DA9318L [DIALOG]

High-Efficiency, 10 A, High-Voltage Direct Charger;
DA9318L
型号: DA9318L
厂家: Dialog Semiconductor    Dialog Semiconductor
描述:

High-Efficiency, 10 A, High-Voltage Direct Charger

文件: 总49页 (文件大小:686K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DA9318L/M  
High-Efficiency, 10 A, High-Voltage Direct Charger  
General Description  
DA9318L/M is a direct charger using a high-efficiency current doubler with integrated Analog to  
Digital Converter (ADC) for system monitoring. The device is especially optimized to handle high  
charging currents and at the same time ensure the safety of the battery and the system. It operates  
together with a main charger, which handles the pre-charge and constant voltage charging duties.  
The current doubling is achieved with a high-efficiency capacitive divider that provides an output  
voltage of VIN/2, which allows the use of standard Type-Ccables for charging currents up to 6 A.  
The peak efficiency of DA9318L/M is 98 %.  
Available as two variants, the DA9318L provides a maximum 8 A charging current and 35 W of  
charging power, whereas DA9318M provides 10 A output current and 44 W of charging power.  
An integrated reverse protection feature blocks current flow in both directions while the device is not  
operational. Additionally, the battery is protected by DA9318L/M by six hardware based safety  
functions for any over- or under-voltage condition. All safety triggered events lead to an automatic  
shutdown and are reported via interrupt to the system.  
DA9318L/M features an 8-bit ADC for input and output current and voltage, and junction temperature  
monitoring which ensures safety during direct charging. For software supervision a programmable  
watchdog timer, and for battery overload protection a safety timer, are included.  
An I2C compatible 2-wire interface is provided for the device control.  
The DA9318L/M is available in a small WLCSP 3.62 mm × 3.78 mm package.  
Key Features  
8 A output current (DA9318L)  
8-bit ADC to measure voltage and current at  
the input and output as well as junction  
temperature  
10 A output current (DA9318M)  
98 % efficiency at 2 A  
Safety timer and watchdog  
Automatic shutdown in fault condition  
Travel adaptor detection  
5 % current sense accuracy (DA9318L)  
10 % current sense accuracy (DA9318M)  
Reverse and forward current protection in  
IDLE mode  
I2C compatible 2-wire interface  
No inductors  
WLCSP package: 3.62 mm × 3.78 mm  
Applications  
Direct charging in smartphones and tablets, battery packs, and Li-ion powered devices  
Datasheet  
Revision 3.1  
21-Apr-2021  
CFR0011-120-00  
1 of 49  
© 2021 Dialog Semiconductor  
 
 
 
DA9318L/M  
High-Efficiency, 10 A, High-Voltage Direct Charger  
Contents  
General Description ............................................................................................................................ 1  
Key Features ........................................................................................................................................ 1  
Applications ......................................................................................................................................... 1  
Contents ............................................................................................................................................... 2  
Figures.................................................................................................................................................. 4  
Tables ................................................................................................................................................... 4  
1
2
3
4
5
6
7
Terms and Definitions................................................................................................................... 6  
References ..................................................................................................................................... 6  
Block Diagram ............................................................................................................................... 7  
Ballout ............................................................................................................................................ 8  
Absolute Maximum Ratings ....................................................................................................... 10  
Recommended Operating Conditions....................................................................................... 11  
Electrical Characteristics ........................................................................................................... 12  
7.1 Current Consumption.......................................................................................................... 12  
7.2 Travel Adaptor Detection .................................................................................................... 12  
7.3 Voltage Protection............................................................................................................... 13  
7.3.1  
7.3.2  
7.3.3  
Input Voltage Protection ...................................................................................... 13  
Battery Voltage Protection................................................................................... 14  
Input to Output Voltage Protection ...................................................................... 15  
7.4 Current Sensing .................................................................................................................. 15  
7.5 Junction Temperature Monitoring ....................................................................................... 15  
7.6 Current Doubler................................................................................................................... 16  
7.7 Safety Timer and Watchdog ............................................................................................... 17  
7.8 Digital I/O ............................................................................................................................ 17  
7.9 Interface Timing .................................................................................................................. 18  
7.10 Internal Supplies ................................................................................................................. 19  
7.10.1 AVDD................................................................................................................... 19  
7.11 Thermal Characteristics ...................................................................................................... 19  
8
9
Typical Characteristics............................................................................................................... 20  
Functional Description ............................................................................................................... 23  
9.1 Current Doubler................................................................................................................... 23  
9.1.1  
9.1.2  
9.1.3  
9.1.4  
9.1.5  
Reverse Current Protection ................................................................................. 24  
Switching Frequency ........................................................................................... 24  
Start-Up................................................................................................................ 24  
Current Limit ........................................................................................................ 24  
Input-to-Output Voltage Protection...................................................................... 24  
9.2 Travel Adaptor Detection .................................................................................................... 24  
9.3 Voltage Protection............................................................................................................... 24  
9.3.1  
9.3.2  
9.3.3  
Input Voltage Protection ...................................................................................... 25  
Battery Voltage Protection................................................................................... 25  
Input to Output Voltage Protection ...................................................................... 26  
9.4 Current Sensing .................................................................................................................. 26  
9.4.1 Over-Current Monitoring...................................................................................... 26  
Datasheet  
Revision 3.1  
21-Apr-2021  
CFR0011-120-00  
2 of 49  
© 2021 Dialog Semiconductor  
 
DA9318L/M  
High-Efficiency, 10 A, High-Voltage Direct Charger  
9.5 Junction Temperature Monitoring ....................................................................................... 26  
9.6 ADC..................................................................................................................................... 27  
9.7 Safety Timer........................................................................................................................ 27  
9.8 Watchdog Timer.................................................................................................................. 28  
9.9 Control Interface.................................................................................................................. 28  
9.9.1  
9.9.2  
9.9.3  
9.9.4  
PWREN................................................................................................................ 29  
nCPEN................................................................................................................. 29  
nFAULT................................................................................................................ 29  
nIRQ..................................................................................................................... 30  
9.10 2-Wire Interface................................................................................................................... 31  
9.10.1 Details of the 2-Wire Protocol.............................................................................. 32  
9.11 Internal Supplies ................................................................................................................. 34  
9.11.1 AVDD................................................................................................................... 34  
9.12 Internal Oscillator ................................................................................................................ 34  
9.13 Power Modes ...................................................................................................................... 34  
9.13.1 NO-POWER Mode............................................................................................... 35  
9.13.2 SHUTDOWN Mode.............................................................................................. 35  
9.13.3 INITIALIZATION Mode ........................................................................................ 35  
9.13.4 IDLE Mode........................................................................................................... 35  
9.13.4.1  
LOW-POWER IDLE Mode............................................................... 36  
9.13.5 ACTIVE Mode...................................................................................................... 36  
9.14 Status Flags ........................................................................................................................ 37  
10 Register Definition ...................................................................................................................... 38  
10.1 Register Descriptions.......................................................................................................... 39  
10.1.1 Status and Event ................................................................................................. 39  
10.1.2 Voltage Protection ............................................................................................... 41  
10.1.3 Current and Voltage Monitoring........................................................................... 42  
10.1.4 Current Doubler ................................................................................................... 42  
10.1.5 Junction Temperature.......................................................................................... 42  
10.1.6 ADC ..................................................................................................................... 43  
10.1.7 Interface Control .................................................................................................. 43  
10.1.8 Watchdog and Safety Timers .............................................................................. 44  
11 Package Information................................................................................................................... 45  
11.1 Package Outline.................................................................................................................. 45  
11.2 Moisture Sensitivity Level.................................................................................................... 46  
11.3 WLCSP Handling ................................................................................................................ 46  
11.4 Soldering Information.......................................................................................................... 46  
12 Ordering Information .................................................................................................................. 47  
Appendix A Application Information ............................................................................................... 48  
A.1 Suggested PCB Layout....................................................................................................... 48  
Datasheet  
Revision 3.1  
21-Apr-2021  
CFR0011-120-00  
3 of 49  
© 2021 Dialog Semiconductor  
DA9318L/M  
High-Efficiency, 10 A, High-Voltage Direct Charger  
Figures  
Figure 1: Block Diagram........................................................................................................................ 7  
Figure 2: Ballout Diagram...................................................................................................................... 8  
Figure 3: Interface Timing.................................................................................................................... 18  
Figure 4: DA9318L Efficiency.............................................................................................................. 20  
Figure 5: DA9318L IOUT ADC Error vs. IOUT vs. Temperature.............................................................. 20  
Figure 6: DA9318L Junction Temperature vs. Output Current............................................................ 21  
Figure 7: DA9318M Efficiency............................................................................................................. 21  
Figure 8: DA9318M IOUT ADC Error vs. IOUT vs. Temperature............................................................. 22  
Figure 9: DA9318M Junction Temperature vs. Output Current........................................................... 22  
Figure 10: System Level Block Diagram ............................................................................................. 23  
Figure 11: Voltage Protection.............................................................................................................. 25  
Figure 12: Control Signals................................................................................................................... 29  
Figure 13: nFAULT Operation ............................................................................................................. 30  
Figure 14: Interrupt Logic .................................................................................................................... 31  
Figure 15: START and STOP Condition Timing.................................................................................. 32  
Figure 16: Byte Write........................................................................................................................... 32  
Figure 17: Byte Read........................................................................................................................... 33  
Figure 18: Page Read ......................................................................................................................... 33  
Figure 19: Page Write.......................................................................................................................... 33  
Figure 20: Repeated Write .................................................................................................................. 34  
Figure 21: Internal Supply ................................................................................................................... 34  
Figure 22: Power Modes ..................................................................................................................... 35  
Figure 23: Package Outline Drawing................................................................................................... 45  
Figure 24: Suggested PCB Layout...................................................................................................... 48  
Tables  
Table 1: Ball Description........................................................................................................................ 8  
Table 2: Ball Type Definition.................................................................................................................. 9  
Table 3: Absolute Maximum Ratings................................................................................................... 10  
Table 4: Recommended Operating Conditions ................................................................................... 11  
Table 5: Current Consumption Characteristics ................................................................................... 12  
Table 6: Travel Adaptor Detection Characteristics.............................................................................. 12  
Table 7: Input Voltage Protection Characteristics ............................................................................... 13  
Table 8: Battery Protection Characteristics......................................................................................... 14  
Table 9: Input to Output Voltage Protection Characteristics ............................................................... 15  
Table 10: Current Sensing Characteristics.......................................................................................... 15  
Table 11: Junction Temperature Monitoring Characteristics............................................................... 15  
Table 12: Current Doubler External Components ............................................................................... 16  
Table 13: Current Doubler Characteristics.......................................................................................... 16  
Table 14: Safety Timer and Watchdog Characteristics....................................................................... 17  
Table 15: Digital I/O Characteristics.................................................................................................... 17  
Table 16: Interface Timing Characteristics.......................................................................................... 18  
Table 17: AVDD External Components............................................................................................... 19  
Table 18: AVDD Characteristics.......................................................................................................... 19  
Table 19: WLCSP Thermal Ratings .................................................................................................... 19  
Table 20: ADC Channels..................................................................................................................... 27  
Table 21: Interface Slave Address. ..................................................................................................... 31  
Table 22: Status Flags......................................................................................................................... 37  
Table 23: Register Overview ............................................................................................................... 38  
Table 24: STATUS_A (0x00)............................................................................................................... 39  
Table 25: STATUS_B (0x01)............................................................................................................... 40  
Table 26: EVENT_A (0x02)................................................................................................................. 40  
Table 27: EVENT_B (0x03)................................................................................................................. 40  
Table 28: EVENT_C (0x04)................................................................................................................. 40  
Table 29: MASK_A (0x05)................................................................................................................... 41  
Table 30: MASK_B (0x06)................................................................................................................... 41  
Datasheet  
Revision 3.1  
21-Apr-2021  
CFR0011-120-00  
4 of 49  
© 2021 Dialog Semiconductor  
DA9318L/M  
High-Efficiency, 10 A, High-Voltage Direct Charger  
Table 31: MASK_C (0x07)................................................................................................................... 41  
Table 32: VBAT_CTRL_A (0x08) ........................................................................................................ 41  
Table 33: VBAT_CTRL_B (0x09) ........................................................................................................ 42  
Table 34: IIN_CTRL_A (0x0A) ............................................................................................................ 42  
Table 35: CP_CTRL_A (0x0B) ............................................................................................................ 42  
Table 36: CP_CTRL_B (0x0C)............................................................................................................ 42  
Table 37: TJUNC_CTRL_A (0x0D)..................................................................................................... 42  
Table 38: ADC_CTRL_A (0x0E) ......................................................................................................... 43  
Table 39: ADC_RES_0 (0x0F) ............................................................................................................ 43  
Table 40: ADC_RES_1 (0x10) ............................................................................................................ 43  
Table 41: ADC_RES_2 (0x11) ............................................................................................................ 43  
Table 42: ADC_RES_3 (0x12) ............................................................................................................ 43  
Table 43: ADC_RES_4 (0x13) ............................................................................................................ 43  
Table 44: ADC_RES_5 (0x14) ............................................................................................................ 43  
Table 45: I2C_CTRL_A (0x15)............................................................................................................ 43  
Table 46: I2C_CTRL_B (0x16)............................................................................................................ 44  
Table 47: CONFIG_A (0x17)............................................................................................................... 44  
Table 48: TIMER_CTRL_A (0x18) ...................................................................................................... 44  
Table 49: TIMER_CTRL_B (0x19) ...................................................................................................... 44  
Table 50: WD_TIMER_COUNT (0x1A)............................................................................................... 44  
Table 51: SAFETY_TIMER_COUNT (0x1B)....................................................................................... 44  
Table 52: MSL Classification............................................................................................................... 46  
Table 53: Ordering Information ........................................................................................................... 47  
Datasheet  
Revision 3.1  
21-Apr-2021  
CFR0011-120-00  
5 of 49  
© 2021 Dialog Semiconductor  
DA9318L/M  
High-Efficiency, 10 A, High-Voltage Direct Charger  
1
Terms and Definitions  
ADC  
DC  
Analog to digital converter  
Direct current  
ESD  
FET  
Electrostatic discharge  
Field effect transistor  
Human body model  
Inter-integrated circuit (bus)  
Most significant bit  
HBM  
I2C  
MSB  
OTP  
PCB  
PMIC  
POR  
RCP  
WLCSP  
One-time programable  
Printed circuit board  
Power management integrated circuit  
Power on reset  
Reverse current protection  
Wafer level chip scale package  
2
References  
[1] NXP Semiconductors, I2C Bus Specification and User Manual  
[2] Universal Serial Bus Power Delivery Specification, Revision 2.0, V1.2. Mar. 2016  
Datasheet  
Revision 3.1  
21-Apr-2021  
CFR0011-120-00  
6 of 49  
© 2021 Dialog Semiconductor  
 
