DEI1071A-SES-G [DEIAZ]

ARINC 429 LINE DRIVER FAMILY;
DEI1071A-SES-G
型号: DEI1071A-SES-G
厂家: Device Engineering Incorporated    Device Engineering Incorporated
描述:

ARINC 429 LINE DRIVER FAMILY

驱动 光电二极管 接口集成电路 驱动器
文件: 总12页 (文件大小:315K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Device  
Engineering  
Incorporated  
DEI1070A-DEI1075A  
ARINC 429 LINE DRIVER FAMILY  
385 East Alamo Drive  
Chandler, AZ 85225  
Phone: (480) 303-0822  
Fax: (480) 303-0824  
E-mail: admin@deiaz.com  
FEATURES  
x
x
x
x
x
x
x
x
x
TTL/CMOS to ARINC 429 Line Driver  
HI/LO Speed Control Pin for Hi (100KBS) or Lo (12.5KBS) speed slew rates  
±9.5V to ±16.5V supplies  
Drives full ARINC load  
Output resistor options: 0, 10 or 37.5 Ohms  
Tristate Output options  
8 lead SOICN package with exposed pad for thermal enhancement (shown actual size)  
The DEI1070A family is an improved version of the popular DEI1070 family  
Pin for pin replacements with the HI8585 and HI8586  
GENERAL DESCRIPTION  
The DEI107xA is a family of 8 pin bipolar integrated circuit line drivers which directly drive the ARINC 429  
avionics serial digital data bus. These ARINC 429 Line Drivers convert TTL/CMOS serial input data to the “Tri-  
level RZ bipolar differential modulation format” of the ARINC bus. The output slew rate is selectable for HI speed  
(100KBS) or LOW speed (12.5KBS) operation. No external timing capacitors are required.  
The DEI107xA Line Driver family is an improved version of the popular DEI107x family. It provides:  
x
x
x
Lower power consumption  
Excellent waveform fidelity  
Improved transient immunity. This improvement simplifies the equipment design for lightning and RF  
immunity requirements.  
This new Line Driver family provides options for various output resistor values and output tri-state capability (see  
table 1). There are three output resistor options: 0ȍ, 10ȍ and 37ȍ. The 0ȍ and 10ȍ versions require external  
resistors to achieve the 37ȍ output resistance of the ARINC 429 standard. The external resistors are normally used  
to simplify the external transient voltage protection network. The outputs are tri-state capable on the 1073/4/5  
versions. This feature is useful in non-standard applications where there are multiple drivers on a wire pair.  
Table 1 Line Driver Options  
1070A  
37 Ohms  
No  
1071A  
10 Ohms  
No  
1072A  
0 Ohms  
No  
1073A  
37 Ohms  
Yes  
1074A  
10 Ohms  
Yes  
1075A  
0 Ohms  
Yes  
Output Resistor Value  
Tri-state Capability  
©2011 Device Engineering Inc  
Page 1 of 12  
DS-MW-01070-02 Rev H  
04/05/12  
TERMINAL DESCRIPTION  
Table 2 Pin Description  
PIN  
NAME  
HI/LO  
TTLIN0  
TTLIN1  
GND  
DESCRIPTION  
LOGIC INPUT. Slew rate control. 1 = Hi speed. 0 = Low speed.  
LOGIC INPUT. Serial digital data input 0.  
LOGIC INPUT. Serial digital data input 1.  
POWER INPUT. Ground.  
1
2
3
4
8
7
6
5
HI/LO  
1
2
3
4
5
6
7
8
V+  
TTLIN0  
TTLIN1  
429OUTB  
429OUTA  
GND  
V-  
POWER INPUT. –9.5 to –16.5 VDC  
V-  
Note:  
429 OUTPUT. ARINC 429 format serial digital data output A.  
429 OUTPUT. ARINC 429 format serial digital data output B.  
POWER INPUT. +9.5 to +16.5 VDC.  
429OUTA  
429OUTB  
V+  
Heatsink pad is electrically Isolated.  
FUNCTIONAL DESCRIPTION  
HI/LO  
429OUTA  
Rout:  
0, 10, or  
37.5 Ohms  
TTLIN1  
INPUT LOGIC  
and  
