SLG47502 [DIALOG]

Low Voltage GreenPAK Programmable Mixed-Signal Matrix;
SLG47502
型号: SLG47502
厂家: Dialog Semiconductor    Dialog Semiconductor
描述:

Low Voltage GreenPAK Programmable Mixed-Signal Matrix

文件: 总191页 (文件大小:2867K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
General Description  
The SLG47502/03 provides a small, low voltage and low power component for commonly used mixed-signal functions. The  
user creates their circuit design by programming the one time programmable (OTP) Non-Volatile Memory (NVM) to configure  
the interconnect logic, the IO Pins, and the macrocells of the SLG47502/03. This highly versatile device allows a wide variety of  
mixed-signal functions to be designed within a very small, low power single integrated circuit.  
Key Features  
Two High Speed General Purpose Analog Comparators  
(ACMPxH)  
Power Supply  
1.1 V ≤ VDD ≤ 1.3 V  
Integrated Voltage References (Vref)  
Fifteen Combination Function Macrocells  
Operating Temperature Range: -40 °C to 85 °C  
RoHS Compliant/Halogen-Free  
Available Package  
Three Selectable DFF/LATCH or 2-bit LUTs or Shift  
Registers  
One Selectable Programmable Pattern Generator or  
2-bit LUT  
Ten Selectable DFF/LATCH or 3-bit LUTs or  
Shift Registers  
One Selectable DFF/LATCH or 4-bit LUTs or  
Shift Register  
12-pin STQFN: 1.6 mm x 1.6 mm x 0.55 mm, 0.4 mm  
pitch  
16-pin MSTQFN: 1.6 mm x 1.6 mm x 0.55 mm, 0.4 mm  
pitch  
Eight Multi-Function Macrocells  
Seven Selectable DFF/LATCH or 3-bit LUTs + 8-bit  
Delay/Counters  
One Selectable DFF/LATCH or 4-bit LUT + 16-bit  
Delay/Counter  
Serial Communications  
I2C Protocol Interface  
Programmable Delay with Edge Detector Output  
Deglitch Filter or Edge Detector  
Two Oscillators (OSC)  
2.048 kHz Oscillator  
25 MHz Oscillator  
Analog Temperature Sensor  
Power-On Reset (POR) with CRC Check  
Read Back Protection (Read Lock)  
Applications  
Notebook and Tablet PCs  
Smartphones and Fitness Bands  
Personal Computers and Servers  
PC Peripherals  
Consumer Electronics  
Data Communications Equipment  
Handheld and Portable Electronics  
Datasheet  
16-Jul-2021  
Revision 2.0  
1 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Contents  
General Description.................................................................................................................................................................1  
Key Features.............................................................................................................................................................................1  
Applications..............................................................................................................................................................................1  
1 Block Diagram ......................................................................................................................................................................7  
2 Pinout ....................................................................................................................................................................................8  
2.1 Pin Configuration - STQFN- 12L ............................................................................................................................8  
2.2 Pin Configuration - MSTQFN- 16L .........................................................................................................................9  
3 Characteristics ...................................................................................................................................................................13  
3.1 Absolute Maximum Ratings .................................................................................................................................13  
3.2 Electrostatic Discharge Ratings ...........................................................................................................................13  
3.3 Recommended Operating Conditions .................................................................................................................13  
3.4 Electrical Characteristics ......................................................................................................................................14  
3.5 I2C Pins Electrical Characteristics ........................................................................................................................16  
3.6 Macrocells Current Consumption .........................................................................................................................18  
3.7 Timing Characteristics ..........................................................................................................................................19  
3.8 Counter/Delay Characteristics .............................................................................................................................21  
3.9 Oscillator Characteristics .....................................................................................................................................21  
3.10 ACMP Characteristics ........................................................................................................................................22  
4 User Programmability ........................................................................................................................................................24  
5 IO Pins .................................................................................................................................................................................25  
5.1 GPIO Pins ............................................................................................................................................................25  
5.2 GPI Pin .................................................................................................................................................................25  
5.3 Pull-Up/Down Resistors .......................................................................................................................................25  
5.4 Fast Pull-up/down during Power-up .....................................................................................................................25  
5.5 GPI Structure .......................................................................................................................................................26  
5.6 GPIO with I2C Mode IO Structure ........................................................................................................................27  
5.7 Matrix OE IO Structure .........................................................................................................................................28  
5.8 IO Typical Performance .......................................................................................................................................29  
6 Connection Matrix ..............................................................................................................................................................32  
6.1 Matrix Input Table ...............................................................................................................................................33  
6.2 Matrix Output Table ..............................................................................................................................................35  
6.3 Connection Matrix Virtual Inputs ..........................................................................................................................38  
7 Combination Function Macrocells ....................................................................................................................................39  
7.1 2-Bit LUT or D Flip-Flop or Shift Register Macrocells ..........................................................................................39  
7.2 2-bit LUT or Programmable Pattern Generator ....................................................................................................44  
7.3 3-Bit LUT or D Flip-Flop with Set/Reset or Shift Register Macrocells ..................................................................46  
7.4 4-Bit LUT or D Flip-Flop with Set/Reset or Shift Register Macrocell ....................................................................58  
8 Multi-Function Macrocells .................................................................................................................................................62  
8.1 3-Bit LUT or DFF/Latch with 8-Bit Counter/Delay Macrocells ..............................................................................62  
8.2 4-Bit LUT or DFF/Latch with 16-Bit Counter/Delay Macrocell ..............................................................................71  
8.3 CNT/DLY Timing Diagrams ..................................................................................................................................74  
8.4 FSM Timing Diagrams .........................................................................................................................................81  
8.5 Wake and Sleep Controller ..................................................................................................................................84  
9 Analog Comparators ..........................................................................................................................................................89  
9.1 ACMP0H Block Diagram ......................................................................................................................................90  
9.2 ACMP1H Block Diagram ......................................................................................................................................91  
9.3 ACMP Typical Performance .................................................................................................................................92  
10 Programmable Delay/Edge Detector ..............................................................................................................................93  
10.1 Programmable Delay Timing Diagram - Edge Detector Output .........................................................................93  
11 Additional Logic Function. Deglitch Filter .....................................................................................................................94  
12 Voltage Reference ............................................................................................................................................................95  
12.1 Voltage Reference Overview .............................................................................................................................95  
12.2 Vref Selection Table ...........................................................................................................................................95  
12.3 Vref Block Diagram ...........................................................................................................................................96  
12.4 Vref Typical Performance ...................................................................................................................................97  
Datasheet  
16-Jul-2021  
Revision 2.0  
2 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
13 Clocking ..........................................................................................................................................................................100  
13.1 OSC General description .................................................................................................................................100  
13.2 Oscillator0 (2.048 kHz) .....................................................................................................................................101  
13.3 Oscillator1 (25 MHz) ........................................................................................................................................102  
13.4 CNT/DLY Clock Scheme ..................................................................................................................................103  
13.5 External Clocking .............................................................................................................................................103  
13.6 Oscillators Accuracy .........................................................................................................................................104  
13.7 Oscillators Settling time ....................................................................................................................................106  
14 Power-On Reset ..............................................................................................................................................................108  
14.1 General Operation ............................................................................................................................................108  
14.2 POR Sequence ................................................................................................................................................109  
14.3 Macrocells Output States During POR Sequence ...........................................................................................109  
15 I2C Serial Communications Macrocell ..........................................................................................................................112  
15.1 I2C Serial Communications Macrocell Overview ..............................................................................................112  
15.2 I2C Serial Communications Device Addressing ...............................................................................................112  
15.3 I2C Serial General Timing ................................................................................................................................113  
15.4 I2C Serial Communications Commands ...........................................................................................................113  
15.5 I2C Serial Command Register Map ..................................................................................................................118  
16 Analog Temperature Sensor .........................................................................................................................................120  
17 Register Definitions .......................................................................................................................................................121  
17.1 Register Map ....................................................................................................................................................121  
18 Package Top Marking Definitions .................................................................................................................................180  
18.1 STQFN 12L 1.6 mm x 1.6 mm x 0.55 mm 0.4P FC .........................................................................................180  
18.2 MSTQFN 16L 1.6 mm x 1.6 mm x 0.55 mm 0.4P ............................................................................................180  
19 Package Information ......................................................................................................................................................181  
19.1 Package outlines for STQFN 12L 1.6 mm x 1.6 mm x 0.55 MM 0.4P FC Package .........................................181  
19.2 Package outlines for MSTQFN 16L 1.6 mm x 1.6 mm x 0.55 MM 0.4P Package ...........................................182  
19.3 Moisture Sensitivity Level .................................................................................................................................183  
19.4 STQFN Handling ..............................................................................................................................................183  
19.5 Soldering Information .......................................................................................................................................183  
20 Ordering Information .....................................................................................................................................................183  
20.1 Tape and Reel Specifications ..........................................................................................................................183  
20.2 Carrier Tape Drawing and Dimensions ............................................................................................................184  
21 Layout Guidelines ..........................................................................................................................................................185  
21.1 STQFN 12L 1.6 mm x 1.6 mm x 0.55 mm 0.4P FC Package ..........................................................................185  
21.2 MSTQFN 16L 1.6 mm x 1.6 mm x 0.55 mm 0.4P Package .............................................................................186  
Glossary................................................................................................................................................................................187  
Revision History...................................................................................................................................................................190  
Datasheet  
16-Jul-2021  
Revision 2.0  
3 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Figures  
Figure 1: Block Diagram.............................................................................................................................................................7  
Figure 2: Steps to Create a Custom GreenPAK Device...........................................................................................................24  
Figure 3: GPI Structure Diagram..............................................................................................................................................26  
Figure 4: GPIO with I2C Mode IO Structure Diagram...............................................................................................................27  
Figure 5: Matrix OE IO Structure Diagram...............................................................................................................................28  
Figure 6: Typical High Level Output Current vs. High Level Output Voltage at T = 25 °C.......................................................29  
Figure 7: Typical Low Level Output Current vs. Low Level Output Voltage, 1x Drive at T = 25 °C, Full Range......................29  
Figure 8: Typical Low Level Output Current vs. Low Level Output Voltage, 1x Drive at T = 25 °C .........................................30  
Figure 9: Typical Low Level Output Current vs. Low Level Output Voltage, 2x Drive at T = 25 °C, Full Range......................30  