DA9318L/M  
High-Efficiency, 10 A, High-Voltage Direct Charger  
3
Block Diagram  
CBS1  
CF1  
CF2  
CBS2  
CMID1  
,
CMID2  
DA9318  
OUT  
VOUTS  
COUT1  
COUT2  
,
Reverse  
Current  
Protection  
2 mΩ  
IN  
Current  
Doubler  
CIN  
PGND  
IIN  
Monitoring  
SYS  
IOUT  
Monitoring  
CSYS  
Control  
And  
Status  
Registers  
VIN  
Monitoring  
VBATP  
VBATN  
+
-
VBAT  
Monitoring  
PWREN  
nCPEN  
nFAULT  
nIRQ  
SDA  
TJUNC  
Monitoring  
VIN  
IIN  
VBAT  
IBAT  
TJUNC  
2-wire  
Interface  
SCL  
CC1  
CC2  
AVDD  
AGND  
CVAVDD  
Figure 1: Block Diagram  
The two instances of CMID, CBS, CF, and COUT are placed on opposite sides of the die. See  
Figure 24 for details.  
Datasheet  
Revision 3.1  
21-Apr-2021  
CFR0011-120-00  
7 of 49  
© 2021 Dialog Semiconductor  
DA9318L/M  
High-Efficiency, 10 A, High-Voltage Direct Charger  
4
Ballout  
1
2
3
4
5
6
7
8
9
10  
11  
12  
A
B
C
MID1  
C1P  
C1P  
BS1  
C1N  
C1N  
MID1  
C1P  
OUT1  
OUT1  
C1N  
PGND1  
MID1  
C1P  
OUT1  
OUT1  
CC1  
PGND1  
D
E
F
nIRQ  
AGND  
OUT1  
OUT1  
OUT2  
OUT1  
OUT1  
OUT2  
VINS  
NC  
AVDD  
SUB  
IN  
IN  
IN  
IN  
SCL  
SDA  
OUT1  
OUT2  
nCPEN  
VOUTS  
VBATP  
VBATN  
IN  
G
H
nFAULT  
PWREN  
SYS  
J
K
L
MID2  
MID2  
C2P  
C2P  
OUT2  
C2P  
OUT2  
BS2  
CC2  
C2N  
PGND2  
C2N  
MID2  
C2P  
OUT2  
OUT2  
C2N  
PGND2  
Top view  
Power supply  
Analog signal  
Ground  
Digital signal  
No connection  
Figure 2: Ballout Diagram  
Table 1: Ball Description  
Ball No.  
Ball Name Type (Table 2)  
Description  
E1, E3, F2, G1,  
G3  
IN  
PS  
PS  
PS  
Input supply, bypass to power ground with CIN  
Input to the current doubler, bypass to power ground with  
CMID1  
A1, B2, C1  
J1, K2, L1  
MID1  
MID2  
Input to the current doubler, bypass to power ground with  
CMID2  
A3, A5, B4, C3  
A9, A11, B10  
J3, K4, L3, L5  
K10, L9, L11  
C1P  
C1N  
C2P  
C2N  
AIO  
AIO  
AIO  
AIO  
CF positive terminal  
CF negative terminal  
CF positive terminal  
CF negative terminal  
Gate driver supply of the current doubler, bypass to C1P  
with CBS1  
A7  
L7  
BS1  
BS2  
PS  
PS  
Gate driver supply of the current doubler, bypass to C2P  
with CBS2  
Datasheet  
Revision 3.1  
21-Apr-2021  
CFR0011-120-00  
8 of 49  
© 2021 Dialog Semiconductor  
DA9318L/M  
High-Efficiency, 10 A, High-Voltage Direct Charger  
Ball No.  
Ball Name Type (Table 2)  
Description  
B6, B8, C5, C7,  
D6, D8, E7, F6,  
F8  
Output of current doubler, bypass to power ground with  
COUT1  
OUT1  
OUT2  
AO  
AO  
G7, H6, H8, J5,  
J7, K6, K8  
Output of current doubler, bypass to power ground with  
COUT2  
B12, C11  
J11, K12  
F4  
PGND1  
PGND2  
AGND  
SUB  
GND  
GND  
GND  
GND  
AI  
Power ground  
Power ground  
Analog ground  
F12  
Substrate ground connection  
Output voltage sense  
Input voltage sense  
G9  
VOUTS  
VINS  
D10  
AI  
E11  
VBATP  
VBATN  
AI  
Positive battery voltage sense  
Negative battery voltage sense  
G11  
AI  
Secondary power supply of the AVDD, bypass to analog  
ground with CSYS  
H12  
SYS  
AI  
D12  
H10  
AVDD  
AIO  
DI  
Internal supply, bypass to analog ground with CAVDD  
Power enable, tie to AVDD if not used  
PWREN  
Interrupt request, open-drain, active low, connect to an IO  
supply via pull-up RPU  
D4  
E9  
H4  
nIRQ  
DO  
DI  
nCPEN  
nFAULT  
Current doubler enable, active low  
Fault status, open-drain, active low, connect to an IO  
supply via pull-up RPU  
DO  
G5  
E5  
SDA  
SCL  
DIO  
DI  
2-wire data  
2-wire clock  
USB Type-C configuration channel, connect to ground if  
not used  
C9  
J9  
CC1  
CC2  
NC  
DI  
USB Type-C configuration channel, connect to ground if  
not used  
DI  
Not connected. Connect to GND PCB plane (not directly to  
power ground)  
F10  
N/A  
Table 2: Ball Type Definition  
Ball Type  
DI  
Description  
Digital Input  
Digital Output  
Ball Type  
AI  
Description  
Analog Input  
Analog Output  
Analog Input/Output  
Ground  
DO  
AO  
DIO  
Digital Input/Output  
Power Supply  
AIO  
PS  
GND  
Datasheet  
Revision 3.1  
21-Apr-2021  
CFR0011-120-00  
9 of 49  
© 2021 Dialog Semiconductor  
 
DA9318L/M  
High-Efficiency, 10 A, High-Voltage Direct Charger  
5
Absolute Maximum Ratings  
Table 3: Absolute Maximum Ratings  
Conditions  
(Note 1)  
Parameter  
Description  
Min  
Max  
Unit  
TS  
Storage temperature  
-60  
-0.3  
+150  
20  
ºC  
V
V
V
V
V
V
V
V
V
V
VIN  
Input voltage (Note 2)  
VINS  
VMID  
VC1P  
VC2P  
VC1N  
VC2N  
VBS1  
VBS2  
VOUT  
Input voltage sense pin (Note 2)  
Voltage on pin MID  
-0.3  
20  
VIN 0.025  
VC1N - 0.3  
VC2N - 0.3  
-0.3  
VIN  
Maximum voltage across C1P  
Maximum voltage across C2P  
Maximum voltage across C1N  
Maximum voltage across C2N  
Maximum voltage across BS1  
Maximum voltage across BS2  
Output voltage  
VC1N + 5.5  
VC2N + 5.5  
VOUT +0.3  
VOUT + 0.3  
VC1P + 5.5  
VC2P + 5.5  
6
Referenced  
to PGND  
-0.3  
VC1P - 0.3  
VC2P - 0.3  
-0.3  
Referenced  
to VBATN  
VBATP  
Voltage on battery positive terminal  
-0.3  
6
V
VBATN  
VOUTS  
VSYS  
Voltage on battery negative terminal  
Output voltage sense pin  
System voltage  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
0.3  
V
V
V
V
V
6
Referenced  
to AGND  
6
VPWREN  
VPIN  
Power enable voltage limit  
All other pins  
VAVDD + 0.3  
VAVDD + 0.3  
Human Body  
Model  
VESD_HBM  
Electrostatic discharge (ESD) protection  
2000  
V
(HBM)  
Note 1 Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the  
device. These are stress ratings only, so functional operation of the device at these or any other  
conditions beyond those indicated in the operational sections of the specification are not implied.  
Exposure to absolute maximum rating conditions for extended periods may affect device reliability.  
Note 2 dVIN/dt must be slower than 1 V/µs. The device is not operational (charging) above VOV_ACT.  
Datasheet  
Revision 3.1  
21-Apr-2021  
CFR0011-120-00  
10 of 49  
© 2021 Dialog Semiconductor  
 
 
DA9318L/M  
High-Efficiency, 10 A, High-Voltage Direct Charger  
6
Recommended Operating Conditions  
Table 4: Recommended Operating Conditions  
Parameter Description  
Conditions  
Min  
-40  
5.5  
4.5  
2.4  
2.5  
Typ  
Max  
85  
Unit  
°C  
V
TA  
Operating temperature  
VIN_ACT  
VIN_IDLE  
VBAT  
In ACTIVE mode  
In IDLE mode  
10.5  
13.5  
5.5  
Input supply voltage  
V
Battery voltage  
System voltage  
V
VSYS  
5.5  
V
Datasheet  
Revision 3.1  
21-Apr-2021  
CFR0011-120-00  
11 of 49  
© 2021 Dialog Semiconductor  
DA9318L/M  
High-Efficiency, 10 A, High-Voltage Direct Charger  
7
Electrical Characteristics  
Electrical characteristics table limits are guaranteed by production testing, design, or correlation  
using standard statistical quality control methods unless otherwise stated. Typical (Typ)  
specifications are mean or average values at 25 ºC and are not guaranteed. Unless otherwise noted,  
the parameters listed in Table 5 to Table 16 are valid for TA = -40 ºC to +85 ºC, VIN = 4.5 V to 13.5 V.  
7.1 Current Consumption  
Table 5: Current Consumption Characteristics  
Parameter Description  
Conditions  
Min  
Typ  
Max  
Unit  
IQ_SHIP  
Current drawn from OUT1, OUT2,  
VOUTS, and VBATP (combined) in  
SHIP mode (Note 1)  
SHIP mode, VBAT =  
3.8 V, VIN = 0 V,  
VSYS = 0 V  
3
µA  
IQ_NO_PWR  
IQ_IDLE_LP  
IQ_IDLE  
Current drawn from SYS in NO-  
POWER mode  
NO-POWER mode,  
VBAT = 3.8 V  
25  
110  
1.4  
µA  
µA  
Current drawn from SYS in IDLE_LP  
mode  
IDLE_LP mode,  
VSYS = 3.8 V  
Current draw from VINS in IDLE mode  
IDLE mode,  
VINS = 8 V  
mA  
Note 1 In SHIP mode the battery is connected but the system rail and input rails are not powered (= 0 V).  
7.2 Travel Adaptor Detection  
Table 6: Travel Adaptor Detection Characteristics  
Parameter  
Description  
Conditions  
Min  
Typ  
Max  
Unit  
VTHR_RISE  
Adaptor detection rising threshold  
Rising threshold in  
IDLE mode (Note 1)  
4.07  
4.29  
4.5  
V
VTHR_RISE_ACC Adaptor detection rising threshold  
accuracy  
-5  
+5  
%
tDEGLITCH  
VTHR_HYS  
Adaptor detection deglitch time  
Adaptor detection hysteresis  
1.25  
300  
ms  
mV  
Note 1 The device is only operational when VIN is within the range defined by VIN2OUT_MIN and VIN2OUT_MAX, see  
Table 9.  
Datasheet  
Revision 3.1  
21-Apr-2021  
CFR0011-120-00  
12 of 49  
© 2021 Dialog Semiconductor  
 
 
 
DA9318L/M  
High-Efficiency, 10 A, High-Voltage Direct Charger  
7.3 Voltage Protection  
7.3.1  
Input Voltage Protection  
Table 7: Input Voltage Protection Characteristics  
Parameter  
Description  
Conditions  
Min  
Typ  
Max  
Unit  
VOV_IDLE  
VIN over-voltage threshold  
Rising threshold  
13.5  
14.2  
V
in IDLE mode (Note 1)  
VOV_ACT  
Rising threshold  
10.5  
V
during current doubler  
operation (ACTIVE mode)  
(Note 1)  
tDEGLITCH_OV  
VUV_RISE  
VIN over-voltage deglitch  
time  
10  
µs  
V
VIN under-voltage threshold Rising threshold, during  
current doubler operation  
5.5  
(ACTIVE mode) (Note 1)  
VUV_FALL  
Falling threshold, during  
current doubler operation  
(ACTIVE mode) (Note 1)  
5.1  
V
tDEGLITCH_UV  
VPROT_HYS  
VIN under-voltage deglitch  
time  
10  
2
µs  
%
VIN protection hysteresis  
(applies to VOV_IDLE and  
VOV_ACT  
)
RPD  
IN pull-down  
20  
kΩ  
Note 1 The device is only operational when VIN is within the range defined by VIN2OUT_MIN and VIN2OUT_MAX, see  
Table 9.  
Datasheet  
Revision 3.1  
21-Apr-2021  
CFR0011-120-00  
13 of 49  
© 2021 Dialog Semiconductor  
 
