DS1244Y-200 [DALLAS]

256K NV SRAM with Phantom Clock; 256K NV SRAM,带有隐含时钟
DS1244Y-200
型号: DS1244Y-200
厂家: DALLAS SEMICONDUCTOR    DALLAS SEMICONDUCTOR
描述:

256K NV SRAM with Phantom Clock
256K NV SRAM,带有隐含时钟

计时器或实时时钟 微控制器和处理器 外围集成电路 静态存储器 光电二极管
文件: 总12页 (文件大小:94K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DS1244Y  
DS1244Y  
256K NV SRAM with Phantom Clock  
FEATURES  
PIN ASSIGNMENT  
Realtimeclockkeepstrackofhundredthsofseconds,  
minutes, hours, days, date of the month, months, and  
years  
A14/RST  
A12  
A7  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
V
CC  
2
WE  
A13  
A8  
3
32K x 8 NV SRAM directly replaces volatile static  
RAM or EEPROM  
A6  
4
A5  
5
A9  
Embedded lithium energy cell maintains calendar op-  
eration and retains RAM data  
A4  
6
A11  
OE  
A3  
7
A2  
8
A10  
CE  
Watch function is transparent to RAM operation  
A1  
9
Monthandyeardeterminethenumberofdaysineach  
month; volid up to 1200  
A0  
10  
11  
12  
13  
14  
DQ7  
DQ6  
DQ5  
DQ4  
DQ3  
DQ0  
DQ1  
DQ2  
GND  
Standard 28–pin JEDEC pinout  
Full 10% operating range  
Operating temperature range 0°C to 70°C  
Accuracy is better than ±1 minute/month @ 25°C  
28–PIN ENCAPSULATED PACKAGE  
740 MIL EXTENDED  
PIN DESCRIPTION  
Over 10 years of data retention in the absence of  
power  
A –A  
Address Inputs  
Chip Enable  
Ground  
o
CE  
GND  
14  
Available in 120, 150 and 200 ns access time  
DQ DQ  
Data In/Data Out  
Power (+5V)  
Write Enable  
Output Enable  
No Connect  
Reset  
0-  
7
ORDERING INFORMATION  
V
CC  
DS1244Y–XXX  
WE  
OE  
NC  
–120  
–150  
120 ns access  
150 ns access  
RST  
200 ns access  
DS1244Y  
DESCRIPTION  
The DS1244Y 256K NV SRAM with Phantom Clock is a  
fully static nonvolatile RAM (organized as 32,768 words  
by 8 bits) with a built–in real time clock. The DS1244Y  
has a self–contained lithium energy source and control  
The Phantom Clock provides timekeeping information  
including hundredths of seconds, seconds, minutes,  
hours, day, date, month, andyearinformation. Thedate  
at the end of the month is automatically adjusted for  
months with less than 31 days, including correction for  
leap years. The Phantom Clock operates in either  
24–hour or 12–hour format with an AM/PM indicator.  
circuitry which constantly monitors V for an out–of–  
CC  
tolerance condition. When such a condition occurs, the  
lithium energy source is automatically switched on and  
write protection is unconditionally enabled to prevent  
garbled data in both the memory and real time clock.  
ECopyright 1997 by Dallas Semiconductor Corporation.  
All Rights Reserved. For important information regarding  
patents and other intellectual property rights, please refer to  
Dallas Semiconductor data books.  
032697 1/12  
DS1244Y  
RAM READ MODE  
PHANTOM CLOCK OPERATION  
The DS1244Y executes a read cycle whenever WE  
(WriteEnable) is inactive (high) and CE(ChipEnable)is  
active(low). Theuniqueaddressspecifiedbythe15ad-  
dressinputs(A0-A14)defineswhichofthe32,768 bytes  
of data is to be accessed. Valid data will be available to  
Communication with the Phantom Clock is established  
by pattern recognition on a serial bit stream of 64 bits  
which must be matched by executing 64 consecutive  
write cycles containing the proper data on DQ0. All ac-  
cesseswhichoccurpriortorecognitionofthe64–bitpat-  
tern are directed to memory.  
the eight data output drivers within t  
(Access Time)  
ACC  
after the last address input signal is stable, providing  
that CE and OE (Output Enable) access times and  
