W48S87-72H [CYPRESS]

CPU System Clock Generator ; CPU的系统时钟发生器\n
W48S87-72H
型号: W48S87-72H
厂家: CYPRESS    CYPRESS
描述:

CPU System Clock Generator
CPU的系统时钟发生器\n

时钟发生器
文件: 总19页 (文件大小:247K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
W48S87-72  
Desktop/Notebook Frequency Generator  
• Two fixed outputs separately selectable as 24-MHz or  
48-MHz (default = 48-MHz)  
Features  
• Maximized EMI suppression using Cypress’s Spread  
Spectrum technology  
• ±0.5% Spread Spectrum clocking  
• Equivalent to the W48S67-72 with Spread Spectrum for  
Tilamook, MMO, and Deschutes processors  
• Generates system clocks for CPU, IOAPIC, SDRAM,  
PCI, USB plus 14.318-MHz (REF0:1)  
• Serial data interface (SDATA, SCLOCK inputs) provides  
additional CPU/PCI clock frequency selections, individ-  
ual output clock disabling and other functions  
• MODE input pin selects optional power management  
input control pins (reconfigures pins 26 and 27)  
• V  
= 3.3V±5%, V  
= 2.5V±5%  
DDQ3  
DDQ2  
• Uses external 14.318-MHz crystal  
• Available in 48-pin SSOP (300 mils)  
10 CPU output impedance  
[1]  
Table 1. Pin Selectable Frequency  
CPU, SDRAM  
Clocks (MHz)  
PCI Clocks  
(MHz)  
60/66_SEL  
0
1
60  
30  
66.8  
33.4  
Block Diagram  
Pin Configuration  
VDDQ3  
REF0  
REF1  
REF0  
GND  
X1  
X2  
MODE  
VDDQ3  
PCI_F  
PCI0  
GND  
PCI1  
PCI2  
PCI3  
PCI4  
VDDQ3  
PCI5  
1
2
3
4
5
6
7
8
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
VDDQ3  
CPU2.5#  
VDDQ2  
IOAPIC  
PWR_DWN#  
GND  
CPU0  
CPU1  
VDDQ2  
CPU2  
CPU3  
GND  
SDRAM0  
SDRAM1  
VDDQ3  
SDRAM2  
SDRAM3  
GND  
SDRAM4  
SDRAM5  
VDDQ3  
SDRAM6/CPU_STOP#  
SDRAM7/PCI_STOP#  
VDDQ3  
REF1  
X1  
X2  
XTAL  
OSC  
PLL Ref Freq  
VDDQ2  
IOAPIC  
VDDQ2  
CPU0  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
CPU1  
CPU2  
CPU3  
CPU_STOP#  
MODE  
Stop  
Output  
Control  
I/O  
Control  
GND  
VDDQ3  
60/66_SEL  
SDATA  
SCLOCK  
VDDQ3  
48/24MHZ  
48/24MHZ  
GND  
SDRAM0  
SDRAM1  
SDRAM2  
SDRAM3  
SDRAM4  
SDRAM5  
SDRAM6  
SDRAM7  
PLL 1  
60/66_SEL  
÷2  
PCI_F  
PCI0  
PCI1  
PCI2  
PCI3  
PCI4  
PCI5  
Stop  
Output  
Control  
Power  
Down  
Control  
PWR_DWN#  
PLL2  
48/24MHZ  
48/24MHZ  
Note:  
1. Additional frequency selections provided by serial data interface; refer to Ta bl e 5 on page 8.  
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose  
CA 95134  
408-943-2600  
August 4, 2000 rev. *A  
W48S87-72  
Pin Definitions  
Pin  
No.  
Pin  
Type  
Pin Name  
Pin Description  
CPU0:3  
42, 41, 39,  
38  
O
CPU Outputs 0 through 3: These four CPU outputs are controlled by the  
CPU_STOP# control pin. Output voltage swing is controlled by voltage applied  
to VDDQ2.  
PCI0:5  
9, 11, 12,  
13, 14, 16  
O
PCI Bus Outputs 0 through 5: These six PCI outputs are controlled by the  
PCI_STOP# control pin. Output voltage swing is controlled by voltage applied  
to VDDQ3.  
PCI_F  
8
O
Free Running PCI Output: Unlike PCI0:5 outputs, this output is not controlled  
by the PCI_STOP# control pin. Output voltage swing is controlled by voltage  
applied to VDDQ3.  
SDRAM0:5  
36, 35, 33,  
32, 30, 29  
O
SDRAM Clock Outputs 0 through 5: These six SDRAM clock outputs run  
synchronous to the CPU clock outputs. Output voltage swing is controlled by  
voltage applied to VDDQ3.  
SDRAM6/  
CPU_STOP#  
27  
I/O  
SDRAM Clock Output 6 or CPU Clock Output Stop Control: This pin has  
dual functions, selectable by the MODE input pin. When MODE = 0, this pin  
becomes the CPU_STOP# input. When MODE = 1, this pin becomes SDRAM  
clock output 6.  
Regarding use as a CPU_STOP# input: When brought LOW, clock outputs  
CPU0:3 are stopped LOW after completing a full clock cycle (23 CPU clock  
latency). When broughtHIGH, clock outputs CPU0:3 are started beginning with  
a full clock cycle (23 CPU clock latency).  
Regarding use as a SDRAM clock: Output voltage swing is controlled by voltage  
applied to VDDQ3.  
SDRAM7/  
PCI_STOP#  
26  
I/O  
SDRAM Clock Output 7 or PCI Clock Output Stop Control: This pin has  
dual functions, selectable by the MODE input pin. When MODE = 0, this pin  
becomes the PCI_STOP# input. When MODE = 1, this pin becomes SDRAM  
clock output 7.  
PCI_STOP# input: When brought LOW, clock outputs PCI0:5 are stopped LOW  