DA9318L/M  
High-Efficiency, 10 A, High-Voltage Direct Charger  
7.3.2  
Battery Voltage Protection  
Table 8: Battery Protection Characteristics  
Parameter  
Description  
Conditions  
Min  
Typ  
Max  
Unit  
Rising threshold  
VBAT_OV_THRSH = 0x3C  
VOV_HI  
5.5  
V
Over-voltage threshold  
Rising threshold  
VBAT_OV_THRSH = 0x0  
VOV_LO  
4.0  
5
V
µs  
V
Battery over-voltage  
protection deglitch delay  
tDEGLITCH_OV  
VUV_HI  
Falling threshold  
VBAT_UV_THRSH = 11  
3.0  
2.4  
2
Under voltage threshold  
Falling threshold  
VBAT_UV_THRSH = 00  
VUV_LO  
V
VBAT protection  
hysteresis  
VBAT_PROT_HYS  
%
VBAT_OV (4 V to 5.5 V)  
VBAT_UV (2.4 V to 3 V)  
-2  
-4  
+2  
+4  
%
%
VBAT_PROT_ACC  
VBAT protection accuracy  
Battery under-voltage  
protection deglitch delay  
tDEGLITCH_UV  
VWARN_HI  
5
µs  
V
VBAT_WARN_THRSH =  
0XF0  
5.5  
2.4  
VBAT warning threshold  
VBAT_WARN_THRSH =  
0X10  
VWARN_LO  
V
Datasheet  
Revision 3.1  
21-Apr-2021  
CFR0011-120-00  
14 of 49  
© 2021 Dialog Semiconductor  
DA9318L/M  
High-Efficiency, 10 A, High-Voltage Direct Charger  
7.3.3  
Input to Output Voltage Protection  
Table 9: Input to Output Voltage Protection Characteristics  
Parameter  
Description  
Conditions  
Min  
Typ  
Max  
Unit  
Minimum input-to-output  
voltage  
VIN/2 to VOUT  
falling threshold  
VIN2OUT_MIN  
5
mV  
Maximum input-to-output  
voltage  
VIN/2 to VOUT  
rising threshold  
VIN2OUT_MAX  
200  
20  
mV  
VIN2OUT_MAX_ACC Protection accuracy  
VIN2OUT_HYS VIN2OUT hysteresis  
-20  
+20  
mV  
%
7.4 Current Sensing  
Table 10: Current Sensing Characteristics  
Parameter  
DA9318L  
IIN_OC_HI  
Description  
Conditions  
Min  
Typ  
Max  
Unit  
IIN over-current threshold  
IIN current sensing accuracy  
IOUT current sensing accuracy  
IIN_OC_THRSH = 0xF0  
IIN_OC_THRSH = 0x10  
IIN = 2 A to 4 A  
4.1  
A
IIN_OC_LO  
500  
mA  
%
IIN_ACC_HI  
IIN_ACC_LO  
IOUT_ACC_HI  
IOUT_ACC_LO  
DA9318M  
IIN_OC_HI  
-5  
-100  
-5  
+5  
+100  
+5  
IIN = 500 mA to 2 A  
IOUT = 4 A to 8 A  
mA  
%
IOUT = 1 A to 4 A  
-200  
+200  
mA  
IIN over-current threshold  
IIN_OC_THRSH = 0xF0  
IIN_OC_THRSH = 0x10  
IIN = 2 A to 5 A  
5.1  
A
IIN_OC_LO  
500  
mA  
%
IIN_ACC_HI  
IIN_ACC_LO  
IOUT_ACC_HI  
IOUT_ACC_LO  
IIN current sensing accuracy  
IOUT current sensing accuracy  
-10  
-100  
-10  
+10  
+100  
+10  
IIN = 500 mA to 2 A  
IOUT = 4 A to 10 A  
mA  
%
IOUT = 1 A to 4 A  
-200  
+200  
mA  
7.5 Junction Temperature Monitoring  
Table 11: Junction Temperature Monitoring Characteristics  
Parameter Description  
Conditions  
Min  
Typ  
Max  
Unit  
Power on reset (POR)  
temperature threshold  
TPOR  
Rising threshold  
150  
°C  
TPOR_HYS  
TCRIT  
POR temperature hysteresis  
Critical temperature threshold  
Critical temperature hysteresis  
5
140  
5
°C  
°C  
°C  
Rising threshold  
TCRIT_HYS  
Rising threshold  
TJUNC_WARN_THRSH = 11  
TWARN_HI  
TWARN_LO  
120  
70  
°C  
°C  
Warning temperature  
threshold  
Rising threshold  
TJUNC_WARN_THRSH = 00  
Datasheet  
Revision 3.1  
21-Apr-2021  
CFR0011-120-00  
15 of 49  
© 2021 Dialog Semiconductor  
 
DA9318L/M  
High-Efficiency, 10 A, High-Voltage Direct Charger  
Parameter Description  
Warning temperature  
Conditions  
Min  
Typ  
Max  
Unit  
TWARN_HYS  
2
°C  
hysteresis  
Junction temperature  
monitoring deglitch delay  
tDEGLITCH  
Applies to TPOR and TCRIT  
2.8  
µs  
7.6 Current Doubler  
The parameters listed in Table 13 are valid with the following external component values, unless  
otherwise noted.  
Table 12: Current Doubler External Components  
Parameter Description  
Conditions  
Min  
Typ  
2×47  
4.7  
Max  
Unit  
µF  
µF  
µF  
nF  
CFLY  
COUT  
CLOAD  
CBS  
Flying capacitors  
Output capacitors  
Load capacitor  
470  
Bootstrap capacitors  
Input capacitor  
10  
4.7  
4.7  
CMID  
CIN  
µF  
µF  
Input capacitor  
Table 13: Current Doubler Characteristics  
Parameter  
VIN_IDLE  
Description  
Conditions  
Min  
4.5  
5.5  
Typ  
Max  
13.5  
10.5  
Unit  
V
In IDLE mode  
In ACTIVE mode  
Supply voltage  
VIN_ACTIVE  
V
0.5 *  
VIN  
VOUT  
Output voltage  
IOUT = 0 A  
V
A
Max output current  
DA9318L  
Continuous output current  
8
IOUT_MAX  
Max output current  
DA9318M  
Continuous output current  
10  
A
A
Cycle-by-cycle peak current  
limit of individual switching  
FETs  
Programmable in 450 mA  
steps (CP_ILIM)  
ILIM_PK  
4.8  
11.55  
+20  
Deglitch time for the peak  
current limit  
tDEGLITCH_ILIM_PK  
ILIM_ACC  
10  
µs  
%
CF1 ≥ 30 µF, CF2 ≥ 30 µF  
CF1 = CF2  
Peak current limit accuracy  
-20  
CP_FREQ = 11  
1500  
1000  
500  
kHz  
kHz  
kHz  
kHz  
CP_FREQ = 10  
fSW  
Switching frequency  
CP_FREQ = 01 (default)  
CP_FREQ = 00  
250  
VOUT = 4.2 V  
IOUT = 2 A  
η
Current doubler efficiency  
98  
%
fixed frequency mode  
fsw = 500 kHz  
Datasheet  
Revision 3.1  
21-Apr-2021  
CFR0011-120-00  
16 of 49  
© 2021 Dialog Semiconductor  
 
 
DA9318L/M  
High-Efficiency, 10 A, High-Voltage Direct Charger  
Parameter  
Description  
Conditions  
Min  
Typ  
Max  
Unit  
VOUT = 4.2 V  
IOUT = 6 A  
η
Current doubler efficiency  
97  
%
fixed frequency mode  
fsw = 500 kHz  
Including pin and routing  
VIN = 7.4 V  
High-side NMOS switch on-  
resistance  
RDS_ON_HS  
20  
10  
mΩ  
mΩ  
Including pin and routing  
VIN = 7.4 V  
Low-side NMOS switch on-  
resistance  
RDS_ON_LS  
Response time of the  
reverse current protection  
(RCP)  
tRCP  
3
µs  
7.7 Safety Timer and Watchdog  
Table 14: Safety Timer and Watchdog Characteristics  
Parameter  
Description  
Conditions  
Min  
Typ  
Max  
Unit  
Controlled by writing a timeout  
value to WD_TIMER_LOAD  
tWD  
Watchdog period  
0
255  
s
tSFTY_HI  
tSFTY_LO  
tACC  
SAFETY_TIMER_LOAD = 0xC  
SAFETY_TIMER_LOAD = 0x0  
18  
h
h
Safety timer period  
Timer accuracy  
0.25  
-10  
+10  
%
7.8 Digital I/O  
Table 15: Digital I/O Characteristics  
Parameter  
VIH  
Description  
Conditions  
Min  
Typ  
Max  
Unit  
V
Input high voltage  
Input low voltage  
Output low voltage  
Input capacitance  
Deglitch time for inputs  
1.26  
VIL  
0.4  
0.3  
10  
V
VOL  
Sink current 5 mA  
V
CIN  
pF  
ms  
tDEGLITCH  
1.25  
2
Minimum pulse width of  
nFAULT  
tFLT_MIN  
ms  
Datasheet  
Revision 3.1  
21-Apr-2021  
CFR0011-120-00  
17 of 49  
© 2021 Dialog Semiconductor  
DA9318L/M  
High-Efficiency, 10 A, High-Voltage Direct Charger  
7.9 Interface Timing  
START  
ACK  
STOP  
tF  
tR  
70%  
SDA  
SCL  
30%  
tSU_STA  
tF  
tSU_D  
tH_D  
tHIGH  
tVD_D  
tVD_ACK  
tSU_STO  
70%  
30%  
tH_STA  
1/fSCL  
tLOW  
Figure 3: Interface Timing  
Unless otherwise noted, the following is valid for TA = -40 ºC to +85 ºC, VIN = 4.3 V to 11 V, VBAT  
2.6 V to 4.4 V.  
=
Table 16: Interface Timing Characteristics  
Parameter Description  
tBUF Bus free time from STOP to START  
Test conditions  
Min  
Max  
Unit  
0.5  
µs  
condition  
Standard, Fast, and Fast-Plus Modes  
CB  
Bus line capacitive load  
SCL clock frequency  
150  
400  
pF  
fSCL  
Note 1  
0
kHz  
tSU_STA  
tH_STA  
tW_CL  
tW_CH  
tR  
Start condition setup time  
Start condition hold time  
SCL low time  
0.26  
0.26  
0.5  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
ns  
µs  
µs  
µs  
ns  
SCL high time  
0.26  
2-wire SCL and SDA rise time  
2-wire SCL and SDA fall time  
Data setup time  
120  
120  
tF  
tSU_D  
tH_D  
50  
0
Data hold-time  
tSU_STO  
tVD_D  
tVD_ACK  
tSP  
Stop condition setup time  
Data valid time  
0.26  
0.45  
0.45  
50  
Data valid acknowledge time  
Spike suppression (SCL, SDA)  
Fast/Fast+ mode  
High-Speed Mode  
CB  
Bus line capacitive load  
100  
pF  
fSCL  
SCL clock frequency  
Start condition setup time  
Start condition hold time  
SCL low time  
Note 1  
0
3400  
kHz  
tSU_STA  
tH_STA  
tSCL_LO  
tSCL_HI  
160  
160  
160  
60  
ns  
ns  
ns  
ns  
SCL high time  
Datasheet  
Revision 3.1  
21-Apr-2021  
CFR0011-120-00  
18 of 49  
© 2021 Dialog Semiconductor  
DA9318L/M  
High-Efficiency, 10 A, High-Voltage Direct Charger  
Parameter Description  
Test conditions  
Min  
Max  
Unit  
tR  
2-wire SCL and SDA rise time  
80  
ns  
tF  
2-wire SCL and SDA fall time  
Data setup time  
80  
ns  
ns  
ns  
ns  
ns  
tSU_D  
tH_D  
tSU_STO  
tSP  
10  
0
Data hold-time  
Stop condition setup time  
Spike suppression (SCL, SDA)  
160  
10  
Note 1 Minimum clock frequency is 10 kHz if I2C_TO_EN = 1.  
7.10 Internal Supplies  
7.10.1 AVDD  
The parameters listed in Table 18 are valid with the following external component values, unless  
otherwise noted.  
Table 17: AVDD External Components  
Parameter Description  
Conditions  
Min  
Min  
Typ  
Max  
Max  
Unit  
CAVDD  
Output capacitors  
4.7  
µF  
Table 18: AVDD Characteristics  
Parameter  
Description  
Conditions  
Typ  
4.0  
Unit  
V
VIN_MAX, VSYS_MAX > 4.15 V  
VSYS < VIN < 4.15 V  
VIN < VSYS < 4.15 V  
Rising threshold of VAVDD  
Falling threshold of VAVDD  
VAVDD  
Internal supply  
POR threshold  
VIN - 0.02  
VSYS - 0.02  
2.4  
V
V
VPOR_RISE  
VPOR_FALL  
2.5  
V
2.20  
2.33  
V
7.11 Thermal Characteristics  
Table 19: WLCSP Thermal Ratings  
Parameter Description  
Conditions  
Min  
Typ  
Max  
Unit  
Ambient temperature of  
27 °C  
Junction-to-ambient  
thermal resistance  
Device with uniform power  
dissipation of 1 W  
Device mounted on 4L  
Jedec PCB  
ƟJA  
32.18  
°C/W  
Datasheet  
Revision 3.1  
21-Apr-2021  
CFR0011-120-00  
19 of 49  
© 2021 Dialog Semiconductor  
 
