DNK05S0A0R30NFA [DELTA]

Non-Isolated, Point of Load DC/DC Power Modules: 4,5~5.5Vin, 0.8V~3.63V/30Aout; 非隔离负载DC / DC电源模块的点: 4,5 〜 5.5VIN , 0.8V 〜 3.63V / 30Aout
DNK05S0A0R30NFA
型号: DNK05S0A0R30NFA
厂家: DELTA ELECTRONICS, INC.    DELTA ELECTRONICS, INC.
描述:

Non-Isolated, Point of Load DC/DC Power Modules: 4,5~5.5Vin, 0.8V~3.63V/30Aout
非隔离负载DC / DC电源模块的点: 4,5 〜 5.5VIN , 0.8V 〜 3.63V / 30Aout

电源电路
文件: 总15页 (文件大小:746K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FEATURES  
Š
High efficiency:  
95% @ 5Vin, 3.3V/30A out (SIP)  
Small size and low profile:  
50.8x12.7x14.0 mm (2.00”x0.50”x0.55”)  
Standard footprint  
Š
Š
Š
Š
Š
Š
Š
Pre-bias startup  
Output voltage tracking  
No minimum load required  
Voltage and resistor-based trim  
Output voltage programmable from  
0.8Vdc to 3.63Vdc via external resistor  
Fixed frequency operation  
Input UVLO, Output OTP, OCP  
Remote ON/OFF  
Š
Š
Š
Š
Š
Š
Remote sense  
Current sharing (optional)  
ISO 9000, TL 9000, ISO 14001 certified  
manufacturing facility  
Š
UL/cUL 60950-1 (US & Canada) recognized  
Delphi Series DNK05, Non-Isolated, Point of Load  
DC/DC Power Modules:  
4,5~5.5Vin, 0.8V~3.63V/30Aout  
The Delphi series DNK05, 4.5V~5.5V input, single output, non-isolated  
point of load DC/DC converters are the latest offering from a world leader  
in power systems technology and manufacturing -- Delta Electronics, Inc.  
The DNK05 series provides a programmable output voltage from 0.8V to  
3.63V by using an external resistor. The DNK converters have flexible  
and programmable tracking and sequencing features to enable a variety  
of startup voltages as well as sequencing and tracking between power  
modules. This product family is available in a surface mount or SIP  
package and provides up to 30A of current in an industry standard  
footprint. With creative design technology and optimization of component  
placement, these converters possess outstanding electrical and thermal  
performance and extremely high reliability under highly stressful  
operating conditions.  
APPLICATIONS  
Š
Š
Š
Š
Š
Telecom / DataCom  
Distributed power architectures  
Servers and workstations  
LAN / WAN applications  
Data processing applications  
DATASHEET  
DS_DNK05SIP_06042012  
Delta Electronics, Inc.  
TECHNICAL SPECIFICATIONS  
TA = 25°C, airflow rate = 300 LFM, Vin = 10Vdc and 14Vdc, nominal Vout unless otherwise noted.  
PARAMETER  
NOTES and CONDITIONS  
DNK05S0A0R30  
Min.  
Typ.  
Max.  
Units  
ABSOLUTE MAXIMUM RATINGS  
Input Voltage (Continuous)  
Tracking Voltage  
Operating Ambient Temperature  
Storage Temperature  
0
0
-40  
-55  
15  
Vin,max  
85  
Vdc  
Vdc  
°C  
125  
°C  
INPUT CHARACTERISTICS  
Operating Input Voltage  
Input Under-Voltage Lockout  
Turn-On Voltage Threshold  
Turn-Off Voltage Threshold  
Maximum Input Current  
No-Load Input Current  
Vo<=3.3V / Vo>3.3V  
4.5  
5
5.5  
V
5.2  
4.8  
V
V
Vin=Vin,min to Vin,max, Io=Io,max  
Vin= Vin,min to Vin,max, Io=Io,min to Io,max  
Vin=12V, Io=Io,max  
27  
1
A
150  
25  
mA  
mA  
A2S  
A
Off Converter Input Current  
Inrush Transient  
Recommended Input Fuse  
OUTPUT CHARACTERISTICS  
Output Voltage Set Point  
Output Voltage Adjustable Range  
Over Load  
50  
-1.5  
0.8  
Vo,set  
+1.5  
5.5  
% Vo,set  
V
% Vo,set  
% Vo,set  
Io=Io,min to Io,max  
Over sample load, line and temperature  
0.4  
Total Output Voltage Range  
Output Voltage Ripple and Noise  
-3.0  
+3.0  
5Hz to 20MHz bandwidth with 0.01uF//0.1uF//10uF ceramic  
Vin= Vin,min to Vin,max, Io=Io,min to Io,max  
Peak-to-Peak  
35  
8
mV  
mV  
RMS  
Vin= Vin,min to Vin,max, Io=Io,min to Io,max  
Output Current Range  
0
30  
5
A
Output Voltage Over-shoot at Start-up  
Output DC Current-Limit Inception  
Output Short-Circuit Current (Hiccup mode)  
DYNAMIC CHARACTERISTICS  
Dynamic Load Response  
% Vo,set  
% Io  
Adc  
160  
6
Io,s/c  
10µF Tan & 1µF ceramic load cap, 1A/µs, 5Vout  
0% Io,max to 50% Io,max  
Positive Step Change in Output Current  
Negative Step Change in Output Current  
Setting Time to 10% of Peak Devitation  
Turn-On Transient  
350  
350  
mV  
mV  
µs  
50% Io,max to 0% Io,max  
25  
Io=Io.max  
Von/off, Vo=10% of Vo,set  