after completing a full clock cycle. When brought HIGH, clock outputs PCI0:5  
are started beginning with a full clock cycle. Clock latency provides one PCI_F  
rising edge of PCI clock following PCI_STOP# state change.  
Regarding use as a SDRAM clock: Output voltage swing is controlled by voltage  
applied to VDDQ3.  
IOAPIC  
45  
O
O
I/O APIC Clock Output: Provides 14.318-MHz fixed frequency. The output  
voltage swing is controlled by VDDQ2.  
48/24MHz  
22, 23  
48-MHz / 24-MHz Output: Fixed clock outputs that default to 48 MHz following  
device power-up. Either or both can be changed to 24 MHz through use of the  
serial data interface (Byte 0, bits 2 and 3). Output voltage swing is controlled  
by voltage applied to VDDQ3  
REF0:1  
2, 1  
O
Fixed 14.318-MHz Outputs 0 through 1: Used for various system applica-  
tions. Output voltage swing is controlled by voltage applied to VDDQ3. REF0  
is stronger than REF1 and should be used for driving ISA slots.  
CPU_2.5#  
60/66_SEL  
47  
18  
I
I
Set to logic 0 for V  
= 2.5V (0 to 2.5V CPU output swing).  
DDQ2  
60- or 66-MHz Input Selection: Selects power-up default CPU clock frequency  
as shown in Table 1 on page 1 (also determines SDRAM and PCI clock fre-  
quency selections). Can be used to change CPU clock frequency while device  
is in operation if serial data port bits 02 of Byte 7 are logic 1 (default power-  
up condition).  
X1  
X2  
4
5
I
I
Crystal Connection or External Reference Frequency Input: This pin has  
dual functions. It can be used as an external 14.318-MHz crystal connection  
or as an external reference frequency input.  
Crystal Connection: An input connection for an external 14.318-MHz crystal.  
If using an external reference, this pin must be left unconnected.  
2
W48S87-72  
Pin Definitions (continued)  
Pin  
Pin  
Pin Name  
PWR_DWN#  
No.  
Type  
Pin Description  
44  
I
Power-Down Control: When this input is LOW, the device goes into a low-  
power standby condition. All outputs are actively held LOW while in power-  
down. CPU, SDRAM, and PCI clock outputs are stopped LOW after completing  
a full clock cycle (24 CPU clock cycle latency). When brought HIGH, CPU,  
SDRAM, and PCI outputs start with a full clock cycle at full operating frequency  
(3 ms maximum latency).  
MODE  
6
I
Mode Control: This input selects the function of device pin 26  
(SDRAM7/PCI_STOP#) and pin 27 (SDRAM6/CPU_STOP#). Refer to descrip-  
tion for those pins.  
SDATA  
SCLOCK  
VDDQ3  
VDDQ2  
GND  
19  
20  
I/O  
I
Serial Data Input: Data input for Serial Data Interface. Refer to Serial Data  
Interface section that follows.  
Serial Clock Input: Clock input for Serial Data Interface. Refer to Serial Data  
Interface section that follows.  
7, 15, 21, 25  
28, 34, 48  
P
Power Connection: Power supply for PCI0:5, REF0:1, and 48/24MHz output  
buffers. Connected to 3.3V supply.  
46, 40  
P
Power Connection: Power supply for IOAPIC0, CPU0:3 output buffer. Con-  
nected to 2.5V supply.  
3, 10, 17,  
24, 31, 37,  
43  
G
Ground Connection: Connect all ground pins to the common system ground  
plane.  
3
W48S87-72  
The output clock is modulated with a waveform depicted in  
Figure 2. This waveform, as discussed in Spread Spectrum  
Clock Generation for the Reduction of Radiated Emissionsby  
Bush, Fessler, and Hardin produces the maximum reduction  
in the amplitude of radiated electromagnetic emissions. The  
deviation selected for this chip is ±0.5% of the center frequen-  
cy. Figure 2 details the Cypress spreading pattern. Cypress  
does offer options with more spread and greater EMI reduc-  
tion. Contact your local Sales representative for details on  
these devices.  
Spread Spectrum Generator  
The device generates a clock that is frequency modulated in  
order to increase the bandwidth that it occupies. By increasing  
the bandwidth of the fundamental and its harmonics, the am-  
plitudes of the radiated electromagnetic emissions are re-  
duced. This effect is depicted in Figure 1.  
As depicted in Figure 1, a harmonic of a modulated clock has  
a much lower amplitude than that of an unmodulated signal.  
The reduction in amplitude is dependent on the harmonic num-  
ber and the frequency deviation or spread. The equation for  
the reduction is  
Spread Spectrum clocking is activated or deactivated by se-  