Figure 10: Typical Low Level Output Current vs. Low Level Output Voltage, 2x Drive at T = 25 °C .......................................31  
Figure 11: Connection Matrix...................................................................................................................................................32  
Figure 12: Connection Matrix Usage Example.........................................................................................................................32  
Figure 13: 2-bit LUT0 or DFF0 or Shift Register0 ....................................................................................................................40  
Figure 14: 2-bit LUT1 or DFF1 or Shift Register1 ....................................................................................................................40  
Figure 15: 2-bit LUT2 or DFF2 or Shift Register2 ....................................................................................................................41  
Figure 16: DFF0 to DFF2 and Shift Register0 to Shift Register2 Operation............................................................................41  
Figure 17: DFF0 to DFF2 and Shift Register0 to Shift Register2 Operation with DFF Initial Value = 1...................................42  
Figure 18: DFF0 to DFF2 and Shift Register0 to Shift Register2 Operation with Initial Value = b0001...................................43  
Figure 19: 2-bit LUT3 or PGen.................................................................................................................................................45  
Figure 20: PGen Timing Diagram.............................................................................................................................................45  
Figure 21: 3-bit LUT0 or DFF3 or Shift Register 3 ...................................................................................................................47  
Figure 22: 3-bit LUT1 or DFF4 or Shift Register 4 ...................................................................................................................48  
Figure 23: 3-bit LUT2 or DFF5 or Shift Register 5 ...................................................................................................................48  
Figure 24: 3-bit LUT3 or DFF6 or Shift Register 6 ...................................................................................................................49  
Figure 25: 3-bit LUT4 or DFF7 or Shift Register 7 ...................................................................................................................49  
Figure 26: 3-bit LUT5 or DFF8 or Shift Register 8 ...................................................................................................................50  
Figure 27: 3-bit LUT6 or DFF9 or Shift Register 9 ...................................................................................................................50  
Figure 28: 3-bit LUT7 or DFF10 or Shift Register 10 ...............................................................................................................51  
Figure 29: 3-bit LUT8 or DFF11 or Shift Register 11 ...............................................................................................................51  
Figure 30: 3-bit LUT9 or DFF12 or Shift Register 12 ...............................................................................................................52  
Figure 31: DFF3 to DFF12 and Shift Register 3 to Shift Register 12 Operation......................................................................52  
Figure 32: DFF3 to DFF12 and Shift Register 3 to Shift Register 12 Operation, nReset, Initial Value: b10011011................53  
Figure 33: DFF3 to DFF12 and Shift Register3 to Shift Register12 Operation, nReset, Initial Value: b10011011, Case2......53  
Figure 34: DFF3 to DFF12 and Shift Register 3 to Shift Register 12 Operation, nReset, Initial Value: b00011011................54  
Figure 35: DFF3 to DFF12 and Shift Register 3 to Shift Register 12 Operation, nSet, Initial Value: b00011010....................54  
Figure 36: DFF3 to DFF12 and Shift Register 3 to Shift Register 12 Operation, nSet, Initial Value: b00011010, Case 2.......55  
Figure 37: DFF3 to DFF12 and Shift Register 3 to Shift Register 12 Operation, nSet, Initial Value: b10011010....................55  
Figure 38: 4-bit LUT0 or DFF13 or Shift Register 13 ...............................................................................................................58  
Figure 39: DFF13 and Shift Register 13 Operation..................................................................................................................59  
Figure 40: DFF13 and Shift Register 13 Operation, nSet, Initial Value: xA7B2.......................................................................59  
Figure 41: DFF13 and Shift Register 13 Operation, nReset, Initial Value: xA7B2...................................................................60  
Figure 42: Possible Connections Inside Multi-Function Macrocell...........................................................................................62  
Figure 43: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT10/DFF15, CNT/DLY1) .................................................63  
Figure 44: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT11/DFF16, CNT/DLY2) .................................................64  
Figure 45: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT12/DFF17, CNT/DLY3) .................................................65  
Figure 46: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT13/DFF18, CNT/DLY4) .................................................66  
Figure 47: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT14/DFF19, CNT/DLY5) .................................................67  
Figure 48: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT15/DFF20, CNT/DLY6) .................................................68  
Figure 49: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT16/DFF21, CNT/DLY7) .................................................69  
Figure 50: 4-bit LUT1 or CNT/DLY0.........................................................................................................................................72  
Figure 51: Delay Macrocell Behavior with Different Oscillators Options (Edge Select: Both, Counter Data: 3).......................74  
Figure 52: Delay Mode Timing Diagram (Rising, Falling, and Both Edge Detection)...............................................................75  
Figure 53: Counter Mode Timing Diagram without Two DFFs Synced Up ..............................................................................75  
Figure 54: Counter Mode Timing Diagram with Two DFFs Synced Up ...................................................................................76  
Figure 55: One-Shot Function Timing Diagram........................................................................................................................77  
Datasheet  
16-Jul-2021  
Revision 2.0  
4 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Figure 56: Frequency Detection Mode Timing Diagram...........................................................................................................78  
Figure 57: Edge Detection Mode Timing Diagram...................................................................................................................79  
Figure 58: Delayed Edge Detection Mode Timing Diagram.....................................................................................................80  
Figure 59: Counter Value, Counter Data = 3............................................................................................................................81  
Figure 60: CNT/FSM Mode Timing Diagram (Reset Rising Edge Mode, OSC is Forced On, UP=0) for CNT Data = 3..........81  
Figure 61: CNT/FSM Mode Timing Diagram (Set Rising Edge Mode, OSC is Forced On, UP = 0) for CNT Data = 3............82  
Figure 62: CNT/FSM Mode Timing Diagram (Reset Rising Edge Mode, OSC is Forced On, UP = 1) for CNT Data = 3........82  
Figure 63: CNT/FSM Mode Timing Diagram (Set Rising Edge Mode, OSC is Forced On, UP = 1) for CNT Data = 3............83  
Figure 64: DLY/FSM Mode, Falling Edge Delay, OSC is Forced On, DFFs Synced Up, UP = 0, CNT Data = 3 ....................83  
Figure 65: One Shot/FSM Mode, Rising Edge, OSC is Forced On, DFFs Synced Up, UP = 0, CNT Data = 3.......................83  
Figure 66: Freq. Detector/FSM Mode, Rising Edge, OSC is Forced On, DFFs Synced Up, UP = 0, CNT Data = 3...............84  
Figure 67: Delayed Edge Detector/FSM Mode, Rising Edge, OSC is Forced On, DFFs Synced Up, UP = 0, CNT Data = 3.84  
Figure 68: Wake/Sleep Controller............................................................................................................................................85  
Figure 69: Wake/Sleep Timing Diagram, Normal Wake Mode, Counter Reset is Used ..........................................................86  
Figure 70: Wake/Sleep Timing Diagram, Short Wake Mode, Counter Reset is Used .............................................................86  
Figure 71: Wake/Sleep Timing Diagram, Normal Wake Mode, Counter Set is Used ..............................................................87  
Figure 72: Wake/Sleep Timing Diagram, Short Wake Mode, Counter Set is Used .................................................................87  
Figure 73: ACMP0H Block Diagram.........................................................................................................................................90  
Figure 74: ACMP1H Block Diagram.........................................................................................................................................91  
Figure 75: Typical Propagation Delay vs. Vref for ACMPxH at T = 25 °C, VDD = 1.1 V to 1.3 V, Gain = 1, Hysteresis = 0....92  
Figure 76: ACMPxH Input Offset Voltage vs. Vref at T = -40 °C to 85 °C, VDD = 1.1 V to 1.3 V .............................................92  
Figure 77: Programmable Delay ..............................................................................................................................................93  
Figure 78: Edge Detector Output .............................................................................................................................................93  
Figure 79: Deglitch Filter/Edge Detector Simplified Structure..................................................................................................94  
Figure 80: Voltage Reference Block Diagram..........................................................................................................................96  
Figure 81: Typical Load Regulation, Vref = 200 mV, T = -40 °C to +85 °C, Buffer - Enable....................................................97  
Figure 82: Typical Load Regulation, Vref = 400 mV, T = -40 °C to +85 °C, Buffer - Enable....................................................97  
Figure 83: Typical Load Regulation, Vref = 600 mV, T = -40 °C to +85 °C, Buffer - Enable....................................................98  
Figure 84: Typical Load Regulation, Vref = 850 mV, T = -40 °C to +85 °C, Buffer - Enable....................................................98  
Figure 85: Typical Input Offset Voltage vs. Vref at VDD = 1.2 V, T = 25 °C .............................................................................99  
Figure 86: Oscillator0 Block Diagram.....................................................................................................................................101  
Figure 87: Oscillator1 Block Diagram.....................................................................................................................................102  
Figure 88: Clock Scheme.......................................................................................................................................................103  
Figure 89: Oscillator0 Frequency vs. Temperature, OSC0 = 2.048 kHz................................................................................104  
Figure 90: Oscillator1 Frequency vs. Temperature, OSC1 = 25 MHz....................................................................................104  
Figure 91: Oscillators Total Error vs. Temperature................................................................................................................105  
Figure 92: Oscillator0 Settling Time, VDD = 1.2 V, T = 25 °C, OSC0 = 2.048 kHz.................................................................106  
Figure 93: Oscillator1 Settling Time, VDD = 1.2 V, T = 25 °C, OSC1 = 25 MHz (Normal Start).............................................106  
Figure 94: Oscillator1 Settling Time, VDD = 1.2 V, T = 25 °C, OSC1 = 25 MHz (Start with Delay)........................................107  
Figure 95: POR Sequence.....................................................................................................................................................109  
Figure 96: Internal Macrocell States During POR Sequence.................................................................................................110  
Figure 97: Power-Down..........................................................................................................................................................111  
Figure 98: Basic Command Structure....................................................................................................................................113  
Figure 99: I2C General Timing Characteristics.......................................................................................................................113  
Figure 100: Byte Write Command, R/W = 0...........................................................................................................................114  
Figure 101: Sequential Write Command................................................................................................................................114  
Figure 102: Current Address Read Command, R/W = 1........................................................................................................115  
Figure 103: Random Read Command ...................................................................................................................................115  
Figure 104: Sequential Read Command................................................................................................................................115  
Figure 105: Reset Command Timing .....................................................................................................................................116  
Figure 106: Example of I2C Byte Write Bit Masking...............................................................................................................117  
Figure 107: Analog Temperature Sensor Structure Diagram.................................................................................................120  
Datasheet  
16-Jul-2021  
Revision 2.0  
5 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Tables  
Table 1: Functional Pin Description............................................................................................................................................9  
Table 2: Pin Type Definitions ...................................................................................................................................................12  
Table 3: Absolute Maximum Ratings........................................................................................................................................13  
Table 4: Electrostatic Discharge Ratings .................................................................................................................................13  
Table 5: Recommended Operating Conditions........................................................................................................................13  
Table 6: EC at T = -40 °C to +85 °C, VDD = 1.1 V to 1.3 V Unless Otherwise Noted ..............................................................14  
Table 7: EC of the I2C Pins for DI Mode at T = -40 °C to +85 °C, Full VDD Range Unless Otherwise Noted..........................16  
Table 8: EC of the I2C Pins for DILV Mode at T = -40 °C to +85 °C, Full VDD Range Unless Otherwise Noted......................16  
Table 9: I2C Pins Timing Characteristics for DI Mode, T = -40 °C to +85 °C, Full VDD Range Unless Otherwise Noted ........17  
Table 10: I2C Pins Timing Characteristics for DILV Mode, T = -40 °C to +85 °C, Full VDD Range Unless Otherwise Noted..17  
Table 11: Typical Current Estimated for Each Macrocell at T = 25 °C, VDD = 1.2 V ...............................................................18  
Table 12: Typical Delay Estimated for Each Macrocell at T = 25 °C, VDD = 1.2 V...................................................................19  
Table 13: Programmable Delay Expected Typical Delays and Pulse Widths at T = 25 °C, VDD = 1.2 V ...............................20  
Table 14: Typical Filter Pulse Width, VDD = 1.2 V ...................................................................................................................21  
Table 15: Typical Counter/Delay Offset at T = 25 °C, VDD = 1.2 V .........................................................................................21  
Table 16: Oscillators Frequency Limits, VDD = 1.1 V to 1.3 V ................................................................................................21  
Table 17: Oscillators Power-On Delay at T = 25 °C, VDD = 1.1 V to 1.3 V, OSC Power Setting: "Auto Power-On"................22  
Table 18: ACMP Specifications at T = -40 °C to +85 °C, VDD = 1.1 V to 1.3 V Unless Otherwise Noted................................22  
Table 19: Matrix Input Table.....................................................................................................................................................33  
Table 20: Matrix Output Table..................................................................................................................................................35  
Table 21: Connection Matrix Virtual Inputs ..............................................................................................................................38  
Table 22: 2-bit LUT2_0 to 2-bit LUT2_2 Truth Table ...............................................................................................................44  
Table 23: 2-bit LUT Standard Digital Functions .......................................................................................................................44  
Table 24: 2-bit LUT2_3 Truth Table.........................................................................................................................................46  