Start-Up Time, From On/Off Control  
Start-Up Time, From Input  
3
3
4
ms  
ms  
ms  
µF  
µF  
Vin=Vin,min, Vo=10% of Vo,set  
Time for Vo to rise from 10% to 90% of Vo,set  
Full load; ESR 1m  
Output Voltage Rise Time  
Maximum Output Startup Capacitive Load  
2000  
10000  
Full load; ESR 10mΩ  
EFFICIENCY  
Vo=0.8V  
Vo=1.2V  
Vo=1.5V  
Vo=1.8V  
Vo=2.5V  
Vo=3.3V  
Vin=5V, Io=Io,max  
Vin=5V, Io=Io,max  
Vin=5V, Io=Io,max  
Vin=5V, Io=Io,max  
Vin=5V, Io=Io,max  
Vin=5V, Io=Io,max  
82  
87  
%
%
%
%
%
%
%
89  
90.5  
93  
94  
FEATURE CHARACTERISTICS  
Switching Frequency  
ON/OFF Control, (Negative logic)  
Logic Low Voltage  
300  
kHz  
Module On, Von/off  
Module Off, Von/off  
Module On, Ion/off  
Module Off, Ion/off  
-0.2  
3
1.2  
V
V
uA  
Logic High Voltage  
Vin,max  
Logic Low Current  
10  
1
2
Logic High Current  
0.2  
mA  
V/msec  
ms  
Tracking Slew Rate Capability  
Tracking Delay Time  
0.1  
10  
Delay from Vin.min to application of tracking voltage  
Power-up, subject to 2V/mS  
Tracking Accuracy  
100  
200  
200  
400  
0.5  
mV  
mV  
V
Power-down, subject to 1V/mS  
Remote Sense Range  
GENERAL SPECIFICATIONS  
MTBF  
Io=Io,max, Ta=25℃  
5.0  
10  
M hours  
grams  
Weight  
Refer to Figure 43 for Hot spot location  
(12Vin,80%Io, 200LFM,Airflow from Pin1 to Pin13)  
Refer to Figure 43 for NTC resistor location  
Over-Temperature Shutdown (Hot Spot)  
135  
130  
°C  
°C  
Over-Temperature Shutdown (NTC Resistor)  
Note: Please attach thermocouple on NTC resistor to test OTP function, the hot spot’s temperature is just for reference.  
DS_DNK05SIP_06042012  
2
ELECTRICAL CHARACTERISTICS CURVES  
Figure 1: Converter efficiency vs. output current  
Figure 2: Converter efficiency vs. output current  
(0.8V output voltage)  
(1.2V output voltage)  
Figure 3: Converter efficiency vs. output current  
Figure 4: Converter efficiency vs. output current  
(1.5V output voltage)  
(1.8V output voltage)  
Figure 5: Converter efficiency vs. output current  
Figure 6: Converter efficiency vs. output current  
(2.5V output voltage)  
(3.3V output voltage)  
DS_DNK05SIP_06042012  
3
Figure 8: Output ripple & noise at 12Vin, 0.8V/30A out  
20mV/div, 2uS/div  
Figure 9: Output ripple & noise at 12Vin, 1.2V/30A out  
Figure 10: Output ripple & noise at 12Vin, 1.5V/30A out  
20mV/div, 2uS/div  
20mV/div, 2uS/div  
Figure 11: Output ripple & noise at 12Vin, 1.8V/30A out  
Figure 12: Output ripple & noise at 12Vin, 2.5V/30A out  
20mV/div, 2uS/div  
20mV/div, 2uS/div  
DS_DNK05SIP_06042012  
4
Figure 13: Output ripple & noise at 12Vin, 3.3V/30A out  
20mV/div, 2uS/div  
Figure 15: Turn on delay time at 12vin, 0.8V/30A out  
Figure 16: Turn on delay time at 12vin, 1.2V/30A out  
Top: 0.5V/div, 2ms/div, Bottom: 10V/div, 2ms/div  
Top: 1V/div, 2ms/div, Bottom: 10V/div, 2ms/div  
Figure 17: Turn on delay time at 12vin, 3.3V/30A out  
Top: 2V/div, 2ms/div, Bottom: 10V/div, 2ms/div  
DS_DNK05SIP_06042012  
5
Figure 19: Turn on delay time at Remote On/Off, 0.8V/30A out  
Figure 20: Turn on delay time at Remote On/Off, 1.2V/30A out  
Top: 0.5V/div, 2ms/div, Bottom: 10V/div, 2ms/div  
Top: 1V/div, 2ms/div, Bottom: 10V/div, 2ms/div  
Figure 21: Turn on delay time at Remote On/Off, 3.3V/30A out  
Top: 2V/div, 2ms/div, Bottom: 10V/div, 2ms/div  
Figure 23: Typical transient response to step load change at 1A/µS  
from 25% to 75% of Io, max at 12Vin, 0.8V out  
(Cout = 1uF ceramic, 10µF tantalum)  
Figure 24:Typical transient response to step load change at 1A/µS  
from 25% to 75% of Io, max at 12Vin, 0.8V out  
from 25% to 75% of Io, max at 12Vin, 1.2V out  
(Cout = 1uF ceramic, 10µF tantalum)  
Top:100mV/div, 50uS/div, Bottom: 20A/div, 50uS/div  
Top:100mV/div, 50uS/div, Bottom: 20A/div, 50uS/div  
DS_DNK05SIP_06042012  
6
ELECTRICAL CHARACTERISTICS CURVES  
Figure 25: Typical transient response to step load change at 5A/µS  
from 25% to 75% of Io, max at 12Vin, 3.3V out  
(Cout = 1uF ceramic, 10µF tantalum)  
Top:100mV/div, 50uS/div, Bottom: 20A/div, 50uS/div  
Figure 27: Output short circuit current 12Vin, 1.2Vout  
Figure 28: Output short circuit current 12Vin, 3.3Vout  
Top: 1V/div, 5ms/div, Bottom: 20A/div, 5ms/div  
