3D7418-5 [DATADELAY]

MONOLITHIC 8-BIT PROGRAMMABLE DELAY LINE (SERIES 3D7418 - LOW NOISE); 单片8位可编程延迟线(系列3D7418 - 低噪音)
3D7418-5
型号: 3D7418-5
厂家: DATA DELAY DEVICES, INC.    DATA DELAY DEVICES, INC.
描述:

MONOLITHIC 8-BIT PROGRAMMABLE DELAY LINE (SERIES 3D7418 - LOW NOISE)
单片8位可编程延迟线(系列3D7418 - 低噪音)

延迟线
文件: 总7页 (文件大小:400K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
3D7418  
MONOLITHIC 8-BIT  
PROGRAMMABLE DELAY LINE  
(SERIES 3D7418 – LOW NOISE)  
FEATURES  
PACKAGES  
All-silicon, low-power CMOS technology  
TTL/CMOS compatible inputs and outputs  
Vapor phase, IR and wave solderable  
Auto-insertable (DIP pkg.)  
IN  
AE  
SO/P0  
P1  
P2  
P3  
P4  
GND  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VDD  
OUT  
MD  
P7  
P6  
SC  
P5  
SI  
IN  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VDD  
OUT  
MD  
P7  
Low ground bounce noise  
AE  
SO/P0  
Leading- and trailing-edge accuracy  
Increment range: 0.25 through 5.0ns  
Delay tolerance: 1% (See Table 1)  
Temperature stability: ±3% typical (0C-70C)  
Vdd stability: ±1% typical (4.75V-5.25V)  
Minimum input pulse width: 10% of total  
delay  
P1  
P2  
P3  
P6  
SC  
P5  
P4  
GND  
SI  
3D7418S SOL  
(300 Mil)  
3D7418 DIP  
3D7418G Gull Wing  
Programmable via 3-wire serial or 8-bit  
parallel interface  
For mechanical dimensions, click here.  
PIN DESCRIPTIONS  
FUNCTIONAL DESCRIPTION  
IN  
Signal Input  
The 3D7418 Programmable 8-Bit Silicon Delay Line product family  
consists of 8-bit, user-programmable CMOS silicon integrated  
circuits. Delay values, programmed either via the serial or parallel  
interface, can be varied over 255 equal steps ranging from 250ps  
to 5.0ns inclusively. Units have a typical inherent (zero step)  
delay of 12ns to 17ns (See Table 1). The input is reproduced at  
the output without inversion, shifted in time as per user selection.  
The 3D7418 is TTL- and CMOS-compatible, capable of driving ten  
74LS-type loads, and features both rising- and falling-edge  
accuracy.  
OUT Signal Output  
MD  
AE  
Mode Select  
Address Enable  
P0-P7 Parallel Data Input  
SC  
SI  
Serial Clock  
Serial Data Input  
Serial Data Output  
SO  
VDD +5 Volts  
GND Ground  
The all-CMOS 3D7418 integrated circuit has been designed as a reliable, economic alternative to hybrid  
TTL programmable delay lines. It is offered in a standard 16-pin auto-insertable DIP and a space saving  
surface mount 16-pin SOIC.  
TABLE 1: PART NUMBER SPECIFICATIONS  
PART  
DELAYS AND TOLERANCES  
INPUT RESTRICTIONS  
Step 0  
Step 255  
Delay  
Max Operating  
6.25 MHz  
Absolute Max Min Operating  
Absolute Min  
Oper P.W.  
5.5 ns  
NUMBER  
Delay (ns) Delay (ns)  
12 ± 2 75.75 ± 4.0  
12 ± 2 139.5 ± 4.0  
12 ± 2 267.0 ± 5.0  
14 ± 2 522.0 ± 6.0  
17 ± 2 782.0 ± 8.0  
Increment (ns) Frequency  
Oper Freq  
P.W.  
3D7418-0.25  
3D7418-0.5  
3D7418-1  
3D7418-2  
3D7418-3  
3D7418-4  
3D7418-5  
90 MHz  
80.0 ns  
160.0 ns  
320.0 ns  
640.0 ns  
960.0 ns  
1280.0 ns  
1600.0 ns  
0.25 ± 0.15  
0.50 ± 0.25  
1.00 ± 0.50  
2.00 ± 1.00  
3.00 ± 1.50  
4.00 ± 2.00  
5.00 ± 2.50  
3.15 MHz  
1.56 MHz  
0.78 MHz  
0.52 MHz  
0.39 MHz  
0.31 MHz  
45 MHz  
22 MHz  
11 MHz  
7.5 MHz  
5.5 MHz  
4.4 MHz  
11.0 ns  
22.0 ns  
44.0 ns  
66.0 ns  
88.0 ns  
17 ± 2  
17 ± 2  
1037 ± 9.0  
1292 ± 10  
110.0 ns  
NOTES: Any delay increment between 0.25 and 5.0 ns not shown is also available.  
All delays referenced to input pin  
2002 Data Delay Devices  
Doc #02005  
6/17/02  
DATA DELAY DEVICES, INC.  
3 Mt. Prospect Ave. Clifton, NJ 07013  
1
3D7418  
APPLICATION NOTES  
The 8-bit programmable 3D7418 delay line  