Table 25: 2-bit LUT Standard Digital Functions .......................................................................................................................46  
Table 26: 3-bit LUT3_0 to 3-bit LUT3_9 Truth Table ...............................................................................................................56  
Table 27: 3-bit LUT Standard Digital Functions .......................................................................................................................56  
Table 28: 4-bit LUT0 Truth Table.............................................................................................................................................60  
Table 29: 4-bit LUT Standard Digital Functions .......................................................................................................................61  
Table 30: 3-bit LUT10 to 3-bit LUT16 Truth Table ...................................................................................................................70  
Table 31: 4-bit LUT1 Truth Table.............................................................................................................................................73  
Table 32: 4-bit LUT Standard Digital Functions .......................................................................................................................73  
Table 33: ACMP Input Selection..............................................................................................................................................89  
Table 34: Vref Selection Table.................................................................................................................................................95  
Table 35: Oscillator Operation Mode Configuration Settings.................................................................................................100  
Table 36: Read/Write Protection Options...............................................................................................................................118  
Table 37: Register Map..........................................................................................................................................................121  
Table 38: MSL Classification..................................................................................................................................................183  
Datasheet  
16-Jul-2021  
Revision 2.0  
6 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
1
Block Diagram  
GPIO12*  
GPIO11*  
GPIO10*  
Combination Function Macrocell  
High Speed  
Analog  
VDD  
GPIO9*  
Vref0  
2-bit LUT2_0  
or DFF0  
or Shift_Reg0  
2-bit LUT2_1  
or DFF1  
or Shift_Reg1  
2-bit LUT2_2  
or DFF2  
or Shift_Reg2  
2-bit  
LUT2_3  
or PGEN  
3-bit LUT3_0  
or DFF3  
or Shift_Reg3  
3-bit LUT3_1  
or DFF4  
or Shift_Reg4  
3-bit LUT3_2  
or DFF5  
or Shift_Reg5  
3-bit LUT3_3  
or DFF6  
or Shift_Reg6  
ACMP0H  
ACMP1H  
GPI  
GPIO8  
3-bit LUT3_4  
or DFF7  
or Shift_Reg7  
3-bit LUT3_5  
or DFF8  
or Shift_Reg8  
3-bit LUT3_6  
or DFF9  
or Shift_Reg9  
3-bit LUT3_7  
or DFF10  
or Shift_Reg10  
3-bit LUT3_8  
or DFF11  
or Shift_Reg11  
4-bit LUT4_0  
or DFF13  
or Shift_Reg13  
3-bit LUT3_9  
or DFF12  
or Shift_Reg12  
GPIO0  
GPIO7  
I2C_SCL  
ACMP1_H+  
Temperature  
Sensor  
I2C Serial  
Communication  
Filter with Edge  
Multi - Function Macrocell  
Detect  
3-bit  
3-bit  
3-bit  
3-bit  
GPIO1  
GPIO6  
LUT3_10/  
DFF15+8bit  
CNT/DLY1  
LUT3_11/  
DFF16+8bit  
CNT/DLY2  
LUT3_12/  
DFF17+8bit  
CNT/DLY3  
LUT3_13/  
DFF18+8bit  
CNT/DLY4  
Oscillators  
I2C_SDA  
ACMP0_H+  
Programmable  
Delay  
2.048kHz  
25MHz  
3-bit  
3-bit  
3-bit  
4-bit  
LUT3_14/  
DFF19+8bit  
CNT/DLY5  
LUT3_15/  
DFF20+8bit  
CNT/DLY6  
LUT3_16/  
DFF21+8bit  
CNT/DLY7  
LUT4_1/  
DFF14+16bit  
CNT/DLY0  
POR with CRC  
GPIO5  
Vref0 Out  
TS Out  
GPIO2  
GPIO3  
EXT_Vref0  
GPIO4  
EXT_Vref1  
GND  
Note *: GPIO 9, 10, 11, and 12 are available in 16-pin package only.  
Figure 1: Block Diagram  
Datasheet  
16-Jul-2021  
Revision 2.0  
7 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
2
Pinout  
2.1 PIN CONFIGURATION - STQFN- 12L  
Pin # Pin Name Pin Functions  
1
2
VDD  
Power Supply  
GPI  
GPI, SLA_0  
3
GPIO0  
GPIO1  
GPIO2  
GPIO3  
GND  
GPIO, I2C SCL  
GPIO, I2C SDA  
4
5
GPIO with OE, EXT_OSC1_IN  
6
GPIO with OE, EXT_Vref0, SLA_1  
Ground  
7
12 11  
GPIO6  
GPIO5  
GPIO4  
GND  
VDD  
1
8
GPIO4  
GPIO5  
GPIO6  
GPIO7  
GPIO8  
GPIO with OE, EXT_Vref1, SLA_2  
GPIO with OE, Vref_OUT, TS_OUT  
GPIO with OE, ACMP0_H+  
GPIO with OE, ACMP1_H+  
GPIO with OE, SLA_3, EXT_OSC0_IN  
10  
9
GPI  
GPIO0  
GPIO1  
2
3
4
9
8
7
10  
11  
12  
5
6
Legend:  
OE: Output Enable  
ACMPx+: ACMPx Positive Input  
ACMPx-: ACMPx Negative Input  
I2C SCL: I2C Clock Input  
I2C SDA: I2C Data Input/Output  
Vref: Voltage Reference Output  
EXT_CLKx: External Clock Input  
SLA: Slave Address  
STQFN-12L  
(Top View)  
TS_OUT: Temperature Output  
Datasheet  
16-Jul-2021  
© 2021 Dialog Semiconductor  
Revision 2.0  
8 of 191  
CFR0011-120-00  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
2.2 PIN CONFIGURATION - MSTQFN- 16L  
Pin # Pin Name Pin Functions  
1
2
VDD  
Power Supply  
GPI  
GPI, SLA_0  
3
GPIO0  
GPIO1  
GPIO2  
GPIO3  
GND  
GPIO, I2C SCL  
GPIO, I2C SDA  
4
5
GPIO with OE, EXT_OSC1_IN  
6
GPIO with OE, EXT_Vref0, SLA_1  
Ground  
7
12 11  
GPIO6  
VDD  
GPI  
1
8
GPIO4  
GPIO5  
GPIO6  
GPIO7  
GPIO8  
GPIO9  
GPIO10  
GPIO11  
GPIO12  
GPIO with OE, EXT_Vref1, SLA_2  
GPIO with OE, Vref_OUT, TS_OUT  
GPIO with OE, ACMP0_H+  
GPIO with OE, ACMP1_H+  
GPIO with OE, SLA_3, EXT_OSC0_IN  
GPIO with OE  
10  
9
9
16  
13  
GPIO5  
GPIO4  
GND  
2
3
4
10  
11  
12  
13  
14  
15  
16  
GPIO0  
GPIO1  
8
14  
15  
7
GPIO with OE  
5
6
GPIO with OE  
GPIO with OE  
Legend:  
OE: Output Enable  
MSTQFN-16L  
(Top View)  
ACMPx+: ACMPx Positive Input  
ACMPx-: ACMPx Negative Input  
I2C SCL: I2C Clock Input  
I2C SDA: I2C Data Input/Output  
Vref: Voltage Reference Output  
EXT_CLKx: External Clock Input  
SLA: Slave Address  
TS_OUT: Temperature Output  
Table 1: Functional Pin Description  
Pin #  
Pin  
Signal  
Name  
Input  
Options  
Output  
Options  
Function  
Name  
STQFN-12L  
MSTQFN-16L  
1
1
VDD  
VDD  
Power Supply  
--  
--  
--  
Digital Input  
without Schmitt Trigger  
GPI  
General Purpose Input  
Digital Input  
with Schmitt Trigger  
--  
--  
--  
2
2
GPI  
Low Voltage Digital Input  
I2C Slave  
Address 0  
--  
Open-Drain  
NMOS  
(1x)  
Digital Input  
without Schmitt Trigger  
General Purpose IO  
GPIO0  
(Note 1)  
Digital Input  
with Schmitt Trigger  
3
3
GPIO0  
Low Voltage Digital Input  
--  
--  
--  
Digital Input  
without Schmitt Trigger  
I2C SCL  
I2C Serial Clock  
Low Voltage Digital Input  
Datasheet  
16-Jul-2021  
Revision 2.0  
9 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 1: Functional Pin Description (Continued)  
Pin #  
Pin  
Name  
Signal  
Name  
Input  
Options  
Output  
Options  
Function  
STQFN-12L  
MSTQFN-16L  
Open-Drain  
NMOS  
(1x)  
Digital Input  
without Schmitt Trigger  
GPIO1  
General Purpose IO  
Digital Input  
with Schmitt Trigger  
4
4
GPIO1  
Low Voltage Digital Input  
Digital Input  
without Schmitt Trigger  
--  
--  
I2C SDA  
I2C Serial Data  
Low Voltage Digital Input  
Digital Input  
without Schmitt Trigger  
Push-Pull (1x)  
(2x)  
General Purpose IO  
with OE (Note 1)  
Open-Drain  
NMOS  
(1x) (2x)  
GPIO2  
EXT_OSC1_IN  
GPIO3  
Digital Input  
with Schmitt Trigger  
5
5
GPIO2  
Low Voltage Digital Input  
--  
--  
External Clock  
Connection  
--  
Digital Input  
without Schmitt Trigger  
Push-Pull (1x)  
(2x)  
General Purpose IO  
with OE (Note 1)  
Open-Drain  
NMOS  
(1x) (2x)  
Digital Input  
with Schmitt Trigger  
6
6
GPIO3  
Low Voltage Digital Input  
Analog  
--  
Analog Comparator  
Negative Input  
EXT_VREF0  
--  
I2C Slave  
Address 1  
--  
--  
--  
--  
7
8
7
8
GND  
GND  
Power Supply  
Digital Input  
without Schmitt Trigger  
Push-Pull (1x)  
(2x)  
General Purpose IO  
with OE  
Open-Drain  
NMOS  
(1x) (2x)  
GPIO4  
GPIO4  
Digital Input  
with Schmitt Trigger  
Low Voltage Digital Input  
Analog  
Analog Comparator  
Negative Input  
EXT_VREF1  
--  
--  
8
9
8
9
I2C Slave  
Address 2  
--  
Digital Input  
without Schmitt Trigger  
Push-Pull (1x)  
(2x)  
General Purpose IO  
with OE (Note 1)  
Open-Drain  
NMOS  
(1x) (2x)  
GPIO5  
Digital Input  
with Schmitt Trigger  
GPIO5  
Low Voltage Digital Input  
Analog  
--  
--  
Vref0  
Vref0 Output  
Temperature Sensor  
Output  
TS_OUT  
Analog  
--  
Datasheet  
16-Jul-2021  
Revision 2.0  
10 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 1: Functional Pin Description (Continued)  
Pin #  
Pin  
Name  
Signal  
Name  
Input  
Options  
Output  
Options  
Function  
STQFN-12L  
MSTQFN-16L  
Digital Input  
without Schmitt Trigger  
Push-Pull (1x)  
(2x)  
General Purpose IO  
with OE (Note 1)  
Open-Drain  
NMOS  
(1x) (2x)  
GPIO6  
ACMP0_H+  
GPIO7  
Digital Input  
with Schmitt Trigger  
10  
10  
GPIO6  
Low Voltage Digital Input  
Analog  
--  
Analog Comparator  
0_H Positive Input  
--  
Digital Input  
without Schmitt Trigger  
Push-Pull (1x)  
(2x)  
General Purpose IO  
with OE (Note 1)  
Open-Drain  
NMOS  
(1x) (2x)  
Digital Input  
with Schmitt Trigger  
11  
11  
GPIO7  
Low Voltage Digital Input  
Analog  
--  
Analog Comparator  
1_H Positive Input  
ACMP1_H+  
GPIO8  
--  
Digital Input  
without Schmitt Trigger  
Push-Pull (1x)  
(2x)  
General Purpose IO  
with OE (Note 1)  
Open-Drain  
NMOS  
(1x) (2x)  
Digital Input  
with Schmitt Trigger  
12  
12  
GPIO8  
Low Voltage Digital Input  
--  
--  
I2C Slave  
Address 3  
--  
External Clock  
Connection  
EXT_OSC0_IN  
--  
--  
Digital Input  
without Schmitt Trigger  
Push-Pull (1x)  
(2x)  
General Purpose IO  
with OE (Note 1)  
Open-Drain  
NMOS  
(1x) (2x)  
--  
--  
--  
13  
14  
15  
GPIO9  
GPIO10  
GPIO11  
GPIO9  
Digital Input  
with Schmitt Trigger  
Low Voltage Digital Input  
--  
Digital Input  
without Schmitt Trigger  
Push-Pull (1x)  
(2x)  
General Purpose IO  
with OE (Note 1)  
Open-Drain  
NMOS  
(1x) (2x)  
GPIO10  
GPIO11  
Digital Input  
with Schmitt Trigger  
Low Voltage Digital Input  
--  
Digital Input  
without Schmitt Trigger  
Push-Pull (1x)  
(2x)  
General Purpose IO  
with OE (Note 1)  
Open-Drain  
NMOS  
(1x) (2x)  
Digital Input  
with Schmitt Trigger  
Low Voltage Digital Input  
--  
Datasheet  
16-Jul-2021  
Revision 2.0  
11 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 1: Functional Pin Description (Continued)  
Pin #  
Pin  
Name  
Signal  
Name  
Input  
Options  
Output  
Options  
Function  
STQFN-12L  
MSTQFN-16L  
Digital Input  
without Schmitt Trigger  
Push-Pull (1x)  
(2x)  
General Purpose IO  
with OE (Note 1)  
Open-Drain  
NMOS  
(1x) (2x)  
--  
16  
GPIO12  
GPIO12  
Digital Input  
with Schmitt Trigger  
Low Voltage Digital Input  
--  
Note 1 General Purpose IO's with OE can be used to implement bidirectional signals under user control via  
Connection Matrix to OE signal in IO structure or as a 3-state output.  
Table 2: Pin Type Definitions  
Pin Type  
VDD  
Description  
Power Supply  
GPI  
General Purpose Input  
General Purpose Input/Output  
Ground  
GPIO  
GND  
Datasheet  
16-Jul-2021  
Revision 2.0  
12 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
3
Characteristics  
3.1 ABSOLUTE MAXIMUM RATINGS  
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress  
ratings only, so functional operation of the device at these or any other conditions beyond those indicated in the operational  
sections of the specification are not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect  
device reliability.  
Table 3: Absolute Maximum Ratings  
Parameter  
Supply Voltage on VDD relative to GND  
DC Input Voltage  
Min  
Max  
Unit  
V
-0.3  
2.2  
GND - 0.5 V VDD + 0.5 V  
V
Maximum Average or DC Current  
(Through VDD or GND pin)  
--  
90  
mA  
mA  
Push-Pull 1x  
--  
--  
11  
16  
Push-Pull 2x  
OD 1x  
Maximum Average or DC Current  
(Through pin)  
--  
11  
OD 2x  
--  
21  
Current at Input Pin  
-1.0  
--  
1.0  
1000  
150  
150  
mA  
nA  
°C  
Input Leakage Current (Absolute Value)  
Storage Temperature Range  
Junction Temperature  
-65  
--  
°C  
Moisture Sensitive Level  
1
3.2 ELECTROSTATIC DISCHARGE RATINGS  
Table 4: Electrostatic Discharge Ratings  
Parameter  
Min  
2000  
1000  
Max  
--  
Unit  
V
ESD Protection (Human Body Model)  
ESD Protection (Charged Device Model)  
--  
V
3.3 RECOMMENDED OPERATING CONDITIONS  
Table 5: Recommended Operating Conditions  
Parameter  
Condition  
Min  
1.1  
-40  
Max  
1.3  
85  
Unit  
V
Supply Voltage (VDD  
)
Operating Temperature  
°C  
Maximal Voltage Applied to any PIN in High  
Impedance State  
VDD+  
0.3  
--  
V
Typical Capacitor Value at VDD  
0.1  
0
--  
µF  
Analog Input Common Mode Range  
Allowable Input Voltage atAnalog Pins  
VDD  
V
Datasheet  
16-Jul-2021  
Revision 2.0  
13 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
3.4 ELECTRICAL CHARACTERISTICS  
Table 6: EC at T = -40 °C to +85 °C, VDD = 1.1 V to 1.3 V Unless Otherwise Noted  
Parameter Description  
Condition  
Min  
Typ  
Max  
VDD  
Unit  
+
0.65x  
VDD  
Logic Input (Note 1)  
--  
V
0.3  
VDD  
0.3  
+
0.52x  
VDD  
Logic Input with 10 kPull-up (Note 1)  
--  
--  
V
V
Logic Input with 10 kPull-down  
(Note 1)  
0.83x  
VDD  
VDD+  
0.3  
Logic Input with Schmitt Trigger  
(PositiveGoingThresholdVoltage min=  
0.7x  
VDD  
VDD  
0.3  
+
--  
--  
V
V
0.4xVDD; max = 0.7xVDD  
)
Logic Input with Schmitt Trigger  
(PositiveGoingThresholdVoltage min=  
0.4xVDD; max = 0.7xVDD), with 10 kΩ  
Pull-up  
VDD+  
VIH  
HIGH-Level Input Voltage  
0.62x  
VDD  
0.3  
Logic Input with Schmitt Trigger  
(PositiveGoingThresholdVoltage min=  
0.4xVDD; max = 0.7xVDD), with 10 kΩ  
Pull-down  
VDD  
0.3  
+
0.88x  
VDD  
--  
V
Low-Level Logic Input (Note 1)  
0.6  
--  
--  
--  
--  
V
V
Low-Level Logic Input with 10 kΩ  
Pull-up (Note 1)  
0.44  
Low-Level Logic Input with 10 kΩ  
Pull-down (Note 1)  
0.75  
--  
--  
--  
--  
--  
V
V
V
V
VDD  
-
-
-
0.3x  
VDD  
Logic Input (Note 1)  
0.3  
VDD  
0.3  
0.19x  
VDD  
Logic Input with 10 kPull-up (Note 1)  
Logic Input with 10 kPull-down  
(Note 1)  
VDD  
0.3  
0.37x  
VDD  
Logic Input with Schmitt Trigger  
(Negative Going Threshold Voltage min  
VDD  
0.3  
-
0.3x  
VDD  
--  
--  
V
V
= 0.3xVDD; max = 0.6xVDD  
)
Logic Input with Schmitt Trigger  
(Negative Going Threshold Voltage min  
= 0.3xVDD; max = 0.6xVDD),  
with 10 kPull-up  
VDD  
0.3  
-
0.16x  
VDD  
VIL  
LOW-Level Input Voltage  
Logic Input with Schmitt Trigger  
(Negative Going Threshold Voltage min  
= 0.3xVDD; max = 0.6xVDD),  
with 10 kPull-down  
VDD  
0.3  
-
0.37x  
VDD  
--  
V
VDD  
0.3  
-
-
-
Low-Level Logic Input (Note 1)  
--  
--  
--  
0.27  
0.08  
0.33  
V
V
V
V
Low-Level Logic Input with 10 kΩ  
Pull-up (Note 1)  
VDD  
0.3  
Low-Level Logic Input with 10 kΩ  
Pull-down (Note 1)  
VDD  
0.3  
Schmitt Trigger Hysteresis  
Voltage  
0.075x  
VDD  
0.2x  
VDD  
0.29x  
VDD  
VHYS  
Datasheet  
16-Jul-2021  
© 2021 Dialog Semiconductor  
Revision 2.0  
14 of 191  
CFR0011-120-00  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 6: EC at T = -40 °C to +85 °C, VDD = 1.1 V to 1.3 V Unless Otherwise Noted (Continued)  
Parameter Description  
Condition  
Min  
Typ  
Max  
Unit  
0.09x  
VDD  
0.25x  
VDD  
0.36x  
VDD  
With 10 kPull-up/Pull-down  
V
0.13x  
VDD  
0.22x  
VDD  
0.29x  
VDD  
VDD = 1.1 V  
V
V
V
Schmitt Trigger Hysteresis  
Voltage  
VHYS  
0.1x  
VDD  
0.2x  
VDD  
0.27x  
VDD  
V
DD = 1.2 V  
0.075x  
VDD  
0.18x  
VDD  
0.25x  
VDD  
VDD = 1.3 V  
Push-Pull, 1x Drive, IOH = 100 µA  
Push-Pull, 1x Drive, IOH = 2 mA  
VDD-0.1  
--  
--  
--  
--  
V
V
0.8x  
VDD  
VOH  
HIGH-Level Output Voltage  
VDD  
0.05  
-
Push-Pull, 2x Drive, IOH = 100 µA  
--  
--  
V
0.9x  
VDD  
Push-Pull, 2x Drive, IOH = 2 mA  
Push-Pull, 1x Drive, IOL= 100 µA  
Push-Pull, 1x Drive, IOL= 2 mA  
Push-Pull, 2x Drive, IOH = 100 µA  
Push-Pull, 2x Drive, IOH = 2 mA  
NMOS OD, 1x Drive, IOL = 100 µA  
NMOS OD, 1x Drive, IOL = 2 mA  
NMOS OD, 2x Drive, IOL = 100 µA  
NMOS OD, 2x Drive, IOL = 2 mA  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
V
V
V
V
V
V
V
V
V
--  
--  
--  
--  
--  
--  
--  
--  
0.007  
0.2x  
VDD  
0.004  
0.1x  
VDD  
VOL  
LOW-Level Output Voltage  
0.004  
0.1x  
VDD  
0.002  
0.1x  
VDD  
Push-Pull, 1x Drive, VOH = 0.8x  
VDD  
2.9  
5.6  
2.3  
4.5  
4.7  
9.0  
3.8  
7.6  
4.6  
8.9  
7.3  
14.1  
5.9  
mA  
mA  
mA  
mA  
mA  
mA  
HIGH-Level Output Pulse  
Current (Note 2)  
IOH  
Push-Pull, 2x Drive, VOH = 0.8x  
VDD  
Push-Pull, 1x Drive, VOL = 0.2x  
VDD  
Push-Pull, 2x Drive, VOL = 0.2x  
VDD  
11.8  
7.1  
LOW-Level Output Pulse  
Current (Note 2)  
IOL  
NMOS OD, 1x Drive, VOL = 0.1x  
VDD  
2.7  
5.3  
NMOS OD, 2x Drive, VOL = 0.1x  
VDD  
14.0  
From VDD rising past PONTHR  
tRAMP = 1 µs  
,
TSU  
Startup Time  
1.885  
2.087  
0.888  
0.502  
3.288  
1.078  
0.735  
ms  
V
PONTHR  
Power-On Threshold  
VDD Level Required to Start Up the Chip 0.710  
VDD Level Required to Switch Off the  
Chip  
POFFTHR Power-Off Threshold  
0.393  
V
Datasheet  
16-Jul-2021  
© 2021 Dialog Semiconductor  
Revision 2.0  
15 of 191  
CFR0011-120-00  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 6: EC at T = -40 °C to +85 °C, VDD = 1.1 V to 1.3 V Unless Otherwise Noted (Continued)  
Parameter Description  
Condition  
Min  
Typ  
Max  
1.262  
Unit  
1 M for Pull-up: VIN = GND;  
for Pull-down: VIN = VDD  
0.831  
1.019  
MΩ  
Pull-up or Pull-down  
Resistance  
100 k for Pull-up: VIN = GND;  
for Pull-down: VIN = VDD  
RPULL  
90.197 102.269 126.064  
kΩ  
10 k For Pull-up: VIN = GND;  
for Pull-down: VIN = VDD  
9.088  
10.274  
3.2  
12.556  
kΩ  
CIN  
Input Capacitance  
pF  
Note 1 No hysteresis.  
Note 2 DC or average current through any pin should not exceed value given in Absolute Maximum Conditions.  
3.5 I2C PINS ELECTRICAL CHARACTERISTICS  
Table 7: EC of the I2C Pins for DI Mode at T = -40 °C to +85 °C, Full VDD Range Unless Otherwise Noted  
Fast-Mode  
Fast-Mode Plus  
Parameter Description  
Condition  
Unit  
Min  
Max  
Min  
Max  
LOW-level Input  
Voltage  
VIL  
-0.5  
0.3xVDD  
-0.5  
0.3xVDD  
V
V
HIGH-level Input  
Voltage  
VIH  
0.7xVDD  
VDD  
0.7xVDD  
VDD  
Hysteresis of  
VHYS  
Schmitt Trigger  
Inputs  
0.05xVDD  
--  
0.05xVDD  
--  
V
Open-Drain at 2 mA sink  
current  
0
0
--  
3
0.2xVDD  
0
--  
0.2xVDD  
V
V
LOW-Level Output Open-Drain at 3 mA sink  
VOL  
0.4  
--  
--  
0.31  
--  
Voltage  
current  
Open-Drain at 20 mA sink  
current  
0
V
LOW-Level Output  
Current  
IOL  
V
DD = 1.2 V, VOL = 0.2 V  
--  
20  
mA  
Output Fall Time  
from VIHmin to  
VILmax  
tof  
--  
250  
--  
120  
ns  
Input Current each  
IO Pin  
Ii  
0.1xVDD < VI < 0.9xVDDmax  
T = 25 °C, VDD = 1.2 V  
-10  
--  
+10  
10  
-10  
--  
+10  
10  
mA  
pF  
Capacitance for  
each IO Pin  
Ci  
Note 1 For Fast-mode Plus SDA pin must be configured as NMOS 2x Open-Drain, see register [1328] in section 17.  