Top: 1V/div, 5ms/div, Bottom: 20A/div, 5ms/div  
Figure 29: Turn on with Prebias 12Vin,0.8V/0A out, Vbias =0.5Vdc  
Figure 30: Turn on with Prebias 12Vin,1.2V/0A out, Vbias =0.79Vdc  
Top: 0.5V/div, 2ms/div, Bottom: 5V/div, 2ms/div  
Top: 1V/div, 2ms/div, Bottom: 5V/div, 2ms/div  
DS_DNK05SIP_06042012  
7
Figure 31: Turn on with Prebias 12Vin,3.3V/0A out, Vbias =2.2Vdc  
Top: 2V/div, 2ms/div, Bottom: 5V/div, 2ms/div  
DS_DNK05SIP_06042012  
8
TEST CONFIGURATIONS  
DESIGN CONSIDERATIONS  
TO OSCILLOSCOPE  
Safety Considerations  
L
For safety-agency approval the power module must be  
installed in compliance with the spacing and separation  
requirements of the end-use safety agency standards.  
V(+)  
I
100uF  
2
BATTERY  
Tantalum  
For the converter output to be considered meeting the  
requirements of safety extra-low voltage (SELV), the  
input must meet SELV requirements. The power module  
has extra-low voltage (ELV) outputs when all inputs are  
ELV.  
VI(-)  
Note: Input reflected-ripple current is measured with a  
simulated source inductance. Current is  
measured at the input of the module.  
The input to these units is to be provided with a  
maximum 50A of glass type fast-acting fuse in the  
ungrounded lead.  
Figure 33: Input reflected-ripple test setup  
COPPER STRIP  
Vo  
Input Source Impedance  
The power module should be connected to a low  
ac-impedance input source. Highly inductive source  
impedances can affect the stability of the module. An  
input capacitance must be placed close to the modules  
input pins to filter ripple current and ensure module  
stability in the presence of inductive traces that supply  
the input voltage to the module.  
Resistive  
Load  
1uF  
10uF  
tantalum ceramic  
SCOPE  
GND  
Note: Use a 10µF tantalum and 1µF capacitor. Scope  
measurement should be made using a BNC  
connector.  
Figure 34: Peak-peak output noise and startup transient  
measurement test setup  
CONTACT AND  
DISTRIBUTION LOSSES  
VI  
Vo  
I
Io  
LOAD  
SUPPLY  
GND  
CONTACT RESISTANCE  
Figure 35: Output voltage and efficiency measurement test  
setup  
Note: All measurements are taken at the module  
terminals. When the module is not soldered (via  
socket), place Kelvin connections at module  
terminals to avoid measurement errors due to  
contact resistance.  
Vo× Io  
η = (  
)×100 %  
Vi × Ii  
DS_DNK05SIP_06042012  
9
FEATURES DESCRIPTIONS  
FEATURES DESCRIPTIONS (CON.)  
Remote On/Off  
Distribution Losses  
Distribution Losses  
Vin  
Vo  
The DNK series power modules have an On/Off pin for  
remote On/Off operation. Only negative On/Off logic  
option is available in the DNK series power modules.  
Sense  
RL  
For negative logic module, the On/Off pin is suggested  
to be pulled high with an external pull-up resistor (see  
figure 36). Negative logic On/Off signal turns the module  
OFF during logic high and turns the module ON during  
logic low. If the negative On/Off function is not used,  
leave the pin floating or tie to GND. (module will be On)  
GND  
Distribution Losses  
Distribution Losses  
Figure 37: Effective circuit configuration for remote sense  
operation  
Vo  
Vin  
Rpull-up  
Output Voltage Programming  
ION/OFF  
RL  
On/Off  
The output voltage of the DNK can be programmed to  
any voltage between 0.8Vdc and 5.5Vdc by connecting  
one resistor (shown as Rtrim in Figure 38) between the  
TRIM and GND pins of the module. Without this external  
resistor, the output voltage of the module is 0.8 Vdc. To  
calculate the value of the resistor Rtrim for a particular  
output voltage Vo, please use the following equation:  
GND  
Figure 36: Negative remote On/Off implementation  
1200  
Over-Current Protection  
Rtrim :=  
100 ⋅Ω  
Vo 0.80  
To provide protection in an output over load fault  
condition, the unit is equipped with internal over-current  
protection. When the over-current protection is  
triggered, the unit enters hiccup mode. The units  
operate normally once the fault condition is removed.  
Rtrim is the external resistor in  
Vo is the desired output voltage  
Vo  
Over-Temperature Protection  
The over-temperature protection consists of circuitry  