lecting the appropriate values for bits 10 in data byte 0 of the  
2
I C data stream. Refer to Table 4 for more details.  
dB = 6.5 + 9*log (P) + 9*log (F)  
10  
10  
Where P is the percentage of deviation and F is the frequency  
in MHz where the reduction is measured.  
Figure 1. Clock Harmonic with and without SSCG Modulation Frequency Domain Representation  
MAX (+.0.5%)  
MIN. (0.5%)  
Figure 2. Typical Modulation Profile  
4
W48S87-72  
of the chipset. Clock device register changes are normally  
made upon system initialization, if any are required. The inter-  
face can also be used during system operation for power man-  
agement functions. Table 2 summarizes the control functions  
of the serial data interface.  
Serial Data Interface  
The W48S87-72 features a two-pin, serial data interface that  
can be used to configure internal register settings that control  
particular device functions. Upon power-up, the W48S87-72  
initializes with default register settings, therefore the use of this  
serial data interface is optional. The serial interface is write-  
only (to the clock chip) and is the dedicated function of device  
pins SDATA and SCLOCK. In motherboard applications,  
SDATA and SCLOCK are typically driven by two logic outputs  
Operation  
Data is written to the W48S87-72 in ten bytes of eight bits  
each. Bytes are written in the order shown in Table 3.  
Table 2. Serial Data Interface Control Functions Summary  
Control Function  
Description  
Common Application  
Clock Output Disable  
Any individual clock output(s) can be disabled. Dis- Unused outputs are disabled to reduce EMI  
abled outputs are actively held LOW.  
and system power. Examples are clock out-  
puts to unused SDRAM DIMM socket or PCI  
slot.  
48-/24-MHzClockOutput 48-/24-MHz clock outputs can be set to 48 MHz or Provides flexibility in Super I/O and USB de-  
Frequency Selection  
24 MHz.  
vice selection.  
CPU Clock Frequency  
Selection  
ProvidesCPU/PCIfrequency selections beyond the For alternate CPU devices, and power man-  
60- and 66.6-MHz selections that are provided by agement options. Smooth frequency transi-  
the SEL60/66 input pin. Frequency is changed in a tion allows CPU frequency change under nor-  
smooth and controlled fashion.  
mal system operation.  
Output Three-state  
Test Mode  
Puts all clock outputs into a high-impedance state. Production PCB testing.  
All clock outputs toggle in relation with X1 input,  
Production PCB testing.  
internal PLL is bypassed. Refer to Table 4.  
(Reserved)  
Reserved function for future device revision or pro- No user application. Register bit must be writ-  
duction device testing.  
ten as 0.  
Table 3. Byte Writing Sequence  
Byte Sequence  
Byte Name  
Bit Sequence  
Byte Description  
1
Slave Address 11010010  
Commands the W48S87-72 to accept the bits in Data Bytes 07 for  
internal register configuration. Since other devices may exist on the  
same common serial data bus, it is necessary to have a specific slave  
address for each potential receiver. The slave receiver address for the  
W48S87-72 is 11010010. Register setting will not be made if the Slave  
Address is not correct (or is for an alternate slave receiver).  
2
3
Command  
Code  
Dont Care  
Dont Care  
Unused by the W48S87-72, therefore bit values are ignored (dont care).  
This byte must be included in the data write sequence to maintain proper  
byte allocation. The Command Code Byte is part of the standard serial  
communication protocol and may be used when writing to another ad-  
dressed slave receiver on the serial data bus.  
Byte Count  
Unused by the W48S87-72, therefore bit values are ignored (dont care).  
This byte must be included in the data write sequence to maintain proper  
byte allocation. The Byte Count Byte is part of the standard serial com-  
munication protocol and may be used when writing to another ad-  
dressed slave receiver on the serial data bus.  
4
5
Data Byte 0  
Data Byte 1  
Data Byte 2  
Data Byte 3  
Data Byte 4  
Data Byte 5  
Data Byte 6  
Data Byte 7  
Refer to Table 4 The data bits in Data Bytes 07 set internal W48S87-72 registers that  
control device operation. The data bits are only accepted when the Ad-  
dress Byte bit sequence is 11010010, as noted above. For description  