Table 8: EC of the I2C Pins for DILV Mode at T = -40 °C to +85 °C, Full VDD Range Unless Otherwise Noted  
Fast-Mode  
Parameter Description  
Condition  
Unit  
Min  
Max  
0.3xVDD  
VDD  
VIL  
LOW-level Input Voltage  
-0.5  
V
V
V
V
VIH  
HIGH-level Input Voltage  
0.7xVDD  
Open-Drain at 2 mA sink current  
Open-Drain at 3 mA sink current  
0
0
0.2xVDD  
0.4  
VOL  
LOW-Level Output Voltage  
Datasheet  
16-Jul-2021  
© 2021 Dialog Semiconductor  
Revision 2.0  
16 of 191  
CFR0011-120-00  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 8: EC of the I2C Pins for DILV Mode at T = -40 °C to +85 °C, Full VDD Range Unless Otherwise Noted (Continued)  
Fast-Mode  
Parameter Description  
IOL LOW-Level Output Current  
tof  
Condition  
Unit  
Min  
Max  
VDD = 1.2 V, VOL = 0.2 V  
3
--  
mA  
ns  
Output Fall Time from VIHmin to  
VILmax  
--  
250  
Ii  
Input Current each IO Pin  
0.1xVDD < VI < 0.9xVDDmax  
-10  
--  
+10  
10  
mA  
pF  
Ci  
Capacitance for each IO Pin  
Table 9: I2C Pins Timing Characteristics for DI Mode, T = -40 °C to +85 °C, Full VDD Range Unless Otherwise Noted  
Speed  
Parameter Description  
Condition  
400 kHz  
1 MHz  
Unit  
Min  
Max  
400  
--  
Min  
Max  
1000  
--  
FSCL  
tLOW  
tHIGH  
Clock Frequency, SCL  
--  
--  
kHz  
ns  
Clock Pulse Width Low  
Clock Pulse Width High  
1300  
600  
500  
260  
--  
--  
ns  
Input Filter Spike Suppression  
(SCL, SDA)  
tI  
50  
--  
--  
900  
--  
50  
--  
--  
450  
--  
ns  
ns  
ns  
tVD_ACK  
tBUF  
Data Valid Acknowledge Time  
Bus Free Time between Stop and  
Start  
1300  
500  
tHD_STA  
tSU_STA  
tHD_DAT  
tSU_DAT  
tR  
Start Hold Time  
600  
600  
55  
100  
--  
--  
--  
260  
260  
55  
50  
--  
--  
--  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Start Set-up Time  
Data Hold Time (Note 1)  
Data Set-up Time  
Inputs Rise Time  
Inputs Fall Time  
--  
--  
--  
--  
300  
300  
--  
120  
120  
--  
tF  
--  
--  
tSU_STO  
tVD_DAT  
Stop Set-up Time  
600  
260  
Data Valid Time  
--  
900  
--  
450  
Note 1 Does not meet standard I2C specifications: tHD_DAT = 0 ns (min) for Fast-Mode and Fast-Mode Plus.  
Note 2 Timing diagram can be found in Figure 99.  
Table 10: I2C Pins Timing Characteristics for DILV Mode, T = -40 °C to +85 °C, Full VDD Range Unless Otherwise Noted  
Speed  
Parameter Description  
Condition  
400 kHz  
Unit  
Min  
--  
Max  
400  
--  
FSCL  
tLOW  
tHIGH  
Clock Frequency, SCL  
kHz  
ns  
Clock Pulse Width Low  
Clock Pulse Width High  
1300  
600  
--  
ns  
Input Filter Spike Suppression (SCL,  
SDA)  
tI  
50  
--  
ns  
tVD_ACK  
tBUF  
Data Valid Acknowledge Time  
--  
900  
--  
ns  
ns  
Bus Free Time between Stop and Start  
1300  
Datasheet  
16-Jul-2021  
© 2021 Dialog Semiconductor  
Revision 2.0  
17 of 191  
CFR0011-120-00  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 10: I2C Pins Timing Characteristics for DILV Mode, T = -40 °C to +85 °C, Full VDD Range Unless Otherwise Noted  
Speed  
Parameter Description  
Condition  
400 kHz  
Unit  
Min  
600  
600  
180  
200  
--  
Max  
--  
tHD_STA  
tSU_STA  
tHD_DAT  
tSU_DAT  
tR  
Start Hold Time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Start Set-up Time  
Data Hold Time (Note 1)  
Data Set-up Time (Note 1)  
Inputs Rise Time  
--  
--  
--  
300  
300  
--  
tF  
Inputs Fall Time  
--  
tSU_STO  
tVD_DAT  
Stop Set-up Time  
Data Valid Time  
600  
--  
900  
Note 1 Does not meet standard I2C specifications: tHD_DAT = 0 ns (min), tSU_DAT = 100 ns (min).  
Note 2 Timing diagram can be found in Figure 99.  
3.6 MACROCELLS CURRENT CONSUMPTION  
Table 11: Typical Current Estimated for Each Macrocell at T = 25 °C, VDD = 1.2 V  
Parameter  
Description  
Note  
Typ  
Unit  
PDET+I2C  
PDET+BG+I2C  
0.395  
0.927  
µA  
µA  
PDET+BG+IBIAS+Vref Source+Buffer  
(Buffer Selection: Any ACMPxH Vref)  
15.06  
8.169  
15.86  
µA  
µA  
µA  
PDET+BG+IBIAS+Buffer+Vref Source  
(Vref Source - External,  
Buffer Selection: Any ACMPxH Vref)  
Temperature Sensor+PDET+BG+IBIAS+ Vref  
Source+TPS+Buffer  
OSC1+BG+PDET, Pre-divider = 1  
OSC1+BG+PDET, Pre-divider = 4  
OSC1+BG+PDET, Pre-divider = 8  
OSC0+BG+PDET, Pre-divider = 1  
OSC0+BG+PDET, Pre-divider = 4  
OSC0+BG+PDET, Pre-divider = 8  
79.492  
82.364  
80.911  
1.177  
µA  
µA  
µA  
µA  
µA  
µA  
IDD  
Current  
1.176  
1.176  
PDET+BG+IBIAS+ACMPH0+ACMPH1 +Vref Source  
(Vref Source - Internal,  
18.228  
µA  
VIN+ = VDD  
,
VIN- = 25 mV)  
PDET+BG+IBIAS+ACMPH0+ACMPH1  
(VIN+ = VDD,  
11.222  
6.277  
µA  
µA  
External Vref = 650 mV)  
PDET+BG+IBIAS+ACMPH0  
(VIN+ = VDD,  
External Vref = 650 mV)  
Datasheet  
16-Jul-2021  
© 2021 Dialog Semiconductor  
Revision 2.0  
18 of 191  
CFR0011-120-00  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
3.7 TIMING CHARACTERISTICS  
Table 12: Typical Delay Estimated for Each Macrocell at T = 25 °C, VDD = 1.2 V  
Parameter  
Description  
Note  
Unit  
Rising  
11  
Falling  
11  
tpd  
tpd  
Delay  
Delay  
Digital Input to PP 1x  
Digital Input to PP 2x  
ns  
ns  
11  
11  
tpd  
Delay  
Digital Input with Schmitt Trigger to PP 1x  
11  
11  
ns  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tw  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Width  
Delay  
Low Voltage Digital Input to PP 1x  
Digital input to NMOS 1x  
Digital input to NMOS 2x  
Output enable from Pin, OE Hi-Z to 1  
Output enable from Pin, OE Hi-Z to 0  
PP 1x 3 State Hi-Z to 1  
PP 1x 3 State Hi-Z to 0  
PP 2x 3 State Hi-Z to 1  
PP 2x 3 State Hi-Z to 0  
LATCH Q  
11  
--  
11  
11  
10  
--  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
--  
12  
--  
12  
--  
12  
--  
12  
--  
11  
--  
11  
9
9
LATCH nQ  
9
9
LATCH nRESET High Q  
LATCH nRESET High nQ  
LATCH nRESET Low Q  
LATCH nRESET Low nQ  
LATCH nSET High Q  
9
9
10  
9
9
9
9
9
9
9
LATCH nSET High nQ  
LATCH nSET Low Q  
9
9
10  
10  
9
10  
9
LATCH nSET Low nQ  
Multi-Function LATCH Q  
Multi-Function LATCH nQ  
Multi-Function LATCH nRESET Q  
Multi-Function LATCH nRESET nQ  
Multi-Function LATCH nSET Q  
Multi-Function LATCH nSET nQ  
2-bit LUT  
9
9
9
9
9
9
9
9
9
9
9
6
6
3-bit LUT  
9
8
4-bit LUT  
8
8
Multi-Function 3-bit LUT  
Multi-Function 3-bit LUT, CNT Delay  
Multi-Function 4-bit LUT  
Multi-Function 4-bit LUT, CNT Delay  
Edge detect  
9
9
14  
8
13  
8
13  
6
13  
6
Edge detect  
171  
176  
175  
181  
tpd  
Edge detect Delayed  
Datasheet  
16-Jul-2021  
Revision 2.0  
19 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Unit  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 12: Typical Delay Estimated for Each Macrocell at T = 25 °C, VDD = 1.2 V(Continued)  
Parameter  
Description  
Note  
Rising  
10  
9
Falling  
9
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tw  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Width  
Width  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
DFF Q  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DFF nQ  
10  
10  
--  
DFF nRESET High Q  
--  
DFF nRESET High nQ  
10  
--  
DFF nRESET Low Q  
10  
--  
DFF nRESET Low nQ  
10  
10  
--  
DFF nSET High Q  
--  
DFF nSET High nQ  
10  
--  
DFF nSET Low Q  
10  
--  
DFF nSET Low nQ  
10  
8
Multi-Function DFF Q  
8
Multi-Function DFF nQ  
8
8
Multi-Function DFF nRESET Q  
Multi-Function DFF nRESET nQ  
Multi-Function DFF nSET Q  
Multi-Function DFF nSET nQ  
Shift Registers Q  
--  
10  
--  
9
9
--  
--  
10  
10  
12  
--  
10  
12  
10  
--  
Shift Registers nQ  
Multi-Function Reset CNT Q  
Multi-Function Reset CNT nQ  
Multi-Function CNT Delay Q  
Multi-Function CNT Delay nQ  
Multi-Function CNT Edge Detect Q  
Multi-Function CNT Edge Detect nQ  
Multi-Function CNT Edge Detect Q  
Multi-Function CNT Edge Detect nQ  
Multi-Function CNT Frequency Detect Q  
Multi-Function CNT Frequency Detect nQ  
Multi-Function CNT One Shot Q  
Multi-Function CNT One Short nQ  
PGen CLK  
13  
16  
11  
--  
16  
11  
9
--  
9
107  
--  
--  
tw  
107  
20  
20  
--  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
22  
22  
11  
--  
11  
6
6
PGen nRESET Hi-Z to 0  
PGen nRESET Hi-Z to 1  
Filter Q  
--  
7
7
--  
62  
99  
62  
108  
Filter nQ  
Table 13: Programmable Delay Expected Typical Delays and Pulse Widths at T = 25 °C, VDD = 1.2 V  
Parameter  
Description  
Note  
Typ  
Unit  
tw1  
Pulse Width, 1 cell  
mode: (any) edge detect, edge detect output  
175  
ns  
Datasheet  
16-Jul-2021  
Revision 2.0  
20 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 13: Programmable Delay Expected Typical Delays and Pulse Widths at T = 25 °C, VDD = 1.2 V (Continued)  
Parameter  
tw2  
Description  
Pulse Width, 2 cell  
Pulse Width, 3 cell  
Pulse Width, 4 cell  
Delay, 1 cell  
Note  
Typ  
347  
520  
695  
6
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
mode: (any) edge detect, edge detect output  
mode: (any) edge detect, edge detect output  
mode: (any) edge detect, edge detect output  
mode: (any) edge detect, edge detect output  
mode: (any) edge detect, edge detect output  
mode: (any) edge detect, edge detect output  
mode: (any) edge detect, edge detect output  
mode: both edge delay, edge detect output  
mode: both edge delay, edge detect output  
mode: both edge delay, edge detect output  
mode: both edge delay, edge detect output  
tw3  
tw4  
time1  
time1  
time1  
time1  
time2  
time2  
time2  
time2  
Delay, 2 cell  
6
Delay, 3 cell  
6
Delay, 4 cell  
6
Delay, 1 cell  
180  
357  
533  
710  
Delay, 2 cell  
Delay, 3 cell  
Delay, 4 cell  
Table 14: Typical Filter Pulse Width, VDD = 1.2 V  
Parameter  
Condition  
Typ  
< 45  
< 37  
< 28  
Unit  
T = 25 °C, VDD = 1.2 V  
ns  
ns  
ns  
Filtered Pulse Width, tblock  
T = -40 °C to +85 °C, VDD = 1.2 V  
T = -40 °C to +85 °C, VDD = 1.2 V ± 0.1 V  
3.8 COUNTER/DELAY CHARACTERISTICS  
Table 15: Typical Counter/Delay Offset at T = 25 °C, VDD = 1.2 V  
Parameter  
OSC Freq  
25 MHz  
OSC Power  
auto  
Typ  
0.05  
Unit  
µs  
Power-On time  
Power-On time  
2.048 kHz  
25 MHz  
auto  
570  
µs  
frequency settling time  
frequency settling time  
variable (CLK period)  
variable (CLK period)  
auto  
0.828  
963  
µs  
2.048 kHz  
25 MHz  
auto  
µs  
forced  
forced  
0-40.6  
0-490  
ns  
2.048 kHz  
µs  
3.9 OSCILLATOR CHARACTERISTICS  
Table 16: Oscillators Frequency Limits, VDD = 1.1 V to 1.3 V  
Temperature Range  
+25 °C  
Parameter  
Minimum  
Value, kHz  
Maximum Value, kHz  
Error, %  
+1.3  
-1.3  
+2.1  
-2.1  
2.048 kHz RC OSC0  
25 MHz RC OSC1  
2.0205  
24475  
2.0754  
25525  
Datasheet  
16-Jul-2021  
© 2021 Dialog Semiconductor  
Revision 2.0  
21 of 191  
CFR0011-120-00  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
3.9.1 OSC Power-On Delay  
Table 17: Oscillators Power-On Delay at T = 25 °C, VDD = 1.1 V to 1.3 V, OSC Power Setting: "Auto Power-On"  
OSC1 25 MHz  
Start with Delay  
OSC0 2.048 kHz  
OSC1 25 MHz  
Typical  
Value, µs  
Maximum  
Value, µs  
Typical  
Value, ns  
Maximum  
Value, ns  
Typical  
Value, ns  
Maximum  
Value, ns  
476  
--  
40.21  
48.40  
150  
--  
3.10 ACMP CHARACTERISTICS  
Table 18: ACMP Specifications at T = -40 °C to +85 °C, VDD = 1.1 V to 1.3 V Unless Otherwise Noted  
Parameter Description  
Note  
Condition  
Min  
0
Typ  
--  
Max  
VDD  
VDD  
Unit  
Positive Input  
Negative Input  
V
V
ACMP Input Voltage  
VACMP  
Range  
0
--  
Vhys = 0 mV,  
Gain = 1,  
Vref = 25 mV to 850 mV  
Voffset  
ILKG  
ACMP Input Offset  
-7.0  
--  
--  
5
7.1  
mV  
nA  
ACMP Input Leakage  
199  
ACMPxH Power-Ondelay,  
Minimal required wake  
time for the "Wake and  
Sleep function"  
tstart  
ACMP Startup Time  
BG always On  
--  
--  
77  
µs  
VHYS = 25 mV  
VHYS = 150 mV  
VHYS = 25 mV  
T = 25 °C  
T = 25 °C  
22.0  
147.4  
19.2  
24.6  
149.7  
24.6  
26.6  
152.4  
28.8  
mV  
mV  
mV  
ACMP0H, ACMP1H  
Built-in Hysteresis  
(Note 1)  
VHYS  
VHYS = 150 mV  
Gain = 1x  
133.8  
--  
149.4  
3.3  
162.1  
--  
mV  
GΩ  
MΩ  
Series Input  
Resistance  
Rsin  
Gain = 0.5x  
1.0  
1.2  
1.5  
Gain = 1,  
Vref = 25 mV to 850mV,  
Overdrive = 100 mV  
Low to High  
High to Low  
Low to High  
High to Low  
--  
--  
--  
--  
0.6  
0.8  
0.6  
0.7  
1.5  
1.8  
1.4  
1.2  
µs  
µs  
µs  
µs  
PROP  
Propagation Delay,  
Response Time  
Gain = 1,  
Vref = 250 mV to 650mV,  
Overdrive = 100 mV  
G = 1  
1
1
1
G
Gain error  
G = 0.5  
Vref > 250 mV  
0.495  
0.500  
0.504  
Datasheet  
16-Jul-2021  
© 2021 Dialog Semiconductor  
Revision 2.0  
22 of 191  
CFR0011-120-00  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 18: ACMP Specifications at T = -40 °C to +85 °C, VDD = 1.1 V to 1.3 V Unless Otherwise Noted (Continued)  
Parameter Description  
Note  
Condition  
Min  
-1.65  
-8.17  
-1.65  
-8.17  
-1.27  
-7.87  
-0.81  
-7.46  
-0.61  
-7.15  
-1.53  
-8.19  
-0.90  
-7.33  
-27.18  
Typ  
--  
Max  
1.49  
4.42  
1.49  
4.42  
1.37  
4.27  
0.72  
3.67  
0.68  
3.61  
1.73  
5.01  
1.05  
3.92  
31.20  
3.64  
7.75  
6.51  
7.83  
6.55  
9.79  
Unit  
%
T = 25 °C  
Vref = 25 mV  
--  
%
T = 25 °C  
T = 25 °C  
T = 25 °C  
T = 25 °C  
T = 25 °C  
T = 25 °C  
VDD = 1.2 V  
--  
%
Vref = 25 mV to 850 mV  
Vref = 50 mV to 850 mV  
Vref = 250 mV to 850 mV  
Vref = 850 mV  
--  
%
--  
%
Vref Accuracy,  
Buffer Disabled  
--  
%
--  
%
%
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
%
%
%
Vref = 250 mV to 850 mV  
%
%
Vref  
Vref = 850 mV  
Vref Output Error,  
%
Buffer Enabled  
Vref = 25 mV to 850 mV  
%
T = 25 °C, VDD = 1.2 V -2.82  
%
Vref = 200 mV to 850 mV,  
Load Current = 1 µA  
VDD = 1.2 V  
T = 25 °C  
-7.81  
-5.36  
-6.10  
-5.87  
-9.06  
%
mV  
mV  
mV  
mV  
Vref = 25 mV  
Vref Output Buffer  
Offset  
T = 25 °C  
Vref = 25 mV to 850 mV  
Load Resistance =  
1 MΩ,  
Vref = 25 mV to 850 mV  
--  
--  
--  
--  
50  
pF  
pF  
Vref Output  
Capacitance Loading  
Load Resistance =  
1 k,  
200  
Vref = 25mV to 850 mV  
Note 1 VIL = Vin - VHYS, VIH = Vin.  