architecture is comprised of a number of delay  
cells connected in series with their respective  
outputs multiplexed onto the Delay Out pin (OUT)  
by the user-selected programming data. Each  
delay cell produces at its output a replica of the  
signal present at its input, shifted in time.  
OPERATING PULSE WIDTH  
The Absolute Minimum Operating Pulse  
Width (high or low) specification, tabulated in  
Table 1, determines the smallest Pulse Width of  
the delay line input signal that can be  
reproduced, shifted in time at the device output,  
with acceptable pulse width distortion.  
INPUT SIGNAL CHARACTERISTICS  
The Minimum Operating Pulse Width (high or  
low) specification determines the smallest Pulse  
Width of the delay line input signal for which the  
output delay accuracy tabulated in Table 1 is  
guaranteed.  
The Frequency and/or Pulse Width (high or low)  
of operation may adversely impact the specified  
delay and increment accuracy of the particular  
device. The reasons for the dependency of the  
output delay accuracy on the input signal  
characteristics are varied and complex.  
To guarantee the Table 1 delay accuracy for  
input pulse width smaller than the Minimum  
Operating Pulse Width, the 3D7418 must be  
tested at the user operating pulse width.  
Therefore a Maximum and an Absolute  
Maximum operating input frequency and a  
Minimum and an Absolute Minimum operating  
pulse width have been specified.  
Therefore, to facilitate production and device  
identification, the part number will include a  
custom reference designator identifying the  
intended frequency and duty cycle of operation.  
The programmed delay accuracy of the device is  
guaranteed, therefore, only for the user specified  
input characteristics. Small input pulse width  
variation about the selected pulse width will only  
marginally impact the programmed delay  
OPERATING FREQUENCY  
The Absolute Maximum Operating Frequency  
specification, tabulated in Table 1, determines  
the highest frequency of the delay line input  
signal that can be reproduced, shifted in time at  
the device output, with acceptable duty cycle  
distortion.  
accuracy, if at all. Nevertheless, it is strongly  
recommended that the engineering staff at  
DATA DELAY DEVICES be consulted.  
The Maximum Operating Frequency  
specification determines the highest frequency of  
the delay line input signal for which the output  
delay accuracy is guaranteed.  
SPECIAL HIGH ACCURACY  
REQUIREMENTS  
To guarantee the Table 1 delay accuracy for  
input frequencies higher than the Maximum  
Operating Frequency, the 3D7418 must be  
tested at the user operating frequency.  
The Table 1 delay and increment accuracy  
specifications are aimed at meeting the  
requirements of the majority of the applications  
encountered to date. However, some systems  
may place tighter restrictions on one accuracy  
parameter in favor of others. For example, a  
channel delay equalizing system is concerned in  
minimizing delay variations among the various  
channels. Therefore, because the inter channel  
skew is a delay difference, the programmed  
delay tolerance may need to be considerably  
decreased, while the increment and its tolerance  
are of no consequence. The opposite is true for  
an under-sampled multi-channel data acquisition  
system.  
Therefore, to facilitate production and device  
identification, the part number will include a  
custom reference designator identifying the  
intended frequency of operation. The  
programmed delay accuracy of the device is  
guaranteed, therefore, only at the user specified  
input frequency. Small input frequency variation  