of bit control functions, refer to Table 4, Data Byte Serial Configuration  
Map.  
6
7
8
9
10  
11  
5
W48S87-72  
Writing Data Bytes  
7. Table 4 gives the bit formats for registers located in Data  
Bytes 07.  
Each bit in the data bytes control a particular device function  
except for the reservedbits which must be written as a logic  
0. Bits are written MSB (most significant bit) first, which is bit  
Table 5 details additional frequency selections that are avail-  
able through the serial data interface.  
Table 6 details the select functions for Byte 0, bits 1 and 0.  
Table 4. Data Bytes 07 Serial Configuration Map  
Affected Pin  
Bit Control  
Bit(s)  
Pin No.  
Pin Name  
Control Function  
0
1
Default  
Data Byte 0  
7
6
--  
--  
--  
--  
--  
--  
(Reserved)  
(Reserved)  
SEL_4  
--  
--  
0
0
Refer to Table 5  
Refer to Table 5  
Refer to Table 5  
5
--  
0
4
--  
SEL_3  
0
3
23  
22  
--  
48/24MHZ 48-/24-MHz Clock Output Frequency Selection  
48/24MHZ 48-/24-MHz Clock Output Frequency Selection  
24 MHz  
24 MHz  
48 MHz  
48 MHz  
0
2
0
10  
--  
Bit 1 Bit 0  
Function (See Table 6 for function details)  
Normal Operation  
00  
0
0
1
1
0
1
0
1
Test Mode  
Spread Spectrum On  
All Outputs Three-stated  
Data Byte 1  
7
23  
22  
--  
48/24MHZ Clock Output Disable  
48/24MHZ Clock Output Disable  
Low  
Low  
--  
Active  
Active  
--  
1
1
0
0
1
1
1
1
6
5
--  
(Reserved)  
4
--  
--  
(Reserved)  
--  
--  
3
38  
39  
41  
42  
CPU3  
CPU2  
CPU1  
CPU0  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
Low  
Low  
Low  
Low  
Active  
Active  
Active  
Active  
2
1
0
Data Byte 2  
7
--  
8
--  
(Reserved)  
--  
--  
0
1
1
1
1
1
1
1
6
PCI_F  
PCI5  
PCI4  
PCI3  
PCI2  
PCI1  
PCI0  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
5
16  
14  
13  
12  
11  
9
4
3
2
1
0
Data Byte 3  
7
6
5
4
3
2
1
0
26  
27  
29  
30  
32  
33  
35  
36  
SDRAM7  
SDRAM6  
SDRAM5  
SDRAM4  
SDRAM3  
SDRAM2  
SDRAM1  
SDRAM0  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
1
1
1
1
1
1
1
1
6
W48S87-72  
Table 4. Data Bytes 07 Serial Configuration Map (continued)  
Affected Pin  
Bit Control  
Bit(s)  
Pin No.  
Pin Name  
Control Function  
0
1
Default  
Data Byte 4  
7
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
(Reserved)  
(Reserved)  
(Reserved)  
(Reserved)  
(Reserved)  
(Reserved)  
(Reserved)  
(Reserved)  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
0
0
0
0
0
0
0
0
6
5
4
3
2
1
0
Data Byte 5  
7
--  
--  
--  
45  
--  
--  
1
--  
--  
(Reserved)  
(Reserved)  
(Reserved)  
--  
--  
--  
--  
--  
--  
0
0
0
6
5
--  
4
IOAPIC  
--  
Clock Output Disable  
(Reserved)  
Low  
--  
Active  
--  
1
0
0
1
1
3
2
--  
(Reserved)  
--  
--  
1
REF1  
REF0  
Clock Output Disable  
Clock Output Disable  
Low  
Low  
Active  
Active  
0
2
Data Byte 6  
7
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
(Reserved)  
(Reserved)  
(Reserved)  
(Reserved)  
(Reserved)  
(Reserved)  
(Reserved)  
(Reserved)  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
0
0
0
0
0
0
0
0
6
5
4
3
2
1
0
Data Byte 7  
7
6
5
4
3
2
1
0
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
(Reserved)  
(Reserved)  
(Reserved)  
(Reserved)  
(Reserved)  
SEL_2  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
0
0
0
0
0
1
1
1
Refer to Table 5  
SEL_1  
Refer to Table 5  
Refer to Table 5  
SEL_0  
7
W48S87-72  
Table 5. Additional Frequency Selections through Serial Data Interface Data Bytes  
Date Byte 0  
Date Byte 7  
Bit 5  
SEL_4  
Bit 4  
SEL_3  
60/66_SEL  
(Pin 18)  
Bit 2  
SEL_2  
BIT 1  
SEL_1  
BIT 0  
SEL_0  
CPU0:3  
SDRAM0:7  
PCI_F  
PCI0:5  
Spread  
Spectrum%  
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
X
X
X
X
X
X
X
0
1
0
1
0
1
0
1
0
0
0
0
1
1
1
1
1
X
X
X
X
X
X
0
0
1
1
0
0
1
1
1
X
X
X
X
X
X
0
1
0
1
0
1
0
1
1
X
X
X
X
X
X
75.0  
75.0  
CPU/2  
32  
±0.5  
±0.5  
±0.5  
±0.5  
±0.5  
±0.5  
±0.5  
±0.5  
±0.5  
±0.5  
0.5  
±0.5  
0.5  
±0.5  
0.5  
83.31  
33.41  
50.11  
68.52  
60.0  
32  
CPU/2  
CPU/2  
CPU/2  
CPU/2  
CPU/2  
CPU/2  
CPU/2  
CPU/2  
CPU/2  
CPU/2  
CPU/2  
CPU/2  
60.0  
66.82  
60.0  
66.6  
60.0  
66.6  
60.0  
66.6  
Table 6. Select Function for Data Byte 0, Bits 0:1  
Input Conditions  
Output Conditions  
PCI_F,  
Data Byte 0  
CPU0:3,  