Datasheet  
16-Jul-2021  
© 2021 Dialog Semiconductor  
Revision 2.0  
23 of 191  
CFR0011-120-00  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
4
User Programmability  
The SLG47502/03 is a user programmable device with one time programmable (OTP) memory elements that are able to  
configure the connection matrix and macrocells. A programming development kit allows the user the ability to create initial  
devices. Once the design is finalized, the programming code (.gpx file) is forwarded to Dialog Semiconductor to integrate into a  
production process.  
Product  
Definition  
E-mail Product Idea, Definition, Drawing or  
Customer creates their own design in  
Schematic to  
GreenPAK Designer  
CMBUGreenPAK@diasemi.com  
Dialog Semiconductor Applications  
Engineer will review design specifications  
with customer  
Customer verifies GreenPAK in system  
design  
GreenPAK Design  
approved  
Samples, Design and Characterization  
Report send to customer  
GreenPAK Design  
approved  
Customers verifies GreenPAK design  
GreenPAK Design  
approved in system test  
Custom GreenPAK part enters production  
Figure 2: Steps to Create a Custom GreenPAK Device  
Datasheet  
16-Jul-2021  
Revision 2.0  
24 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
5
IO Pins  
The SLG47502/03 has a total of 9 GPIOs (13 GPIOs for 16-PIN version) which can operate as Input or Output, and 1 GPI Pin  
which can operate as Input, as well as serve as a special function (such as outputting the voltage reference).  
5.1 GPIO PINS  
Pins from GPIO0 to GPIO12 serve as General Purpose IO Pins.  
5.2 GPI PIN  
GPI serves as a General Purpose Input Pin.  
5.3 PULL-UP/DOWN RESISTORS  
All IO Pins, except GPI, have the option for user selectable resistors connected to the input structure. The selectable values on  
these resistors are 10 kΩ, 100 kΩ, and 1 MΩ. The internal resistors can be configured as either Pull-up or Pull-downs.  
5.4 FAST PULL-UP/DOWN DURING POWER-UP  
During power-up, IO Pull-up/down resistance will switch to 2.6 kΩ initially and then it will switch to normal setting value. This  
function is enabled by register [1426].  
Datasheet  
16-Jul-2021  
Revision 2.0  
25 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
5.5 GPI STRUCTURE  
5.5.1 GPI Structure (for GPI)  
Non-Schmitt  
Trigger Input  
Input Mode [1:0]  
00: Digital In without Schmitt Trigger, wosmt_en = 1, OE=0  
01: Digital In with Schmitt Trigger, smt_en = 1, OE = 0  
10: Low Voltage Digital In mode, lv_en = 1, OE = 0  
11: Reserved  
WOSMT_EN  
SMT_EN  
OE  
OE  
Schmitt  
Trigger Input  
Digital In  
Note 1: OE cannot be selected by user  
Note 2: OE is Matrix output, Digital In is Matrix input  
Low Voltage  
Input  
LV_EN  
OE  
PAD  
Figure 3: GPI Structure Diagram  
Datasheet  
16-Jul-2021  
Revision 2.0  
26 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
5.6 GPIO WITH I2C MODE IO STRUCTURE  
5.6.1 GPIO with I2C Mode Structure (for GPIO0 and GPIO1)  
Non-Schmitt  
Trigger Input  
GPIO0, GPIO1 Mode [2:0]  
00: Digital Input without Schmitt Trigger  
01: Reserved  
10: Low Voltage Digital Input  
11: Reserved  
WOSMT_EN  
OE  
OE  
Digital In  
Low Voltage  
Input  
Note 1: OE cannot be selected by user and  
is controlled by register. Digital In is Matrix input.  
Note 2: GPIO0 and GPIO1 do not support  
Push-Pull and PMOS Open-Drain modes.  
Note 3: Can be varied over PVT, for reference  
only.  
LV_EN  
Analog IO  
Floating  
s0  
s1  
s2  
s3  
2 kΩ  
(Note 3)  
s1  
s0  
900 kΩ  
90 kΩ  
8 kΩ  
Res_sel [1:0]  
00: Floating  
01: 10 kΩ  
Pull-up_EN  
10: 100 kΩ  
11: 1 MΩ  
Digital OUT  
I2C_EN register [31]  
VDD  
Digital OUT  
I2C_EN register [31]  
GPIO0/1_OD_EN register [1313]/[1329]  
PAD  
FAST_MODE_EN register [1312]/[1328]  
I2C_EN register [31]  
Figure 4: GPIO with I2C Mode IO Structure Diagram  
Datasheet  
16-Jul-2021  
Revision 2.0  
27 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
5.7 MATRIX OE IO STRUCTURE  
5.7.1 Matrix OE IO Structure (from GPIO0 to GPIO11)  
Non-Schmitt  
Trigger Input  
Input Mode [1:0]  
00: Digital In without Schmitt Trigger, wosmt_en = 1  
01: Digital In with Schmitt Trigger, smt_en = 1  
10: Low Voltage Digital In mode, lv_en = 1  
11: analog IO mode  
WOSMT_EN  
SMT_EN  
Schmitt  
Trigger Input  
Digital IN  
Output Mode [1:0]  
00: Push-Pull 1x mode, pp1x_en = 1  
01: Push-Pull 2x mode, pp2x_en = 1, pp1x_en = 1  
10: NMOS 1x Open-Drain mode, od1x_en = 1  
11: NMOS 2x Open-Drain mode, od2x_en = 1, od1x_en = 1  
Low Voltage  
Input  
Note 1: Digital Out and OE are Matrix Output, Digital In is Matrix Input  
Note 2: Can be varied over PVT, for reference only.  
LV_EN  
Analog IO  
Floating  
s0  
VDD  
s1  
s2  
s3  
s1  
s0  
2 kΩ  
(Note 2)  
900 kΩ  
90 kΩ  
8 kΩ  
VDD  
Res_sel [1:0]  
00: Floating  
01: 10 kΩ  
Pull-up_EN  
10: 100 kΩ  
11: 1 MΩ  
Digital OUT  
Digital OUT  
OE  
OE  
OD1x_EN  
PP1x_EN  
VDD  
PAD  
VDD  
Digital OUT  
Digital OUT  
OE  
OE  
OD2x_EN  
PP2x_EN  
Figure 5: Matrix OE IO Structure Diagram  
Datasheet  
16-Jul-2021  
© 2021 Dialog Semiconductor  
Revision 2.0  
28 of 191  
CFR0011-120-00  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
5.8 IO TYPICAL PERFORMANCE  
Figure 6: Typical High Level Output Current vs. High Level Output Voltage at T = 25 °C  
20  
18  
16  
14  
12  
10  
8
Open Drain 1x @ VDD = 1.3 V  
Open Drain 1x @ VDD = 1.2 V  
Open Drain 1x @ VDD = 1.1 V  
Push-Pull 1x @ VDD = 1.3 V  
Push-Pull 1x @ VDD = 1.2 V  
Push-Pull 1x @ VDD = 1.1 V  
6
4
2
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
VOL (V)  
Figure 7: Typical Low Level Output Current vs. Low Level Output Voltage, 1x Drive at T = 25 °C, Full Range  
Datasheet  
16-Jul-2021  
© 2021 Dialog Semiconductor  
Revision 2.0  
29 of 191  
CFR0011-120-00  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
16  
Open Drain 1x @ VDD = 1.3 V  
14  
12  
10  
8
Open Drain 1x @ VDD = 1.2 V  
Open Drain 1x @ VDD = 1.1 V  
Push-Pull 1x @ VDD = 1.3 V  
Push-Pull 1x @ VDD = 1.2 V  
Push-Pull 1x @ VDD = 1.1 V  
6
4
2
0
0
0.05  
0.1  
0.15  
0.2  
VOL (V)  
Figure 8: Typical Low Level Output Current vs. Low Level Output Voltage, 1x Drive at T = 25 °C  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
Open Drain 2x @ VDD = 1.3 V  
Open Drain 2x @ VDD = 1.2 V  
Open Drain 2x @ VDD = 1.1 V  
Push-Pull 2x @ VDD = 1.3 V  
Push-Pull 2x @ VDD = 1.2 V  
Push-Pull 2x @ VDD = 1.1 V  
6
4
2
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
VOL (V)  
Figure 9: Typical Low Level Output Current vs. Low Level Output Voltage, 2x Drive at T = 25 °C, Full Range  
Datasheet  
16-Jul-2021  
© 2021 Dialog Semiconductor  
Revision 2.0  
30 of 191  
CFR0011-120-00  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
16  
Open Drain 2x @ VDD = 1.3 V  
Open Drain 2x @ VDD = 1.2 V  
14  
Open Drain 2x @ VDD = 1.1 V  
Push-Pull 2x @ VDD = 1.3 V  
12  
Push-Pull 2x @ VDD = 1.2 V  
Push-Pull 2x @ VDD = 1.1 V  
10  
8
6
4
2
0
0
0.05  
0.1  
0.15  
0.2  
VOL (V)  
Figure 10: Typical Low Level Output Current vs. Low Level Output Voltage, 2x Drive at T = 25 °C  
Datasheet  
16-Jul-2021  
© 2021 Dialog Semiconductor  
Revision 2.0  
31 of 191  
CFR0011-120-00  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
6
Connection Matrix  
The Connection Matrix in the SLG47502/03 is used to create an internal routing for internal functional macrocells of the device  
once it is programmed. The registers are programmed from the one time programmable (OTP) NVM cell during Test Mode  
Operation. The output of each functional macrocell within the SLG47502/03 has a specific digital bit code assigned to it, that is  
either set to active “High” or inactive “Low”, based on the design that is created. Once the 2048 register bits within the SLG47502/  
03 are programmed, a fully custom circuit will be created.  
The Connection Matrix has 64 inputs and 98 outputs. Each of the 64 inputs to the Connection Matrix is hard-wired to the digital  
output of a particular source macrocell, including IO pins, LUTs, analog comparators, other digital resources, such as VDD and  
GND. The input to a digital macrocell uses a 6-bit register to select one of these 64 input lines.  
For a complete list of the SLG47502/03’s register table, see Section 17.  
Matrix Input Signal  
N
Functions  
GND  
0
1
2
3
LUT2_0/DFF0 output/  
Shift_Reg0 output  
LUT2_1/DFF1 output/  
Shift_Reg1 output  
LUT2_2/DFF2 output/  
Shift_Reg2 output  
POR  
VDD  
62  
63  
Matrix Inputs  
0
1
2
97  
N
Registers  
registers [45:40]  
registers [51:46]  
registers [57:52]  
Matrix Out: IN0 of  
registers [627:622]  
Matrix OUT: IN0 of  
Matrix OUT: IN1 of  
Matrix Out: Oscillator1  
ENABLE  
LUT2_0 or Clock In- LUT2_0 or Data In- LUT2_1 or Clock In-  
put of DFF0 or Clock put of DFF0 or Data put of DFF1 or Clock  
Input of Shift_Reg0 Input of Shift_Reg0 Input of Shift_Reg1  
Function  
Matrix Outputs  
Figure 11: Connection Matrix  
Function  
Connection Matrix  
GPIO8  
GPIO7  
LUT  
GPIO7  
GPIO8  
GPIO9  
LUT  
GPIO9  
Figure 12: Connection Matrix Usage Example  
Datasheet  
16-Jul-2021  
Revision 2.0  
32 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
6.1 MATRIX INPUT TABLE  
Table 19: Matrix Input Table  
Matrix Decode  
Matrix Input  
Matrix Input Signal Function  
Number  
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
3
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
2
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
GND  
1
LUT2_0/DFF0 output/Shift_Reg0 output  
LUT2_1/DFF1 output/Shift_Reg1 output  
LUT2_2/DFF2 output/Shift_Reg2 output  
LUT2_3/PGen output  
2
3
4
5
LUT3_0/DFF3 output/Shift_Reg3 output  
LUT3_1/DFF4 output/Shift_Reg4 output  
LUT3_2/DFF5 output/Shift_Reg5 output  
LUT3_3/DFF6 output/Shift_Reg6 output  
LUT3_4/DFF7 output/Shift_Reg7 output  
LUT3_5/DFF8 output/Shift_Reg8 output  
LUT3_6/DFF9 output/Shift_Reg9 output  
LUT3_7/DFF10 output/Shift_Reg10 output  
LUT3_8/DFF11 output/Shift_Reg11 output  
LUT3_9/DFF12 output/Shift_Reg12 output  
LUT4_0/DFF13 output/Shift_Reg13 output  
CNT0 output  
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
MLT0_LUT4_1/DFF14_OUT  
CNT1 output  
MLT1_LUT3_10/DFF15_OUT  
CNT2 output  
MLT2_LUT3_11/DFF16_OUT  
CNT3 output  
MLT3_LUT3_12/DFF17_OUT  
CNT4 output  
MLT4_LUT3_13/DFF18_OUT  
CNT5 output  
MLT5_LUT3_14/DFF19_OUT  
CNT6 output  
MLT6_LUT3_15/DFF20_OUT  
CNT7 output  
MLT7_LUT3_16/DFF21_OUT  
GPIO0 digital input or I2C_virtual_0 Input  
GPIO1 digital input or I2C_virtual_1 Input  
I2C_virtual_2 Input  
33  
34  
1
1
0
0
0
0
0
0
0
1
1
0
Datasheet  
16-Jul-2021  
© 2021 Dialog Semiconductor  
Revision 2.0  
33 of 191  
CFR0011-120-00  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 19: Matrix Input Table (Continued)  
Matrix Decode  
Matrix Input  
Matrix Input Signal Function  
Number  
5
1
1
1
1
1
4
0
0
0
0
0
3
0
0
0
0
0
2
0
1
1
1
1
1
1
0
0
1
1
0
1
0
1
0
1
I2C_virtual_3 Input  
35  
I2C_virtual_4 Input  
36  
I2C_virtual_5 Input  
37  
I2C_virtual_6 Input  
38  
I2C_virtual_7 Input  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
Programmable Delay Edge Detect Output  
Edge Detect Filter Output  
GPI Digital Input  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
GPIO2 Digital Input  
GPIO3 Digital Input  
GPIO4 Digital Input  
GPIO5 Digital Input  
GPIO6 Digital Input  
GPIO7 Digital Input  
GPIO8 Digital Input  
GPIO9 Digital Input (Note 1)  
GPIO10 Digital Input (Note 1)  
GPIO11 Digital Input (Note 1)  
GPIO12 Digital Input (Note 1)  
Reserved  
Reserved  
Reserved  
Oscillator0 output 0  
Oscillator0 output 1  
Oscillator1 output  
ACMP0H Output  
ACMP1H Output  
POR  
VDD  
Note 1 GPIO 9, 10, 11, and 12 are available in 16-pin package only.  
