DNL10SIP20 [DELTA]

No minimum load required;
DNL10SIP20
型号: DNL10SIP20
厂家: DELTA ELECTRONICS, INC.    DELTA ELECTRONICS, INC.
描述:

No minimum load required

文件: 总17页 (文件大小:878K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FEATURES  
High efficiency: 93.5% @ 12Vin, 5V/20A out  
Small size and low profile: (SIP)  
50.8 x 12.7 x 9.5mm (2.00x 0.50x 0.37)  
Standard footprint  
Voltage and resistor-based trim  
Pre-bias startup  
Output voltage tracking  
No minimum load required  
Output voltage programmable from  
0.75Vdc to 5Vdc via external resistor  
Fixed frequency operation (300KHz)  
Input UVLO, output OTP, OCP  
Remote ON/OFF(default:positive)  
Remote sense  
ISO 9001, TL 9000, ISO 14001, QS 9000,  
OHSAS 18001 certified manufacturing  
facility  
UL/cUL 60950-1 (US & Canada), and TUV  
(EN60950-1) - pending  
Delphi DNL, Non-Isolated Point of Load  
DC/DC Power Modules: 8.3-14Vin, 0.75-5.0V/20A out  
OPTIONS  
Negative On/Off logic  
The Delphi series DNL, 8.3~14V input, single output, non-isolated point  
of load DC/DC converters are the latest offering from a world leader in  
power systems technology and manufacturing ― Delta Electronics, Inc.  
The DNL series provides a programmable output voltage from 0.75V to  
5.0V through an external trimming resistor. The DNL converters have  
flexible and programmable tracking and sequencing features to enable a  
variety of sequencing and tracking between several point of load power  
modules. This product family is available in a surface mount or SIP  
package and provides up to 20A of output current in an industry standard  
footprint and pinout. With creative design technology and optimization of  
component placement, these converters possess outstanding electrical  
and thermal performance and extremely high reliability under highly  
stressful operating conditions.  
APPLICATIONS  
Telecom / DataCom  
Distributed power architectures  
Servers and workstations  
LAN / WAN applications  
Data processing applications  
DATASHEET  
DS_DNL10SIP20_01302015  
TECHNICAL SPECIFICATIONS  
TA = 25°C, airflow rate = 300 LFM, Vin = 8.3Vdc and 14Vdc, nominal Vout unless otherwise noted.  
PARAMETER  
NOTES and CONDITIONS  
DNL10S0A0R20  
Min.  
Typ.  
Max.  
Units  
ABSOLUTE MAXIMUM RATINGS  
Input Voltage (Continuous)  
Tracking Voltage  
Operating Temperature  
Storage Temperature  
0
0
-40  
-55  
15  
Vin,max  
85  
Vdc  
Vdc  
°C  
+125  
°C  
INPUT CHARACTERISTICS  
Operating Input Voltage  
Vo,set3.63Vdc  
Vo,set3.63Vdc  
8.3  
8.3  
12  
12  
14  
13.2  
V
V
Input Under-Voltage Lockout  
Turn-On Voltage Threshold  
Turn-Off Voltage Threshold  
Maximum Input Current  
No-Load Input Current  
Off Converter Input Current  
Inrush Transient  
Recommended Input Fuse  
OUTPUT CHARACTERISTICS  
Output Voltage Set Point  
Output Voltage Adjustable Range  
Output Voltage Regulation  
Over Line  
7.9  
7.8  
V
V
A
mA  
mA  
A2S  
A
Vin=Vin,min to Vin,max, Io=Io,max  
Vin= Vin,min to Vin,max, Io=Io,min to Io,max  
Vin=12V, Io=Io,max  
14.5  
100  
2
0.4  
15  
-2.0  
0.7525  
Vo,set  
+2.0  
5
% Vo,set  
V
Vin=Vin,min to Vin,max  
Io=Io,min to Io,max  
Ta= -40to 85℃  
Over sample load, line and temperature  
5Hz to 20MHz bandwidth  
0.3  
0.4  
0.4  
% Vo,set  
% Vo,set  
% Vo,set  
% Vo,set  
Over Load  
Over Temperature  
Total Output Voltage Range  
Output Voltage Ripple and Noise  
Peak-to-Peak  
-2.5  
0
+3.5  
65  
20  
20  
5
Vin=min to max, Io=min to max.1µF ceramic, 100uF ceramic  