Function  
Normal Operation  
Test Mode  
Bit 1  
Bit 0  
SRAM0:7  
PCI0:5  
Note 2  
X1/4  
REF0:2, IOAPIC  
14.318 MHz  
X1  
48/24MHZ  
48 or 24 MHz  
Note 3  
0
0
1
1
0
1
0
1
Note 2  
X1/2  
Spread Spectrum On  
Three-state  
Note 2  
Hi-Z  
Note 2  
Hi-Z  
14.318 MHz  
Hi-Z  
48 or 24 MHz  
Hi-Z  
Notes:  
2. CPU, SDRAM, and PCI frequency selections are listed in Table 1 and Table 5.  
3. In Test Mode, the 48-/24-MHz clock outputs are:  
- X1/2 if 48-MHz is selected.  
- X1/4 if 24-MHz is selected.  
8
W48S87-72  
Although the W48S87-72 is a receive-only device (no data  
write-back capability), it does transmit an acknowledgedata  
pulse after each byte is received. Thus, the SDATA line can  
both transmit and receive data.  
How To Use the Serial Data Interface  
Electrical Requirements  
Figure 3 illustrates electrical characteristics for the serial inter-  
face bus used with the W48S87-72. Devices send data over  
the bus with an open drain logic output that can (a) pull the bus  
line LOW, or (b) let the bus default to logic 1. The pull-up resis-  
tors on the bus (both clock and data lines) establish a default  
logic 1. All bus devices generally have logic inputs to receive  
data.  
The pull-up resistor should be sized to meet the rise and fall  
times specified in AC parameters, taking into consideration to-  
tal bus line capacitance.  
Figure 3. Serial Interface Bus Electrical Characteristics  
9
W48S87-72  
Signaling Requirements  
Sending Data to the W48S87-72  
As shown in Figure 4, valid data bits are defined as stable logic  
0 or 1 condition on the data line during a clock HIGH (logic 1)  
pulse. A transitioning data line during a clock HIGH pulse may  
be interpreted as a start or stop pulse (it will be interpreted as  
a start or stop pulse if the start/stop timing parameters are  
met).  
The device accepts data once it has detected a valid start bit  
and address byte sequence. Device functionality is changed  
upon the receipt of each data bit (registers are not double buff-  
ered). Partial transmission is allowed meaning that a transmis-  
sion can be truncated as soon as the desired data bits are  
transmitted (remaining registers will be unmodified). Transmis-  
sion is truncated with either a stop bit or new start bit (restart  
condition).  
A write sequence is initiated by a start bitas shown in Figure  
5. A stop bitsignifies that a transmission has ended.  
As stated previously, the W48S87-72 sends an acknowledge”  
pulse after receiving eight data bits in each byte as shown in  
Figure 6.  
Figure 4. Serial Data Bus Valid Data Bit  
Figure 5. Serial Data Bus Start and Stop Bit  
10  
W48S87-72  
Absolute Maximum Ratings  
Stresses greater than those listed in this table may cause per-  
manent damage to the device. These represent a stress rating  
above those specified in the operating sections of this specifi-  
cation is not implied. Maximum conditions for extended peri-  
ods may affect reliability.  
only. Operation of the device at these or any other conditions  
.
Parameter  
Description  
Voltage on any pin with respect to GND  
Storage Temperature  
Rating  
0.5 to +7.0  
65 to +150  
0 to +70  
Unit  
V
V
, V  
DD IN  
T
°C  
°C  
°C  
kV  
STG  
T
Operating Temperature  
A
T
Ambient Temperature under Bias  
Input ESD Protection  
55 to +125  
2 (min.)  
B
ESD  
PROT  
DC Electrical Characteristics:  
T = 0°C to +70°C, V  
= 3.3V±5% (3.1353.465V) f  
= 14.31818 MHz, V = 2.5±5%  
DDQ2  
A
DDQ3  
XTL  
Parameter  
Description  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
Supply Current  
I
Supply Current (3.3V)  
CPUCLK =66.8 MHz  
Outputs Loaded  
120  
150  
200  
50  
mA  
mA  
DDQ3  
[4]  
I
Supply Current (2.5V)  
CPUCLK =66.8 MHz  
DDQ2  
[4]  
Outputs Loaded  
Logic Inputs  
V
V
Input Low Voltage  
Input High Voltage  
0.8  
V
V
IL  
2.0  
IH  
[5]  
I
I
Input Low Current  
10  
10  
µA  
µA  
IL  
IH  
[5]  
Input High Current  
Clock Outputs  
V
Output Low Voltage  
I
I
= 1 mA  
50  
mV  
V
OL  
OL  
V
Output High Voltage  
= 1 mA  
= 1 mA  
OH  
3.1  
2.2  
OH  
OH  
V
Output High Voltage (CPU, IOAPIC)  
I
V
OH  
I
Output Low Current  
CPU0:3  
V
= 1.25V  
= 1.5V  
= 1.5V  
= 1.25V  
= 1.5V  
= 1.5V  
= 1.5V  
= 1.25V  
= 1.5V  
= 1.5V  
= 1.25V  
= 1.5V  
= 1.5V  
= 1.5V  