Datasheet  
16-Jul-2021  
© 2021 Dialog Semiconductor  
Revision 2.0  
34 of 191  
CFR0011-120-00  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
6.2 MATRIX OUTPUT TABLE  
Table 20: Matrix Output Table  
Register Bit  
Matrix Output  
Number  
Matrix Output Signal Function  
Address  
[45:40]  
[51:46]  
IN0 of LUT2_0 or Clock Input of DFF0 or Clock Input of Shift_Reg0  
0
IN1 of LUT2_0 or Data Input of DFF0 or Data Input of Shift_Reg0  
IN0 of LUT2_1 or Clock Input of DFF1 or Clock Input of Shift_Reg1  
IN1 of LUT2_1 or Data Input of DFF1 or Data Input of Shift_Reg1  
IN0 of LUT2_2 or Clock Input of DFF2 or Clock Input of Shift_Reg2  
IN1 of LUT2_2 or Data Input of DFF2 or Data Input of Shift_Reg2  
IN0 of LUT2_3 or Clock Input of PGen  
1
[57:52]  
2
[63:58]  
3
[69:64]  
4
[75:70]  
5
[81:76]  
6
[87:82]  
IN1 of LUT2_3 or nRST of PGen  
7
[93:88]  
IN0 of LUT3_0 or Clock Input of DFF3 or Clock Input of Shift_Reg3  
IN1 of LUT3_0 or Data Input of DFF3 or Data Input of Shift_Reg3  
IN2 of LUT3_0 or nRST(nSET) of DFF3 or nRST(nSET) of Shift_Reg3  
IN0 of LUT3_1 or Clock Input of DFF4 or Clock Input of Shift_Reg4  
IN1 of LUT3_1 or Data Input of DFF4 or Data Input of Shift_Reg4  
IN2 of LUT3_1 or nRST(nSET) of DFF4 or nRST(nSET) of Shift_Reg4  
IN0 of LUT3_2 or Clock Input of DFF5 or Clock Input of Shift_Reg5  
IN1 of LUT3_2 or Data Input of DFF5 or Data Input of Shift_Reg5  
IN2 of LUT3_2 or nRST(nSET) of DFF5 or nRST(nSET) of Shift_Reg5  
IN0 of LUT3_3 or Clock Input of DFF6 or Clock Input of Shift_Reg6  
IN1 of LUT3_3 or Data Input of DFF6 or Data Input of Shift_Reg6  
IN2 of LUT3_3 or nRST(nSET) of DFF6 or nRST(nSET) of Shift_Reg6  
IN0 of LUT3_4 or Clock Input of DFF7 or Clock Input of Shift_Reg7  
IN1 of LUT3_4 or Data Input of DFF7 or Data Input of Shift_Reg7  
IN2 of LUT3_4 or nRST(nSET) of DFF7 or nRST(nSET) of Shift_Reg7  
IN0 of LUT3_5 or Clock Input of DFF8 or Clock Input of Shift_Reg8  
IN1 of LUT3_5 or Data Input of DFF8 or Data Input of Shift_Reg8  
IN2 of LUT3_5 or nRST(nSET) of DFF8 or nRST(nSET) of Shift_Reg8  
IN0 of LUT3_6 or Clock Input of DFF9 or Clock Input of Shift_Reg9  
IN1 of LUT3_6 or Data Input of DFF9 or Data Input of Shift_Reg9  
IN2 of LUT3_6 or nRST(nSET) of DFF9 or nRST(nSET) of Shift_Reg9  
IN0 of LUT3_7 or Clock Input of DFF10 or Clock Input of Shift_Reg10  
IN1 of LUT3_7 or Data Input of DFF10 or Data Input of Shift_Reg10  
IN2 of LUT3_7 or nRST(nSET) of DFF10 or nRST(nSET) of Shift_Reg10  
IN0 of LUT3_8 or Clock Input of DFF11 or Clock Input of Shift_Reg11  
IN1 of LUT3_8 or Data Input of DFF11 or Data Input of Shift_Reg11  
IN2 of LUT3_8 or nRST(nSET) of DFF11 or nRST(nSET) of Shift_Reg11  
IN0 of LUT3_9 or Clock Input of DFF12 or Clock Input of Shift_Reg12  
8
[99:94]  
9
[105:100]  
[111:106]  
[117:112]  
[123:118]  
[129:124]  
[135:130]  
[141:136]  
[147:142]  
[153:148]  
[159:154]  
[165:160]  
[171:166]  
[177:172]  
[183:178]  
[189:184]  
[195:190]  
[201:196]  
[207:202]  
[213:208]  
[219:214]  
[225:220]  
[231:226]  
[237:232]  
[243:238]  
[249:244]  
[255:250]  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
Datasheet  
16-Jul-2021  
Revision 2.0  
35 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 20: Matrix Output Table (Continued)  
Register Bit  
Matrix Output  
Number  
Matrix Output Signal Function  
Address  
[261:256]  
[267:262]  
[273:268]  
[279:274]  
[285:280]  
[291:286]  
IN1 of LUT3_9 or Data Input of DFF12 or Data Input of Shift_Reg12  
36  
37  
38  
39  
40  
41  
42  
IN2 of LUT3_9 or nRST(nSET) of DFF12 or nRST(nSET) of Shift_Reg12  
IN0 of LUT4_0 or Clock Input of DFF13 or Clock Input of Shift_Reg13  
IN1 of LUT4_0 or Data Input of DFF13 or Data Input of Shift_Reg13  
IN2 of LUT4_0 or nRST(nSET) of DFF13 or nRST(nSET) of Shift_Reg13  
IN3 of LUT4_0 or Clock Enable of DFF13 or Clock Enable of Shift_Reg13  
IN0 of MLT0_LUT4_1 or Clock Input of DFF14 or  
Delay0 Input (or Counter0 nRST Input)  
[297:292]  
[303:298]  
IN1 of MLT0_LUT4_1 or nRST (nSET) of DFF14 or  
Delay0 Input (or Counter0 nRST Input or External Clock Source)  
43  
44  
IN2 of MLT0_LUT4_1 or Data Input of DFF14 or  
Delay0 Input (or Counter0 nRST Input)  
[309:304]  
[315:310]  
[321:316]  
IN3 of MLT0_LUT4_1  
45  
46  
IN0 of MLT1_LUT3_10 or Clock Input of DFF15 or  
Delay1 Input (or Counter1 nRST Input)  
IN1 of MLT1_LUT3_10 or nRST (nSET) of DFF15 or  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
[327:322]  
[333:328]  
[339:334]  
[345:340]  
[351:346]  
[357:352]  
[363:358]  
[369:364]  
[375:370]  
[381:376]  
[387:382]  
[393:388]  
[399:394]  
[405:400]  
Delay1 Input (or Counter1 nRST Input or External Clock Source)  
IN2 of MLT1_LUT3_10 or Data Input of DFF15 or  
Delay1 Input (or Counter1 nRST Input)  
IN0 of MLT2_LUT3_11 or Clock Input of DFF16 or  
Delay2 Input (or Counter2 nRST Input)  
IN1 of MLT2_LUT3_11 or nRST (nSET) of DFF16 or  
Delay2 Input (or Counter2 nRST Input or External Clock Source)  
IN2 of MLT2_LUT3_11 or Data Input of DFF16 or  
Delay2 Input (or Counter2 nRST Input)  
IN0 of MLT3_LUT3_12 or Clock Input of DFF17 or  
Delay3 Input (or Counter3 nRST Input)  
IN1 of MLT3_LUT3_12 or nRST (nSET) of DFF17 or  
Delay3 Input (or Counter3 nRST Input or External Clock Source)  
IN2 of MLT3_LUT3_12 or Data Input of DFF17 or  
Delay3 Input (or Counter3 nRST Input)  
IN0 of MLT4_LUT3_13 or Clock Input of DFF18 or  
Delay4 Input (or Counter4 nRST Input)  
IN1 of MLT4_LUT3_13 or nRST (nSET) of DFF18 or  
Delay4 Input (or Counter4 nRST Input or External Clock Source)  
IN2 of MLT4_LUT3_13 or Data Input of DFF18 or  
Delay4 Input (or Counter4 nRST Input)  
IN0 of MLT5_LUT3_14 or Clock Input of DFF19 or  
Delay5 Input (or Counter5 nRST Input)  
IN1 of MLT5_LUT3_14 or nRST (nSET) of DFF19 or  
Delay5 Input (or Counter5 nRST Input or External Clock Source)  
IN2 of MLT5_LUT3_14 or Data Input of DFF19 or  
Delay5 Input (or Counter5 nRST Input)  
Datasheet  
16-Jul-2021  
Revision 2.0  
36 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 20: Matrix Output Table (Continued)  
Register Bit  
Matrix Output  
Number  
Matrix Output Signal Function  
Address  
IN0 of MLT6_LUT3_15 or Clock Input of DFF20 or  
61  
62  
63  
64  
65  
66  
[411:406]  
[417:412]  
[423:418]  
[429:424]  
[435:430]  
[441:436]  
Delay6 Input (or Counter6 nRST Input)  
IN1 of MLT6_LUT3_15 or nRST (nSET) of DFF20 or  
Delay6 Input (or Counter6 nRST Input or External Clock Source)  
IN2 of MLT6_LUT3_15 or Data Input of DFF20 or  
Delay6 Input (or Counter6 nRST Input)  
IN0 of MLT7_LUT3_16 or Clock Input of DFF21 or  
Delay7 Input (or Counter7 nRST Input)  
IN1 of MLT7_LUT3_16 or nRST (nSET) of DFF21 or  
Delay7 Input (or Counter7 nRST Input or External Clock Source)  
IN2 of MLT7_LUT3_16 or Data Input of DFF21 or  
Delay7 Input (or Counter7 nRST Input)  
[447:442]  
[453:448]  
[459:454]  
[465:460]  
[471:466]  
[477:472]  
[483:478]  
[489:484]  
[495:490]  
[501:496]  
[507:502]  
[513:508]  
[519:514]  
[525:520]  
[531:526]  
[537:532]  
[543:538]  
[549:544]  
[555:550]  
[561:556]  
[567:562]  
[573:568]  
[579:574]  
[585:580]  
[591:586]  
[597:592]  
[603:598]  
GPIO0 Digital Output  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
GPIO1 Digital Output  
GPIO2 Digital Output OE  
GPIO2 Digital Output  
GPIO3 Digital Output OE  
GPIO3 Digital Output  
GPIO4 Digital Output OE  
GPIO4 Digital Output  
GPIO5 Digital Output OE  
GPIO5 Digital Output  
GPIO6 Digital Output OE  
GPIO6 Digital Output  
GPIO7 Digital Output OE  
GPIO7 Digital Output  
GPIO8 Digital Output OE  
GPIO8 Digital Output  
GPIO9 Digital Output OE (Note 2)  
GPIO9 Digital Output (Note 2)  
GPIO10 Digital Output OE (Note 2)  
GPIO10 Digital Output (Note 2)  
GPIO11 Digital Output OE (Note 2)  
GPIO11 Digital Output (Note 2)  
GPIO12 Digital Output OE (Note 2)  
GPIO12 Digital Output (Note 2)  
Filter/Edge Detect Input  
Programmable Delay/Edge Detect Input  
PWR UP of ACMP0_H  
Datasheet  
16-Jul-2021  
Revision 2.0  
37 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 20: Matrix Output Table (Continued)  
Register Bit  
Matrix Output  
Number  
Matrix Output Signal Function  
Address  
[609:604]  
[615:610]  
[621:616]  
[627:622]  
PWR UP of ACMP1_H  
Temp sensor, Vref Out_0 Power Up  
Oscillator0 ENABLE  
94  
95  
96  
97  
Oscillator1 ENABLE  
Note 1 For each Address, the two most significant bits are unused.  
Note 2 GPIO 9, 10, 11, and 12 are available in 16-pin package only.  
6.3 CONNECTION MATRIX VIRTUAL INPUTS  
As mentioned previously, the Connection Matrix inputs come from the outputs of various digital macrocells on the device. Eight  
of the Connection Matrix inputs have the special characteristic that the state of these signal lines comes from a corresponding  
data bit written as a register value via I2C. This gives the user the ability to write data via the serial channel, and have this  
information translated into signals that can be driven into the Connection Matrix and from the Connection Matrix to the digital  
inputs of other macrocells on the device. The I2C address for reading and writing these register values is at byte 0x1.  
Six of the eight Connection Matrix Virtual Inputs are dedicated to this virtual input function. An I2C write command to these register  
bits will set the signal values going into the Connection Matrix to the desired state. A read command to these register bits will  
read either the original data values coming from the NVM memory bits (that were loaded during the initial device startup), or the  
values from a previous write command (if that has happened).  
Two of the eight Connection Matrix Virtual Inputs are shared with Pin digital inputs (GPIO0 Digital or I2C_virtual_0 Input), and  
(GPIO1 Digital or I2C_virtual_1 Input). If the virtual input mode is selected, an I2C write command to these register bits will set  
the signal values going into the Connection Matrix to the desired state. A read command to these register bits will read either the  
original data values coming from the NVM memory bits (that were loaded during the initial device startup), or the values from a  
previous write command (if that has happened). The I2C disable/enable register bit [31] selects whether the Connection Matrix  
input comes from the Pin input or from the virtual register:  
Select SCL & Virtual Input 0 or GPIO0  
Select SDA & Virtual Input 1 or GPIO1  
See Table 21 for Connection Matrix Virtual Inputs.  
Table 21: Connection Matrix Virtual Inputs  
Register Bit  
Addresses (d)  
Matrix Input Number  
Matrix Input Signal Function  
32  
33  
34  
35  
36  
37  
38  
39  
I2C_virtual_0 Input  
I2C_virtual_1 Input  
I2C_virtual_2 Input  
I2C_virtual_3 Input  
I2C_virtual_4 Input  
I2C_virtual_5 Input  
I2C_virtual_6 Input  
I2C_virtual_7 Input  
[8]  
[9]  
[10]  
[11]  
[12]  
[13]  
[14]  
[15]  
Datasheet  
16-Jul-2021  
© 2021 Dialog Semiconductor  
Revision 2.0  
38 of 191  
CFR0011-120-00  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
7
Combination Function Macrocells  
The SLG47502/03 has 15 combination function macrocells that can serve as more than one logic or timing function. In each case,  
they can serve as a Look Up Table (LUT), or as another logic or timing function. See the list below for the functions that can be  
implemented in these macrocells.  