30  
10  
mV  
mV  
A
% Vo,set  
% Io  
Adc  
RMS  
Vin=min to max, Io=min to max.1µF ceramic, 100uF ceramic  
Output Current Range  
Output Voltage Over-shoot at Start-up  
Output DC Current-Limit Inception  
Output Short-Circuit Current (Hiccup mode)  
DYNAMIC CHARACTERISTICS  
Dynamic Load Response  
Vout=3.3V  
Io,s/c  
150  
3
470uF poscap  
& 100µF+1uF ceramic load cap, 5A/µs,  
Positive Step Change in Output Current  
Negative Step Change in Output Current  
Settling Time (Vo < 10% Peak Deviation )  
Turn-On Transient  
50% Io, max to 100% Io, max  
100% Io, max to 50% Io, max  
150  
150  
60  
mVpk  
mVpk  
µs  
Io=Io.max  
Start-Up Time, From On/Off Control  
Start-Up Time, From Input  
Output Voltage Rise Time  
Von/off, Vo=10% of Vo,set  
5
5
4
ms  
ms  
ms  
µF  
µF  
µF  
Vin=Vin,min, Vo=10% of Vo,set  
Time for Vo to rise from 10% to 90% of Vo,set  
Full load; ESR 1mΩ  
Full load; ESR 10mΩ, Vin<9.0V  
Full load; ESR 10mΩ, Vin9.0V  
6
Output Capacitive Load  
1000  
3500  
5000  
EFFICIENCY  
Vo=0.75V  
Vo=1.0V  
Vo=1.2V  
Vo=1.5V  
Vo=1.8V  
Vo=2.0V  
Vo=2.5V  
Vo=3.3V  
Vin=12V, Io=Io,max  
Vin=12V, Io=Io,max  
Vin=12V, Io=Io,max  
Vin=12V, Io=Io,max  
Vin=12V, Io=Io,max  
Vin=12V, Io=Io,max  
Vin=12V, Io=Io,max  
Vin=12V, Io=Io,max  
Vin=12V, Io=Io,max  
78.0  
82.5  
84.5  
86.5  
88.0  
89.0  
90.0  
91.5  
93.5  
%
%
%
%
%
%
%
%
%
Vo=5.0V  
FEATURE CHARACTERISTICS  
Switching Frequency  
ON/OFF Control, (Negative logic)  
Logic Low Voltage  
Logic High Voltage  
Logic Low Current  
Logic High Current  
ON/OFF Control, (Positive Logic)  
Logic High Voltage  
Logic Low Voltage  
Logic High Current  
Logic Low Current  
Tracking Slew Rate Capability  
Tracking Delay Time  
Tracking Accuracy  
300  
0.2  
0.2  
kHz  
Module On, Von/off  
Module Off, Von/off  
Module On, Ion/off  
Module Off, Ion/off  
-0.2  
2.5  
0.3  
Vin,max  
10  
V
V
uA  
mA  
1
Module On, Von/off  
Module Off, Von/off  
Module On, Ion/off  
Module Off, Ion/off  
Vin,max  
V
V
uA  
mA  
V/msec  
ms  
mV  
mV  
V
-0.2  
0.3  
10  
1
0.1  
10  
2
Delay from Vin.min to application of tracking voltage  
Power-up, subject to 2V/mS  
Power-down, subject to 1V/mS  
100  
200  
200  
400  
0.1  
Remote Sense Range  
GENERAL SPECIFICATIONS  
MTBF  
Io=80%Io, max, Ta=25℃  
TBD  
12  
125  
M hours  
grams  
°C  
Weight  
Over-Temperature Shutdown  
Refer to Figure 41 for the measuring point  
DS_DNL10SIP20_01302015  
2
ELECTRICAL CHARACTERISTICS CURVES  
Figure 1: Converter efficiency vs. output current (0.75V output  
Figure 2: Converter efficiency vs. output current (1.0V output  
voltage).  
voltage).  
Figure 3: Converter efficiency vs. output current (1.2V output  
Figure 4: Converter efficiency vs. output current (1.5V output  
voltage).  
voltage).  
Figure 5: Converter efficiency vs. output current (1.8V output  
Figure 6: Converter efficiency vs. output current (2V output  
voltage).  
voltage).  
DS_DNL10SIP20_01302015  
3
ELECTRICAL CHARACTERISTICS CURVES  
Figure 7: Converter efficiency vs. output current (2.5V output  
Figure 8: Converter efficiency vs. output current (3.3V output  
voltage).  
voltage).  
Figure 9: Converter efficiency vs. output current (5.0V output  
voltage).  
Figure 10: Output ripple & noise at 12Vin, 0.75V/20A out.  
Figure 11: Output ripple & noise at 12Vin, 1.2V/20A out.  
DS_DNL10SIP20_01302015  
4
ELECTRICAL CHARACTERISTICS CURVES  
Figure 12: Output ripple & noise at 12Vin, 2.5V/20A out.  