states are also satisfied. If OE and CE access times are  
not satisfied, then data access must be measured from  
the later occurring signal (CE or OE) and the limiting pa-  
Afterrecognitionisestablished, thenext64readorwrite  
cycles either extract or update data in the Phantom  
Clock, and memory access is inhibited.  
Datatransfertoandfromthetimekeepingfunctionisac-  
complished with a serial bit stream under control of Chip  
Enable (CE), Output Enable (OE), and Write Enable  
(WE). Initially, a read cycle to any memory location us-  
ing the CE and OE control of the Phantom Clock starts  
the pattern recognition sequence by moving a pointer to  
the first bit of the 64–bit comparison register. Next, 64  
consecutivewrite cycles are executed using the CEand  
WE control of the SmartWatch. These 64 write cycles  
are used only to gain access to the Phantom Clock.  
Therefore, any address to the memory in the socket is  
acceptable. However, the write cycles generated to  
gain access to the Phantom Clock are also writing data  
to a location in the mated RAM. The preferred way to  
manage this requirement is to set aside just one ad-  
dress location in RAM as a Phantom Clock scratch pad.  
When the first write cycle is executed, it is compared to  
bit 0 of the 64–bit comparison register. If a match is  
found, the pointer increments to the next location of the  
comparisonregister and awaits the next write cycle. If a  
match is not found, the pointer does not advance and all  
subsequent write cycles are ignored. If a read cycle oc-  
curs at any time during pattern recognition, the present  
sequence is aborted and the comparison register point-  
erisreset. Patternrecognitioncontinuesforatotalof64  
write cycles as described above until all the bits in the  
comparisonregisterhavebeenmatched(thisbitpattern  
is shown in Figure 1). With a correct match for 64 bits,  
the Phantom Clock is enabled and data transfer to or  
from the timekeeping registers can proceed. The next  
64cycleswillcausethePhantomClocktoeitherreceive  
or transmit data on DQ0, depending on the level of the  
OE pin or the WE pin. Cycles to other locations outside  
the memory block can be interleaved with CE cycles  
without interrupting the pattern recognition sequence or  
data transfer sequence to the Phantom Clock.  
rameter is either t for CE or t for OE rather than ad-  
dress access.  
CO  
OE  
RAM WRITE MODE  
The DS1244Y is in the write mode whenever the WE  
andCEsignalsareintheactive(low)stateafteraddress  
inputsare stable. The latter occurring falling edge of CE  
or WE will determine the start of the write cycle. The  
write cycle is terminated by the earlier rising edge of CE  
or WE. All address inputs must be kept valid throughout  
the write cycle. WE must return to the high state for a  
minimum recovery time (t ) before another cycle can  
WR  
be initiated. The OE control signal should be kept inac-  
tive (high) during write cycles to avoid bus contention.  
However, if the output bus has been enabled (CE and  
OEactive)thenWEwilldisabletheoutputsint  
its falling edge.  
from  
ODW  
DATA RETENTION MODE  
The DS1244Y provides full functional capability for V  
CC  
greater than 4.5 volts and write protects by approxi-  
mately 4.0 volts. Data is maintained in the absence of  
V
CC  
without any additional support circuitry. The non-  
volatilestaticRAMconstantlymonitorsV . Shouldthe  
CC  
supply voltage decay, the RAM automatically write pro-  
tects itself. All inputs to the RAM become “don’t care”  