Three macrocells that can serve as 2-bit LUT or as D Flip-Flop, or as Shift Register  
Ten macrocells that can serve as either 3-bit LUTs or as D Flip-Flops with Set/Reset Input, or as Shift Register  
One macrocell that can serve as either 2-bit LUT or as Programmable Pattern Generator (PGen)  
One macrocell that can serve as either 4-bit LUT or as D Flip-Flop with Set/Reset Input, or as Shift Register  
Inputs/Outputs for the 15 combination function macrocells are configured from the connection matrix with specific logic functions  
being defined by the state of configuration bits.  
When used as a LUT to implement combinatorial logic functions, the outputs of the LUTs can be configured to any user defined  
function, including the following standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR).  
7.1 2-BIT LUT OR D FLIP-FLOP OR SHIFT REGISTER MACROCELLS  
There are three macrocells that can serve as 2-bit LUT or as DFF/LATCH, or as Shift Register. It is also possible to define the  
active level (Q or nQ) for the macrocell’s output by registers [748], [753], [758]. DFF/Shift Register or LUT are selected by registers  
[744], [749], [754]. When used to implement LUT functions, the 2-bit LUT takes in two input signals from the connection matrix  
and produce a single output, which goes back into the connection matrix.  
When used to implement Shift Register, the two input signals from the connection matrix go to the data (D_in), clock (CLK) inputs  
for the Shift Register, with the output going back to the connection matrix. The input data (D_in) writes into LSB. The Shift Register  
length (up to 4 bits/memory cells) is selected by registers [746:745], [751:750], [756:755], when these registers = 0 DFF/LATCH  
function is selected.  
When used to implement DFF/LATCH function, the two input signals from the connection matrix go to the data (D_in), clock (CLK)  
inputs for the Flip-Flop, with the output going back to the connection matrix. LATCH or DFF configuration is selected by registers  
[747], [752], [757].  
The operation of the D Flip-Flop and LATCH will follow the functional descriptions below:  
DFF: CLK is rising edge triggered, then Q = D; otherwise Q will not change.  
LATCH: when CLK is Low, then Q = D; otherwise Q remains its previous value (input D has no effect on the output, when CLK  
is High).  
It's possible to read/write the Shift Register content via I2C. See section 15.4.10 for more information.  
Datasheet  
16-Jul-2021  
Revision 2.0  
39 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
From Connectinon  
Matrix Output [1]  
LUT IN1  
4 memory cells  
S1  
S0  
D_in  
DFF data in  
ShRg data in  
From Connectinon  
Matrix Output [0]  
LUT IN0  
S1  
S0  
Clk  
DFF CLK  
ShRg CLK  
LATCH/DFF_sel  
Out[3:0]  
4
2-bit LUT  
[3]  
[0]  
To Connection  
Matrix Input [1]  
11  
.
.
.
S0  
S1  
2
2
00  
S0  
S1  
LUT config  
ShRg/LUT_sel  
1-bit NVM  
ShRg_length [1:0]  
2
4
2
nQ/Q_sel  
4-bit NVM  
Figure 13: 2-bit LUT0 or DFF0 or Shift Register0  
From Connectinon  
Matrix Output [3]  
LUT IN1  
4 memory cells  
S1  
S0  
D_in  
DFF data in  
ShRg data in  
From Connectinon  
Matrix Output [2]  
LUT IN0  
S1  
S0  
Clk  
DFF CLK  
ShRg CLK  
LATCH/DFF_sel  
Out[3:0]  
4
2-bit LUT  
[3]  
[0]  
To Connection  
Matrix Input [2]  
11  
.
.
.
S0  
S1  
2
2
00  
S0  
S1  
LUT config  
ShRg/LUT_sel  
1-bit NVM  
ShRg_length [1:0]  
2
4
2
nQ/Q_sel  
4-bit NVM  
Figure 14: 2-bit LUT1 or DFF1 or Shift Register1  
Datasheet  
16-Jul-2021  
Revision 2.0  
40 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
From Connectinon  
Matrix Output [5]  
LUT IN1  
4 memory cells  
S1  
S0  
D_in  
DFF data in  
ShRg data in  
From Connectinon  
Matrix Output [4]  
LUT IN0  
S1  
S0  
Clk  
DFF CLK  
ShRg CLK  
LATCH/DFF_sel  
Out[3:0]  
4
2-bit LUT  
[3]  
[0]  
To Connection  
Matrix Input [3]  
11  
.
.
.
S0  
S1  
2
2
00  
S0  
S1  
LUT config  
ShRg/LUT_sel  
1-bit NVM  
ShRg_length [1:0]  
2
4
2
nQ/Q_sel  
4-bit NVM  
Figure 15: 2-bit LUT2 or DFF2 or Shift Register2  
Inital Value is loaded from NVM to Shift Register  
VDD  
Data  
Clk  
POR  
ShReg_Out[3:0]  
Initial Value 1001 (x9)  
0011  
0111  
1110  
1100  
1000  
0000  
0000  
0001  
0011  
0111  
1111  
(Internal Signal)  
Q=ShReg_Out[0]  
(see note 1)  
Q=ShReg_Out[3]  
MSB  
LSB  
(see note 2)  
x9  
Initial Value is transmitted  
Input Data are transmitted  
Note1 : Macrocell is configured as DFF  
Note2 : Macrocell is configured as 4-bit Shift Register  
Figure 16: DFF0 to DFF2 and Shift Register0 to Shift Register2 Operation  
Datasheet  
16-Jul-2021  
© 2021 Dialog Semiconductor  
Revision 2.0  
41 of 191  
CFR0011-120-00  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Inital Value is loaded from NVM to Shift Register  
VDD  
Data  
Clk  
ShReg_Out[3:0]  
(Internal Signal)  
Initial Value 1001 (x9)  
0010  
0101  
1010  
0101  
1011  
0111  
POR  
Q=ShReg_Out[0]  
(see note 2)  
Q=ShReg_Out[3]  
(see note 3)  
4 Clk pulses  
Note1 : DFF Setting “Initial Value: 1”  
Note2 : Macrocell is configured as DFF  
Note3 : Macrocell is configured as 4-bits ShReg  
Figure 17: DFF0 to DFF2 and Shift Register0 to Shift Register2 Operation with DFF Initial Value = 1  
Datasheet  
16-Jul-2021  
© 2021 Dialog Semiconductor  
Revision 2.0  
42 of 191  
CFR0011-120-00  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Inital Value is loaded from NVM to Shift Register  
VDD  
Data  
Clk  
ShReg_Out[3:0]  
(Internal Signal)  
Initial Value 0001 (x1)  
0010  
0101  
1010  
0101  
1011  
0111  
POR  
Q=ShReg_Out[0]  
(see note 2)  
Q=ShReg_Out[3]  
(see note 3)  
4 Clk pulses  
Note1 : DFF Setting “Initial Value: 1”  
Note2 : Macrocell is configured as DFF  
Note3 : Macrocell is configured as 4-bits ShReg  
Figure 18: DFF0 to DFF2 and Shift Register0 to Shift Register2 Operation with Initial Value = b0001  
Datasheet  
16-Jul-2021  
© 2021 Dialog Semiconductor  
Revision 2.0  
43 of 191  
CFR0011-120-00  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
7.1.1 2-Bit LUT or D Flip-Flop Macrocell Used as 2-Bit LUT  
This Macrocell, when programmed for a LUT function, uses a 4-bit register to define their output function:  
2-Bit LUT0 is defined by registers [635:632]  
2-Bit LUT1 is defined by registers [639:636]  
2-Bit LUT2 is defined by registers [643:640]  
Table 22: 2-bit LUT2_0 to 2-bit LUT2_2 Truth Table  
IN1  
0
IN0  
0
OUT LUT0  
register [632  
register [633  
register [634  
register [635  
OUT LUT1  
register [636  
register [637  
register [638  
register [639  
OUT LUT2  
register [640  
register [641  
register [642  
register [643  
]
]
]
]
]
]
]
]
]
]
]
]
LSB  
0
1
1
0
1
1
MSB  
Table 23 shows the register bits for the standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR) that can be created  
within each of the 2-bit LUT logic cells.  
Table 23: 2-bit LUT Standard Digital Functions  
Function  
AND-2  
MSB  
LSB  
1
0
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
0
1
0
1
NAND-2  
OR-2  
NOR-2  
XOR-2  
XNOR-2  
7.2 2-BIT LUT OR PROGRAMMABLE PATTERN GENERATOR  
The SLG47502/03 has one combination function macrocell that can serve as a logic or a timing function. This macrocell can serve  
as a Look Up Table (LUT), or a Programmable Pattern Generator (PGen).  
When used to implement LUT functions, the 2-bit LUT takes in two input signals from the connection matrix and produces a single  
output, which goes back into the connection matrix. When used as a LUT to implement combinatorial logic functions, the outputs  
of the LUT can be configured to any user defined function, including the following standard digital logic devices (AND, NAND,  
OR, NOR, XOR, XNOR). The user can also define the combinatorial relationship between inputs and outputs to be any selectable  
function.  
It is possible to define the RST level for the PGen macrocell. There are both high level reset (RST) and a low level reset (nRST)  
options available, which are selected by register [760]. When operating as the Programmable Pattern Generator, the output of  
the macrocell will clock out a sequence of two to sixteen bits that are user selectable in their bit values, and user selectable in  
the number of bits (up to sixteen) that are output before the pattern repeats.  
Datasheet  
16-Jul-2021  
Revision 2.0  
44 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
From Connection Matrix Output [6]  
From Connection Matrix Output [7]  
In0  
In1  
OUT  
2-bit LUT3  
LUT Truth  
Table  
To Connection Matrix Input [4]  
S0  
S1  
registers [647:644]  
0: 2-bit LUT3 OUT  
1: PGen OUT  
Pattern  
size  
nRST/RST  
CLK  
PGen  
OUT  
PGen  
Data  
register [759]  
registers [871:856]  
Figure 19: 2-bit LUT3 or PGen  
V
DD  
t
t
nRST  
CLK  
OUT  
1
2
6
8
16 17  
3
5
7
0
4
9
10 11  
14 15  
12 13  
t
D7  
D6  
D5  
D10  
D8  
D4  
D3  
D2  
D1  
D15  
D0  
D9  
D0  
D15  
D14  
D13  
D12  
D11  
D0  
t
Figure 20: PGen Timing Diagram  
Datasheet  
16-Jul-2021  
Revision 2.0  
45 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 24: 2-bit LUT2_3 Truth Table  
IN1  
0
IN0  
0
OUT  
register [647]  
register [646]  
register [645]  
register [644]  
LSB  
0
1
1
0
1
1
MSB  
This macrocell, when programmed for a LUT function, uses a 4-bit register to define their output function:  
2-Bit LUT2_3 is defined by registers [647:644]  
Table 25 shows the register bits for the standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR) that can be created  
within each of the 2-bit LUT logic cells.  
Table 25: 2-bit LUT Standard Digital Functions  
Function  
AND-2  
MSB  
LSB  
1
0
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
0
1
0
1
NAND-2  
OR-2  
NOR-2  
XOR-2  
XNOR-2  
7.3 3-BIT LUT OR D FLIP-FLOP WITH SET/RESET OR SHIFT REGISTER MACROCELLS  
There are ten macrocells that can serve as 3-bit LUT or as DFF/LATCH, or as Shift Register. It is also possible to define the active  
level (Q or nQ) for the macrocell’s output by registers [766], [774], [782], [790], [798], [806], [814], [822], [830], [838]. DFF/Shift  
Register or LUT are selected by registers [761], [769], [777], [785], [793], [801], [809], [817], [825], [833]. When used to implement  
LUT functions, the 3-bit LUT takes in three input signals from the connection matrix and produces a single output, which goes  
back into the connection matrix.  
When used to implement Shift Register, the three input signals from the connection matrix go to the data (D_in), clock (CLK), and  
Set/Reset (nSET/nRST) inputs for the Shift Register, with the output going back to the connection matrix. It is possible to define  
the active level for the Set/Reset input of Shift Register macrocell which is selected by registers [768], [776], [784], [792], [800],  
[808], [816], [824], [832], [840]. The input data (D_in) writes into LSB. The Shift Register length (up to 8 bits/memory cells) is  
selected by registers [764:762], [772:770], [780:778], [788:786], [796:794], [804:802]. [812:810], [820:818], [828:826], [836:834],  
[845:842], when these registers = 0 DFF/LATCH function is selected.  
When used to implement D Flip-Flop/LATCH function, the three input signals from the connection matrix go to the data (D_in),  
clock (CLK), and Set/Reset (nSET/nRST) inputs for the Flip-Flop/LATCH, with the output going back to the connection matrix. It  
is possible to define the active level for the Set/Reset input (nSET/nRST_sel which is selected by register [767], [775], [783],  
[791], [799], [807], [815], [823], [831], [839]) of DFF/LATCH macrocell. LATCH or DFF configuration is selected by registers [765],  
[773], [781], [789], [797], [805], [813], [821], [829], [837].  
The operation of the D Flip-Flop and LATCH will follow the functional descriptions below:  
DFF: CLK is rising edge triggered, then Q = D; otherwise Q will not change.  
LATCH: when CLK is Low, then Q = D; otherwise Q remains its previous value (input D has no effect on the output, when CLK  
is High)  
.
Datasheet  
16-Jul-2021  
Revision 2.0  
46 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
It's possible to read/write the Shift Register content via I2C. See section 15.4.10 for more information.  
LUT IN1  
DFF data in  
ShRg data in  
From Connectinon  
Matrix Output [9]  
8 memory cells  
S1  
S0  
D_in  
Clk  
LUT IN0  
DFF CLK  
ShRg CLK  
From Connectinon  
Matrix Output [8]  
S1  
S0  
LUT IN2  
DFF nSet/nRST  
ShRg nSet/nRST  
S0  
S1  
nSET/nRST  
SET/RST  
From Connectinon  
Matrix Output [10]  
nSET/nRST_sel Out[7:0]  
SET/RST_act_level LATCH/DFF_sel  
8
3-bit LUT  
[7]  
To Connection  
Matrix Input [5]  
111  
000  
.
.
.
S0  
S1  
3
3
] 0 [  
LUT config  
S0  
S1  
ShRg/LUT_sel  
1-bit NVM  
ShRg_length [2:0]  
3
7
4
nQ/Q_sel  
7-bit NVM  
Figure 21: 3-bit LUT0 or DFF3 or Shift Register 3  
Datasheet  
16-Jul-2021  
Revision 2.0  
47 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
LUT IN1  
DFF data in  
ShRg data in  
From Connectinon  
Matrix Output [12]  
8 memory cells  
S1  
S0  
D_in  
Clk  
LUT IN0  
DFF CLK  
ShRg CLK  
From Connectinon  
Matrix Output [11]  
S1  
S0  
LUT IN2  
DFF nSet/nRST  
ShRg nSet/nRST  
S0  
S1  
nSET/nRST  
SET/RST  
From Connectinon  
Matrix Output [13]  
nSET/nRST_sel Out[7:0]  
SET/RST_act_level LATCH/DFF_sel  
8
3-bit LUT  
[7]  
To Connection  
Matrix Input [6]  
111  
000  
.
.
.
S0  
S1  
3
3
] 0 [  
LUT config  
S0  
S1  
ShRg/LUT_sel  
1-bit NVM  
ShRg_length [2:0]  
3
7
4
nQ/Q_sel  
7-bit NVM  
Figure 22: 3-bit LUT1 or DFF4 or Shift Register 4  
LUT IN1  
DFF data in  
ShRg data in  
From Connectinon  
Matrix Output [15]  
8 memory cells  
S1  
S0  
D_in  
Clk  
LUT IN0  
DFF CLK  
ShRg CLK  
From Connectinon  
Matrix Output [14]  
S1  
S0  
LUT IN2  
DFF nSet/nRST  
ShRg nSet/nRST  
S0  
S1  
nSET/nRST  
SET/RST  
From Connectinon  
Matrix Output [16]  
LATCH/DFF_sel  
nSET/nRST_sel Out[7:0]  
SET/RST_act_level  
8
3-bit LUT  
To Connection  
Matrix Input [7]  
[7]  
111  
000  
.