155  
100  
95  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
OL  
OL  
SDRAM0:7  
PCI_F, PCI0:5  
IOAPIC  
V
OL  
V
OL  
V
85  
OL  
REF0  
V
75  
OL  
REF1  
V
60  
OL  
48/24MHZ  
CPU0:3  
V
60  
OL  
I
Output High Current  
V
125  
95  
OH  
OL  
SDRAM0:7  
PCI_F, PCI0:5  
IOAPIC  
V
OL  
V
100  
80  
OL  
V
OL  
REF0  
V
80  
OL  
REF1  
V
65  
OL  
48/24MHZ  
V
60  
OL  
Notes:  
4. All clock outputs loaded with maximum lump capacitance test load specified in AC Electrical Characteristics section.  
5. W48S87-72 logic inputs have internal pull-up devices. (Not CMOS level.)  
12  
W48S87-72  
DC Electrical Characteristics: (continued)  
T = 0°C to +70°C, V  
= 3.3V±5% (3.1353.465V) f  
= 14.31818 MHz, V = 2.5±5%  
DDQ2  
A
DDQ3  
XTL  
Parameter  
Description  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
Crystal Oscillator  
[6]  
V
X1 Input Threshold Voltage  
V
= 3.3V  
DD  
1.65  
14  
V
TH  
C
Load Capacitance, Imposed on  
pF  
LOAD  
[7]  
External Crystal  
[8]  
C
X1 Input Capacitance  
Pin X2 unconnected  
Except X1 and X2  
28  
pF  
IN,X1  
Pin Capacitance/Inductance  
C
C
Input Pin Capacitance  
Output Pin Capacitance  
Input Pin Inductance  
5
6
7
pF  
pF  
nH  
IN  
OUT  
IN  
L
Serial Input Port  
V
V
Input Low Voltage  
Input High Voltage  
Input Low Current  
V
V
= 3.3V  
= 3.3V  
0.4  
2.4  
10  
0.3V  
DD  
V
V
IL  
DD  
DD  
0.7V  
IH  
DD  
I
I
I
No internal pull-up/down  
on SCLOCK  
10  
10  
15  
10  
µA  
IL  
Input High Current  
No internal pull-up/down  
on SCLOCK  
10  
10  
5
µA  
mA  
pF  
IH  
Sink Current into SDATA or SCLOCK,  
Open Drain N-Channel Device On  
I
= 0.3V  
DD  
5
OL  
OL  
C
Input Capacitance of SDATA and  
SCLOCK  
IN  
C
C
Total Capacitance of SDATA Bus  
Total Capacitance of SCLOCK Bus  
400  
400  
pF  
pF  
SDATA  
SCLOCK  
Notes:  
6. X1 input threshold voltage (typical) is VDDQ3/2.  
7. The W48S87-72 contains an internal crystal load capacitor between pin X1 and ground and another between pin X2 and ground. Total load placed on crystal  
is 14 pF; this includes typical stray capacitance of short PCB traces to crystal.  
8. X1 input capacitance is applicable when driving X1 with an external clock source (X2 is left unconnected).  
13  
W48S87-72  
AC Electrical Characteristics  
T = 0°C to +70°C, V = V  
= 3.3V±5% (3.1353.465V) f  
= 14.31818 MHz, V  
= 2.5±5%  
DDQ2  
A
DD  
DDQ3  
XTL  
AC clock parameters are tested and guaranteed over stated operating conditions using the stated lump capacitive load at the  
clock output.  
CPU Clock Outputs, CPU0:3 (Lump Capacitance Test Load = 20 pF)  
CPU = 66.8 MHz  
CPU = 60 MHz  
Parameter  
Description  
Period  
Test Condition/Comments  
Measured on rising edge at 1.5V  
Determined by PLL divider ratio  
Min. Typ. Max. Min. Typ. Max. Unit  
t
15  
16.7  
ns  
P
f
Frequency, Actual  
66.8  
59.876  
MH  
z
t
t
t
t
t
High Time  
Low Time  
Duration of clock cycle above 2.4V  
Duration of clock cycle below 0.4V  
5.2  
5
6
5.8  
1
ns  
ns  
H
L
Output Rise Edge Rate Measured from 0.4V to 2.4V  
Output Fall Edge Rate Measured from 2.4V to 0.4V  
1
4
4
4
4
V/ns  
V/ns  
%
R
F
D
1
1
Duty Cycle  
Measured on rising and falling edge at  
1.25V  
45  
52  
55  
45  
52  
55  
t
Jitter, Cycle-to-Cycle  
Measured on rising edge at 1.25V.  
Maximum difference of cycle time be-  
tween two adjacent cycles.  
250  
250  
ps  
JC  
t
f
Output Skew  
Measured on rising edge at 1.25V  
250  
3
250  
3
ps  
SK  
FrequencyStabilization Assumes full supply voltage reached  
ms  
ST  
from Power-up (cold  
start)  
within 1 ms from power-up. Short cy-  
cles exist prior to frequency stabiliza-  
tion.  
Z
AC Output Impedance Average value during switching transi-  
tion. Used for determining series ter-  
mination value.  
10  
10  
o
SDRAM Clock Outputs, SDRAM0:7 (Lump Capacitance Test Load = 30 pF)  
CPU = 66.8 MHz  
CPU = 60 MHz  
Parameter  
Description  
Period  
Frequency, Actual  
Test Condition/Comments  
Measured on rising edge at 1.5V  
Determined by PLL divider ratio  
Min. Typ. Max. Min. Typ. Max. Unit  
t
15  
16.7  
ns  
MHz  
V/ns  
V/ns  
%
P
f
t
t
t
66.8  
50  
59.876  
50  
Output Rise Edge Rate Measured from 0.4V to 2.4V  
Output Fall Edge Rate Measured from 2.4V to 0.4V  
1
1
4
4
1
1
4
4
R
F
Duty Cycle  