LEVEL SHIFT  
OUTPUT  
DRIVERS  
EDGE  
SHAPING  
TTLIN0  
429OUTB  
Rout:  
TRI-STATE  
0, 10, or  
37.5 Ohms  
Figure 1 Block Diagram  
Table 3 Speed Control Function Table  
HI/LO  
OUTPUT TRANSITION TIME  
10uS (12.5KBS data)  
L
H
1.5uS (100KBS data)  
Table 4 Transmit Data Function Table  
TTLIN1  
TTLIN0  
429OUTA  
0V  
429OUTB  
0V  
NOTES  
Null output  
Zero output  
One output  
Null output  
L
L
H
H
L
H
L
-5V  
5V  
0V  
5V  
-5V  
0V  
H
1070A/1071A/1072A  
H
H
Hi-Z  
Hi-Z  
Hi-Z output  
1073A/1074A/1075A  
©2011 Device Engineering Inc  
Page 2 of 12  
DS-MW-01070-02 Rev H  
04/05/12  
TTLIN1  
TTLIN0  
Tf  
+5  
90%  
Tr  
Tf  
429OUTA  
10%  
10%  
-5  
90%  
Tr  
+5  
429OUTB  
-5  
Tfall  
+10  
90%  
Differential  
429OUT  
(A-B)  
Tfall  
Trise  
10%  
10%  
Trise  
90%  
-10  
Figure 2 Line Driver Waveforms  
ELECTRICAL DESCRIPTION  
Table 5 Absolute Maximum Ratings  
PARAMETER  
MIN  
MAX  
UNITS  
V+ Supply Voltage  
V- Supply Voltage  
-0.3  
0.3  
-65  
+20  
-20  
V
V
Storage Temperature  
Input Voltage  
+150  
°C  
TTLIN and HI/LO Inputs  
429OUT Outputs (175uS surge)  
Gnd – 0.5  
‘V+’ + 0.5  
V
1072A/1075A ‘V-’ – 1.0  
1071A/1074A ‘V-’ – 5.0  
1070A/1073A ‘V-’– 20  
‘V+’ + 1.0  
‘V+’ + 5.0  
‘V+’ + 20  
V
V
V
Input Current  
429OUT Outputs (175uS surge)  
-0.5  
0.5  
A
Power Dissipation @ 85°C  
8L EP SOIC, thermal pad soldered to heat spreader land  
8L SB DIP  
1.2  
0.72  
W
W
Junction Temperature:  
Tjmax, Plastic Packages  
Tjmax, Ceramic Packages  
150  
175  
°C  
°C  
ESD per JEDEC A114-A Human Body Model  
2000  
V
Peak body Temperature:  
8L EP SOIC  
260  
°C  
Notes:  
1. Stresses above absolute maximum ratings may cause permanent damage to the device.  
2. The device is tolerant of one or both outputs shorted to Ground and of both outputs shorted together.  
3. Voltages referenced to Ground  
©2011 Device Engineering Inc  
Page 3 of 12  
DS-MW-01070-02 Rev H  
04/05/12  
Table 6 Recommended Operating Conditions  
PARAMETER  
SYMBOL  
CONDITIONS  
Supply Voltage  
V+  
V-  
9.5 to 16.5V  
-9.5 to –16.5V  
Operating Temperature  
-xEx parts  
-55 to +85 °C  
-55 to +125 °C  
Top  
-xMx parts  
Table 7 Electrical Characteristics  
PARAMETER  
TEST CONDITIONS (1) SYMBOL  
MIN  
NOM  
MAX  
UNITS  
LOGIC INPUTS  
VIH  
Input Voltage, Logic 1  
2.0  
V+  
0.8  
V
V
Input Voltage, Logic 0  
Input Current, Logic 1  
Input Current, Logic 0  
VIL  
-0.3  
VIN = 5.0V  
VIN = 0.0V  
IIH  
0
0
25  
100  
uA  
uA  
IIL  
-20  
-100  
ARINC OUTPUTS  
ARINC Output Voltage  
Single Ended  
HI  
NULL  
LO  
Referenced to Ground  
No Load.  
VoHI  
VoNULL  
VoLO  
4.5  
-0.25  
-5.5  
5.0  
0
-5.0  
5.5  
+0.25  
-4.5  
V
V
V
Output Tristate Leakage  
Current  
Force output to -5V and +5V  
Iz  
-200  
+200  
uA  
1073A/1074A/1075A  
ARINC Output Short Circuit External 37.5ȍ resistor  
Current  
to GND  
1072A/1075A  
Output LO IscLO  
Output HI IscHI  
100  
-146  
133  
-133  
146  
-100  
mA  
mA  
ARINC Output Short Circuit External 27.5 ȍ resistor  
Current  
to GND  
1071A/1074A  
Output LO IscLO  
Output HI IscHI  
67  
-175  
133  
-133  
175  
-67  
mA  
mA  
ARINC Output Short Circuit Output shorted to GND  
Current  
Output LO IscLO  
Output HI IscHI  
64  
-283  
133  
-133  
283  
-64  
mA  
mA  
1070A/1073A  
Output Resistance:  