and all outputs are high impedance. As V falls below  
CC  
approximately3.0volts, thepowerswitchingcircuitcon-  
nects the lithium energy source to RAM to retain data.  
Duringpower–up, whenV risesaboveapproximately  
CC  
3.0 volts, the power switching circuit connects external  
V
CC  
to the RAM and disconnects the lithium energy  
source. Normal RAM operation can resume after V  
exceeds 4.5 volts.  
CC  
032697 2/12  
DS1244Y  
in a register could produce erroneous results. These  
read/write registers are defined in Figure 2.  
PHANTOM CLOCK  
REGISTER INFORMATION  
The Phantom Clock information is contained in 8 regis-  
tersof8bits,eachofwhichissequentiallyaccessedone  
bit at a time after the 64–bit pattern recognition se-  
quence has been completed. When updating the Phan-  
tom Clock registers, each register must be handled in  
groupsof 8 bits. Writingandreadingindividualbitswith-  
Data contained in the Phantom Clock register is in  
binary coded decimal format (BCD). Reading and writ-  
ing the registers is always accomplished by stepping  
throughall8registers, startingwithbit0ofregister0and  
ending with bit 7 of register 7.  
PHANTOM CLOCK REGISTER DEFINITION Figure 1  
HEX  
VALUE  
7
1
6
1
5
0
4
0
3
0
2
1
1
0
0
1
BYTE 0  
C5  
0
1
0
1
0
1
0
0
0
1
1
0
0
1
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
0
1
0
1
0
1
0
0
1
1
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
BYTE 1  
BYTE 2  
3A  
A3  
BYTE 3  
BYTE 4  
5C  
C5  
BYTE 5  
BYTE 6  
BYTE 7  
3A  
A3  
5C  
NOTE:  
The pattern recognition in Hex is C5, 3A, A3, 5C, C5, 3A, A3, 5C. The odds of this pattern being accidentally dupli-  
19  
cated and causing inadvertent entry to the Phantom Clock is less than 1 in 10 . This pattern is sent to the Phantom  
Clock LSB to MSB.  
032697 3/12  
DS1244Y  
PHANTOM CLOCK REGISTER DEFINITION Figure 2  
REGISTER  
RANGE  
(BCD)  
7
6
5
4
3
2
1
0
0
00–99  
0.1 SEC  
0.01 SEC  
0
10 SEC  
SECONDS  
MINUTES  
HOUR  
1
2
00–59  
00–59  
0
10 MIN  
10  
01–12  
00–23  
12/24  
0
0
0
0
HR  
3
4
A/P  
0
0
0
OSC  
RST  
0
DAY  
01–07  
10 DATE  
DATE  
MONTH  
YEAR  
5
6
01–31  
01–12  
10  
MONTH  
0
10 YEAR  
7
00–99  
to logic 0, a low input on the RESET pin will cause the  
Phantom Clock to abort data transfer without changing  
data in the watch registers. Bit 5 controls the oscillator.  
When set to logic 1, the oscillator is off. When set to log-  
ic 0, the oscillator turns on and the watch becomes op-  
erational. These bits are shipped from the factory set to  
a logic 1.  
AM–PM/12/24 MODE  
Bit 7 of the hours register is defined as the 12– or  
24–hourmodeselectbit. Whenhigh,the12–hourmode  
is selected. In the 12–hour mode, bit 5 is the AM/PM bit  
with logic high being PM. In the 24–hour mode, bit 5 is  
the second 10–hour bit (20–23 hours).  
OSCILLATOR AND RESET BITS  
Bits 4 and 5 of the day register are used to control the  
RESET and oscillator functions. Bit 4 controls the  
RESET(pin1). WhentheRESETbitissettologic1, the  
RESET input pin is ignored. When the RESET bit is set  
ZERO BITS  
Registers 1, 2, 3, 4, 5, and 6 contain one or more bits  
which will always read logic 0. When writing these loca-  
tions, either a logic 1 or 0 is acceptable.  
032697 4/12  
DS1244Y  
ABSOLUTE MAXIMUM RATINGS*  
Voltage on Any Pin Relative to Ground  
Operating Temperature  
–0.3V to +7.0V  
0°C to 70°C  
Storage Temperature  
–40°C to +70°C  
Soldering Temperature  
260°C for 10 seconds (See Note 13)  
* This is a stress rating only and functional operation of the device at these or any other conditions above those  
indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods of time may affect reliability.  
RECOMMENDED DC OPERATING CONDITIONS  
(0°C to 70°C)  
PARAMETER  
Power Supply Voltage  
Input Logic 1  
SYMBOL  
MIN  
4.5  
2.2  
0.3  
TYP  
MAX  
UNITS  
NOTES  
V
CC  
5.0  
5.5  
V
V
V
V
IH  
V
+0.3  
CC  
Input Logic 0  
V
IL  
0.8  
DC ELECTRICAL CHARACTERISTICS  
(0°C to 70°C; VCC = 5V ± 10%)  
PARAMETER  
SYMBOL  
MIN  
–1.0  
–1.0  
TYP  
MAX  
+1.0  
+1.0  
UNITS  
µA  
NOTES  
Input Leakage Current  
I/O Leakage Current  
I
IL  
12  
I
IO  
µA  
CE V V  
IH  
CC  
Output Current @ 2.4V  
Output Current @ 0.4V  
Standby Current CE = 2.2V  
I
–1.0  
2.0  
mA  
mA  
mA  
mA  
mA  
OH  
I
OL  
I
I
5.0  
3.0  
10  
5.0  
85  
CCS1  
CCS2  
Standby Current CE = V – 0.5V  
CC  
Operating Current t  
= 200 ns  
I
CC01  
CYC  
DC TEST CONDITIONS  
Outputsareopen;allvoltagesarereferencedtoground.  
CAPACITANCE  
(tA = 25°C)  
PARAMETER  
SYMBOL  
MIN  
TYP  
5
MAX  
10  
UNITS  
pF  
NOTES  
Input Capacitance  
Input/Output Capacitance  
C
IN  
C
5
10  
pF  
I/O  
032697 5/12  
DS1244Y  
MEMORY AC ELECTRICAL CHARACTERISTICS  
(0°C to 70°C; VCC = 5.0V ± 10%)  
DS1244Y-120  
DS1244Y-150  
DS1244Y-200  
PARAMETER  
SYMBOL  
UNITS NOTES  
MIN MAX MIN MAX MIN MAX  
Read Cycle Time  
t
120  
150  
200  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RC  
Access Time  
t
120  
60  
150  
70  
200  
100  
200  
ACC  
OE to Output Valid  
t
OE  
CO  
CE to Output Valid  
t
120  
150  
OE or CE to Output Active  
Output High Z from Deselection  
t
5
5
5
5
5
5
5
5
COE  
t
40  
70  
100  
OD  
Output Hold from Address  
Change  
t
oH  
Write Cycle Time  
t
120  
90  
0
150  
100  
0
200  
150  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
WC  
Write Pulse Width  
t
3
WP  
Address Setup Time  
Write Recovery Time  
Output High Z from WE  
Output Active from WE  
Data Setup Time  
t
AW  
WR  
t
20  
20  
20  
t
40  
70  
80  
5
5
4
4
ODW  
t
5
5
5
OEW  
t
50  
20  
60  
20  
80  
20  
DS  
DH  
Data Hold Time from WE  
t
AC TEST CONDITIONS  
Output Load:  
Input Pulse Levels:  
50 pF + 1TTL Gate  
0-3V  
Timing Measurement Reference Levels  
Input:  
Output:  
1.5V  
1.5V  
Input Pulse Rise and Fall Times:  
5 ns  
032697 6/12  
DS1244Y  
PHANTOM CLOCK AC ELECTRICAL CHARACTERISTICS  
(0°C to 70°C; VCC = 4.5 to 5.5V)  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNITS  
ns  
NOTES  
Read Cycle Time  
CE Access Time  
OE Access Time  
CE to Output Low Z  
OE to Output Low Z  
CE to Output High Z  
OE to Output High Z  
Read Recovery  
t
120  
RC  
CO  
t
100  
100  
ns  
t
ns  
OE  
t
10  
10  
ns  
COE  
t
ns  
OEE  
t
40  
40  
ns  
5
5
OD  
t
ns  
ODO  
t
20  
120  
100  
20  
ns  
RR  
Write Cycle Time  
Write Pulse Width  
Write Recovery  
t
ns  
WC  
t
ns  
WP  
WR  
t
ns  
10  
11  
11  
Data Setup Time  
Data Hold Time  
t
40  
ns  
DS  
DH  
CW  
t
10  
ns  
CE Pulse Width  
t
100  
200  
ns  
RESET Pulse Width  
CE High to Power–Fail  
t
ns  
RST  
t
PF  
0
ns  
POWER-DOWN/POWER-UP TIMING  
PARAMETER  
CE at V before Power–Down  
SYMBOL  
MIN  
0
TYP  
MAX  
UNITS  
µs  
NOTES  
t
IH  
PD  
V
Slew from 4.5V to 0V  
t
F
300  
µs  
CC  
(CE at V  
)
IH  
V
Slew from 0V to 4.5V  
t
R
0
µs  
CC  
(CE at V  
)
IH  
CE at V after Power–Up  
t
2
ms  
IH  
REC  
(tA = 25°C)  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNITS  
NOTES  
Expected Data Retention Time  
t
10  
years  
9
DR  
WARNING:  
Undernocircumstancesarenegativeundershoots, ofanyamplitude, allowedwhendeviceisinbatterybackupmode.  