about the selected frequency will only marginally  
impact the programmed delay accuracy, if at all.  
Nevertheless, it is strongly recommended that  
the engineering staff at DATA DELAY  
DEVICES be consulted.  
Doc #02005  
6/17/02  
DATA DELAY DEVICES, INC.  
Tel: 973-773-2299 Fax: 973-773-9672 http://www.datadelay.com  
2
3D7418  
APPLICATION NOTES (CONT’D)  
The flexible 3D7418 architecture can be  
exploited to conform to these more demanding  
user-dictated accuracy constraints. However, to  
facilitate production and device identification, the  
part number will include a custom reference  
designator identifying the user requested  
accuracy specifications and operating conditions.  
It is strongly recommended that the  
In order to ensure that spurious outputs do not  
occur, it is essential that the input signal be idle  
(held high or low) for a short duration prior to  
updating the programmed delay. This duration is  
given by the maximum programmable delay.  
Satisfying this requirement allows the delay line  
to “clear” itself of spurious edges. When the new  
address is loaded, the input signal can begin to  
switch (and the new delay will be valid) after a  
time given by tPDV or tEDV (see section below).  
engineering staff at DATA DELAY DEVICES  
be consulted.  
PROGRAMMED DELAY (ADDRESS)  
INTERFACE  
POWER SUPPLY AND  
TEMPERATURE CONSIDERATIONS  
Figure 1 illustrates the main functional blocks of  
the 3D7418 delay program interface. Since the  
3D7418 is a CMOS design, all unused input pins  
must be returned to well defined logic levels,  
VCC or Ground.  
The delay of CMOS integrated circuits is strongly  
dependent on power supply and temperature.  
The monolithic 3D7418 programmable delay line  
utilizes novel and innovative compensation  
circuitry to minimize the delay variations induced  
by fluctuations in power supply and/or  
temperature.  
TRANSPARENT PARALLEL MODE  
(MD = 1, AE = 1)  
The thermal coefficient is reduced to 600  
PPM/C, which is equivalent to a variation, over  
the 0C-70 C operating range, of ±3% from the  
room-temperature delay settings. The power  
supply coefficient is reduced, over the 4.75V-  
5.25V operating range, to ±1% of the delay  
settings at the nominal 5.0VDC power supply  
and/or ±2ns, whichever is greater.  
The eight program pins P0 - P7 directly control  
the output delay. A change on one or more of  
the program  
pins will be reflected on the output delay after a  
time tPDV, as shown in Figure 2. A register is  
required if the programming data is bused.  
LATCHED PARALLEL MODE  
(MD = 1, AE PULSED)  
It is essential that the power supply pin be  
adequately bypassed and filtered. In addition,  
the power bus should be of as low an  
impedance construction as possible. Power  
planes are preferred.  
The eight program pins P0 - P7 are loaded by the  
falling edge of the Enable pulse, as shown in  
Figure 3. After each change in delay value, a  
settling time tEDV is required before the input is  
accurately delayed.  
PROGRAMMED DELAY (ADDRESS)  
UPDATE  
SERIAL MODE (MD = 0)  
A delay line is a memory device. It stores  
information present at the input for a time equal  
to the delay setting before presenting it at the  
output with minimal distortion. The 3D7418 8-bit  
programmable delay line can be represented by  
256 serially connected delay elements  
While observing data setup (tDSC) and data hold  
(tDHC) requirements, timing data is loaded in  
MSB-to-LSB order by the rising edge of the clock  
(SC) while the enable (AE) is high, as shown in  
Figure 4. The falling edge of the enable (AE)  