Measured on rising and falling edge at  
45  
55  
45  
55  
D
1.5V  
t
Jitter, Cycle-to-Cycle  
Measured on rising edge at 1.5V. Max-  
imum difference of cycle time between  
two adjacent cycles.  
250  
250  
ps  
JC  
t
t
Output Skew  
Measured on rising edge at 1.5V  
100  
100  
ps  
ps  
SK  
CPU to SDRAM Clock Covers all CPU/SDRAM outputs. Mea-  
Skew  
500  
3
500  
3
SK  
sured on rising edge at 1.5V.  
f
Frequency Stabiliza-  
tion from Power-up  
(cold start)  
Assumes full supply voltage reached  
within 1 ms from power-up. Short cycles  
exist prior to frequency stabilization.  
ms  
ST  
Z
AC Output Impedance Average value during switching transi-  
tion. Used for determining series termi-  
nation value.  
16  
16  
o
14  
W48S87-72  
PCI Clock Outputs, PCI0:5 (Lump Capacitance Test Load = 30 pF)  
CPU = 66.8 MHz  
CPU = 60 MHz  
Parameter  
Description  
Period  
Test Condition/Comments  
Measured on rising edge at 1.5V  
Determined by PLL divider ratio  
Duration of clock cycle above 2.4V  
Duration of clock cycle below 0.4V  
Min. Typ. Max. Min. Typ. Max. Unit  
t
f
t
t
t
t
t
30  
33.3  
ns  
MHz  
ns  
P
Frequency, Actual  
High Time  
33.4  
29.938  
12  
12  
1
13.3  
13.3  
1
H
L
Low Time  
ns  
Output Rise Edge Rate  
Output Fall Edge Rate  
Duty Cycle  
4
4
4
4
V/ns  
V/ns  
%
R
F
D
1
1
Measured on rising and falling edge at  
1.5V  
45  
51  
55  
45  
51  
55  
t
Jitter, Cycle-to-Cycle  
Measured on rising edge at 1.5V. Maxi-  
mum difference of cycle time between  
two adjacent cycles.  
250  
250  
ps  
JC  
t
t
Output Skew  
Measured on rising edge at 1.5V  
250  
4
250  
4
ps  
ns  
SK  
CPU to PCI Clock  
Skew  
Covers all CPU/PCI outputs. Measured  
on rising edge at 1.5V. CPU leads PCI  
output.  
1
1
O
f
Frequency Stabiliza-  
tion from Power-up  
(cold start)  
Assumes full supply voltage reached  
within 1 ms from power-up. Short cycles  
exist prior to frequency stabilization.  
3
3
ms  
ST  
Z
AC Output Impedance Average value during switching transi-  
tion. Used for determining series termi-  
nation value.  
30  
30  
o
I/O APIC Clock Output (Lump Capacitance Test Load = 20 pF)  
CPU = 60/66.8 MHz  
Parameter  
Description  
Frequency, Actual  
Output Rise Edge Rate  
Output Fall Edge Rate  
Duty Cycle  
Test Condition/Comments  
Frequency generated by crystal oscillator  
Min.  
Typ.  
Max.  
Unit  
MHz  
V/ns  
V/ns  
%
f
14.31818  
t
t
t
f
1
1
4
4
R
F
Measured on rising and falling edge at 1.25V  
Assumes full supply voltage reached within  
45  
52.5  
15  
55  
D
Frequency Stabilization  
from Power-up (cold start) 1 ms from power-up. Short cycles exist prior to  
frequency stabilization.  
1.5  
ms  
ST  
Z
AC Output Impedance  
Average value during switching transition.  
o
Used for determining series termination value.  
15  
W48S87-72  
REF0 Clock Output (Lump Capacitance Test Load = 45 pF)  
CPU = 60/66.8 MHz  
Parameter  
Description  
Frequency, Actual  
Output Rise Edge Rate  
Output Fall Edge Rate  
Duty Cycle  
Test Condition/Comments  
Frequency generated by crystal oscillator  
Measured from 0.4V to 2.4V  
Min.  
Typ.  
Max.  
Unit  
MHz  
V/ns  
V/ns  
%
f
14.31818  
t
t
t
f
1
1
4
4
R
Measured from 2.4V to 0.4V  
F
Measured on rising and falling edge at 1.5V  
45  
50  
16  
55  
1.5  
D
Frequency Stabilization  
from Power-up (cold start) 1 ms from power-up. Short cycles exist prior to  
frequency stabilization.  
Assumes full supply voltage reached within  
ms  
ST  
Z
AC Output Impedance  
Average value during switching transition.  
o
Used for determining series termination value.  
REF1 Clock Output (Lump Capacitance Test Load = 20 pF)  
CPU = 60/66.8 MHz  
Parameter  
Description  
Frequency, Actual  
Output Rise Edge Rate  
Output Fall Edge Rate  
Duty Cycle  
Test Condition/Comments  
Min.  
Typ.  
Max.  
Unit  
MHz  
V/ns  
V/ns  
%
f
Frequency generated by crystal oscillator  
14.31818  
t
t
t
f
0.5  
0.5  
45  
2
2
R
F
Measured on rising and falling edge at 1.5V  
Assumes full supply voltage reached within  
55  
1.5  
D
Frequency Stabilization  
ms  
ST  
from Power-up (cold start) 1 ms from power-up. Short cycles exist prior to  
frequency stabilization.  
Z
AC Output Impedance  
Average value during switching transition.  
Used for determining series termination value.  