032697 7/12  
DS1244Y  
MEMORY READ CYCLE (NOTE 1)  
t
RC  
V
V
V
IH  
IH  
IH  
ADDRESSES  
V
V
V
IL  
IL  
IL  
t
OH  
t
ACC  
V
IH  
V
IH  
t
CO  
CE  
V
IL  
t
OD  
V
IH  
t
OE  
V
IH  
OE  
V
IL  
t
COE  
t
OD  
t
COE  
V
V
OH  
OH  
OUTPUT  
DATA VALID  
D
OUT  
V
V
OL  
OL  
MEMORY WRITE CYCLE 1 (NOTES 2, 6, AND 7)  
t
WC  
V
V
V
IH  
IH  
IH  
ADDRESS  
V
V
V
IL  
IL  
IL  
t
AW  
CE  
V
IL  
V
IL  
t
t
WR  
WP  
V
IH  
V
IH  
WE  
t
OEW  
t
ODW  
HIGH IMPEDANCE  
t
DH  
t
DQ0–DQ7  
DS  
V
V
IH  
IH  
DATA IN  
STABLE  
V
V
IL  
IL  
032697 8/12  
DS1244Y  
MEMORY WRITE CYCLE 2 (NOTES 2 AND 8)  
WE = V  
IH  
t
WC  
V
V
V
IH  
IH  
IH  
ADDRESSES  
V
V
V
IL  
IL  
IL  
t
AW  
t
t
WR  
WP  
V
IH  
V
IH  
CE  
V
IL  
V
IL  
t
OEW  
WE  
V
IL  
V
IL  
t
ODW  
t
COE  
t
DH  
t
DQ0–DQ7  
DS  
V
V
IH  
IH  
DATA IN  
STABLE  
V
V
IL  
IL  
RESET FOR PHANTOM CLOCK  
t
RST  
RST  
READ CYCLE TO PHANTOM CLOCK  
t
RC  
t
RR  
t
CO  
CE  
t
OD  
t
OE  
OE  
t
t
ODO  
OEE  
t
COE  
Q
OUTPUT DATA VALID  
032697 9/12  
DS1244Y  
WRITE CYCLE TO PHANTOM CLOCK  
OE = V  
t
WC  
IH  
t
WR  
t
WP  
WE  
t
WR  
t
CW  
CE  
t
DH  
t
DS  
t
DH  
D
DATA IN STABLE  
POWER–DOWN/POWER–UP CONDITION  
V
CC  
4.50V  
3.2V  
t
F
t
R
t
t
REC  
PD  
CE  
DATA RETENTION TIME  
LEAKAGE CURRENT  
SUPPLIED FROM LITHIUM  
CELL  
I
L
t
DR  
032697 10/12  
DS1244Y  
NOTES:  
1. WE is high for a read cycle.  
2. OE = V or V . If OE = V during write cycle, the output buffers remain in a high impedance state.  
IH  
IL  
IH  
3. t  
is specified as the logical AND of CE and WE. t  
is measured from the latter of CE or WE going low to the  
WP  
WP  
earlier of CE or WE going high.  
4. t , t are measured from the earlier of CE or WE going high.  
DH DS  
5. These parameters are sampled with a 50 pF load and are not 100% tested.  
6. If the CE low transition occurs simultaneously with or later than the WE low transition in Write Cycle 1, the output  
buffers remain in a high impedance state during this period.  
7. If the CE high transition occurs prior to or simultaneously with the WE high transition, the output buffers remain  
in a high impedance state during this period.  
8. If WE is low or the WE low transition occurs prior to or simultaneously with the CE low transition, the output buffers  
remain in a high impedance state during this period.  
9. The expected t is defined as accumulative time in the absence of V with the clock oscillator running.  
DR  
CC  
10.t  
is a function of the latter occurring edge of WE or CE.  
WR  
11. t and t are a function of the first occurring edge of WE or CE.  
DH  
DS  
12.RST (Pin1) has an internal pull–up resistor.  
13.Real–Time Clock Modules can be successfully processed through conventional wave–soldering techniques as  
long as temperature exposure to the lithium energy source contained within does not exceed +85°C. Post solder  
cleaning with water washing techniques is acceptable, provided that ultrasonic vibration is not used.  
032697 11/12  
DS1244Y  
DS1244Y 256K NV SRAM WITH PHANTOM CLOCK  
PKG  
28–PIN  
MIN  
DIM  
MAX  
A
IN.  
MM  
1.520  
38.61  
1.540  
39.12  
B
C
D
E
F
IN.  
MM  
0.720  
18.29  
0.740  
18.80  
1
IN.  
MM  
0.395  
10.03  
0.415  
10.54  
A
IN.  
MM  
0.100  
2.54  
0.130  
3.30  
IN.  
MM  
0.017  
0.43  
0.030  
0.76  
C
IN.  
MM  
0.120  
3.05  
0.160  
4.06  
G
H
J
IN.  
MM  
0.090  
2.29  
0.110  
2.79  
F
IN.  
MM  
0.590  
14.99  
0.630  
16.00  
D
K
G
IN.  
MM  
0.008  
0.20  
0.012  
0.30  
K
IN.  
MM  
0.015  
0.38  
0.021  
0.53  
J
E
H
B
032697 12/12  