Figure 13: Output ripple & noise at 12Vin, 5V/20A out.  
Remote On/Off  
Vo  
Vin  
Vo  
Figure 14: Turn on delay time at 12vin, 5.0V/20A out.  
Figure 15: Turn on delay time using Remote On/Off, at 12vin,  
5.0V/20A out.  
Remote On/Off  
Vo  
Vin  
Vo  
Figure 16: Turn on delay with external capacitors (Co= 5000  
Figure 17: Turn on Using Remote On/Off with external  
µF), at 12vin, 5.0V/20A out.  
capacitors (Co= 5000 µF), 5.0V/20A out.  
DS_DNL10SIP20_01302015  
5
ELECTRICAL CHARACTERISTICS CURVES  
Vo  
Io  
Vo  
Io  
Figure 18: Typical transient response to step load change at  
5A/μS from 100% to 50% of Io, max at 12Vin, 0.75V out (Cout  
= 1uF+ 100uF ceramic, 470uF poscap).  
Figure 19: Typical transient response to step load change at  
5A/μS from 50% to 100% of Io, max at 12Vin, 0.75V out (Cout =  
1uF+ 100uF ceramic, 470uF poscap).  
Vo  
Io  
Vo  
Io  
Figure 20: Typical transient response to step load change at  
5A/μS from 100% to 50% of Io, max at 12Vin, 1.2V out (Cout =  
1uF+ 100uF ceramic, 470uF poscap).  
Figure 21: Typical transient response to step load change at  
5A/μS from 100% to 50% of Io, max at 12Vin, 1.2V out (Cout =  
1uF+ 100uF ceramic, 470uF poscap).  
Vo  
Io  
Vo  
Io  
Figure 22: Typical transient response to step load change at  
5A/μS from 100% to 50% of Io, max at 12Vin, 2.5V out (Cout =  
1uF+ 100uF ceramic, 470uF poscap).  
Figure 23: Typical transient response to step load change at  
5A/μS from 50% to 100% of Io, max at 12Vin, 2.5V out (Cout =  
1uF+ 100uF ceramic, 470uF poscap).  
DS_DNL10SIP20_01302015  
6
ELECTRICAL CHARACTERISTICS CURVES  
Vo  
Io  
Vo  
Io  
Figure 24: Typical transient response to step load change at  
5A/μS from 100% to 50% of Io, max at 12Vin, 5.0V out (Cout =  
1uF+ 100uF ceramic, 470uF poscap).  
Figure 25: Typical transient response to step load change at  
5A/μS from 100% to 50% of Io, max at 12Vin, 5.0V out (Cout =  
1uF+ 100uF ceramic, 470uF poscap).  
Vin  
Vo  
Figure 26: Output short circuit current 12Vin, 0.75Vout  
Figure 27: Turn on with Prebias 12Vin, 5V/0A out, Vbias  
(10A/div).  
=3.3Vdc.  
DS_DNL10SIP20_01302015  
7
TEST CONFIGURATIONS  
DESIGN CONSIDERATIONS  
TO OSCILLOSCOPE  
Input Source Impedance  
L
To maintain low-noise and ripple at the input voltage, it is  
critical to use low ESR capacitors at the input to the  
module. The models using 6x47uF low ESR tantalum  
capacitors (SANYO P/N:16TQC47M, 47uF/16V or  
equivalent) and 6x22 uF very low ESR ceramic  
capacitors (TDK P/N:C3225X7S1C226MT, 22uF/16V or  
equivalent) for example.  
VI(+)  
VI(-)  
100uF  
Tantalum  
2
BATTERY  
Note: Input reflected-ripple current is measured with a  
simulated source inductance. Current is  
measured at the input of the module.  
The input capacitance should be able to handle an AC  
ripple current of at least:  
Figure 28: Input reflected-ripple test setup  
Vout  
Vin  
Vout  
Vin  
Irms Iout  
1  
Arms  
COPPER STRIP  
Vo  
470uF 100uF  
poscap ceramic  
Resistive  
Load  
SCOPE  
GND  
Note: Use a 470μF poscap and 100μF ceramic. Scope  
measurement should be made using a BNC  
connector.  
Figure 29: Peak-peak output noise and startup transient  
measurement test setup  
CONTACT AND  
DISTRIBUTION LOSSES  
VI  
Vo  
I
Io  
LOAD  
SUPPLY  
GND  
CONTACT RESISTANCE  
Figure 30: Output voltage and efficiency measurement test  
setup  
Note: All measurements are taken at the module  
terminals. When the module is not soldered (via  
socket), place Kelvin connections at module  
