitter and  
DD  
Figure 5 shows a recommended 2-layer board layout.  
EMI radiation. The 0.1-µF decoupling capacitor should be  
placed as close to the V  
pin as possible, otherwise the in-  
DD  
R
Reference Output  
1
2
3
24  
23  
22  
Logic Input  
XTAL Connection or  
Reference Input  
XTAL Connection or NC  
4
5
6
7
8
21  
20  
C2  
µF  
0.1  
C3  
0.1  
NC  
19  
18  
17  
16  
15  
14  
µF  
R
Output  
Clock  
Clock Output  
9
R
10  
11  
12  
C4  
0.1  
R
Output  
Output  
Clock  
Clock  
Clock Output  
Clock Output  
µF  
R
R
R
13  
C1  
µF  
0.1  
FB  
C5  
10  
3.3V or 5V System Supply  
µF Tantalum  
Figure 4. Recommended Circuit Configuration  
High frequency supply decoupling  
C1....C4 =  
µF recommended).  
capacitor (0.1-  
C5 =  
Common supply low frequency  
Xtal Connection or Reference Input  
Xtal Connection or NC  
-µF tantalum  
decoupling capacitor (10  
recommended).  
C2  
C3  
G
G
R =  
Match value to line impedance  
=
Ferrite Bead  
G
FB  
G
=
Via To GND Plane  
R
G
R
Clock Output  
G
C4  
R
G
C1  
R
G
G
Power Supply Input  
(3.3V or 5V)  
FB  
C5  
Figure 5. Recommended Board Layout (2-Layer Board)  
Ordering Information  
Package  
Name  
Ordering Code  
Package Type  
W185  
H
24-Pin SSOP (209-mil)  
W185-5  
Document #: 38-00809-A  
7
W185  
Package Diagram  
24-Pin Shrink Small Outline Package (SSOP, 209-mil)  
8
7
6
5
4
3
2
1
REV.  
DESCRIPTION  
DATE  
OR IGINATOR  
06/13  
1991  
11/05  
1992  
11/08  
1993  
04/26  
1994  
06/19  
1995  
03/19  
1996  
00 INITIAL RELEASE PER DCN#A33907.  
01 REVISED PER DCN#D20214.  
02 REVISED PER DCN#D20760.  
03 REVISED PER DCN#D21151.  
04 REVISED PER DCN#D22219.  
05 REVISED PER DCN#P60056.  
HJC  
D/2  
2.36  
DIA. PIN  
1.00  
YMK  
1.00 DIA.  
E
D
C
E
EBA  
EBA  
3
2
1
EBA  
+
0.20 M E M  
H
J.B.C.  
E/2  
1.00  
P
P
I
b1  
WITH LEAD FINISH  
I
I
E
H
S
-
c
c1  
D
C
B
N
8.  
SECTION G-G  
6
b
BASE METAL  
TOP VIEW  
BOTTOM VIEW  
10.  
NOTES:  
1. MAXIMUM DIE THICKNESS ALLOWABLE IS 0.43mm (.017 INCHES).  
2. DIMENSIONING & TOLERANCES PER ANSI.Y14.5M-1982.  
12-16°  
+
0.12  
M
T
E D S  
3. "T" IS A REFERENCE DATUM.  
e
b
8
A
A2  
4. "D" & "E" ARE REFERENCE DATUMS AND DO NOT  
INCLUDE MOLD FLASH OR PROTRUSIONS, BUT  
DO INCLUDE MOLD MISMATCH AND ARE MEASURED  
AT THE PARTING LINE, MOLD FLASH OR  
PROTRUSIONS SHALL NOT EXCEED 0.15mm PER SIDE.  
5. DIMENSION IS THE LENGTH OF TERMINAL  
FOR SOLDERING TO A SUBSTRATE.  
- C -  
3
- T -  
0.076  
C
7
-E-  
4
6. TERMINAL POSITIONS ARE SHOWN FOR REFERENCE ONLY.  
A1  
-D-  
4
SEATING  
PLANE  
7. FORMED LEADS SHALL BE PLANAR WITH RESPECT TO  
ONE ANOTHER WITHIN 0.08mm AT SEATING PLANE.  
8. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION/INTRUSION.  
ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.13mm TOTAL IN  
EXCESS OF b DIMENSION AT MAXIMUM MATERIAL CONDITION.  
DAMBAR INTRUSION SHALL NOT REDUCE DIMENSION b BY MORE  
THAN 0.07mm AT LEAST MATERIAL CONDITION.  
SEE  
DETAIL "A"  
.235 MIN  
SIDE VIEW  
END VIEW  
B
9. CONTROLLING DIMENSION: MILLIMETERS.  
0° MIN.  
10. THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE  
LEAD BETWEEN 0.10 AND 0.25mm FROM LEAD TIPS.  
THIS PACKAGE OUTLINE DRAWING COMPLIES WITH  
GAUGE PLANE  
PARTING LINE  
R
11.  
JEDEC SPECIFICATION NO. MO-150 FOR THE LEAD COUNTS SHOWN  
G
0.25 BSC  
PROJEC TION  
Anam Industrial Co., LT D. Am kor/Anam Pilipinas, INC.  
DECIMAL ANGULAR  
XX±  
C
C
EXCELLENCE IN SEMICONDUCTOR  
ASSEMBLY AND TEST  
Seoul, Korea  
Am kor Electronics  
Irving, TX  
Manila, Philippines  
Am kor Electronics  
Chandler, AZ  
O
±
L
5
XXX±  
XXXX±  
MATERIAL  
TITLE  
APPROVALS  
DATE  
G
7
SEATING PLANE  
PACKAGE OUTLINE,  
5.30mm (.209") BODY, SSOP  
DRAW N  
A
A
6/13  
1991  
L1  
M. CHAVEZ  
CHECKED  
ENG'R  
6/13  
1991  
SIZ E  
D WG. N O.  
REV.  
DETAIL 'A'  
M. BANGLOY  
FINISH  
6/13  
1991  
32289  
A1  
SCALE  
05  
H. BAUTISTA  
H.J. CHOI  
RELEASED  
6/13  
1991  
SHEET  
1 of 2  
1
DO NOT SCALE DRAWING  
4
8
6
5
3
2
8
7
6
5
4
3
2
1
THIS TABLE IN MILLIMETERS  
S
Y
COMMON  
NOTE  
VARI-  
ATIONS  
AA  
AB  
AC  
AD  
AE  
AF  
4
6
E
D
C
B
A
E
M
B
O
N
DIMENSIONS  
D
N
O
T
E
MIN.  
6.07  
6.07  
7.07  
8.07  
NOM.  
6.20  
6.20  
7.20  
8.20  
10.20  
10.20  
MAX.  
6.33  
6.33  
7.33  
8.33  
L
MIN.  
NOM.  
MAX.  
1.99  
1.73  
1.86  
14  
16  
20  
24  
28  
30  
A
0.05  
1.68  
0.25  
0.25  
0.09  
0.09  
0.13  
1.73  
-
0.30  
-
0.21  
1.78  
0.38  
0.33  
0.20  
0.16  
A1  
A2  
b
b1  
c
8,10  
10  
10  
10  
4
10.07  
10.07  
10.33  
10.33  
c1  
D
0.15  
SEE VARIATIONS  
D
C
B
A
5.20  
5.30  
0.65 BSC  
7.80  
0.75  
1.25 REF.  
5.38  
4
E
e
H
7.65  
0.63  
7.90  
0.95  
VARIATION AF  
5
6
L
L1  
N
OC  
IS DESIGNED BUT NOT TOOLED  
SEE VARIATIONS  
0°  
0.09  
4°  
0.15  
8°  
R
THIS TABLE IN INCHES  
S
COMMON  
NOTE  
VARI-  
ATIONS  
AA  
AB  
AC  
AD  
AE  
AF  
4
6
N
Y
M
B
O
N
DIMENSIONS  
D
O
T
E
L
MIN.  
.239  
.239  
.278  
.318  
NOM.  
MAX.  
.249  
.249  
.289  
.328  
MIN.  
NOM.  
MAX.  
.078  
.068  
.073  
.244  
14  
16  
20  
24  
28  
30  
A
.002  
.066  
.010  
.010  
.004  
.004  
.005  
.068  
-
.012  
-
.008  
.070  
.015  
.013  
.008  
.006  
.244  
.284  
.323  
.402  
.402  
A1  
A2  
b
b1  
c
c1  
D
E
e
H
8,10  
10  
10  
10  
4
.397  
.397  
.407  
.407  
.006  
SEE VARIATIONS  
.205  
.209  
.0256 BSC  
.307  
.030  
.049 REF.  
.212  
4
.301  
.025  
.311  
.037  
TITLE  
5
6
L
L1  
PACKAGE OUTLINE,  
N
SEE VARIATIONS  
0°  
.004  
5.30mm (.209") BODY, SSOP  
C
O
4°  
.006  
8°  
SIZE  
DWG. NO.  
REV.  
R
32289  
05  
A1  
SCALE  
SHEET  
2 of 2  
8/1  
8
7
6
5
4
3
2
1
© Cypress Semiconductor Corporation, 2000. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  