that provides protection from thermal damage. If the  
temperature exceeds the over-temperature threshold  
the module will shut down. The module will restart once  
the temperature is within specification  
RLoad  
TRIM  
Rtrim  
GND  
Remote Sense  
The DNK provide Vo remote sensing to achieve proper  
regulation at the load points and reduce effects of  
distribution losses on output line. In the event of an open  
remote sense line, the module shall maintain local sense  
regulation through an internal resistor.  
Figure 38: Circuit configuration for programming output voltage  
using an external resist  
DS_DNK05SIP_06042012  
10  
FEATURES DESCRIPTIONS (CON.)  
FEATURES DESCRIPTIONS (CON.)  
Table 1 provides Rtrim values required for some common  
output voltages. By using a 0.5% tolerance trim resistor,  
set point tolerance of ±1.5% can be achieved as specified  
in the electrical specification.  
Voltage Tracking  
The DNK family was designed for applications that have  
output voltage tracking requirements during power-up  
and power-down. The devices have a TRACK pin to  
implement three types of tracking method: sequential,  
simultaneous and ratio-metric. TRACK simplifies the task  
of supply voltage tracking in a power system by enabling  
modules to track each other, or any external voltage,  
during power-up and power-down.  
Table 1  
VO (V)  
0.8  
1.2  
1.5  
1.8  
Rtrim ()  
Open  
2900  
1614  
1100  
2.5  
3.3  
606  
380  
5.0  
185.7  
By connecting multiple modules together, customers can  
get multiple modules to track their output voltages to the  
voltage applied on the TRACK pin.  
Voltage Margining  
Output voltage margining can be implemented in the  
DNK modules by connecting a resistor, R margin-up, from the  
Trim pin to the ground pin for margining-up the output  
voltage and by connecting a resistor, Rmargin-down, from the  
Trim pin to the output pin for margining-down. Figure 39  
shows the circuit configuration for output voltage  
margining. If unused, leave the trim pin unconnected. A  
calculation tool is available from the evaluation procedure  
which computes the values of R margin-up and Rmargin-down for  
a specific output voltage and margin percentage.  
The DNK family has option code A for TRACK function.  
The output voltage Track characteristic can be achieved  
when the output voltage of PS2 follows the output  
voltage of PS1 on a volt-to-volt basis.  
Vo  
Vin  
Rmargin-down  
Q1  
Figure 40: Simultaneous tracking  
Trim  
GND  
On/Off  
Rmargin-up  
Q2  
Simultaneous tracking (Figure 40) is implemented by  
using a voltage divider around the TRACK pin. The  
objective is to minimize the voltage difference between  
the power supply outputs during power up and down.  
Rtrim  
Figure 39: Circuit configuration for output voltage margining  
For type A (DNX0A0XXXX A), the simultaneous tracking  
can be accomplished by connecting VoPS1 to the TRACK  
pin of PS2 where the voltage divider is inside the PS2.  
DS_DNK05SIP_06042012  
11  
THERMAL CONSIDERATIONS  
THERMAL CURVES  
NTC RESISTOR  
Thermal management is an important part of the system  
design. To ensure proper, reliable operation, sufficient  
cooling of the power module is needed over the entire  
temperature range of the module. Convection cooling is  
usually the dominant mode of heat transfer.  
AIRFLOW  
Hence, the choice of equipment to characterize the  
thermal performance of the power module is a wind  
tunnel.  
HOT SPOT  
Thermal Testing Setup  
Figure 43: * Hot spot& NTC resistor temperature measured  
Delta’s DC/DC power modules are characterized in  
heated vertical wind tunnels that simulate the thermal  
environments encountered in most electronics  
equipment. This type of equipment commonly uses  
vertically mounted circuit cards in cabinet racks in which  
the power modules are mounted.  
points.  
DNK12S0A0R30(standard) Output Current vs. Ambient Temperature and Air Velocity  
Output Current (A)  
@Vin=12V Vout=0.8V (Through PCB Orientation)  
30  
25  
Natural  
The following figure shows the wind tunnel  
characterization setup. The power module is mounted on  
a test PWB and is vertically positioned within the wind  