activates the new delay value which is reflected  
at the output after a settling time tEDV. As data is  
shifted into the serial data input (SI), the previous  
contents of the 8-bit input register are shifted out  
of the serial output port pin (SO) in MSB-to-LSB  
order, thus allowing cascading of multiple  
(individually addressed by the programming  
data), each capable of storing data for a time  
equal to the device increment (step time). The  
delay line memory property, in conjunction with  
the operational requirement of “instantaneously”  
connecting the delay element addressed by the  
programming data to the output, may inject  
spurious information onto the output data stream.  
devices by connecting the serial output pin (SO)  
of the preceding device to the serial data input  
Doc #02005  
6/17/02  
DATA DELAY DEVICES, INC.  
3 Mt. Prospect Ave. Clifton, NJ 07013  
3
3D7418  
APPLICATION NOTES (CONT’D)  
pin (SI) of the succeeding device, as illustrated in  
Figure 5. The total number of serial data bits in  
a cascade configuration must be eight times the  
number of units, and each group of eight bits  
must be transmitted in MSB-to-LSB order.  
(SO). To retrieve the remaining bits seven more  
rising edges must be generated on the serial  
clock line. The read operation is destructive.  
Therefore, if it is desired that the original delay  
setting remain unchanged, the read data must be  
written back to the device(s) before the enable  
(AE) pin is brought low.  
To initiate a serial read, enable (AE) is driven  
high. After a time tEQV , bit 7 (MSB) is valid at the  
serial output port pin (SO). On the first rising  
edge of the serial clock (SC), bit 7 is loaded with  
the value present at the serial data input pin (SI),  
while bit 6 is presented at the serial output pin  
Pin 3, if unused, must be allowed to float if the  
device is configured in the serial programming  
mode.  
PROGRAMMABLE  
DELAY LINE  
SIGNAL IN  
OUT SIGNAL OUT  
IN  
ADDRESS ENABLE  
AE  
LATCH  
SERIAL INPUT  
SHIFT CLOCK  
SERIAL OUTPUT  
SI  
SO  
8-BIT INPUT  
REGISTER  
SC  
MODE SELECT MD  
P0 P1 P2 P3 P4 P5 P6 P7  
PARALLEL INPUTS  
Figure1: Functional block diagram  
PARALLEL  
INPUTS  
P0-P7  
PREVIOUS VALUE  
NEW VALUE  
tPDX  
tPDV  
DELAY  
TIME  
PREVIOUS VALUE  
NEW VALUE  
Figure 2: Non-latched parallel mode (MD=1, AE=1)  
tEW  
ENABLE  
(AE)  
tDSE  
tDHE  
PARALLEL  
INPUTS  
P0-P7  
NEW VALUE  
tEDX  
tEDV  
DELAY  
TIME  
PREVIOUS VALUE  
NEW VALUE  
Figure 3: Latched parallel mode (MD=1)  
DATA DELAY DEVICES, INC.  
Doc #02005  
6/17/02  
4
Tel: 973-773-2299 Fax: 973-773-9672 http://www.datadelay.com  
3D7418  
APPLICATION NOTES (CONT’D)  
tEW  
ENABLE  
(AE)  
tCW tCW  
tES  
tDSC  
tEGV  
tEH  
CLOCK  
(SC)  
tDHC  
SERIAL  
INPUT  
(SI)  
NEW  
BIT 7  
NEW  
NEW  
BIT 0  
BIT 6  
tCQV  
tCQX  
tEQZ  
SERIAL  
OUTPUT  
(SO)  
OLD  
BIT 7  
OLD  
OLD  
BIT 0  
BIT 6  
tEDV  
tEDX  
DELAY  
TIME  
NEW  
PREVIOUS VALUE  
VALUE  
Figure 4: Serial mode (MD=0)  
3D7418  
3D7418  
3D7418  
SI  
SC AE  
SO  
SI  
SC AE  
SO  
SI  
SC AE  
SO  
FROM  
TO  
WRITING  
DEVICE  
NEXT  
DEVICE  
Figure 5: Cascading Multiple Devices  
TABLE 2: DELAY VS. PROGRAMMED ADDRESS  
PROGRAMMED ADDRESS  
NOMINAL DELAY (NS)  
3D7418 DASH NUMBER  
PARALLEL  
P7  
Msb  
0
P6  
P5  
P4  
P3  
P2  
P1  
P0  
Lsb  
0
SERIAL  
STEP 0  
STEP 1  
STEP 2  
STEP 3  
STEP 4  
STEP 5  
-.25  
12.00  
12.25  
12.50  
12.75  
13.00  
13.25  
-.5  
12.0  
12.5  
13.0  
13.5  
14.0  
14.5  
-1  
12  
13  
14  
15  
16  
17  
-2  
12  
14  
16  
18  
20  
22  
-5  
17  
22  
27  
32  
37  
42  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