1070A/1073A  
1071A/1074A  
1072A/1075A  
Room Temperature  
Calculated from  
Rout37  
24  
6
0
37.5  
10  
0.2  
50  
13.5  
2
Ohms  
Ohms  
Ohms  
delta-Vout / delta-Iload  
Where Iload = 0 and 20mA  
See Figure 3  
Rout10  
Rout0  
Output Slew Rate, Hi Speed  
Lo to Hi and Hi to Lo  
transitions  
HI/LO = 1  
No Load, 10% to 90%  
single ended output  
HI/LO = 0  
No Load, 10% to 90%  
single ended output  
Tr/Tf  
Tr/Tf  
1
5
2
us  
us  
Output Slew Rate, Lo Speed  
Lo to Hi and Hi to Lo  
transitions  
15  
SUPPLY CURRENT  
V+ =15V, V- = -15V  
Quiescent Operating Supply  
Current:  
IV+  
HI/LO = 0 or 1  
TTLIN0=TTLIN1= 0V  
No Load  
IV+  
IV-  
-
3.0  
-2.5  
6.0  
-
mA  
mA  
IV-  
-6.0  
©2011 Device Engineering Inc  
Page 4 of 12  
DS-MW-01070-02 Rev H  
04/05/12  
PARAMETER  
TEST CONDITIONS (1) SYMBOL  
MIN  
NOM  
MAX  
UNITS  
Notes:  
1. General Conditions: Tcase = rated operating temperature, -55/+85°C or -55/+125°C.  
V+/- = +/-9.5 to +/-16.5V  
2. Unless otherwise noted, currents flowing in to DUT are positive, currents flowing out of DUT are  
negative, voltages are referenced to Ground.  
3. Not production tested.  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
-100  
-50  
0
50  
100  
150  
200  
Temperature (°C)  
Figure 3 Normalized Output Resistance vs. Temperature  
OUTPUT V-I CHARACTERISTICS  
1000  
800  
600  
400  
200  
NULL output  
HI output  
0
LO output  
-200  
-400  
-600  
-800  
-1000  
-20  
-15  
-10  
-5  
0
5
10  
15  
20  
Output Voltage (V)  
Figure 4 429OUT V-I Characteristics, ±15V supplies  
©2011 Device Engineering Inc  
Page 5 of 12  
DS-MW-01070-02 Rev H  
04/05/12  
DESIGN CONSIDERATIONS  
Power Supplies and Bypass Capacitors  
The DEI107XA Line Driver operates from ±9.5V to ±16.5V dual supplies. Proper bypassing ensures stability while driving  
large capacitive loads. The Line Driver requires a minimum of a 0.1uF bypass capacitor placed as close as possible to the V+  
and V- pins.  
Transient Voltage Protection  
The DEI107xA Line Driver requires external components to achieve immunity from surges such as those defined by DO160D  
Section 22, “Lightning Induced Transient Susceptibility”. Typical surge protection includes silicon Transient Voltage  
Suppressor (TVS) devices and may include all or part of the 37.5 Ohm output resistance as external resistors to limit the surge  
current.  
V+  
DEI107xA  
The 107xA has a robust output stage which includes large  
driver devices and clamp diodes to the V+ and V- power  
R2  
R1  
rails as shown in Figure 5. It withstands surge currents of  
±0.5A for 175us without damage when powered with  
±15V supplies. At that surge current, the diodes clamp at  
~1V above (below) the V+ ( V-) supply rail. ~350mA  
flows to the V- (V+) supply through the output amplifier,  
and ~150ma flows to the V+ (V-) supply through the  
clamp diode. The outputs may be damaged by surges  
greater than 1A / 175uS. At that current, the diodes  
clamp at ~1.8V above (below) the supply.  
OUTPUT  
AMP  
OUTA  
Rout:  
0, 10, or  
37.5 Ohms  
V-  
TVS  
to  
ARINC DATA BUS  
Twisted Shielded Pair cable  
V+  
OUTPUT  
AMP  
OUTB  
Figure 5 Surge Protection Network  
V-  
The external lightning protection network should be  
designed to meet the specific requirements and constraints  