tunnel. The height of this fan duct is constantly kept at  
25.4mm (1’’).  
Convection  
20  
100LFM  
200LFM  
15  
300LFM  
400LFM  
10  
500LFM  
Thermal Derating  
5
600LFM  
Heat can be removed by increasing airflow over the  
module. To enhance system reliability, the power  
module should always be operated below the maximum  
operating temperature. If the temperature exceeds the  
maximum module temperature, reliability of the unit may  
be affected.  
0
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
)
Ambient Temperature (  
Figure 44: Output current vs. ambient temperature and air  
velocity @ Vin=12V, Vout=0.8V (Through PCB Orientation,  
Airflow from Pin1 to Pin13)  
PW B  
MODULE  
FANCING PWB  
DNK12S0A0R30(standard) Output Current vs. Ambient Temperature and Air Velocity  
Output Current (A)  
@Vin=12V Vout=1.8V (Through PCB Orientation)  
30  
25  
Natural  
Convection  
20  
100LFM  
AIR VELOCITY  
15  
10  
5
200LFM  
300LFM  
AND AM BIENT  
TEMPERATURE  
SURED BELOW  
THE MODULE  
400LFM  
500LFM  
AIR FLOW  
600LFM  
0
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
Ambient Temperature (?  
)
Note: Wind Tunnel Test Setup Figure Dimensions are in millimeters and (Inches)  
Figure 45: Output current vs. ambient temperature and air  
velocity @ Vin=12V, Vout=1.8V (Through PCB Orientation,  
Airflow from Pin1 to Pin13)  
Figure 42: Wind tunnel test setup  
DS_DNK05SIP_06042012  
12  
THERMAL CURVES  
DNK12S0A0R30(standard) Output Current vs. Ambient Temperature and Air Velocity  
Output Current (A)  
@Vin=12V Vout=3.3V (Through PCB Orientation)  
30  
25  
20  
15  
10  
5
Natural  
Convection  
100LFM  
200LFM  
300LFM  
400LFM  
500LFM  
600LFM  
0
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
Ambient Temperature (?  
)
Figure 46: Output current vs. ambient temperature and air  
velocity @ Vin=12V, Vout=3.3V (Through PCB Orientation,  
Airflow from Pin1 to Pin13)  
DNK12S0A0R30(standard) Output Current vs. Ambient Temperature and Air Velocity  
Output Current (A)  
@Vin=12V Vout=5.0V (Through PCB Orientation)  
30  
25  
Natural  
20  
Convection  
100LFM  
15  
200LFM  
300LFM  
10  
400LFM  
500LFM  
600LFM  
5
0
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
)
Ambient Temperature (  
Figure 47: Output current vs. ambient temperature and air  
velocity @ Vin=12V, Vout=5.0V (Through PCB Orientation,  
Airflow from Pin1 to Pin13)  
DS_DNK05SIP_06042012  
13  
MECHANICAL DRAWING  
* Pin 7 is optional  
Note: All pins are copper alloy with Matte-tin(Pb free) plated over Nickel underplating.  
DS_DNK05SIP_06042012  
14  
PART NUMBERING SYSTEM  
DNK  
05  
S
0A0  
R
30  
N
F
A
On/Off  
Logic  
Product  
Family  
Input  
Voltage  
Number of  
Outputs  
Output  
Voltage  
Package  
Type  
Output  
Current  
Option Code  
DNK - 30A 05 - 4.5~5.5V  
S - Single  
0A0 -  
R - SIP  
30 - 30A  
N - Negative F- RoHS 6/6 A - Standard Function  
Programmable  
w/o current sharing  
(Lead Free)  
B - with current sharing  
Space - RoHs  
5/6  
MODEL LIST  
Model Name  
Efficiency  
5Vin, 3.3Vout @ full load  
Package Input Voltage Output Voltage Output Current  
DNK05S0A0R30NFA  
SIP  
4.5V ~ 5.5Vdc  
0.8V ~ 3.63Vdc  
30A  
95%  
CONTACT: www.delta.com.tw/dcdc  
USA:  
Telephone:  
Asia & the rest of world:  
Europe:  
Telephone: +886 3 4526107 ext 6220  
Phone: +41 31 998 53 11  
Fax: +41 31 998 53 53  
Email: DCDC@delta-es.com  
East Coast: 978-656-3993  
West Coast: 510-668-5100  
Fax: (978) 656 3964  
Email: DCDC@delta-corp.com  
Fax: +886 3 4513485  
Email: DCDC@delta.com.tw  
WARRANTY  
Delta offers a two (2) year limited warranty. Complete warranty information is listed on our web site or is available upon  
request from Delta.  
Information furnished by Delta is believed to be accurate and reliable. However, no responsibility is assumed by Delta  
for its use, nor for any infringements of patents or other rights of third parties, which may result from its use. No license  
is granted by implication or otherwise under any patent or patent rights of Delta. Delta reserves the right to revise these  
specifications at any time, without notice.  
DS_DNK05SIP_06042012  
15  