DA9318L/M  
High-Efficiency, 10 A, High-Voltage Direct Charger  
8
Typical Characteristics  
100  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
0
1
2
3
4
5
6
7
8
Battery Charging Current (A)  
VOUT = 4.2 V  
Figure 4: DA9318L Efficiency  
20  
15  
10  
5
0
-5  
-10  
-15  
-20  
4
4.5  
-25C  
5
5.5  
0C  
6
6.5  
45C  
7
7.5  
8
IOUT (A)  
25C  
-15C  
65C  
85C  
Figure 5: DA9318L IOUT ADC Error vs. IOUT vs. Temperature  
Datasheet  
Revision 3.1  
21-Apr-2021  
CFR0011-120-00  
20 of 49  
© 2021 Dialog Semiconductor  
DA9318L/M  
High-Efficiency, 10 A, High-Voltage Direct Charger  
85  
75  
65  
55  
45  
35  
25  
15  
0
1
2
3
4
5
6
7
8
Output Current (A)  
Tjunc  
Figure 6: DA9318L Junction Temperature vs. Output Current  
100  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
0
1
2
3
4
5
6
7
8
9
10  
Battery Charging Current (A)  
VOUT = 4.2 V  
Figure 7: DA9318M Efficiency  
Datasheet  
Revision 3.1  
21-Apr-2021  
CFR0011-120-00  
21 of 49  
© 2021 Dialog Semiconductor  
DA9318L/M  
High-Efficiency, 10 A, High-Voltage Direct Charger  
20  
15  
10  
5
0
-5  
-10  
-15  
-20  
4
5
6
7
8
9
10  
IOUT (A)  
-40C  
-25C  
-15C  
0C  
5C  
25C  
45C  
65C  
85C  
Figure 8: DA9318M IOUT ADC Error vs. IOUT vs. Temperature  
85  
75  
65  
55  
45  
35  
25  
15  
0
2
4
6
8
10  
Output Current (A)  
Tjunc  
Figure 9: DA9318M Junction Temperature vs. Output Current  
Datasheet  
Revision 3.1  
21-Apr-2021  
CFR0011-120-00  
22 of 49  
© 2021 Dialog Semiconductor  
DA9318L/M  
High-Efficiency, 10 A, High-Voltage Direct Charger  
9
Functional Description  
CF1  
CF2  
CBS1  
CBS2  
CMID1  
,
CMID2  
VBUS  
DA9318  
OVP  
Current  
Doubler  
RCP  
IIN  
Monitoring  
Main Charger  
Current  
Sensing  
RCP  
IOUT  
Monitoring  
Control  
And  
Status  
VIN  
Monitoring  
VBAT  
Monitoring  
ISYS  
Registers  
Buck  
TJUNC  
Monitoring  
Control  
VIN  
IIN  
VBAT  
IOUT  
TJUNC  
2-wire  
Interface  
VBAT  
TBAT  
VSYS  
VBUS  
IBUS  
Charging  
Control  
ADC  
IBATM  
IBAT  
Current Bat.  
Sensing Sw.  
IBATM  
IBATS  
IBAT  
VBAT  
Sensing  
NTC  
Current  
Sensing  
I2C  
VDDIO  
SCL  
SDA  
SoC  
Figure 10: System Level Block Diagram  
9.1 Current Doubler  
The current doubler operates with a fixed duty cycle. Under no-load condition, the output voltage is  
half of the input voltage. When a current IOUT is drawn at the VOUT node and the current doubler is  
switching at an fSW frequency, the output voltage is determined as:  
V
IN  
2
V
=
R  
* I  
EQ OUT  
OUT  
REQ is a function of the sum of all resistances in the input/output power path (including the power  
device’s on-resistance and the PCB routing resistance) as well as the switching frequency, CFLY  
and PCB parasitics.  
The dual phase interleaved operation ensures an almost constant input current, thereby highly  
improving the application design against noise.  
The voltage ripple at VOUT can be first order approximated as the voltage drop due to the discharge of  
the CFLY capacitor in half of the period at an fSW switching frequency, plus the discharge voltage of  
the output VOUT capacitor during a typical 5 ns short dead time for phase switch.  
Datasheet  
Revision 3.1  
21-Apr-2021  
CFR0011-120-00  
23 of 49  
© 2021 Dialog Semiconductor  
DA9318L/M  
High-Efficiency, 10 A, High-Voltage Direct Charger  
Selecting a good CFLY capacitor is a key factor for a well performing current doubler. Increasing the  
switching frequency and the VOUT capacitors to compensate for the DC bias degradation of CFLY may  
both result in a worse efficiency. For a list of suggested external components see Table 12.  
9.1.1  
Reverse Current Protection  
RCP is enabled whenever DA9318L/M is not in the ACTIVE mode. The current doubler blocks  
current flow from IN to OUT and from OUT to IN. In this mode, the C1P and C2P terminals are  
floating.  
9.1.2  
Switching Frequency  
In normal conditions the switching frequency of the current doubler is static and it is defined by the  
CP_FREQ register bits.  
9.1.3  
Start-Up  
The current doubler is capable of starting up when VIN is within the accepted range defined by  
VIN2OUT_MIN and VIN2OUT_MAX. If VIN is not within the accepted range during start-up, the start-up is  
aborted and an event is triggered (E_VIN2OUT_MIN or E_VIN2OUT_MAX).  
Resuming normal operation after a start-up fault requires that VIN is within the accepted range and  
the event is cleared.  
9.1.4  
Current Limit  
The maximum continuous output current of the current doubler is IOUT_MAX. In addition, individual  
switching FETs are protected with cycle-by-cycle peak current limit of ILIM_PK. The configurable  
integrated current limit is aimed to protect DA9318L/M power stages and the external components  
from excessive current.  
When hitting the current limit, a timer is started. If the current limit is exceeded for longer than  
tDEGLITCH_ILIM_PK, the current doubler is disabled and an event E_ILIM_OC_CRIT is triggered.  
9.1.5  
Input-to-Output Voltage Protection  
DA9318L/M features an input-to-output voltage protection described in section 9.3.3. The protection  
is used to automatically disable the current doubler when the input-to-output voltage ratio is out of the  
accepted range defined by VIN2OUT_MIN and VIN2OUT_MAX. When the either of these thresholds is  
crossed during current doubler operation an event, E_VIN2OUT_MIN or E_VIN2OUT_MAX, is  
triggered and the current doubler is automatically disabled.  
9.2 Travel Adaptor Detection  
The detection of a travel adaptor insertion is made based on rising VIN voltage. The detection of a  
travel adaptor removal is made based on falling VIN voltage.  
When VIN exceeds VTHR_RISE the travel adaptor status bit S_VIN_ADP_DET is asserted and the  
associated event (E_VIN_ADP_DET) is triggered. The travel adaptor status bit and the current  
doubler enable are de-asserted when VIN falls below VTHR_RISE  
.
9.3 Voltage Protection  
Figure 11 illustrates the voltage protection, including the VIN and VBAT voltage protection levels. All  
voltage protection functions have an event associated with them, which is triggered whenever the  
comparator trips.  
Datasheet  
Revision 3.1  
21-Apr-2021  
CFR0011-120-00  
24 of 49  
© 2021 Dialog Semiconductor  
 
 
 
DA9318L/M  
High-Efficiency, 10 A, High-Voltage Direct Charger  
IN  
VOUTS  
VBATP  
S_VIN2OUT_MAX  
- +  
VIN2OUT_MAX  
S_VIN2OUT_MIN  
- +  
VIN2OUT_MIN  
VBAT_OV  
Setting  
S_VIN_UV  
S_VIN_OV  
S_VBAT_OV  
S_VBAT_UV  
VBAT_UV  
Setting  
AVDD  
VBATN  
VREF  
Figure 11: Voltage Protection  
9.3.1  
Input Voltage Protection  
Input voltage (VIN) protection is used for detecting the presence of an input supply and for disabling  
the current doubler when VIN rises too high. Note that the current doubler is only operational when VIN  
is within the range defined by VIN2OUT_MIN and VIN2OUT_MAX  
.
VIN over-voltage conditions longer than tDEGLITCH_OV will disable the current doubler by disabling  
CP_EN and will trigger the event E_VIN_OV. Resuming normal operation after the over-voltage  
event is triggered requires that the event is cleared and that the current doubler is re-enabled either  
by writing CP_EN or by asserting the nCPEN signal.  
Under-voltage conditions longer than tDEGLITCH_UV will disable the current doubler by disabling CP_EN  
and trigger the event E_VIN_UV. Resuming normal operation after the under-voltage event is  
triggered requires that the event is cleared and that the current doubler is re-enabled either by writing  
CP_EN or by asserting the nCPEN signal.  
The adaptor detection is made by comparing VIN to a threshold VTHR_RISE. If VIN is above VTHR_RISE, a  
supply is assumed to be detected. When VIN falls under the VTHR_RISE VTHR_HYS, an event E_VIN_UV  
is triggered and a pull-down resistor (RPD) is activated. Note that VTHR_RISE is not enough to start the  
current doubler, see section 9.1.3. Once the adaptor detection is successful, the threshold of the  
comparator is moved to VUV_RISE  
.
9.3.2  
Battery Voltage Protection  
DA9318L/M features differential sense inputs for the battery voltage. The battery voltage is monitored  
before enabling the current doubler and during current doubler operation to detect over-voltage and  
under-voltage conditions.  
Over-voltage conditions longer than tDEGLITCH_OV will disable the current doubler by clearing the  
CP_EN register and trigger the event E_VBAT_OV. A 20 kpull-down is applied on the OUT pin as  
long as the status bit S_VBAT_OV remains asserted. Resuming normal operation after the over-  
voltage event is triggered requires that the event is cleared and that the current doubler is re-enabled  
either by writing CP_EN or by asserting the nCPEN signal.  
Datasheet  
Revision 3.1  
21-Apr-2021  
CFR0011-120-00  
25 of 49  
© 2021 Dialog Semiconductor  
DA9318L/M  
High-Efficiency, 10 A, High-Voltage Direct Charger  
Under-voltage conditions longer than tDEGLITCH_UV will disable the current doubler and trigger the event  
E_VBAT_UV. Starting the current doubler requires that the event is cleared and that the current  
doubler is re-enabled either by writing CP_EN or by asserting the nCPEN signal.  
In addition to battery over-voltage and under-voltage, DA9318L/M features a battery voltage  
protection based on the ADC results. In the continuous mode of the ADC converter, the result on the  
VBAT channel (ADC_VBATT_RESULT) is compared against the threshold programmed in the  
VBAT_WARN_THRSH register bits. If the measurement exceeds the threshold, an event  
E_VBAT_WARN is triggered. The battery voltage warnings are only enabled in the continuous mode  
of the ADC and when the VBAT_WARN_THRSH register bits are programmed with a non-zero  
value.  
9.3.3  
Input to Output Voltage Protection  
The purpose of the input to output voltage (VIN2OUT) protection is to detect when the input-to-output  
voltage ratio is suitable for the current doubler operation, see section 9.1.5.  
Fault conditions lasting longer than tDEGLITCH will disable the current doubler by clearing the CP_EN  
register bit and trigger the event E_VIN2OUT_MIN or E_VIN2OUT_MAX. Resuming normal  
operation after an event is triggered requires that the event is cleared and that the current doubler is  
re-enabled either by writing CP_EN or by asserting the nCPEN signal.  
9.4 Current Sensing  
DA9318L/M features input and output current reporting based on the internal current sense. The  
current sense information is sampled by the ADC and reported via registers ADC_IIN_RESULT and  
ADC_IOUT_RESULT. The input and output current sensing does not require an external shunt  
resistor. Table 10 defines the range and precision for current sensing.  
9.4.1  
Over-Current Monitoring  
DA9318L/M features a programmable over-current monitoring that uses the ADC reading of the input  
current to detect an over-current condition. The monitoring value can be programmed in the  
IIN_OC_THRSH register bits. The conversion result (reported via the ADC_IIN_RESULT register  
bits) is compared to the IIN_OC_THRSH value and an over-current event (E_IIN_OC) is triggered if  
the measurement value exceeds the threshold. The over-current fault can be configured to either  
trigger the event, or to trigger the event and clear the current doubler enable (CP_EN). The over-  
current monitoring is only enabled in the continuous mode of the ADC (ADC_AUTO_CNVRT = 1)  
and if IIN_OC_THRSH is programmed with a non-zero value.  
9.5 Junction Temperature Monitoring  
To protect DA9318L/M from damage due to excessive power dissipation the junction temperature  
(TJUNC) is monitored continuously. The monitoring is split into three temperature ranges TWARN  
(programmable via TJUNC_WARN_THRSH from 70 °C to 125 °C), TCRIT (140 °C), and TPOR  
(150 °C).  
The first level monitoring (TWARN) is implemented by using the ADC. If the junction temperature rises  
above the first threshold (TWARN), the event E_TJUNC_WARN is asserted. If the event is not masked,  
this will trigger an interrupt. This first level of temperature supervision is intended for non-invasive  
temperature control, where the necessary measures for cooling the system down are left to the host  
software. The status of the TWARN comparator can be read from S_TJUNC_WARN. An interrupt is  
generated when the temperature crosses the threshold from low to high, or from high to low. After the  
interrupt, the application processor can read out the comparator status to detect when the  
temperature drops below the threshold.  
The second level monitoring (TCRIT) is implemented with a comparator. If the junction temperature  
continues to rise and crosses the second threshold (TCRIT), an event is triggered (E_TJUNC_CRIT)  
and DA9318L/M moves to the IDLE mode. Resuming normal operation requires that the junction  
temperature drops below TCRIT  
.
Datasheet  
Revision 3.1  
21-Apr-2021  
CFR0011-120-00  
26 of 49  
© 2021 Dialog Semiconductor  
DA9318L/M  
High-Efficiency, 10 A, High-Voltage Direct Charger  
The third level monitoring (TPOR) is implemented with a comparator. Crossing the third threshold  
causes DA9318L/M to enter SHUTDOWN mode. DA9318L/M stays in SHUTDOWN mode as long as  
the junction temperature is above TCRIT  
.
9.6 ADC  
DA9318L/M features an 8-bit ADC that can be used to monitor VIN, IIN, VBAT, IOUT, and TJUNC. Table 20  
summarizes the ADC channels. The ADC is enabled in IDLE and ACTIVE modes. It features two  
operational modes: continuous and single shot.  
By default, the ADC runs in the continuous mode (ADC_AUTO_CNVRT = 1). In this mode, the ADC  
runs continuously through its channels and updates the results registers (ADC_RES_x). The number  
of conversions averaged for each result can be controlled using the ADC_AVERAGE register bits. An  
event (E_ADC_DONE) is triggered only once in the continuous mode, when the first results are  
ready after enabling the ADC or starting the continuous mode.  
Measurements can also be taken in single shot mode (ADC_AUTO_CNVRT = 0) via the 2-wire  
interface by writing 1 to the ADC_SINGLE_CNVRT register bit. Once a conversion is initiated, the  
result register (ADC_RES_x) of each channel is updated using the averaging set in the  
ADC_AVERAGE register bits. Once the measurement is done, an event is triggered  
(E_ADC_DONE) and the measurement of each channel can be read out from the result registers.  
Table 20: ADC Channels  
Channel Parameter Description  
Range  
Equation  
1
2
3
VIN  
VBAT  
IIN  
Input voltage  
5.5 V to VIN = (ADC_VIN_RESULT - 16) * (8.5 / 224) + 5.5  
14 V  
Battery voltage  
2.4 V to VBAT = (ADC_VBATT_RESULT - 16) * (3.1 / 224) + 2.4  
5.5 V  
Input current  
DA9318L  
500 mA IIN = (ADC_IIN_RESULT - 16) * (3.6 / 224) + 0.5  
to 4.1 A  
Input current  
DA9318M  
500 mA IIN = (ADC_IIN_RESULT - 16) * (4.6 / 224) + 0.5  
to 5.1 A  
4
IOUT  
Output current  
DA9318L  
1 A to  
8.2 A  
IOUT = (ADC_IOUT_RESULT - 16) * (7.2 / 224) + 1  
Output current  
DA9318M  
1 A to  
10.2 A  
IOUT = (ADC_IOUT_RESULT - 16) * (9.2 / 224) + 1  
5
6
VOUT  
Output voltage  
2.4 V to VOUT = (ADC_VOUT_RESULT - 16 ) * (3.1 / 224 ) + 2.4  
5.5 V  
(VOUTS  
)
TJUNC  
Junction  
temperature  
0 °C to  
255 °C  
TJUNC = ADC_TJUNC_RESULT  
9.7 Safety Timer  
A safety timer is running whenever DA9318L/M is in ACTIVE mode. The purpose of the safety timer  
is to detect a condition where the battery does not react to charging as expected. For example, if the  
voltage of the battery does not rise during constant current charging it is likely that the battery is  
damaged. This condition is detected by the safety timer.  
The safety timer is automatically enabled whenever DA9318L/M moves to the ACTIVE mode. If the  
safety timer expires an event is triggered (E_SAFETY_TIMER) and CP_EN is cleared. Note that the  
safety timer count is only reset by writing the SAFETY_TIMER_LOAD register. The  
SAFETY_TIMER_LOAD register should be written before the start of a new charging cycle.  
Restarting the current doubler after a safety timeout requires that the timeout event is cleared and  
that the CP_EN bit is asserted.  
The following conditions will disable the safety timer:  
Datasheet  
Revision 3.1  
21-Apr-2021  
CFR0011-120-00  
27 of 49  
© 2021 Dialog Semiconductor  
 