of the application equipment. The protection network should limit the OUTA/B pin surge current to the 0.5A / 175uS  
maximum. The generalized circuit of Figure 5 represents several TVS protection network options:  
x
x
The on-chip Rout value is 0, 10, or 37 Ohms depending on the 1070A – 1075A part number  
Select the total output resistance, Rout + R1 + R2, = 37 Ohms to meet ARINC bus requirements  
o
o
o
Select R1 = 37ȍ, R2 = 0ȍ, Rout = 0ȍ for lowest TVS surge current rating (smallest TVS devices)  
Select R1 = 0ȍ, Rout + R2 = 37ȍ for highest TVS clamp voltage (20V + V+/-)  
If the V+/V- supplies are un-powered or below operating voltage during the surge event, large currents may flow  
through the internal clamp diodes and damage the driver. If the application requires lightning immunity while un-  
powered, Select R1 = 0ȍ, Rout + R2 = 37ȍ, and select the TVS clamp voltage for <20V.  
x
Select TVS devices for the following  
o
TVS Surge power/current rating must withstand the application requirements for Lightning Induced Transient  
Levels and Waveforms. Microsemi Corporation publishes an application note specific to the DO160 lightning  
requirements, available at: http://www.microsemi.com/micnotes/126.pdf  
o
Select low capacitance TVS devices to minimize the load on the line driver. (Examples: Microsemi LC and  
HSMBJSA series TVS)  
This is a priority for Hi Speed ARINC applications where the low capacitance is  
important for optimum signal integrity and power consumption. Note that the maximum total capacitance on the  
ARINC bus is 30nF line to line.  
o
Select the TVS clamp voltage at the lightning surge conditions such that the voltage/current into the 107XA OUT  
pin is within the safe region.  
x
If R1 is used to limit the TVS surge current, the resistor must withstand the surge current and voltage.  
Alternate protection methods may be appropriate in some applications.  
x
x
External clamp diodes to the supply rails may be used to shunt surge current to the supply rails rather than to Ground.  
PTC “resetable fuses” may be used for R1 to protect the driver and TVS from shorts to 28V aircraft power.  
©2011 Device Engineering Inc  
Page 6 of 12  
DS-MW-01070-02 Rev H  
04/05/12  
Some general considerations related to Lightning Immunity:  
x
Analyze the TVS high current signal and ground return path to insure adequate surge current capability. The IR  
voltage and L*di/dt voltage in the ground return will add additional stress beyond the TVS clamp voltage.  
Observe suitable PCB design rules for traces subject to high voltage and high current surges.  
When possible, locate TVS devices close to the equipment connector to minimize the length of the surge  
voltage/current traces within the equipment.  
x
x
x
The shields of ARINC 429 data bus cables should be terminated to aircraft ground at all ends and at all bulkhead  
disconnects.  
Thermal Management  
Good thermal management is fundamental to Line Driver device reliability. It is particularly important in designs operating at  
the HI speed data rate (100KBS) with high capacitive loads as this produces maximum power dissipation. While the 107xA  
device will function at a junction temperature (Tj) above 190°C, it is inappropriate to continuously operate the plastic package  