相关型号:

W185-5

Six Output Peak Reducing EMI Solution
CYPRESS

W185-5H

75MHz, OTHER CLOCK GENERATOR, PDSO24, 0.209 INCH, MO-150AD, SSOP-24
ROCHESTER

W1856NC400

Rectifier Diode, 1 Phase, 1 Element, 1856A, 4000V V(RRM), Silicon,
IXYS

W1856NC400

Rectifier Diode, 1 Phase, 1 Element, 1856A, 4000V V(RRM), Silicon,
LITTELFUSE

W1856NC420

Rectifier Diode,
LITTELFUSE

W1856NC440

Rectifier Diode, 1 Phase, 1 Element, 1856A, 4400V V(RRM), Silicon,
IXYS

W1856NC460

Rectifier Diode,
LITTELFUSE

W1856NC460

Rectifier Diode, 1 Phase, 1 Element, 1856A, 4600V V(RRM), Silicon,
IXYS

W1856NC480

Rectifier Diode,
LITTELFUSE

W1856NC480

Rectifier Diode, 1 Phase, 1 Element, 1856A, 4800V V(RRM), Silicon,
IXYS

W1856NC500

Rectifier Diode, 1 Phase, 1 Element, 1856A, 5000V V(RRM), Silicon,
LITTELFUSE

W185H

Miscellaneous Clock Generator
ETC