terminals to avoid measurement errors due to  
contact resistance.  
Vo Io  
Vi Ii  
(  
)100 %  
DS_DNL10SIP20_01302015  
8
FEATURES DESCRIPTIONS  
DESIGN CONSIDERATIONS (CON.)  
The power module should be connected to a low  
ac-impedance input source. Highly inductive source  
impedances can affect the stability of the module. An  
input capacitance must be placed close to the modules  
input pins to filter ripple current and ensure module  
stability in the presence of inductive traces that supply  
the input voltage to the module.  
Remote On/Off  
The DNL series power modules have an On/Off pin for  
remote On/Off operation. Both positive and negative  
On/Off logic options are available in the DNL series  
power modules.  
For positive logic module, connect an open collector  
(NPN) transistor or open drain (N channel) MOSFET  
between the On/Off pin and the GND pin (see figure 31).  
Positive logic On/Off signal turns the module ON during  
the logic high and turns the module OFF during the logic  
low. When the positive On/Off function is not used, leave  
the pin floating or tie to Vin (module will be On).  
Safety Considerations  
For safety-agency approval the power module must be  
installed in compliance with the spacing and separation  
requirements of the end-use safety agency standards.  
For the converter output to be considered meeting the  
requirements of safety extra-low voltage (SELV), the  
input must meet SELV requirements. The power module  
has extra-low voltage (ELV) outputs when all inputs are  
ELV.  
For negative logic module, the On/Off pin is pulled high  
with an external pull-up resistor (see figure 32) Negative  
logic On/Off signal turns the module OFF during logic  
high and turns the module ON during logic low. If the  
negative On/Off function is not used, leave the pin  
floating or tie to GND. (module will be On)  
The input to these units is to be provided with a  
maximum 18A of fast-acting fuse in the ungrounded  
lead.  
Vin  
Vo  
ION/OFF  
RL  
On/Off  
GND  
Figure 31: Positive remote On/Off implementation  
Vo  
Vin  
Rpull-up  
ION/OFF  
RL  
On/Off  
GND  
Figure 32: Negative remote On/Off implementation  
Over-Current Protection  
To provide protection in an output over load fault  
condition, the unit is equipped with internal over-current  
protection. When the over-current protection is  
triggered, the unit enters hiccup mode. The units  
operate normally once the fault condition is removed.  
DS_DNL10SIP20_01302015  
9
FEATURES DESCRIPTIONS (CON.)  
For example, to program the output voltage of the DNL  
module to 3.3Vdc, Rtrim is calculated as follows:  
Over-Temperature Protection  
10500  
The over-temperature protection consists of circuitry  
that provides protection from thermal damage. If the  
temperature exceeds the over-temperature threshold  
the module will shut down. The module will try to restart  
after shutdown. If the over-temperature condition still  
exists during restart, the module will shut down again.  
This restart trial will continue until the temperature is  
within specification  
Rtrim  
1000   
2.5475  
Rtrim = 3.122 kΩ  
DNL can also be programmed by applying a voltage  
between the TRIM and GND pins (Figure 35). The  
following equation can be used to determine the value of  
Vtrim needed for a desired output voltage Vo:  
Remote Sense  
Vtrim 0.7Vo0.7525 0.0667  
The DNL provide Vo remote sensing to achieve proper  
regulation at the load points and reduce effects of  