above 150°C. Like all microcircuits, long term reliability is improved with lower operating temperatures.  
The Line Driver’s operating Tj is determined by internal power dissipation, package thermal resistance, and ambient  
temperature. The internal power dissipation (Pd) varies greatly with several variables:  
x
x
Data Rate – The Hi Speed (100kbs) rate produces maximum power dissipation  
Load – The maximum ARINC 429 load is 30nF||400 ȍ line-to-line. Many applications only drive a fraction of the  
full load.  
x
Data Duty Cycle - ARINC bus activity, averaged over 10 seconds = Bits transmitted / total possible bits. Many  
applications are active <70%.  
x
x
Supply Voltage – V+/V- supply range is from ±9.5V to ±16.5V. Higher voltage => higher power  
Rout configuration - The power dissipated in the two 37ȍ output resistors is internal to the IC for the 1070/3, and  
external for the 1072/5.  
The internal power dissipation for 100kbs applications can be estimated from Figure 6. Pd for low speed operation (12.5kbs) is  
normally not an issue, so is not considered here. The curves in Figure 6 indicate Pd for various loads, supply voltage, and Rout  
configuration. It represents Pd for 100% Data Duty Cycle at 100KBS with no word gap null times. Thus the indicated Pd  
values are considered maximum values and should be reduced to account for the Data Duty Cycle as follows:  
x
x
x
Estimate DDC = total bits transmitted in 10 sec period / 1,000,000  
= 32 x total ARINC words transmitted in 10 sec period / 1,000,000  
Use Figure 6 to select an indicated Pd for the application supply voltage and load. This may involve estimating the  
Line Driver’s load and interpolating between the curves.  
Calculate adjusted Pd = DDC * (Pd - 0.1) + 0.1 (W)  
The operating junction temperature is calculated as follows:  
Tj = Ta + Pd*Ĭja  
where  
Tj = junction temperature (°C)  
Ta = Ambient temperature (°C)  
Pd = Internal power dissipation (W)  
Ĭja = IC package thermal resistance from junction to ambient (°C/W). Refer to package details.  
The ARINC 429 Line Driver outputs may be subject to short circuit conditions due to cable wiring errors or faults which  
typically occur during equipment test and aircraft installation environments. The common cases are one or both outputs  
shorted to Ground, or both outputs shorted together. These conditions may cause considerable internal power dissipation  
depending on the following:  
x
Data Duty Cycle – The line-to-line and line-to-Ground shorts cause little or no power dissipation when the outputs are  
in the Null state. However when the output is driving a HI/LO state, the short circuit current is limited by the 37.5ȍ  
Rout at about ~133mA. This is modulated by the ARINC waveform, producing an effective current of ~88mA*  
DDC. This current causes heating in the output amplifier and Rout resistor.  
x
Supply Voltage – A lower supply voltage results in lower Pd during short circuit conditions. The internal Pd for both  
outputs shorted while operating at 100% DDC is ~2W with ±15V supplies, but is reduced to ~1.5W with ±12V  
supplies. This is for 0ȍ Rout configurations.  
©2011 Device Engineering Inc  
Page 7 of 12  
DS-MW-01070-02 Rev H  
04/05/12  
x
Rout configuration – Each of the two 37.5ȍ Rout resistors dissipates ~0.29W when shorted at 100% DDC. This  