DA9318L/M  
High-Efficiency, 10 A, High-Voltage Direct Charger  
VIN supply removal  
Other fault condition (VOV_ACT, VUV_RISE, VBAT_OV_THRSH, VBAT_UV_THRSH, TCRIT  
)
9.8 Watchdog Timer  
DA9318L/M features a watchdog timer that is intended to monitor the host software during charging  
and disable the charger in the event of system malfunction. Some of the automatic charging features  
of DA9318L/M, such as battery temperature profiling, can be disabled and implemented in software  
instead. Moving the control to software requires tighter supervision than is provided by the charging  
timer, therefore a separate watchdog timer is provided.  
Whenever the charger is enabled, the watchdog timer is loaded (via I2C) with a pre-programmed  
value (WD_TIMER_LOAD) which starts decrementing. In normal operation the application processor  
should periodically re-initialize the safety timer by writing a new value to the WD_TIMER_LOAD  
register bits. The value of the counter can be read from the WD_TIMER_COUNT register bits.  
However, if the timer reaches zero an event (E_WD) is asserted and the charger is automatically  
disabled.  
The following conditions will disable the watchdog timer:  
VIN supply removal  
Other fault condition (VOV_ACT, VUV_RISE, VBAT_OV_THRSH, VBAT_UV_THRSH, TCRIT  
)
9.9 Control Interface  
All the output signals of DA9318L/M are driven with an open drain stage. The signals have to be  
pulled up with external resistors to an IO supply. The inputs are compared to internally generated  
references VIH and VIL to detect the high and low levels of the signals, respectively. Figure 12 depicts  
the structure of the control signals.  
Datasheet  
Revision 3.1  
21-Apr-2021  
CFR0011-120-00  
28 of 49  
© 2021 Dialog Semiconductor  
DA9318L/M  
High-Efficiency, 10 A, High-Voltage Direct Charger  
nIRQ  
nFAULT  
VIH  
-
+
SDA  
+
-
VIL  
VIH  
-
+
nCPEN  
+
-
VIL  
Figure 12: Control Signals  
9.9.1  
PWREN  
PWREN is a master enable for the DA9318L/M internal blocks and 2-wire interface. It is used to  
minimize the power consumption of DA9318L/M during NO-POWER mode of the system. It can be  
tied to a supply rail driven by the PMIC to allow DA9318L/M enter NO-POWER mode whenever the  
PMIC powers down.  
9.9.2  
nCPEN  
nCPEN is an edge sensitive, active low, chip enable signal. It works in conjunction with the CP_EN  
register bit. A falling edge of nCPEN sets the CP_EN register bit and a rising edge clears it. The  
current doubler can be started by asserting the nCPEN pin or by writing to CP_EN. The current  
doubler can be stopped by de-asserting the nCPEN pin or by writing to CP_EN.  
9.9.3  
nFAULT  
nFAULT is an active low, open drain, status output. The assertion of any of the following status bits  
results in the assertion of nFAULT:  
S_VIN_OV  
S_VIN_UV  
S_VBAT_OV  
S_VBAT_UV  
S_VIN2OUT_MAX  
S_VIN2OUT_MIN  
S_TJUNC_CRIT  
Datasheet  
Revision 3.1  
21-Apr-2021  
CFR0011-120-00  
29 of 49  
© 2021 Dialog Semiconductor  
DA9318L/M  
High-Efficiency, 10 A, High-Voltage Direct Charger  
S_IIN_OC  
S_VBAT_WARN  
The removal of the fault condition results in the de-assertion of nFAULT. The minimum length of  
nFAULT assertion is tFLT_MIN. This will ensure that the signal passes through the deglitch filter and  
synchronizer in the receiving end.  
S_VIN_OV  
S_VIN_UV  
nFAULT  
S_VBAT_OV  
S_VBAT_UV  
Min pulse  
(tFLT_MIN)  
S_VIN2OUT_MIN  
OR  
S_VIN2OUT_MAX  
S_TJUNC_CRIT  
S_IIN_OC  
S_VBAT_WARN  
S_RAMPUP_FAULT  
Figure 13: nFAULT Operation  
9.9.4  
nIRQ  
nIRQ is a level sensitive, active low, interrupt signal. The assertion of an unmasked event results in  
the assertion of nIRQ. The nIRQ will not be released until all event registers have been cleared. New  
events that occur during an event register read will be held until the event register has been cleared,  
ensuring that the host processor does not miss them. By default all mask bits are asserted.  
Several sources can generate some events, as depicted in Figure 14. After receiving an interrupt, the  
source can be detected by reading the associated status registers.  
Datasheet  
Revision 3.1  
21-Apr-2021  
CFR0011-120-00  
30 of 49  
© 2021 Dialog Semiconductor  
DA9318L/M  
High-Efficiency, 10 A, High-Voltage Direct Charger  
S_VBAT_OV  
S_VBAT_UV  
S_VIN_OV  
E_VBAT_OV  
M_VBAT_OV  
E_VBAT_UV  
M_VBAT_UV  
E_VIN_OV  
AND  
AND  
AND  
AND  
M_VIN_OV  
E_VIN_UV  
S_VIN_UV  
M_VIN_UV  
S_ADP_DET  
E_ADP_DET  
M_ADP_DET  
AND  
S_ILIM_WARN  
S_RAMPUP_FAULT  
S_TJUNC_CRIT  
S_TJUNC_WARN  
E_ILIM_WARN  
M_ILIM_WARN  
AND  
AND  
E_RAMPUP_FAULT  
M_RAMPUP_FAULT  
E_TJUNC_CRIT  
M_TJUNC_CRIT  
E_TJUNC_WARN  
M_TJUNC_WARN  
AND  
AND  
nIRQ  
OR  
S_VIN2OUT_MAX  
S_VIN2OUT_MIN  
S_IIN_OC  
E_VIN2OUT_MAX  
M_VIN2OUT_MAX  
E_VIN2OUT_MIN  
M_VIN2OUT_MIN  
E_IIN_OC  
AND  
AND  
AND  
AND  
AND  
AND  
AND  
AND  
AND  
M_IIN_OC  
S_VBAT_WARN  
E_VBAT_WARN  
M_VBAT_WARN  
E_ADC_DONE  
M_ADC_DONE  
E_SAFETY_TIMER  
M_SAFETY_TIMER  
E_WD  
M_WD  
E_ILIM_CRIT  
M_ILIM_CRIT  
E_TJUNC_POR  
M_TJUNC_POR  
Figure 14: Interrupt Logic  
9.10 2-Wire Interface  
The 2-wire interface provides access to control and status registers. The interface supports  
operations compatible to Standard, Fast, Fast+ and High-speed mode of the I2C bus specification [6].  
Table 21 lists the slave addresses of DA9318L/M.  
Table 21: Interface Slave Address.  
Device  
7-bit Slave Address  
8-bit Slave Address  
DA9318L/M  
0x59  
0xB2 (write), 0xB3 (read)  
Communication on the 2-wire bus is always between two devices, one acting as the master and the  
other as the slave. DA9318L/M will only operate as a slave.  
SCL carries the 2-wire clock and SDA carries the bidirectional data. The 2-wire interface is open  
drain, supporting multiple devices on a single line. The bus lines have to be pulled high by external  
pull-up resistors (2 kΩ to 20 kΩ). These are often shared between multiple devices connected to the  
interface. The attached devices only drive the bus lines low by connecting them to ground. As a  
result, two devices cannot conflict if they drive the bus simultaneously.  
In Standard/Fast mode the highest frequency of the bus is 400 kHz. The exact frequency can be  
determined by the application and it does not have any relation to the DA9318L/M internal clock  
signals. DA9318L/M will follow the host clock speed within the described limitations and does not  
initiate any clock arbitration or slow down. An automatic interface reset can be triggered in case the  
clock signal ceases to toggle for > 35 ms (controlled in I2C_TO_EN).  
Datasheet  
Revision 3.1  
21-Apr-2021  
CFR0011-120-00  
31 of 49  
© 2021 Dialog Semiconductor  
 
DA9318L/M  
High-Efficiency, 10 A, High-Voltage Direct Charger  
Bus clear, if the SDA is stuck, is achieved after receiving nine clock pulses. Operation in High-speed  
mode at 3.4 MHz requires a minimum interface supply voltage of 1.8 V and a mode change in order  
to enable spike suppression and slope control characteristics compatible to the I2C specification. The  
High-speed mode can be enabled on a transfer-by-transfer basis by sending the master code (0000  
1XXX) at the beginning of the transfer. DA9318L/M does not make a use of clock stretching and  
delivers read data without additional delay up to 3.4 MHz.  
Alternatively the interface can be configured to use High-speed mode continuously via I2C_IF_HSM,  
so that the master code is not required at the beginning of every transfer. This reduces  
communication overhead on the bus, but limits the attachable bus slaves to compatible devices.  
9.10.1 Details of the 2-Wire Protocol  
All data is transmitted across the 2-wire bus in 8-bit groups. To send a bit the SDA line is driven at  
the intended state while the SCL is low. Once the SDA has settled, the SCL line is brought high and  
then low. This pulse on SCL clocks the SDA bit into the receiver’s shift register.  
A two byte serial protocol is used containing one address byte and one data byte. Data and address  
transfer is transmitted MSB first for both read and write operations. All transmission begins with the  
START condition from the master during which the bus is in IDLE mode (the bus is free). It is initiated  
by a high-to-low transition on the SDA line, while the SCL is in the high state. A low-to-high transition  
on the SDA line, while the SCL is in the high state, indicates a STOP condition. Figure 15 illustrates  
the START and STOP conditions.  
SDA  
SCL  
START  
Transaction  
STOP  
Figure 15: START and STOP Condition Timing  
The 2-wire bus will be monitored by DA9318L/M for a valid slave address whenever the interface is  
enabled. It responds immediately when it receives its own slave address. This is acknowledged by  
pulling the SDA line low during the following clock cycle (white blocks marked with A in the following  
figures).  
The protocol for a register write from master to slave consists of a START condition, a slave address,  
a read/write-bit, 8-bit address, 8-bit data, and a STOP condition. DA9318L/M responds to all bytes  
with an A. Figure 16 illustrates a register write operation.  
P
S
SLAVEadr  
7-bits  
W
A
REGadr  
8-bits  
A
DATA  
8-bits  
A
1-bit  
Master to Slave  
Slave to Master  
S = START condition  
P = STOP condition  
A = Acknowledge (low)  
W = Write (low)  
Figure 16: Byte Write  
When the host reads data from a register it first has to write access DA9318L/M the target register  
address and then read access DA9318L/M with a Repeated START, or alternatively a second  
START, condition. After receiving the data, the host sends No Acknowledge and terminates the  
transmission with a STOP condition, see Figure 17.  
Datasheet  
Revision 3.1  
21-Apr-2021  
CFR0011-120-00  
32 of 49  
© 2021 Dialog Semiconductor  
 