distribution losses on output line. In the event of an open  
remote sense line, the module shall maintain local sense  
regulation through an internal resistor. The module shall  
correct for a total of 0.1V of loss. The remote sense line  
impedance shall be < 10.  
Vtrim is the external voltage in V  
Vo is the desired output voltage  
For example, to program the output voltage of a DNL  
module to 3.3 Vdc, Vtrim is calculated as follows  
Distribution Losses  
Distribution Losses  
Vin  
Vo  
Vtrim 0.72.54750.0667  
Vtrim = 0.530V  
Sense  
RL  
GND  
Distribution Losses  
Distribution Losses  
Figure 33: Effective circuit configuration for remote sense  
operation  
Output Voltage Programming  
Figure 34: Circuit configuration for programming output voltage  
using an external resistor  
The output voltage of the DNL can be programmed to any  
voltage between 0.75Vdc and 5.0Vdc by connecting one  
resistor (shown as Rtrim in Figure 34) between the TRIM  
and GND pins of the module. Without this external  
resistor, the output voltage of the module is 0.7525 Vdc.  
To calculate the value of the resistor Rtrim for a particular  
output voltage Vo, please use the following equation:  
10500  
Rtrim  
1000   
Vo 0.7525  
Figure 35: Circuit Configuration for programming output voltage  
Rtrim is the external resistor in Ω  
Vo is the desired output voltage  
using external voltage source  
DS_DNL10SIP20_01302015  
10  
FEATURE DESCRIPTIONS (CON.)  
The amount of power delivered by the module is the  
voltage at the output terminals multiplied by the output  
current. When using the trim feature, the output voltage  
of the module can be increased, which at the same  
output current would increase the power output of the  
module. Care should be taken to ensure that the  
maximum output power of the module must not exceed  
the maximum rated power (Vo.set x Io.max ≤ P max).  
Table 1 provides Rtrim values required for some common  
output voltages, while Table 2 provides values of external  
voltage source, Vtrim, for the same common output  
voltages. By using a 1% tolerance trim resistor, set point  
tolerance of ±2% can be achieved as specified in the  
electrical specification.  
Table 1  
Voltage Margining  
VO (V)  
0.7525  
1.0  
Rtrim (KΩ)  
Open  
Output voltage margining can be implemented in the DNL  
modules by connecting a resistor, R margin-up, from the Trim  
pin to the ground pin for margining-up the output voltage  
and by connecting a resistor, Rmargin-down, from the Trim pin  
to the output pin for margining-down. Figure 36 shows  
the circuit configuration for output voltage margining. If  
unused, leave the trim pin unconnected. A calculation  
tool is available from the evaluation procedure, which  
computes the values of Rmargin-up and Rmargin-down for a  
specific output voltage and margin percentage.  
41.424  
22.464  
13.047  
9.024  
1.2  
1.5  
1.8  
2.0  
7.416  
2.5  
5.009  
3.3  
3.122  
5.0  
1.472  
Table 2  
VO (V)  
0.7525  
1.0  
1.2  
1.5  
Vtrim (V)  
Open  
0.6835  
0.670  
0.650  
0.630  
Vo  
Vin  
Rmargin-down  
Q1  
1.8  
2.0  
2.5  
3.3  
5.0  
0.6168  
0.583  
0.530  
Trim  
GND  
On/Off  
Rmargin-up  
Q2  
Rtrim  
0.4167  
Figure 36: Circuit configuration for output voltage margining  
DS_DNL10SIP20_01302015  
11  
FEATURE DESCRIPTIONS (CON.)  
PS1  
PS2  
PS1  
PS2  
+V  
The output voltage tracking feature (Figure 37 to Figure  
39) is achieved according to the different external  