相关型号:

DNK05S0A0R30NFB

Non-Isolated, Point of Load DC/DC Power Modules: 4,5~5.5Vin, 0.8V~3.63V/30Aout
DELTA

DNK1102W

Surface Mount IRED/Inner Lens Type
STANLEY

DNK1105W

Surface Mount IRED/Dome Lens Type
STANLEY

DNK1111C

Surface Mount IRED/1608 ( t = 0.7 mm) Type
STANLEY

DNK1111R

Surface Mount IRED/Reverse Mount Type
STANLEY

DNK12

Output voltage tracking
DELTA

DNK1201M

Surface Mount Type/ High-output IRED for Automotive
STANLEY

DNK1203M

Surface Mount Type/ High-output IRED for Automotive
STANLEY

DNK12S0A0R30NA

Non-Isolated, Point of Load DC/DC Power Modules: 6~14Vin, 0.8V~5.5V/30Aout
DELTA

DNK12S0A0R30NFA

Non-Isolated, Point of Load DC/DC Power Modules: 6~14Vin, 0.8V~5.5V/30Aout
DELTA

DNK12S0A0R30NFB

Non-Isolated, Point of Load DC/DC Power Modules: 6~14Vin, 0.8V~5.5V/30Aout
DELTA

DNK12SIP

Voltage and resistor-based trim
DELTA