power is dissipated in the external resistors for the 1072A or 1075A parts, and internal to the IC for the 1070A or  
1073A parts. Thus the 1072A or 1075A have a lower Tj and are more tolerant to short circuit conditions.  
The PCB design and layout is a significant factor in determining thermal resistance (Ĭja) of the Line Driver IC package. Use  
maximum trace width on all power and signal connections at the IC. These traces serve as heat spreaders which improve heat  
flow from the IC leads. The exposed heat sink pad of the SOIC package should be soldered to a heat-spreader land pattern on  
the PCB. The IC exposed pad is electrically isolated, so the PCB land may be at any potential; typically Ground for the best  
heat sink. Maximize the PCB land size by extending it beyond the IC outline if possible. A grid of thermal VIAs, which drop  
down and connect to the buried copper plane(s), should be placed under the heat-spreader land. A typical VIA grid is 12mil  
holes on a 50mil pitch. The barrel is plated to about 1.0 ounce copper. Use as many VIAs as space allows. VIAs should be  
plugged to prevent voids being formed between the exposed pad and PCB heat-spreader land due to solder escaping by the  
capillary effect. This can be avoided by tenting the VIAs with solder mask.  
DEI107xA POWER DISSIPATION  
100kbs Data Rate, 100% Duty Cycle  
1.6  
1.4  
1.2  
1
No Load  
15nF/800ȍ Load - Internal 37ȍ  
15nF/800ȍ Load - External 37ȍ  
30nF/400ȍ Load - Internal 37ȍ  
30nF/400ȍ Load- External 37ȍ  
0.8  
0.6  
0.4  
0.2  
0
8
10  
12  
14  
16  
18  
Supply Voltage (+/-V)  
Figure 6 Internal Power Dissipation  
©2011 Device Engineering Inc  
Page 8 of 12  
DS-MW-01070-02 Rev H  
04/05/12  
PACKAGE DESCRIPTION  
Table 8 Package Characteristics  
PACKAGE TYPE  
PACKAGE THERMAL  
JEDEC MOISTURE  
SENSITIVITY LEVEL &  
PEAK BODY TEMP  
LEAD FINISH  
MATERIAL /  
JEDEC Pb-Free  
CODE  
Pb Free  
DESIGNATON  
REF  
RESIST.  
șJC / șJA  
(ºC/W)  
8L SB DIP  
8 SB DIP  
55 / 125  
HERMETIC  
Au  
e4  
Pb Free solder  
terminals  
8L EP SOIC  
(Exposed Pad)  
8 EP SOIC 10 / 49 (1)  
G
MSL 1  
260ºC  
NiPdAu  
e4  
RoHS Compliant  
8L ES SOIC  
(Exposed Slug)  
8 ES SOIC 10 / 49 (1)  
G
MSL 1  
260ºC  
Matte Sn  
e3  
RoHS Compliant  
Notes:  
1. șJA with the exposed pad soldered to a PCB land with (6) 12mil thermal vias connected to an internal ground plane which  
is one of the 2 center layers on a 4 layer board .  
Figure 7 Mechanical Outline - 8L EP SOIC (Exposed Pad)  
©2011 Device Engineering Inc  
Page 9 of 12  
DS-MW-01070-02 Rev H  
04/05/12  
Figure 8 Mechanical Outline - 8L ES SOIC (Exposed Slug)  
Figure 9 Mechanical Outline - 8L Ceramic Sidebrazed DIP  
©2011 Device Engineering Inc  
Page 10 of 12  
DS-MW-01070-02 Rev H  
04/05/12  
PROCESS DESCRIPTION  
Table 9 Process Flow  
PROCESS STEP  
PRE-BURN-IN Electrical Test  
BURN-IN  
YES  
STANDARD  
N/A  
BURN IN (1)  
N/A  
96hrs @ +125 °C  
FINAL ELECTRICAL TEST,  
Room Temperature  
FINAL ELECTRICAL TEST,  
High Temperature  
FINAL ELECTRICAL TEST,  
Low Temperature  
100%  
100% @  
+85 or +125°C  
0.65% AQL  
@ -55°C  
100%  
100% @  
+85 or +125°C  
0.65% AQL  
@ -55°C  
NOTES:  
1. Burn-in conditions: 125°C, 96 hrs, V+/V- = +/-15.0V Inputs = 0V,  
Outputs open.  
©2011 Device Engineering Inc  
Page 11 of 12  
DS-MW-01070-02 Rev H  