connections. If the tracking feature is not used, the  
TRACK pin of the module can be left unconnected or tied  
to Vin.  
PS1  
PS2  
PS1  
PS2  
PS1  
PS2  
PS1  
PS2  
+V  
+ΔV  
For proper voltage tracking, input voltage of the tracking  
power module must be applied in advance, and the  
remote on/off pin has to be in turn-on status. (Negative  
logic: Tied to GND or unconnected. Positive logic: Tied to  
Vin or unconnected)  
Figure 39: Ratio-metric  
PS1  
PS2  
PS1  
PS2  
Figure 37: Sequential start-up  
PS1  
PS2  
PS1  
PS2  
Figure 38: Simultaneous  
DS_DNL10SIP20_01302015  
12  
FEATURE DESCRIPTIONS (CON.)  
Ratio-Metric  
Ratiometric (Figure 39) is implemented by placing the  
voltage divider on the TRACK pin that comprises R1 and  
R2, to create a proportional voltage with VoPS1 to the  
Track pin of PS2.  
Sequential Start-up  
Sequential start-up (Figure 37) is implemented by placing  
an On/Off control circuit between VoPS1 and the On/Off pin  
of PS2.  
For Ratio-Metric applications that need the outputs of  
PS1 and PS2 reach the regulation set point at the same  
time  
PS1  
PS2  
Vin  
Vin  
VoPS1  
VoPS2  
R3  
The following equation can be used to calculate the value  
of R1 and R2.  
On/Off  
R1  
Q1  
C1  
On/Off  
The suggested value of R2 is 10kΩ.  
R2  
Vo,PS 2  
R2  
Vo,PS1 R R2  
1
PS2  
PS1  
Simultaneous  
Vin  
Vin  
Simultaneous tracking (Figure 38) is implemented by  
using the TRACK pin. The objective is to minimize the  
voltage difference between the power supply outputs  
during power up and down.  
VoPS1  
VoPS2  
R1  
TRACK  
On/Off  
R2  
On/Off  
The simultaneous tracking can be accomplished by  
connecting VoPS1 to the TRACK pin of PS2. Please note  
the voltage apply to TRACK pin needs to always higher  
than the VoPS2 set point voltage.  
The high for positive logic  
The low for negative logic  
PS2  
PS1  
Vin  
Vin  
VoPS1  
VoPS2  
TRACK  
On/Off  
On/Off  
DS_DNL10SIP20_01302015  
13  
THERMAL CONSIDERATIONS  
Thermal management is an important part of the system  
design. To ensure proper, reliable operation, sufficient  
cooling of the power module is needed over the entire  
temperature range of the module. Convection cooling is  
usually the dominant mode of heat transfer.  
Hence, the choice of equipment to characterize the  
thermal performance of the power module is a wind  
tunnel.  
Thermal Testing Setup  
Delta’s DC/DC power modules are characterized in  
heated vertical wind tunnels that simulate the thermal  
environments encountered in most electronics equipment.  
This type of equipment commonly uses vertically mounted  
circuit cards in cabinet racks in which the power modules  
are mounted.  
The following figure shows the wind tunnel  
characterization setup. The power module is mounted on  
a test PWB and is vertically positioned within the wind  
tunnel. The height of this fan duct is constantly kept at  
25.4mm (1’’).  
Thermal Derating  
Heat can be removed by increasing airflow over the  
module. To enhance system reliability, the power module  
should always be operated below the maximum operating  
temperature. If the temperature exceeds the maximum  
module temperature, reliability of the unit may be  
affected.  
PWB  
FANCING PWB  
MODULE  
AIR VELOCITY  
AND AMBIENT  
TEMPERATURE  
SURED BELOW  
THE MODULE  
AIR FLOW  
Note: Wind Tunnel Test Setup Figure Dimensions are in millimeters and (Inches)  
Figure 40: Wind tunnel test setup  
DS_DNL10SIP20_01302015  