0
0
1
0
0
0
1
STEP 253  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
75.25  
75.50  
75.75  
63.75  
138.5 265 518 1283  
139.0 266 520 1287  
139.5 267 522 1292  
127.5 255 510 1275  
STEP 254  
STEP 255  
DELAY CHANGE  
Doc #02005  
6/17/02  
DATA DELAY DEVICES, INC.  
5
3 Mt. Prospect Ave. Clifton, NJ 07013  
3D7418  
DEVICE SPECIFICATIONS  
TABLE 3: ABSOLUTE MAXIMUM RATINGS  
PARAMETER  
DC Supply Voltage  
Input Pin Voltage  
Input Pin Current  
Storage Temperature  
Lead Temperature  
SYMBOL  
VDD  
MIN  
-0.3  
-0.3  
-10  
MAX  
7.0  
UNITS NOTES  
V
V
VIN  
VDD+0.3  
10  
IIN  
TSTRG  
TLEAD  
mA  
C
25C  
-55  
150  
300  
C
10 sec  
TABLE 4: DC ELECTRICAL CHARACTERISTICS  
(0C to 70C, 4.75V to 5.25V)  
PARAMETER  
SYMBOL  
MIN  
1.0  
MAX  
3.0  
UNITS  
mA  
V
NOTES  
Static Supply Current*  
Input Threshold Voltage  
High Level Input Current  
Low Level Input Current  
High Level Output Current  
IDD  
VTH  
IIH  
2.2  
2.8  
1.0  
VIH = VDD  
VIL = 0V  
VDD = 4.75V  
VOH = 4.0V  
VDD = 4.75V  
VOL = 0.4V  
CLD = 5 pf  
µA  
IIL  
IOH  
1.0  
µA  
mA  
-4.0  
Low Level Output Current  
IOL  
4.0  
mA  
ns  
Output Rise & Fall Time  
TR & TF  
2
*IDD(Dynamic) = CLD * VDD * F  
Input Capacitance = 10 pf typical  
Output Load Capacitance (CLD) = 25 pf max  
where: CLD = Average capacitance load/line (pf)  
F = Input frequency (GHz)  
TABLE 5: AC ELECTRICAL CHARACTERISTICS  
(0C to 70C, 4.75V to 5.25V)  
PARAMETER  
SYMBOL MIN TYP MAX  
UNITS  
NOTES  
Clock Frequency  
fC  
tEW  
80  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Enable Width  
10  
10  
10  
3
Clock Width  
tCW  
Data Setup to Clock  
tDSC  
tDHC  
tDSE  
tDHE  
tEQV  
tEQZ  
tCQV  
tCQX  
tES  
Data Hold from Clock  
Data Setup to Enable  
Data Hold from Enable  
Enable to Serial Output Valid  
Enable to Serial Output High-Z  
Clock to Serial Output Valid  
Clock to Serial Output Invalid  
Enable Setup to Clock  
Enable Hold from Clock  
Parallel Input Valid to Delay Valid  
Parallel Input Change to Delay Invalid  
Enable to Delay Valid  
Enable to Delay Invalid  
Input Pulse Width  
10  
3
20  
20  
20  
10  
10  
10  
tEH  
tPDV  
tPDX  
tEDV  
tEDX  
tWI  
20  
35  
40  
45  
1
1
1
1
0
0
8
20  
% of Total Delay See Table 1  
% of Total Delay See Table 1  
Input Period  
Input to Output Delay  
Period  
tPLH, tPHL  
ns  
See Table 2  
NOTES: 1 - Refer to PROGRAMMED DELAY (ADDRESS) UPDATE section  
Doc #02005  
6/17/02  
DATA DELAY DEVICES, INC.  
6
Tel: 973-773-2299 Fax: 973-773-9672 http://www.datadelay.com  
3D7418  
SILICON DELAY LINE AUTOMATED TESTING  
TEST CONDITIONS  
INPUT:  
OUTPUT:  
Ambient Temperature: 25oC ± 3oC  
Supply Voltage (Vcc): 5.0V ± 0.1V  
Rload  
Cload  
:
:
10KΩ ± 10%  
5pf ± 10%  
Input Pulse:  
High = 3.0V ± 0.1V  
Threshold: 1.5V (Rising & Falling)  
Low = 0.0V ± 0.1V  
50Max.  
Source Impedance:  
Rise/Fall Time:  
3.0 ns Max. (measured  
between 0.6V and 2.4V )  
PWIN = 1.25 x Total Delay  
PERIN = 2.5 x Total Delay  
Device  
Under  
Test  
Digital  
Scope  
10KΩ  
Pulse Width:  
Period:  
5pf  
470Ω  
NOTE: The above conditions are for test only and do not in any way restrict the operation of the device.  
PRINTER  
COMPUTER  
SYSTEM  
REF  
PULSE  
OUT  
IN DEVICE UNDER OUT  
TEST (DUT)  
IN  
DIGITAL SCOPE/  
GENERATOR  
TIME INTERVAL COUNTER  
TRIG  
TRIG  
Figure 6: Test Setup  
PERIN  
PWIN  
tRISE  
tFALL  
INPUT  
VIH  
2.4V  
1.5V  
2.4V  
1.5V  
0.6V  
SIGNAL  
VIL  
0.6V  
tPLH  
tPHL  
OUTPUT  
SIGNAL  
VOH  
1.5V  
1.5V  
VOL  
Figure 7: Timing Diagram  
Doc #02005  
6/17/02  
DATA DELAY DEVICES, INC.  
3 Mt. Prospect Ave. Clifton, NJ 07013  
7