 
DA9318L/M  
High-Efficiency, 10 A, High-Voltage Direct Charger  
A*  
P
S
SLAVEadr W  
7-bits 1-bit  
A
REGadr A Sr SLAVEadr  
R
A
DATA  
8-bits  
1-bit  
8-bits  
7-bits  
S
SLAVEadr W  
7-bits 1-bit  
A
REGadr  
8-bits  
A
P
S
SLAVEadr  
R
A
DATA  
8-bits  
A*  
P
7-bits 1-bit  
Master to Slave  
Slave to Master  
S = START condition  
Sr = Repeated START condition  
P = STOP condition  
A = Acknowledge (low)  
A* = No Acknowledge  
W = Write (low)  
R = Read (high)  
Figure 17: Byte Read  
Consecutive (page) read-out mode is initiated from the master by sending an A instead of No  
Acknowledge after receiving a byte, see Figure 18. The 2-wire control block then increments the  
address pointer to the next register addresses and sends the data to the master. This enables an  
unlimited read of data bytes until the master sends No Acknowledge directly after receiving the data,  
followed by a subsequent STOP condition. If a non-existent 2-wire address is read out then  
DA9318L/M will return code zero.  
A*  
P
S
SLAVEadr  
W
A
REGadr  
8-bits  
A
Sr SLAVEadr  
R
A
DATA  
8-bits  
A
DATA  
8-bits  
A
DATA  
8-bits  
7-bits  
1 bit  
7-bits 1-bit  
S
SLAVEadr  
W
A
REGadr  
A
P
S
SLAVEadr  
R
A
DATA  
8-bits  
A
DATA  
8-bits  
A*  
P
7-bits  
8-bits  
7-bits 1-bit  
1-bit  
Master to Slave  
Slave to Master  
A
S = START condition  
= Acknowledge (low)  
Sr = Repeat START condition  
P = STOP condition  
A* = No Acknowledge  
W = Write (low)  
R = Read (high)  
Figure 18: Page Read  
The slave address after the Repeated START condition must be the same as the previous slave  
address.  
Consecutive (page) write mode is supported if the master sends several data bytes following a slave  
register address. The 2-wire control block then increments the address pointer to the next 2-wire  
address, stores the received data, and sends an A until the master sends a STOP condition.  
Figure 19 illustrates the page write mode.  
S
SLAVEadr  
W
A
REGadr  
8-bits  
A
DATA  
A
DATA  
8-bits  
A
DATA  
8-bits  
A
……….  
Repeated writes  
A
P
7-bits 1 bit  
8-bits 1-bit  
Master to Slave  
Slave to Master  
A
S = START condition  
= Acknowledge (low)  
Sr = Repeat START condition  
P = STOP condition  
A* = No Acknowledge  
W = Write (low)  
R = Read (high)  
Figure 19: Page Write  
Via control WRITE_MODE, a repeated write mode can be enabled. In this mode, the master can  
execute back-to-back write operations to non-consecutive addresses. This is achieved by  
transmitting register address and data pairs. The data will be stored in the address specified by the  
preceding byte. Figure 20 illustrates the repeated write mode.  
Datasheet  
Revision 3.1  
21-Apr-2021  
CFR0011-120-00  
33 of 49  
© 2021 Dialog Semiconductor  
 
 
DA9318L/M  
High-Efficiency, 10 A, High-Voltage Direct Charger  
S
SLAVEadr  
W
A
REGadr  
8-bits  
A
DATA  
A
REGadr  
8-bits  
A
DATA  
8-bits  
A
……….  
Repeated writes  
A
P
7-bits 1 bit  
8-bits 1-bit  
Master to Slave  
Slave to Master  
A
S = START condition  
= Acknowledge (low)  
Sr = Repeat START condition  
P = STOP condition  
A* = No Acknowledge  
W = Write (low)  
R = Read (high)  
Figure 20: Repeated Write  
If a new START or STOP condition occurs within a message, the bus will return to IDLE mode.  
9.11 Internal Supplies  
The internal supply of DA9318L/M is illustrated in Figure 21, the AVDD regulator is powered from IN  
and SYS.  
IN  
4.5 V to 13.5 V  
2.5 V to 5.5 V  
SYS  
AVDD  
AVDD  
LDO  
CAVDD  
POR  
AGND  
Figure 21: Internal Supply  
9.11.1 AVDD  
AVDD is an internal supply that is powered from the higher of IN and SYS. During current doubler  
operation the input supply to the AVDD regulator is IN and the output voltage is 4 V. If IN is not  
supplied, the input supply to the AVDD regulator is SYS. If VSYS is not high enough to supply the  
normal 4 V, the pass device of the AVDD regulator operates as a switch. DA9318L/M remains  
operational as long as VAVDD is above the POR threshold VPOR_FALL  
.
9.12 Internal Oscillator  
The internal high-speed oscillator generates a signal at fOSC, the internal 6 MHz clock reference. In  
the IDLE_LP mode the oscillator goes in to a low-power state and changes the frequency to 1 MHz.  
9.13 Power Modes  
Figure 22 illustrates the power modes of DA9318L/M. The following transitions are high priority and  
override other transitions in the diagram:  
Critical junction temperature (TJUNC > TCRIT  
)
Transition to IDLE mode  
Missing supply (VAVDD < VPOR_FALL  
Transition to NO-POWER mode  
)
Datasheet  
Revision 3.1  
21-Apr-2021  
CFR0011-120-00  
34 of 49  
© 2021 Dialog Semiconductor  
 
DA9318L/M  
High-Efficiency, 10 A, High-Voltage Direct Charger  
NO-POWER  
SHUTDOWN  
VAVDD < VPOR ||  
! PWREN  
VAVDD > VPOR_RISE &&  
PWREN  
TJUNC > TPOR  
Active functions:  
Active functions:  
·
·
·
·
·
AVDD  
RCP  
2-wire interface  
nFAULT, nIRQ  
Adaptor detection  
·
·
·
AVDD  
POR monitoring  
RCP  
All states  
All states  
VTHR_RISE  
INIT  
TJUNC < TCRIT  
CP_EN &&  
! VIN2OUT_MIN &&  
! VIN2OUT_MAX &&  
! VUV_RISE &&  
! VIN_OV &&  
! VBAT_UV &&  
! VBAT_OV &&  
TJUNC < TCRIT  
IDLE_LP  
IDLE  
Active functions:  
ACTIVE  
Active functions:  
AVDD  
Active functions:  
Current doubler  
AVDD  
·
·
·
·
·
·
·
·
·
·
AVDD  
RCP  
2-wire interface  
nFAULT, nIRQ  
Adapter detach  
detection  
·
·
·
·
·
·
EN_IDLE_LP &&  
VUV_RISE &&  
RCP  
2-wire interface  
nFAULT, nIRQ  
Adapter detection  
RCP  
! VTHR_RISE  
2-wire interface  
nFAULT, nIRQ  
Adapter detach  
detection  
TJUNC monitoring  
VIN protection  
VIN2OUT protection  
VBAT protection  
ADC  
! EN_IDLE_LP ||  
! CP_EN ||  
VIN2OUT_MIN ||  
VIN2OUT_MAX ||  
VUV_RISE ||  
·
·
·
·
·
TJUNC monitoring  
VIN protection  
VIN2OUT protection  
VBAT protection  
ADC  
VTHR_RISE ||  
CP_EN  
·
·
·
·
·
·
·
VIN_OV ||  
VBAT_UV ||  
VBAT_OV ||  
IIN sensing  
IOUT sensing  
TJUNC > TCRIT  
Figure 22: Power Modes  
9.13.1 NO-POWER Mode  
DA9318L/M is in NO-POWER mode when VAVDD is below the VPOR_RISE threshold. RCP is active, as  
described in section 9.1.1. When IN or SYS is supplied and PWREN is de-asserted, the internal  
supply AVDD is automatically enabled and when VAVDD rises above the VPOR_RISE threshold,  
DA9318L/M moves to the INIT (initialization) mode.  
9.13.2 SHUTDOWN Mode  
The SHUTDOWN mode activates the internal oscillator, adaptor detection, 2-wire interface, and  
output signals. The 2-wire interface is operational, but as the initialization is not completed, all  
registers will return their power-on-reset values. Transition to INIT mode is triggered when a travel  
adaptor is detected.  
9.13.3 INITIALIZATION Mode  
In the INIT mode, the internal reference, oscillator, and clock generator are enabled. RCP is active,  
as described in section 9.1.1. DA9318L/M goes through a full initialization including an OTP read.  
After the initialization is complete, the status registers and events are updated to match the status of  
the internal protections. The junction temperature is checked, and if it is below the critical level  
(TCRIT), DA9318L/M moves automatically to the IDLE mode.  
9.13.4 IDLE Mode  
In the IDLE mode DA9318L/M is fully operational but the current doubler is not enabled. RCP is  
active, as described in section 9.1.1.  
If the current doubler is enabled (CP_EN = 1), DA9318L/M enables monitoring features and  
evaluates the conditions for start-up:  
Datasheet  
Revision 3.1  
21-Apr-2021  
CFR0011-120-00  
35 of 49  
© 2021 Dialog Semiconductor  
DA9318L/M  
High-Efficiency, 10 A, High-Voltage Direct Charger  
Junction over-temperature (junction temperature exceeds TCRIT  
Output voltage (VBAT_UV_THRSH < VBAT < VBAT_OV_THRSH)  
Input voltage (VUV_RISE < VIN < VOV_ACT  
Input to output voltage (VIN2OUT_MIN, VIN2OUT_MAX  
)
)
)
If the conditions are met, DA9318L/M soft-starts the current doubler and moves to the ACTIVE mode.  
If IN is not supplied, the current doubler is disabled (EN_IDLE_LP = 1) and DA9318L/M moves to the  
LOW-POWER IDLE mode.  
9.13.4.1  
LOW-POWER IDLE Mode  
The LOW-POWER IDLE (IDLE_LP) mode is a low power sub-mode of the IDLE mode. In IDLE mode  
DA9318L/M is fully operational but the current doubler is not enabled. RCP is active, as described in  
section 9.1.1. In IDLE-LP mode, most DA9318L/M features are disabled in order to minimize the  
quiescent current. The only active functions are the AVDD regulator, which ensures the preservation  
of the logic state, the VTHR_RISE monitoring which detects the assertion of a travel adaptor, and the 2-  
wire interface. RCP is active.  
The reduced functionality has the consequence that the status bits in the register map are not  
automatically updated. Otherwise, IDLE-LP mode is transparent to the system. DA9318L/M reacts  
identically to register writes and external events in both modes.  
A transition to IDLE mode is triggered if an input supply is attached and the current doubler is  
enabled.  
The transition to IDLE-LP mode can be also controlled with the EN_IDLE_LP bit. By writing  
EN_IDLE_LP = 0, DA9318L/M never transitions to IDLE-LP mode. If already in IDLE-LP mode,  
writing EN_IDLE_LP = 0 triggers a transition to IDLE mode.  
9.13.5 ACTIVE Mode  
In ACTIVE mode the current doubler is enabled. DA9318L/M moves back to IDLE mode in any of the  
following circumstances:  
The current doubler is disabled (CP_EN = 0)  
The input supply is outside the supported range  
The junction temperature exceeds the critical threshold  
The battery voltage is outside the supported range  
Datasheet  
Revision 3.1  
21-Apr-2021  
CFR0011-120-00  
36 of 49  
© 2021 Dialog Semiconductor  
DA9318L/M  
High-Efficiency, 10 A, High-Voltage Direct Charger  
9.14 Status Flags  
The status flags are listed Table 22.  
Table 22: Status Flags  
Flag  
Description  
Assert  
De-assert  
CHARGER  
_STATE  
Mode of DA9318L/M:  
Automatically updated whenever the state machine changes state.  
All lower-level states should be mapped to one of the four modes.  
000: SHUTDOWN and/or  
INIT  
001: IDLE  
010: IDLE_LP  
011: Reserved  
100: ACTIVE  
S_VBAT_O VBAT over-voltage  
comparator status  
VBAT exceeds VBAT_OV_THRSH  
for longer than tDEGLITCH_OV  
VBAT falls below  
VBAT_OV_THRSH -  
VBAT_PROT_HYS  
V
S_VBAT_U VBAT under-voltage  
VBAT drops below  
VBAT_UV_THRSH for longer than  
tDEGLITCH_UV  
VBAT rises above  
VBAT_UV_THRSH +  
VBAT_PROT_HYS  
V
comparator status  
S_VIN_OV  
VIN over-voltage  
comparator status  
VIN exceeds VOV_IDLE for longer than  
tDEGLITCH_OV  
VIN falls below VOV_IDLE  
VPROT_HYS  
S_VIN_UV  
VIN under-voltage  
comparator status  
VIN drops below VUV_FALL/RISE  
VPROT_HYS for longer than tDEGLITCH_UV  
-
VIN rises above VUV_FALL/RISE  
S_VIN_AD  
P_DET  
Adaptor detection  
comparator status  
VIN rises above VTHR_RISE for longer  
than tDEGLITCH_UV  
VIN drops below VTHR_RISE  
VPROT_HYS  
-
S_TJUNC_ TCRIT comparator status  
CRIT  
TJUNC rises above TCRIT  
TJUNC drops below TCRIT  
TCRIT_HYS  
-
S_TJUNC_ TWARN comparator status  
WARN  
TJUNC rises above  
TJUNC_WARN_THRSH  
TJUNC drops below  
TJUNC_WARN_THRSH -  
TWARN_HYS  
S_VIN2OU  
T_MAX  
VIN/2-VOUT comparator  
status  
VIN/2 - VOUT rises above VIN2OUT_MAX  
for longer than tDEGLITCH  
VIN/2-VOUT drops below  
VIN2OUT_MAX - VIN2OUT_HYS  
S_VIN2OU  
T_MIN  
VIN/2 - VOUT comparator  
status  
VIN/2 - VOUT falls below VIN2OUT_MIN  
for longer than tDEGLITCH  
VIN/2 - VOUT rises above  
VIN2OUT_MIN + VIN2OUT_HYS  
S_IIN_OC  
IIN over-current status  
The ADC is in the continuous  
measurement mode, the value  
programmed in IIN_OC_THRSH is  
non-zero, and the ADC result of the  
IIN channel is greater than or equal  
to IIN_OC_THRSH  
The ADC result of the IIN  
channel is less than  
IIN_OC_THRSH  
S_VBAT_  
WARN  
VBAT monitoring status  
The ADC is in the continuous  
measurement mode, the value  
programmed in  
ADC result of the VBAT  
channel is greater or smaller  
than VBAT_WARN_THRSH  
VBAT_WARN_THRSH is non-zero,  
and the ADC result of the VBAT  
channel is greater than or equal to  
VBAT_WARN_THRSH  
S_ILIM_OC 80 % of ILIM_PK current  
The current exceeds 80 % of ILIM_PK  
(set by CP_ILIM) for longer than  
tDEGLITCH_ILIM_PK  
The current decreases below  
80 % of ILIM_PK longer than  
tDEGLITCH_ILIM_PK  
_WARN  
protection warning status  
S_RAMPU  
P_FAULT  
Current doubler ramp-up  
was unsuccessful  
Current doubler ramp-up time  
reached timeout  
Current doubler ramped  
down and the system goes  
back to IDLE  
Datasheet  
Revision 3.1  
21-Apr-2021  
CFR0011-120-00  
37 of 49  
© 2021 Dialog Semiconductor  
 