40  
o
48/24MHZ Clock Outputs (Lump Capacitance Test Load = 20 pF)  
CPU = 60/66.8 MHz  
Parameter  
Description  
Test Condition/Comments  
Min.  
Typ.  
Max.  
Unit  
f
Frequency, Actual  
Determined by PLL divider ratio  
(see n/m below)  
48.008/24.004  
MHz  
f
Deviation from 48 MHz  
PLL Ratio  
(48.008 48)/48  
+167  
ppm  
D
m/n  
(14.31818 MHz x 57/17 = 48.008 MHz)  
57/17  
t
t
t
f
Output Rise Edge Rate  
Output Fall Edge Rate  
Duty Cycle  
0.5  
0.5  
45  
2
2
V/ns  
V/ns  
%
R
F
Measured on rising and falling edge at 1.5V  
Assumes full supply voltage reached within  
50  
40  
55  
3
D
Frequency Stabilization  
from Power-up (cold start) 1 ms from power-up. Short cycles exist prior to  
frequency stabilization.  
ms  
ST  
Z
AC Output Impedance  
Average value during switching transition.  
Used for determining series termination value.  
o
16  
W48S87-72  
Serial Input Port  
Parameter  
Description  
Test Condition  
Normal Mode  
Min.  
0
Typ.  
Max.  
Unit  
kHz  
µs  
f
t
t
t
t
t
SCLOCK Frequency  
Start Hold Time  
100  
SCLOCK  
STHD  
LOW  
4.0  
4.7  
4.0  
250  
0
µs  
SCLOCK Low Time  
SCLOCK High Time  
Data Set-up Time  
Data Hold Time  
µs  
HIGH  
DSU  
ns  
(Transmitter should provide a 300-ns hold  
time to ensure proper timing at the receiver.)  
ns  
DHD  
t
Rise Time, SDATA and  
SCLOCK  
From 0.3V to 0.7V  
1000  
300  
ns  
ns  
R
F
DD  
DD  
t
Fall Time, SDATA and  
SCLOCK  
From 0.7V to 0.3V  
DD  
DD  
µs  
µs  
t
t
Stop Set-up Time  
4.0  
4.7  
STSU  
Bus Free Time between  
Stop and Start Condition  
SPF  
ns  
t
Allowable Noise Spike  
Pulse Width  
50  
SP  
Ordering Information  
Freq. Mask  
Code  
Package  
Name  
Ordering Code  
Package Type  
W48S87  
72  
H
X
48-pin SSOP (300 mils)  
48-pin TSSOP  
Document #: 38-00855-*A  
17  
W48S87-72  
Package Diagrams  
48-Pin Small Shrink Outline Package (SSOP, 300 mils)  
Summary of nominal dimensions in inches:  
Body Width: 0.296  
Lead Pitch: 0.025  
Body Length: 0.625  
Body Height: 0.102  
18  
W48S87-72  
Package Diagrams (continued)  
48-Pin Thin Shrink Small Outline Package (TSSOP)  
12  
11  
10  
9
8
7
6
5
4
3
2
1
H
G
F
H
G
F
THIS TABLE IN MILLIMETERS  
S
COMMON  
NOTE  
VARI-  
ATIONS  
AA  
4
6
Y
M
B
N
DIMENSIONS  
NOM.  
D
S
N
O
O
L
T
E
MIN.  
12.40  
13.90  
NOM.  
12.50  
14.00  
MAX.  
12.60  
14.10  
MIN.  
0.37  
0.12  
NOM.  
0.50  
MAX.  
MIN.  
MAX.  
1.10  
48  
56  
A
0.05  
0.85  
0.17  
0.17  
0.090  
0.090  
0.10  
0.90  
0.15  
0.95  
0.27  
0.23  
0.200  
0.160  
AB  
0.25  
A1  
A2  
b
b1  
C
8
0.20  
8
0.127  
SEE VARIATIONS  
C1  
D
4
4
6.00  
6.10  
0.50 BSC  
8.10  
6.20  
E
e
H
7.95  
0.50  
8.25  
0.75  
0.60  
5
6
E
D
C
B
A
L
E
D
C
B
A
N
C
SEE VARIATIONS  
OC  
0°  
4°  
8°  
THIS TABLE IN INCHES  
S
COMMON  
NOTE  
VARI-  
ATIONS  
AA  
4
6
N
Y
M
B
N
DIMENSIONS  
D
S
O
O
L
T
E
MIN.  
.488  
.547  
NOM.  
.492  
.551  
MAX.  
.496  
.555  
MIN.  
.0146  
.0047  
NOM.  
.0197  
.0098  
MAX.  
MIN.  
NOM.  
MAX.  
.0433  
.006  
48  
56  
A
.002  
.0335  
.0067  
.0067  
.0035  
.0035  
.004  
.0354  
AB  
A1  
A2  
b
b1  
C
.0374  
.011  
.0090  
.0078  
.0063  
8
.0078  
.0050  
8
C1  
D
SEE VARIATIONS  
4
4
.236  
.240  
.0197 BSC  
.319  
.244  
E
e
H
.313  
.020  
.325  
.030  
.024  
5
6
L
N
C
SEE VARIATIONS  
OC  
0°  
4°  
8°  
TITLE  
SIZE  
PACKAGE OUTLINE, 6.10mm (.240") BODY,  
TSSOP, 0.50mm LEAD PITCH  
A1 DWG.  
NO.  
REV.  
34389  
SHEET  
2
02  
SCALE  
OF  
1
2
8/1  
12  
11  
10  
9
8
7
6
5
4
3
2
© Cypress Semiconductor Corporation, 2000. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  

相关型号:

W48S87-72XT

暂无描述
CYPRESS

W49

3-Phase Motor Driver for CD-ROMs
CERAMATE

W49180

Super high flux output and high luminance
SEOUL

W49180-08

Single Color LED,
SEOUL

W49C65-01H

Processor Specific Clock Generator, 75MHz, CMOS, PDSO48, 0.300 INCH, MO-118AA, SSOP-48
CYPRESS

W49C65-01H

75 MHz, PROC SPECIFIC CLOCK GENERATOR, PDSO48, 0.300 INCH, MO-118AA, SSOP-48
ROCHESTER

W49F002

256K X 8 CMOS FLASH MEMORY
WINBOND

W49F002A-12

Flash, 256KX8, 120ns, PDIP32, PLASTIC, DIP-32
WINBOND

W49F002U

256K X 8 CMOS FLASH MEMORY
WINBOND

W49F002U-12B

256K X 8 CMOS FLASH MEMORY
WINBOND

W49F002U-12BN

256KX8 FLASH 5V PROM, 120ns, PDIP32, PLASTIC, DIP-32
WINBOND

W49F002U-70B

256K X 8 CMOS FLASH MEMORY
WINBOND