相关型号:

3D7418G-0.25

Silicon Delay Line, Programmable, 1-Func, 255-Tap, True Output, CMOS, PDSO16, GULLWING, 16 PIN
DATADELAY

3D7418G-0.5

Silicon Delay Line, Programmable, 1-Func, 255-Tap, True Output, CMOS, PDSO16, GULLWING, 16 PIN
DATADELAY

3D7418G-1

Silicon Delay Line, Programmable, 1-Func, 255-Tap, True Output, CMOS, PDSO16, GULLWING, 16 PIN
DATADELAY

3D7418G-3

Silicon Delay Line, Programmable, 1-Func, 255-Tap, True Output, CMOS, PDSO16, GULLWING, 16 PIN
DATADELAY

3D7418G-4

Silicon Delay Line, Programmable, 1-Func, 255-Tap, True Output, CMOS, PDSO16, GULLWING, 16 PIN
DATADELAY

3D7418G-5

Silicon Delay Line, Programmable, 1-Func, 255-Tap, True Output, CMOS, PDSO16, GULLWING, 16 PIN
DATADELAY

3D7418S-0.25

Silicon Delay Line, Programmable, 1-Func, 255-Tap, True Output, CMOS, PDSO16, 0.300 INCH, SOIC-16
DATADELAY

3D7418S-0.5

Silicon Delay Line, Programmable, 1-Func, 255-Tap, True Output, CMOS, PDSO16, 0.300 INCH, SOIC-16
DATADELAY

3D7418S-1

Silicon Delay Line, Programmable, 1-Func, 255-Tap, True Output, CMOS, PDSO16, 0.300 INCH, SOIC-16
DATADELAY

3D7418S-3

Silicon Delay Line, Programmable, 1-Func, 255-Tap, True Output, CMOS, PDSO16, 0.300 INCH, SOIC-16
DATADELAY

3D7424

MONOLITHIC QUAD 4-BIT PROGRAMMABLE DELAY LINE
DATADELAY

3D7424-.75

MONOLITHIC QUAD 4-BIT PROGRAMMABLE DELAY LINE
DATADELAY