14  
THERMAL CURVES  
DNL10S0A020PFB Output Current vs. Ambient Temperature and Air Velocity  
@ Vin =12V, Vout =3.3V (Either Orientation)  
Output Current (A)  
25  
20  
15  
10  
5
Natural  
Convection  
100LFM  
200LFM  
400LFM  
500LFM  
600LFM  
300LFM  
0
25  
35  
45  
55  
65  
75  
85  
Ambient Temperature ()  
Figure 41: Temperature measurement location  
* The allowed maximum hot spot temperature is defined at 120.  
Figure 44: Output current vs. ambient temperature and air  
velocity @ Vin=12V, Vout=3.3V(Either Orientation)  
DNL10S0A020PFB Output Current vs. Ambient Temperature and Air Velocity  
DNL10S0A020PFB Output Current vs. Ambient Temperature and Air Velocity  
@ Vin =12V, Vout =1.2V (Either Orientation)  
Output Current (A)  
@ Vin =12V, Vout =5V (Either Orientation)  
25  
20  
Output Current (A)  
25  
20  
Natural  
Convection  
15  
Natural  
15  
300LFM  
400LFM  
500LFM  
Convection  
400LFM  
500LFM  
100LFM  
200LFM  
10  
5
100LFM  
200LFM  
10  
5
300LFM  
600LFM  
0
0
25  
35  
45  
55  
65  
75  
85  
Ambient Temperature ()  
25  
35  
45  
55  
65  
75  
85  
Ambient Temperature ()  
Figure42: Output current vs. ambient temperature and air  
Figure 45: Output current vs. ambient temperature and air  
velocity @ Vin=12V, Vout=1.2V(Either Orientation)  
velocity @ Vin=12V, Vout=5.0V(Either Orientation)  
DNL10S0A020PFB Output Current vs. Ambient Temperature and Air Velocity  
@ Vin =12V, Vout =2.5V (Either Orientation)  
Output Current (A)  
25  
20  
15  
10  
5
Natural  
Convection  
400LFM  
500LFM  
100LFM  
200LFM  
600LFM  
300LFM  
0
25  
35  
45  
55  
65  
75  
85  
Ambient Temperature ()  
Figure 43: Output current vs. ambient temperature and air  
velocity @ Vin=12V, Vout=2.5V(Either Orientation)  
DS_DNL10SIP20_01302015  
15  
MECHANICAL DRAWING  
SIP PACKAGE  
DS_DNL10SIP20_01302015  
16  
PART NUMBERING SYSTEM  
P
DNL  
10  
S
0A0  
R
20  
F
D
Product  
Series  
Numbers  
of Outputs  
S - Single  
Output  
Voltage  
0A0 -  
Package Output  
Input Voltage  
On/Off logic  
Option Code  
Type  
Current  
DNL - 16/20A 10 - 8.3V ~14V  
DNM -10A  
R - SIP  
20 -20A  
P - Positive F - RoHS 6/6  
B - No Tracking Pin  
Programmable S - SMD  
N - Negative  
(Lead Free) D - Standard Functions  
DNS - 6A  
MODEL LIST  
Efficiency  
12Vin @ 100% load  
Model Name  
Packaging Input Voltage Output Voltage Output Current On/Off logic  
DNL10S0A0R20PFD  
DNL10S0A0R20PFB  
SIP  
SIP  
8.3V ~ 14V  
8.3V ~ 14V  
0.75V ~ 5.0V  
0.75V ~ 5.0V  
20A  
20A  
Positive  
Positive  
93.5% (5.0V)  
93.5% (5.0V)  
CONTACT: www.deltaww.com/dcdc Email: dcdc@deltaww.com  
USA:  
Telephone:  
East Coast: 978-656-3993  
West Coast: 510-668-5100  
Fax: (978) 656 3964  
Asia & the rest of world:  
Telephone: +886 3 4526107  
ext 6220~6224  
Europe:  
Phone: +31-20-655-0967  
Fax: +31-20-655-0999  
Fax: +886 3 4513485  
WARRANTY  
Delta offers a two (2) year limited warranty. Complete warranty information is listed on our web site or is available upon  
request from Delta.  
Information furnished by Delta is believed to be accurate and reliable. However, no responsibility is assumed by Delta  
for its use, nor for any infringements of patents or other rights of third parties, which may result from its use. No license  
is granted by implication or otherwise under any patent or patent rights of Delta. Delta reserves the right to revise these  
specifications at any time, without notice.  
DS_DNL10SIP20_01302015  
17  