04/05/12  
ORDERING INFORMATION  
Table 10 Ordering Information  
Part Number  
Marking  
Package  
Output  
Resistor  
37  
Tri State  
Output  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
Burn-In  
No  
No  
Yes  
No  
Yes  
No  
No  
Yes  
No  
Yes  
No  
No  
Yes  
No  
Yes  
No  
No  
No  
Yes  
No  
Yes  
No  
No  
Yes  
No  
Yes  
No  
No  
Yes  
No  
Yes  
Temperature  
DEI1070A-SES-G  
DEI1070A-SMS-G DE1070A / MS  
DEI1070A-SMB-G DE1070A / MB  
DEI1070A-DMS  
DEI1070A-DMB  
DEI1071A-SES-G  
DEI1071A-SMS-G DE1071A / MS  
DEI1071A-SMB-G DE1071A/MB  
DEI1071A-DMS  
DEI1071A-DMB  
DEI1072A-SES-G  
DEI1072A-SMS-G DE1072A / MS  
DEI1072A-SMB-G DE1072A / MB  
DEI1072A-DMS  
DEI1072A-DMB  
DEI1072A-YES-G DEI / 1072AYES 8L ES SOIC G  
DEI1073A-SES-G  
DEI1073A-SMS-G DE1073A / MS  
DEI1073A-SMB-G DE1073A / MB  
DEI1073A-DMS  
DEI1073A-DMB  
DEI1074A-SES-G  
DEI1074A-SMS-G DE1074A / MS  
DEI1074A-SMB-G DE1074A / MB  
DEI1074A-DMS  
DEI1074A-DMB  
DEI1075A-SES-G  
DEI1075A-SMS-G DE1075A / MS  
DEI1075A-SMB-G DE1075A / MB  
DE1070A / ES  
8L EP SOIC G  
8L EP SOIC G  
8L EP SOIC G  
-55 / +85 ºC  
-55 / +125 ºC  
-55 / +125 ºC  
-55 / +125 ºC  
-55 / +125 ºC  
-55 / +85 ºC  
-55 / +125 ºC  
-55 / +125 ºC  
-55 / +125 ºC  
-55 / +125 ºC  
-55 / +85 ºC  
-55 / +125 ºC  
-55 / +125 ºC  
-55 / +125 ºC  
-55 / +125 ºC  
-55 / +85 ºC  
-55 / +85 ºC  
-55 / +125 ºC  
-55 / +125 ºC  
-55 / +125 ºC  
-55 / +125 ºC  
-55 / +85 ºC  
-55 / +125 ºC  
-55 / +125 ºC  
-55 / +125 ºC  
-55 / +125 ºC  
-55 / +85 ºC  
-55 / +125 ºC  
-55 / +125 ºC  
-55 / +125 ºC  
-55 / +125 ºC  
37  
37  
37  
37  
10  
10  
10  
10  
10  
0
DEI1070A / DMS 8L SB DIP  
DEI1070A / DMB 8L SB DIP  
DE1071A / ES  
8L EP SOIC G  
8L EP SOIC G  
8L EP SOIC G  
DEI1071A / DMS 8L SB DIP  
DEI1071A / DMB 8L SB DIP  
DE1072A / ES  
8L EP SOIC G  
8L EP SOIC G  
8L EP SOIC G  
0
0
0
0
DEI1072A / DMS 8L SB DIP  
DEI1072A / DMB 8L SB DIP  
0
No  
DE1073A / ES  
8L EP SOIC G  
8L EP SOIC G  
8L EP SOIC G  
37  
37  
37  
37  
37  
10  
10  
10  
10  
10  
0
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
DEI1073A / DMS 8L SB DIP  
DEI1073A / DMB 8L SB DIP  
DE1074A / ES  
8L EP SOIC G  
8L EP SOIC G  
8L EP SOIC G  
DEI1074A / DMS 8L SB DIP  
DEI1074A / DMB 8L SB DIP  
DE1075A / ES  
8L EP SOIC G  
8L EP SOIC G  
8L EP SOIC G  
0
0
0
0
DEI1075A-DMS  
DEI1075A-DMB  
DEI1075A / DMS 8L SB DIP  
DEI1075A / DMB 8L SB DIP  
DEI reserves the right to make changes to any products or specifications herein. DEI makes no warranty, representation, or  
guarantee regarding suitability of its products for any particular purpose.  
©2011 Device Engineering Inc  
Page 12 of 12  
DS-MW-01070-02 Rev H  
04/05/12  

相关型号:

DEI1071A-SMB-G

ARINC 429 LINE DRIVER FAMILY
DEIAZ

DEI1071A-SMS-G

ARINC 429 LINE DRIVER FAMILY
DEIAZ

DEI1072A-DMB

ARINC 429 LINE DRIVER FAMILY
DEIAZ

DEI1072A-DMS

ARINC 429 LINE DRIVER FAMILY
DEIAZ

DEI1072A-SES-G

ARINC 429 LINE DRIVER FAMILY
DEIAZ

DEI1072A-SMB-G

ARINC 429 LINE DRIVER FAMILY
DEIAZ

DEI1072A-SMS-G

ARINC 429 LINE DRIVER FAMILY
DEIAZ

DEI1072A-YES-G

ARINC 429 LINE DRIVER FAMILY
DEIAZ

DEI1073A-DMB

ARINC 429 LINE DRIVER FAMILY
DEIAZ

DEI1073A-DMS

ARINC 429 LINE DRIVER FAMILY
DEIAZ

DEI1073A-SES-G

ARINC 429 LINE DRIVER FAMILY
DEIAZ

DEI1073A-SMB-G

ARINC 429 LINE DRIVER FAMILY
DEIAZ