相关型号:

DS1244Y-70

256k NV SRAM with Phantom Clock
DALLAS

DS1244Y-70+

Real Time Clock, Volatile, CMOS, PDIP28, 0.740 INCH, ROHS COMPLIANT, ENCAPSULATED, DIP-28
MAXIM

DS1244Y-70-IND

Real Time Clock, Non-Volatile, 0 Timer(s), CMOS, 0.740 INCH, PLASTIC, MODULE, DIP-28
DALLAS

DS1244YP-100

Timer or RTC, Non-Volatile, CMOS,
MAXIM

DS1244YP-70

256k NV SRAM with Phantom Clock
DALLAS

DS1244YP-70

Real Time Clock, Non-Volatile, 0 Timer(s), CMOS, POWERCAP MODULE-34
MAXIM

DS1244YP/WP

PowerCap with Crystal
MAXIM

DS1245

3.3V 1024k Nonvolatile SRAM
DALLAS

DS1245AB

1024k Nonvolatile SRAM
DALLAS

DS1245AB-100

1024k Nonvolatile SRAM
DALLAS

DS1245AB-100

128KX8 NON-VOLATILE SRAM MODULE, 100ns, DMA32, 0.740 INCH, EXTENDED MODULE, DIP-32
ROCHESTER

DS1245AB-100+

128KX8 NON-VOLATILE SRAM MODULE, 100ns, DMA32, 0.740 INCH, LEAD FREE, EXTENDED MODULE, DIP-32
ROCHESTER