相关型号:

DNL12S0A0R10NFA

Delphi DNM, Non-Isolated Point of Load DC/DC Power Modules: 2.8-5.5Vin, 0.75-3.3V/10A out
DELTA

DNL12S0A0R10NFB

Delphi DNM, Non-Isolated Point of Load DC/DC Power Modules: 2.8-5.5Vin, 0.75-3.3V/10A out
DELTA

DNL12S0A0R10NFC

Delphi DNM, Non-Isolated Point of Load DC/DC Power Modules: 2.8-5.5Vin, 0.75-3.3V/10A out
DELTA

DNL12S0A0R10PFA

Delphi DNM, Non-Isolated Point of Load DC/DC Power Modules: 2.8-5.5Vin, 0.75-3.3V/10A out
DELTA

DNL12S0A0R10PFB

Delphi DNM, Non-Isolated Point of Load DC/DC Power Modules: 2.8-5.5Vin, 0.75-3.3V/10A out
DELTA

DNL12S0A0R10PFC

Delphi DNM, Non-Isolated Point of Load DC/DC Power Modules: 2.8-5.5Vin, 0.75-3.3V/10A out
DELTA

DNL12S0A0R16NFA

Delphi DNL, Non-Isolated Point of Load DC/DC Power Modules: 2.8-5.5Vin, 0.75-3.3V/16A out
DELTA

DNL12S0A0R16NFB

Delphi DNL, Non-Isolated Point of Load DC/DC Power Modules: 2.8-5.5Vin, 0.75-3.3V/16A out
DELTA

DNL12S0A0R16NFC

Delphi DNL, Non-Isolated Point of Load DC/DC Power Modules: 2.8-5.5Vin, 0.75-3.3V/16A out
DELTA

DNL12S0A0R16PFA

Delphi DNL, Non-Isolated Point of Load DC/DC Power Modules: 2.8-5.5Vin, 0.75-3.3V/16A out
DELTA

DNL12S0A0R16PFB

Delphi DNL, Non-Isolated Point of Load DC/DC Power Modules: 2.8-5.5Vin, 0.75-3.3V/16A out
DELTA

DNL12S0A0R16PFC

Delphi DNL, Non-Isolated Point of Load DC/DC Power Modules: 2.8-5.5Vin, 0.75-3.3V/16A out
DELTA