DA9318L/M  
High-Efficiency, 10 A, High-Voltage Direct Charger  
10 Register Definition  
Table 23: Register Overview  
Status and Events  
Register  
Addr POR  
7
6
5
4
3
2
1
0
S_VIN_ADP_D  
ET  
STATUS_A  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x00 S_VBAT_OV  
S_VBAT_UV  
S_VIN_OV  
S_VIN_UV  
CHARGER_STATE<2:0>  
S_ILIM_OC_  
S_RAMPUP_F S_TJUNC_CR S_TJUNC_WA S_VIN2OUT_M S_VIN2OUT_  
S_VBAT_W  
ARN  
STATUS_B  
EVENT_A  
EVENT_B  
EVENT_C  
MASK_A  
MASK_B  
MASK_C  
0x00  
S_IIN_OC  
Reserved  
E_IIN_OC  
WARN  
AULT  
IT  
RN  
AX  
MIN  
E_VIN_ADP_D  
ET  
0x00 E_VBAT_OV  
E_VBAT_UV  
E_VIN_OV  
E_VIN_UV  
Reserved  
Reserved  
E_ILIM_OC_  
E_RAMPUP_F E_TJUNC_CR E_TJUNC_WA E_VIN2OUT_M E_VIN2OUT_  
E_VBAT_W  
ARN  
0x00  
WARN  
AULT  
IT  
RN  
AX  
MIN  
E_SAFETY_TI  
MER  
E_ILIM_OC_C E_TJUNC_  
0x00 Reserved  
Reserved  
Reserved  
E_ADC_DONE  
E_WD  
RIT  
POR  
M_VIN_ADP_D  
ET  
0xF0 M_VBAT_OV  
M_VBAT_UV  
M_VIN_OV  
M_VIN_UV  
Reserved  
Reserved  
Reserved  
M_ILIM_OC_  
M_RAMPUP_F M_TJUNC_C  
M_TJUNC_WA M_VIN2OUT_  
M_VIN2OUT_  
MIN  
M_VBAT_W  
ARN  
0xFF  
M_IIN_OC  
WARN  
AULT  
RIT  
RN  
MAX  
M_SAFETY_TI  
MER  
M_ILIM_OC_C M_TJUNC_  
0x1F Reserved  
Reserved  
Reserved  
M_ADC_DONE  
M_WD  
RIT  
POR  
Voltage Protections  
Register  
Addr POR  
7
6
5
5
4
3
2
1
0
VBAT_OV_THRSH<5:0>  
VBAT_CTR  
L_A  
0x08  
0xF3  
VBAT_UV_THRSH<1:0>  
Current and Voltage Monitoring ( ADC)  
Register  
Addr POR  
7
6
4
3
2
1
0
VBAT_CTRL  
_B  
0x09  
0xFF VBAT_WARN_THRSH<7:0>  
IIN_CTRL_A 0x0A 0xD9 IIN_OC_THRSH<7:0>  
Current Doubler  
Register  
Addr POR  
7
6
5
4
3
2
1
0
CP_CTRL_  
A
CP_SWITCHIN  
G
0x0B  
0x0C  
0x10  
Reserved  
CP_FREQ<1:0>  
Reserved  
Reserved  
Reserved  
CP_EN  
CP_CTRL_  
B
0x0F Reserved  
Reserved  
Reserved  
Reserved  
CP_ILIM<3:0>  
Junction Temperature Monitoring  
Register  
Add POR  
7
6
5
4
3
2
1
0
TJUNC_CT  
RL_A  
0x0D 0x01  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
TJUNC_WARN_THRSH<1:0>  
Datasheet  
Revision 3.1  
21-Apr-2021  
CFR0011-120-00  
38 of 49  
© 2021 Dialog Semiconductor  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
DA9318L/M  
High-Efficiency, 10 A, High-Voltage Direct Charger  
ADC  
Register  
Addr  
POR  
7
6
5
4
3
2
1
0
ADC_AUTO_  
CNVRT  
ADC_SINGL  
E_CNVRT  
ADC_CTRL_A 0x0E  
0x0E Reserved  
Reserved  
Reserved  
Reserved  
ADC_AVERAGE<1:0>  
ADC_RES_0  
ADC_RES_1  
ADC_RES_2  
ADC_RES_3  
ADC_RES_4  
ADC_RES_5  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x00 ADC_VIN_RESULT<7:0>  
0x00 ADC_VBATT_RESULT<7:0>  
0x00 ADC_IIN_RESULT<7:0>  
0x00 ADC_IOUT_RESULT<7:0>  
0x00 ADC_TJUNC_RESULT<7:0>  
0x00 ADC_VOUT_RESULT<7:0>  
Interface Control  
Register  
Addr  
0x15  
0x16  
POR  
7
6
5
4
3
2
1
0
WRITE_MOD  
E
I2C_CTRL_A  
I2C_CTRL_B  
0x02 Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
I2C_TO_EN  
I2C_IF_HSM  
Reserved  
0xB2 IF_BASE_ADDR1<6:0>  
Watchdog and Safety Timers  
Register  
Addr  
POR  
7
6
5
4
3
2
1
0
WATCHDOG_ SAFETY_TIM  
TIMER_EN ER_EN  
CONFIG_A  
0x17  
0x01 Reserved  
0x01 Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
EN_IDLE_LP  
TIMER_CTRL  
_A  
0x18  
0x19  
0x1A  
0x1B  
Reserved  
Reserved  
Reserved  
SAFETY_TIMER_LOAD<3:0>  
TIMER_CTRL  
_B  
0xFF WD_TIMER_LOAD<7:0>  
0x00 WD_TIMER_COUNT<7:0>  
WD_TIMER_  
COUNT  
SAFETY_TIM  
ER_COUNT  
0x00 Reserved  
SAFETY_TIMER_COUNT<6:0>  
10.1 Register Descriptions  
10.1.1 Status and Event  
Table 24: STATUS_A (0x00)  
Bit Register Bits  
Description  
Reset  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
7
6
5
4
3
S_VBAT_OV  
S_VBAT_UV  
S_VIN_OV  
VBAT over-voltage comparator status  
VBAT under-voltage comparator status  
VIN over-voltage comparator status  
VIN under-voltage comparator status  
Adaptor detection status  
S_VIN_UV  
S_VIN_ADP_DET  
2:0 CHARGER_STATE  
Mode of DA9318L/M:  
000: SHUTDOWN  
001: IDLE  
010: IDLE_LP  
011: Reserved  
100: ACTIVE  
Datasheet  
Revision 3.1  
21-Apr-2021  
CFR0011-120-00  
39 of 49  
© 2021 Dialog Semiconductor  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
DA9318L/M  
High-Efficiency, 10 A, High-Voltage Direct Charger  
Table 25: STATUS_B (0x01)  
Bit Register Bits  
Description  
Reset  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
7
6
5
4
3
2
1
0
S_ILIM_OC_WARN  
Current protection warning status  
Current doubler ramp-up was unsuccessful  
TCRIT comparator status  
S_RAMPUP_FAULT  
S_TJUNC_CRIT  
S_TJUNC_WARN  
S_VIN2OUT_MAX  
S_VIN2OUT_MIN  
S_IIN_OC  
TWARN comparator status  
VIN/2 - VOUT comparator status  
VIN/2 - VOUT comparator status  
IIN over-current status  
S_VBAT_WARN  
VBAT monitoring status  
Table 26: EVENT_A (0x02)  
Bit Register Bits  
Description  
Reset  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
7
6
5
4
3
E_VBAT_OV  
E_VBAT_UV  
E_VIN_OV  
VBAT over-voltage event (S_VBAT_OV)  
VBAT under-voltage event (S_VBAT_UV)  
VIN over-voltage event (S_VIN_OV)  
VIN under-voltage event (S_VIN_UV)  
Adaptor detection event (S_VIN_ADP_DET)  
E_VIN_UV  
E_VIN_ADP_DET  
2:0 Reserved  
Table 27: EVENT_B (0x03)  
Bit Register Bits  
Description  
Reset  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
7
6
5
4
3
2
1
0
E_ILIM_OC_WARN  
E_RAMPUP_FAULT  
E_TJUNC_CRIT  
E_TJUNC_WARN  
E_VIN2OUT_MAX  
E_VIN2OUT_MIN  
E_IIN_OC  
Current protection warning event (S_ILIM_OC_WARN)  
Current doubler ramp-up failure event (S_RAMPUP_FAULT)  
Junction temperature monitoring event (S_TJUNC_CRIT)  
Junction temperature monitoring event (S_TJUNC_WARN)  
Input-to-output voltage monitoring event (S_VIN2OUT_MAX)  
Input-to-output voltage monitoring event (S_VIN2OUT_MIN)  
IIN over-current event (S_IIN_OC)  
E_VBAT_WARN  
VBAT monitoring event (S_VBAT_WARN)  
Table 28: EVENT_C (0x04)  
Bit Register Bits  
Description  
Reset  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
7:5 Reserved  
4
3
2
1
0
E_ADC_DONE  
E_SAFETY_TIMER  
E_WD  
The ADC measurement was completed  
The safety timer expired  
The watchdog timer expired  
E_ILIM_OC_CRIT  
E_TJUNC_POR  
The peak current limit was exceeded for longer than tDEGLITCH_ILIM_PK  
Junction temperature monitoring event. Reset only in NO-POWER  
mode (VAVDD < VPOR_RISE).  
Datasheet  
Revision 3.1  
21-Apr-2021  
CFR0011-120-00  
40 of 49  
© 2021 Dialog Semiconductor  
DA9318L/M  
High-Efficiency, 10 A, High-Voltage Direct Charger  
Table 29: MASK_A (0x05)  
Bit Register Bits  
Description  
Reset  
0x1  
7
6
5
4
3
M_VBAT_OV  
M_VBAT_UV  
M_VIN_OV  
Masks for interrupts in EVENT_A  
0x1  
0x1  
M_VIN_UV  
0x1  
M_VIN_ADP_DET  
0x0  
2:0 Reserved  
Table 30: MASK_B (0x06)  
Bit Register Bits  
Description  
Reset  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
7
6
5
4
3
2
1
0
M_ILIM_OC_WARN  
M_RAMPUP_FAULT  
M_TJUNC_CRIT  
M_TJUNC_WARN  
M_VIN2OUT_MAX  
M_VIN2OUT_MIN  
M_IIN_OC  
Masks for interrupts in EVENT_B  
M_VBAT_WARN  
Table 31: MASK_C (0x07)  
Bit Register Bits  
Description  
Reset  
7:5 Reserved  
Masks for interrupts in EVENT_C  
4
3
2
1
0
M_ADC_DONE  
M_SAFETY_TIMER  
M_WD  
0x1  
0x1  
0x1  
0x1  
0x1  
M_ILIM_OC_CRIT  
M_TJUNC_POR  
10.1.2 Voltage Protection  
Table 32: VBAT_CTRL_A (0x08)  
Bit Register Bits  
Description  
Reset  
7:2 VBAT_OV_THRSH  
Battery over-voltage threshold (4.0 V to 5.5 V). The maximum value  
is 5.5 V (0x3C). Any value greater than the maximum will be stored  
in the register but tied to the maximum internally.  
0x3C  
VBAT_OV_THRSH = 4.0 + N * 0.025 V  
Where N = the decimal number represented by the  
VBAT_OV_THRSH setting.  
1:0 VBAT_UV_THRSH  
Battery under-voltage threshold (2.4 V to 3.0 V) :  
0x3  
00: 2.4 V  
01: 2.6 V  
10: 2.8 V  
11: 3.0 V  
Datasheet  
Revision 3.1  
21-Apr-2021  
CFR0011-120-00  
41 of 49  
© 2021 Dialog Semiconductor  
DA9318L/M  
High-Efficiency, 10 A, High-Voltage Direct Charger  
10.1.3 Current and Voltage Monitoring  
Table 33: VBAT_CTRL_B (0x09)  
Bit Register Bits  
Description  
Reset  
7:0 VBAT_WARN_THRSH  
Warning threshold for the battery voltage. A value 0x0 will disable  
the monitoring.  
0xFF  
VBAT_WARN_THRSH = 2.1784 + (N * 0.01385) V  
Where N = the decimal number represented by the  
VBAT_WARN_THRSH setting  
Table 34: IIN_CTRL_A (0x0A)  
Bit Register Bits  
Description  
Reset  
7:0 IIN_OC_THRSH  
Threshold for the input over-current. A value 0x0 will disable the  
monitoring.  
0xD9  
10.1.4 Current Doubler  
Table 35: CP_CTRL_A (0x0B)  
Bit Register Bits  
Description  
Reset  
7
6
Reserved  
CP_SWITCHING  
Current doubler is switching  
0X0  
0X1  
5:4 CP_FREQ  
Switching frequency of the current doubler:  
00: 250 kHz  
01: 500 kHz  
10: 1 MHz  
11: 1.5 MHz  
3:1 Reserved  
0
CP_EN  
Main current doubler enable  
0X0  
Table 36: CP_CTRL_B (0x0C)  
Bit Register Bits  
7:4 Reserved  
Description  
Reset  
3:0 CP_ILIM  
Current doubler peak current limit (programmable in 450 mA steps):  
0xF  
0000: 4.8 A  
1111: 11.55 A  
10.1.5 Junction Temperature  
Table 37: TJUNC_CTRL_A (0x0D)  
Bit Register Bits  
Description  
Reset  
7:2 Reserved  
1:0 TJUNC_WARN_THRSH Threshold for junction temperature warning:  
0x1  
00: 70 ºC  
01: 80 ºC  
10: 100 ºC  
11: 120 ºC  
Datasheet  
Revision 3.1  
21-Apr-2021  
CFR0011-120-00  
42 of 49  
© 2021 Dialog Semiconductor  
DA9318L/M  
High-Efficiency, 10 A, High-Voltage Direct Charger  
10.1.6 ADC  
Table 38: ADC_CTRL_A (0x0E)  
Bit Register Bits  
7:4 Reserved  
Description  
Reset  
3:2 ADC_AVERAGE  
Defines the number of measurements that are averaged for each  
ADC result. ADC_AVERAGE = 2N.  
0x3  
1
0
ADC_AUTO_CNVRT  
ADC_SINGLE_CNVRT  
Enables the continuous ADC measurements  
0x1  
0x0  
Triggers the ADC measurement. When this bit is set during a write  
access, the MSBs are ignored. When the measurement is done  
(E_ADC_DONE) the results can be read from ADC_RES_x.  
Table 39: ADC_RES_0 (0x0F)  
Bit Register Bits  
Description  
Reset  
7:0 ADC_VIN_RESULT  
ADC VIN measurement result  
0x0  
Table 40: ADC_RES_1 (0x10)  
Bit Register Bits  
Description  
Reset  
7:0 ADC_VBATT_RESULT  
ADC VBAT measurement result  
0x0  
Table 41: ADC_RES_2 (0x11)  
Bit Register Bits  
Description  
Reset  
7:0 ADC_IIN_RESULT  
ADC IIN measurement result  
0x0  
Table 42: ADC_RES_3 (0x12)  
Bit Register Bits  
Description  
Reset  
7:0 ADC_IOUT_RESULT  
ADC IOUT measurement result  
0x0  
Table 43: ADC_RES_4 (0x13)  
Bit Register Bits  
Description  
Reset  
7:0 ADC_TJUNC_RESULT  
ADC TJUNC measurement result  
0x0  
Table 44: ADC_RES_5 (0x14)  
Bit Register Bits  
Description  
Reset  
7:0 ADC_VOUT_RESULT  
ADC VOUT measurement result  
0x0  
10.1.7 Interface Control  
Table 45: I2C_CTRL_A (0x15)  
Bit Register Bits  
Description  
Reset  
7:5 Reserved  
4
WRITE_MODE  
Write mode of the 2-wire interface:  
0: Consecutive write mode  
1: Repeated write mode  
0x0  
3:2 Reserved  
Datasheet  
Revision 3.1  
21-Apr-2021  
CFR0011-120-00  
43 of 49  
© 2021 Dialog Semiconductor  
DA9318L/M  
High-Efficiency, 10 A, High-Voltage Direct Charger  
Bit Register Bits  
Description  
Reset  
0x1  
1
0
I2C_TO_EN  
I2C_IF_HSM  
Automatic interface reset  
Interface operates continuously in High-speed mode  
0x0  
Table 46: I2C_CTRL_B (0x16)  
Bit Register Bits  
Description  
Reset  
7:1 IF_BASE_ADDR1  
0:0 Reserved  
Slave address of the device  
0x59  
10.1.8 Watchdog and Safety Timers  
Table 47: CONFIG_A (0x17)  
Bit Register Bits  
Description  
Reset  
7:  
3
Reserved  
2
WATCHDOG_TIMER_E Enables the watchdog timer  
N
0x0  
1
0
SAFETY_TIMER_EN  
EN_IDLE_LP  
Enables the pre-charge / CCCV timer  
Disables the LOW-POWER IDLE mode  
0x0  
0x1  
Table 48: TIMER_CTRL_A (0x18)  
Bit Register Bits  
Description  
Reset  
7:4 Reserved  
3:0 SAFETY_TIMER_LOAD Defines safety timer duration (tSFTY)  
0x1  
Table 49: TIMER_CTRL_B (0x19)  
Bit Register Bits  
Description  
Reset  
7:0 WD_TIMER_LOAD  
Watchdog timer pre-load and re-load. Writing the register when the  
charger is not enabled sets the pre-load value. The pre-load value is  
automatically loaded in to WD_TIMER_COUNT the next time the  
charger starts. Writing the register during charging loads the written  
value in to WD_TIMER_COUNT.  
0xFF  
Table 50: WD_TIMER_COUNT (0x1A)  
Bit Register Bits  
Description  
Reset  
7:0 WD_TIMER_COUNT  
Count value of the watchdog timer. Decremented at 1 s intervals  
when charging is enabled. Reading the register gives the current  
timer value. Writing the register has no affect.  
0x0  
Table 51: SAFETY_TIMER_COUNT (0x1B)  
Bit Register Bits  
Description  
Reset  
7
Reserved  
6:  
0
SAFETY_TIMER_COU  
NT  
Count value of the safety timer. Incremented at 15 min intervals  
when charging is enabled. Reading the register gives the current  
timer value. Writing the register has no affect.  
0x0  
Datasheet  
Revision 3.1  
21-Apr-2021  
CFR0011-120-00  
44 of 49  
© 2021 Dialog Semiconductor  
DA9318L/M  
High-Efficiency, 10 A, High-Voltage Direct Charger  
11 Package Information  
11.1 Package Outline  
Figure 23: Package Outline Drawing  
Datasheet  
Revision 3.1  
21-Apr-2021  
CFR0011-120-00  
45 of 49  
© 2021 Dialog Semiconductor  
DA9318L/M  
High-Efficiency, 10 A, High-Voltage Direct Charger  
11.2 Moisture Sensitivity Level  
The Moisture Sensitivity Level (MSL) is an indicator for the maximum allowable time period (floor  
lifetime) in which a moisture sensitive plastic device, once removed from the dry bag, can be  
exposed to an environment with a specified maximum temperature and a maximum relative humidity  
before the solder reflow process. Table 52 defines the MSL classification.  
For detailed information on MSL levels refer to the IPC/JEDEC standard J-STD-020, which can be  
downloaded from http://www.jedec.org.  
The WLCSP package is qualified for MSL 1.  
Table 52: MSL Classification  
MSL Level  
MSL 4  
Floor Lifetime  
72 hours  
168 hours  
4 weeks  
Conditions  
30 °C / 60 % RH  
30 °C / 60 % RH  
30 °C / 60 % RH  
30 °C / 60 % RH  
30 °C / 85 % RH  
MSL 3  
MSL 2A  
MSL 2  
1 year  
MSL 1  
unlimited  
11.3 WLCSP Handling  
Manual handling of WLCSP packages should be reduced to the absolute minimum. In cases where it  
is still necessary, a vacuum pick-up tool should be used. In extreme cases plastic tweezers could be  
used, but metal tweezers are not acceptable, since contact may easily damage the silicon chip.  
Removal of a WLCSP package will cause damage to the solder balls. Therefore a removed sample  
cannot be reused.  
WLCSP packages are sensitive to visible and infrared light. Precautions should be taken to properly  
shield the chip in the final product.  
11.4 Soldering Information  
Refer to the IPC/JEDEC standard J-STD-020 for relevant soldering information. This document can  
be downloaded from http://www.jedec.org.  
Datasheet  
Revision 3.1  
21-Apr-2021  
CFR0011-120-00  
46 of 49  
© 2021 Dialog Semiconductor  
 
DA9318L/M  
High-Efficiency, 10 A, High-Voltage Direct Charger  
12 Ordering Information  
The ordering number consists of the part number followed by a suffix indicating the packing method.  
For details and availability, please consult Dialog Semiconductor’s customer portal or your local sales  
representative.  
Table 53: Ordering Information  
Pack  
Quantity  
Part Number  
Comment  
Package  
Size (mm)  
Shipment Form  
8 A output  
current  
DA9318L-05UF2  
DA9318M-06UF2  
64 WLCSP  
64 WLCSP  
3.62 mm x 3.78 mm Tape and reel  
3.62 mm x 3.78 mm Tape and reel  
7,500  
10 A output  
current  
7,500  
Datasheet  
Revision 3.1  
21-Apr-2021  
CFR0011-120-00  
47 of 49  
© 2021 Dialog Semiconductor  
DA9318L/M  
High-Efficiency, 10 A, High-Voltage Direct Charger  
Appendix A Application Information  
A.1 Suggested PCB Layout  
CBS  
0402  
TOP Switching Power  
LYR2 PGND Plane  
LYR3 VIN/VOUT  
CFLY  
0603  
LYR4 Signal  
LYR5 AGND  
BOT - Signal  
CFLY  
0603  
MID1  
C1P  
C1P  
BS1  
C1N  
C1N  
CMID  
MID1  
C1P  
OUT1  
OUT1  
C1N  
PGND1  
0402  
MID1  
C1P  
OUT1  
OUT1  
CC1  
PGND1  
CAVDD  
0402  
nIRQ  
OUT1  
OUT1  
OUT2  
OUT1  
OUT1  
OUT2  
VINS  
AVDD  
SUB  
SYS  
IN  
IN  
SCL  
OUT1  
nCPEN  
VBATP  
CIN  
COUT  
0402  
IN  
AGND  
NC  
0402  
IN  
IN  
SDA  
OUT2  
VOUTS  
VBATN  
nFAULT  
PWREN  
CSYS  
0402  
MID2  
C2P  
OUT2  
OUT2  
CC2  
PGND2  
CMID  
MID2  
C2P  
OUT2  
OUT2  
C2N  
PGND2  
0402  
MID2  
C2P  
C2P  
BS2  
C2N  
C2N  
CFLY  
0603  
CFLY  
0603  
CBS  
0402  
Figure 24: Suggested PCB Layout  
Datasheet  
Revision 3.1  
21-Apr-2021  
CFR0011-120-00  
48 of 49  
© 2021 Dialog Semiconductor  
DA9318L/M  
High-Efficiency, 10 A, High-Voltage Direct Charger  
Status Definitions  
Revision  
Datasheet Status  
Product Status  
Definition  
This datasheet contains the design specifications for product development.  
Specifications may be changed in any manner without notice.  
1.<n>  
Target  
Development  
This datasheet contains the specifications and preliminary characterization  
data for products in pre-production. Specifications may be changed at any  
time without notice in order to improve the design.  
2.<n>  
3.<n>  
Preliminary  
Qualification  
This datasheet contains the final specifications for products in volume  
production. The specifications may be changed at any time in order to  
improve the design, manufacturing and supply. Major specification changes  
are communicated via Customer Product Notifications. Datasheet changes  
are communicated via www.dialog-semiconductor.com.  
Final  
Production  
Archived  
This datasheet contains the specifications for discontinued products. The  
information is provided for reference only.  
4.<n>  
Obsolete  
Disclaimer  
Information in this document is believed to be accurate and reliable. However, Dialog Semiconductor does not give any representations or  
warranties, expressed or implied, as to the accuracy or completeness of such information. Dialog Semiconductor furthermore takes no  
responsibility whatsoever for the content in this document if provided by any information source outside of Dialog Semiconductor.  
Dialog Semiconductor reserves the right to change without notice the information published in this document, including without limitation the  
specification and the design of the related semiconductor products, software and applications.  
Applications, software, and semiconductor products described in this document are for illustrative purposes only. Dialog Semiconductor makes  
no representation or warranty that such applications, software and semiconductor products will be suitable for the specified use without further  
testing or modification. Unless otherwise agreed in writing, such testing or modification is the sole responsibility of the customer and Dialog  
Semiconductor excludes all liability in this respect.  
Customer notes that nothing in this document may be construed as a license for customer to use the Dialog Semiconductor products, software  
and applications referred to in this document. Such license must be separately sought by customer with Dialog Semiconductor.  
All use of Dialog Semiconductor products, software and applications referred to in this document are subject to Dialog Semiconductor’s Standard  
Terms and Conditions of Sale, available on the company website (www.dialog-semiconductor.com) unless otherwise stated.  
Dialog and the Dialog logo are trademarks of Dialog Semiconductor plc or its subsidiaries. All other product or service names are the property of  
their respective owners.  
© 2021 Dialog Semiconductor. All rights reserved.  
RoHS Compliance  
Dialog Semiconductor’s suppliers certify that its products are in compliance with the requirements of Directive 2011/65/EU of the European  
Parliament on the restriction of the use of certain hazardous substances in electrical and electronic equipment. RoHS certificates from our  
suppliers are available on request.  
Contacting Dialog Semiconductor  
United Kingdom (Headquarters)  
Dialog Semiconductor (UK) LTD  
Phone: +44 1793 757700  
North America  
Hong Kong  
China (Shenzhen)  
Dialog Semiconductor Inc.  
Phone: +1 408 845 8500  
Dialog Semiconductor Hong Kong  
Phone: +852 2607 4271  
Dialog Semiconductor China  
Phone: +86 755 2981 3669  
Germany  
Japan  
Korea  
China (Shanghai)  
Dialog Semiconductor GmbH  
Phone: +49 7021 805-0  
Dialog Semiconductor K. K.  
Phone: +81 3 5769 5100  
Dialog Semiconductor Korea  
Phone: +82 2 3469 8200  
Dialog Semiconductor China  
Phone: +86 21 5424 9058  
The Netherlands  
Taiwan  
Dialog Semiconductor B.V.  
Phone: +31 73 640 8822  
Dialog Semiconductor Taiwan  
Phone: +886 281 786 222  
Email:  
Web site:  
enquiry@diasemi.com  
www.dialog-semiconductor.com  
Datasheet  
Revision 3.1  
21-Apr-2021  
CFR0011-120-00  
49 of 49  
© 2021 Dialog Semiconductor  

相关型号:

DA9318L-05UF2

High-Efficiency, 10 A, High-Voltage Direct Charger
DIALOG

DA9318M

High-Efficiency, 10 A, High-Voltage Direct Charger
DIALOG

DA9318M-06UF2

High-Efficiency, 10 A, High-Voltage Direct Charger
DIALOG

DA945-B-B-B

Toggle Switch, SPST, Latched, Wire Terminal, Bat Type Actuator, Panel Mount-threaded
Carling Techn

DA945-B-B-W

Toggle Switch, SPST, Latched, Wire Terminal, Bat Type Actuator, Panel Mount-threaded
Carling Techn

DA945-B-W-B

Toggle Switch, SPST, Latched, Wire Terminal, Bat Type Actuator, Panel Mount-threaded
Carling Techn

DA945-P-B-B

Toggle Switch, SPST, Latched, Wire Terminal, Paddle Type Actuator, Panel Mount-threaded,
Carling Techn

DA945-P-B-W

暂无描述
Carling Techn

DA945-P-W-B

Toggle Switch, SPST, Latched, Wire Terminal, Paddle Type Actuator, Panel Mount-threaded
Carling Techn

DA945-P-W-W

Toggle Switch, SPST, Latched, Wire Terminal, Paddle Type Actuator, Panel Mount-threaded
Carling Techn

DAA-11W1P-NMB-K52

Ensuring over 20 years of mission critical communication between two worlds across 250,000,000 milies
ITT

DAA-11W1S-NMB-K52

Ensuring over 20 years of mission critical communication between two worlds across 250,000,000 milies
ITT