.
.
S0  
S1  
3
3
] 0 [  
LUT config  
S0  
S1  
ShRg/LUT_sel  
1-bit NVM  
ShRg_length [2:0]  
3
7
4
nQ/Q_sel  
7-bit NVM  
Figure 23: 3-bit LUT2 or DFF5 or Shift Register 5  
Datasheet  
16-Jul-2021  
Revision 2.0  
48 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
LUT IN1  
DFF data in  
ShRg data in  
From Connectinon  
Matrix Output [18]  
8 memory cells  
S1  
S0  
D_in  
Clk  
LUT IN0  
DFF CLK  
ShRg CLK  
From Connectinon  
Matrix Output [17]  
S1  
S0  
LUT IN2  
DFF nSet/nRST  
ShRg nSet/nRST  
S0  
S1  
nSET/nRST  
SET/RST  
From Connectinon  
Matrix Output [19]  
LATCH/DFF_sel  
nSET/nRST_sel Out[7:0]  
SET/RST_act_level  
8
3-bit LUT  
[7]  
To Connection  
Matrix Input [8]  
111  
000  
.
.
.
S0  
S1  
3
3
] 0 [  
LUT config  
S0  
S1  
ShRg/LUT_sel  
1-bit NVM  
ShRg_length [2:0]  
3
7
4
nQ/Q_sel  
7-bit NVM  
Figure 24: 3-bit LUT3 or DFF6 or Shift Register 6  
LUT IN1  
DFF data in  
ShRg data in  
From Connectinon  
Matrix Output [21]  
8 memory cells  
S1  
S0  
D_in  
Clk  
LUT IN0  
DFF CLK  
ShRg CLK  
From Connectinon  
Matrix Output [20]  
S1  
S0  
LUT IN2  
DFF nSet/nRST  
ShRg nSet/nRST  
S0  
S1  
nSET/nRST  
SET/RST  
From Connectinon  
Matrix Output [22]  
LATCH/DFF_sel  
nSET/nRST_sel Out[7:0]  
SET/RST_act_level  
8
3-bit LUT  
[7]  
To Connection  
Matrix Input [9]  
111  
000  
.
.
.
S0  
S1  
3
3
] 0 [  
LUT config  
S0  
S1  
ShRg/LUT_sel  
1-bit NVM  
ShRg_length [2:0]  
3
7
4
nQ/Q_sel  
7-bit NVM  
Figure 25: 3-bit LUT4 or DFF7 or Shift Register 7  
Datasheet  
16-Jul-2021  
Revision 2.0  
49 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
LUT IN1  
DFF data in  
ShRg data in  
From Connectinon  
Matrix Output [24]  
8 memory cells  
S1  
S0  
D_in  
Clk  
LUT IN0  
DFF CLK  
ShRg CLK  
From Connectinon  
Matrix Output [23]  
S1  
S0  
LUT IN2  
DFF nSet/nRST  
ShRg nSet/nRST  
S0  
S1  
nSET/nRST  
SET/RST  
From Connectinon  
Matrix Output [25]  
nSET/nRST_sel Out[7:0]  
SET/RST_act_level LATCH/DFF_sel  
8
3-bit LUT  
[7]  
To Connection  
Matrix Input [10]  
111  
000  
.
.
.
S0  
S1  
3
3
] 0 [  
LUT config  
S0  
S1  
ShRg/LUT_sel  
1-bit NVM  
ShRg_length [2:0]  
3
7
4
nQ/Q_sel  
7-bit NVM  
Figure 26: 3-bit LUT5 or DFF8 or Shift Register 8  
LUT IN1  
DFF data in  
ShRg data in  
From Connectinon  
Matrix Output [27]  
8 memory cells  
S1  
S0  
D_in  
Clk  
LUT IN0  
DFF CLK  
ShRg CLK  
From Connectinon  
Matrix Output [26]  
S1  
S0  
LUT IN2  
DFF nSet/nRST  
ShRg nSet/nRST  
S0  
S1  
nSET/nRST  
SET/RST  
From Connectinon  
Matrix Output [28]  
nSET/nRST_sel Out[7:0]  
SET/RST_act_level LATCH/DFF_sel  
8
3-bit LUT  
[7]  
To Connection  
111  
Matrix Input [11]  
.
.
.
S0  
S1  
3
3
] 0 [  
LUT config  
000  
S0  
S1  
ShRg/LUT_sel  
1-bit NVM  
ShRg_length [2:0]  
3
7
4
nQ/Q_sel  
7-bit NVM  
Figure 27: 3-bit LUT6 or DFF9 or Shift Register 9  
Datasheet  
16-Jul-2021  
Revision 2.0  
50 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
LUT IN1  
DFF data in  
ShRg data in  
From Connectinon  
Matrix Output [30]  
8 memory cells  
S1  
S0  
D_in  
Clk  
LUT IN0  
DFF CLK  
ShRg CLK  
From Connectinon  
Matrix Output [29]  
S1  
S0  
LUT IN2  
DFF nSet/nRST  
ShRg nSet/nRST  
S0  
S1  
nSET/nRST  
SET/RST  
From Connectinon  
Matrix Output [31]  
nSET/nRST_sel Out[7:0]  
SET/RST_act_level LATCH/DFF_sel  
8
3-bit LUT  
[7]  
To Connection  
Matrix Input [12]  
111  
000  
.
.
.
S0  
S1  
3
3
] 0 [  
LUT config  
S0  
S1  
ShRg/LUT_sel  
1-bit NVM  
ShRg_length [2:0]  
3
7
4
nQ/Q_sel  
7-bit NVM  
Figure 28: 3-bit LUT7 or DFF10 or Shift Register 10  
LUT IN1  
DFF data in  
ShRg data in  
From Connectinon  
Matrix Output [33]  
8 memory cells  
S1  
S0  
D_in  
Clk  
LUT IN0  
DFF CLK  
ShRg CLK  
From Connectinon  
Matrix Output [32]  
S1  
S0  
LUT IN2  
DFF nSet/nRST  
ShRg nSet/nRST  
S0  
S1  
nSET/nRST  
SET/RST  
From Connectinon  
Matrix Output [34]  
nSET/nRST_sel Out[7:0]  
SET/RST_act_level LATCH/DFF_sel  
8
3-bit LUT  
[7]  
To Connection  
111  
Matrix Input [13]  
.
.
.
S0  
S1  
3
3
] 0 [  
LUT config  
000  
S0  
S1  
ShRg/LUT_sel  
1-bit NVM  
ShRg_length [2:0]  
3
7
4
nQ/Q_sel  
7-bit NVM  
Figure 29: 3-bit LUT8 or DFF11 or Shift Register 11  
Datasheet  
16-Jul-2021  
Revision 2.0  
51 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
LUT IN1  
DFF data in  
ShRg data in  
From Connectinon  
Matrix Output [36]  
8 memory cells  
S1  
S0  
D_in  
Clk  
LUT IN0  
DFF CLK  
ShRg CLK  
From Connectinon  
Matrix Output [35]  
S1  
S0  
LUT IN2  
DFF nSet/nRST  
ShRg nSet/nRST  
S0  
S1  
nSET/nRST  
SET/RST  
From Connectinon  
Matrix Output [37]  
nSET/nRST_sel Out[7:0]  
SET/RST_act_level LATCH/DFF_sel  
8
3-bit LUT  
To Connection  
Matrix Input [14]  
[7]  
111  
000  
.
.
.
S0  
S1  
3
3
] 0 [  
LUT config  
S0  
S1  
ShRg/LUT_sel  
1-bit NVM  
ShRg_length [2:0]  
3
7
4
nQ/Q_sel  
7-bit NVM  
Figure 30: 3-bit LUT9 or DFF12 or Shift Register 12  
Inital Value is loaded from NVM to Shift Register  
VDD  
Data  
Clk  
POR  
ShReg_Out[7:0]  
Initial Value 10011011 (x9B)  
00110111 01101111 11011110 10111100 01111000 11110000 11100000 11000001 10000011 00000111 00001111  
(Internal Signal)  
Q=ShReg_Out[0]  
(see note 1)  
Q=ShReg_Out[7]  
(see note 2)  
MSB  
LSB  
x9  
xB  
Initial Value is transmitted (x9B)  
Input Data are transmitted  
Note1 : Macrocell is configured as DFF  
Note2 : Macrocell is configured as 8-bit Shift Register  
Figure 31: DFF3 to DFF12 and Shift Register 3 to Shift Register 12 Operation  
Datasheet  
16-Jul-2021  
© 2021 Dialog Semiconductor  
Revision 2.0  
52 of 191  
CFR0011-120-00  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Inital Value is loaded from NVM to Shift Register  
VDD  
Data  
Clk  
POR  
ShReg_Out[7:0]  
(Internal Signal)  
Initial Value 10011011 (x9B)  
00000010 00000101 00001010 00010100 00101000 01010000 10100000  
00000000  
00000000 00000001  
nReset  
(see note 1)  
Q=ShReg_Out[0]  
(see note 2)  
Q=ShReg_Out[7]  
(see note 3)  
8 Clk pulses  
Note1 : DFF Setting “Initial Value: 1”  
Note2 : Macrocell is configured as DFF  
Note3 : Macrocell is configured as 8-bits  
Figure 32: DFF3 to DFF12 and Shift Register 3 to Shift Register 12 Operation, nReset, Initial Value: b10011011  
Inital Value is loaded from NVM to Shift Register  
VDD  
Data  
Clk  
POR  
ShReg_Out[7:0]  
(Internal Signal)  
Initial Value 10011011  
00000010 00000101  
00000001  
00000000  
00000001 00000011 00000111  
00000000  
nReset  
(see note 1)  
Q=ShReg_Out[0]  
(see note 2)  
Q=ShReg_Out[7]  
(see note 3)  
Note1 : DFF Setting “Initial Value: 1”  
Note2 : Macrocell is configured as DFF  
Note3 : Macrocell is configured as 8-bits  
Figure 33: DFF3 to DFF12 and Shift Register3 to Shift Register12 Operation, nReset, Initial Value: b10011011, Case2  
Datasheet  
16-Jul-2021  
Revision 2.0  
53 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Inital Value is loaded from NVM to Shift Register  
VDD  
Data  
Clk  
POR  
ShReg_Out[7:0]  
Initial Value 00011011  
11011110 10111101  
00000000  
00000001 00000011 00000111  
00110111 01101111  
(Internal Signal)  
nReset  
(see note 1)  
Q=ShReg_Out[0]  
(see note 2)  
Q=ShReg_Out[7]  
(see note 3)  
Note1 : DFF Setting “Initial Value: 1”  
Note2 : Macrocell is configured as DFF  
Note3 : Macrocell is configured as 8-bits  
Figure 34: DFF3 to DFF12 and Shift Register 3 to Shift Register 12 Operation, nReset, Initial Value: b00011011  
Inital Value is loaded from NVM to Shift Register  
VDD  
Data  
Clk  
POR  
ShReg_Out[7:0]  
Initial Value 00011010 (x1A)  
11111100 11111001 11110010 11100100 11001000 10010000 00100000 11111111 11111111  
11111111 11111110  
(Internal Signal)  
nSet  
(see note 1)  
Q=ShReg_Out[0]  
(see note 2)  
Q=ShReg_Out[7]  
(see note 3)  
8 Clk pulses  
Note1 : DFF Setting “Initial Value: 0”  
Note2 : Macrocell is configured as DFF  
Note3 : Macrocell is configured as 8-bits  
Figure 35: DFF3 to DFF12 and Shift Register 3 to Shift Register 12 Operation, nSet, Initial Value: b00011010  
Datasheet  
16-Jul-2021  
© 2021 Dialog Semiconductor  
Revision 2.0  
54 of 191  
CFR0011-120-00  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Inital Value is loaded from NVM to Shift Register  
VDD  
Data  
Clk  
POR  
ShReg_Out[7:0]  
(Internal Signal)  
Initial Value 00011010  
11111111  
11111100 11111001  
11111111  
11111110 11111100 11111000  
11111110  
nSet  
(see note 1)  
Q=ShReg_Out[0]  
(see note 2)  
Q=ShReg_Out[7]  
(see note 3)  
Note1 : DFF Setting “Initial Value: 0”  
Note2 : Macrocell is configured as DFF  
Note3 : Macrocell is configured as 8-bits  
Figure 36: DFF3 to DFF12 and Shift Register 3 to Shift Register 12 Operation, nSet, Initial Value: b00011010, Case 2  
Inital Value is loaded from NVM to Shift Register  
VDD  
Data  
Clk  
POR  
ShReg_Out[7:0]  
Initial Value 10011010  
00110101  
11010100 10101001  
11111111  
11111110 11111100 11111000  
01101010  
(Internal Signal)  
nSet  
(see note 1)  
Q=ShReg_Out[0]  
(see note 2)  
Q=ShReg_Out[7]  
(see note 3)  
Note1 : DFF Setting “Initial Value: 0”  
Note2 : Macrocell is configured as DFF  
Note3 : Macrocell is configured as 8-bits  
Figure 37: DFF3 to DFF12 and Shift Register 3 to Shift Register 12 Operation, nSet, Initial Value: b10011010  
Datasheet  
16-Jul-2021  
© 2021 Dialog Semiconductor  
Revision 2.0  
55 of 191  
CFR0011-120-00  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
7.3.1 3-Bit LUT or D Flip-Flop Macrocells Used as 3-Bit LUTs  
Each macrocell, when programmed for a LUT function, uses an 8-bit register to define their output function:  
3-Bit LUT3_0 is defined by registers [655:648]  
3-Bit LUT3_1 is defined by registers [663:656]  
3-Bit LUT3_2 is defined by registers [671:664]  
3-Bit LUT3_3 is defined by registers [679:672]  
3-Bit LUT3_4 is defined by registers [687:680]  
3-Bit LUT3_5 is defined by registers [695:688]  
3-Bit LUT3_6 is defined by registers [703:696]  
3-Bit LUT3_7 is defined by registers [711:704]  
3-Bit LUT3_8 is defined by registers [719:712]  
3-Bit LUT3_9 is defined by registers [727:720]  
Table 26: 3-bit LUT3_0 to 3-bit LUT3_9 Truth Table  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
register register register register register register register register register register  
[648] [656] [664] [672] [680] [688] [696] [704] [712] [720]  
LSB  
register register register register register register register register register register  
[649] [657] [665] [673] [681] [689] [697] [705] [713] [721]  
register register register register register register register register register register  
[650] [658] [666] [674] [682] [690] [698] [706] [714] [722]  
register register register register register register register register register register  
[651] [659] [667] [675] [683] [691] [699] [707] [715] [723]  
register register register register register register register register register register  
[652] [660] [668] [676] [684] [692] [700] [708] [716] [724]  
register register register register register register register register register register  
[653] [661] [669] [677] [685] [693] [701] [709] [717] [725]  
register register register register register register register register register register  
[654] [662] [670] [678] [686] [694] [702] [710] [718] [726]  
register register register register register register register register register register  
[655] [663] [671] [679] [687] [695] [703] [711] [719] [727]  
MSB  
Table 27 shows the register bits for the standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR) that can be created  
within each of the four 3-bit LUT logic cells.  
Table 27: 3-bit LUT Standard Digital Functions  
Function  
AND-3  
MSB  
LSB  
1
0
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
0
NAND-3  
OR-3  
Datasheet  
16-Jul-2021  
Revision 2.0  
56 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 27: 3-bit LUT Standard Digital Functions (Continued)  
Function  
NOR-3  
MSB  
LSB  
0
1
0
0
0
1
0
0
1
0
1
0
0
0
1
0
1
0
0
1
0
1
0
1
XOR-3  
XNOR-3  
Datasheet  
16-Jul-2021  
Revision 2.0  
57 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
7.4 4-BIT LUT OR D FLIP-FLOP WITH SET/RESET OR SHIFT REGISTER MACROCELL  
There is one macrocell that can serve as 4-bit LUT or as DFF/LATCH, or as Shift Register. It is also possible to define the active  
level (Q or nQ) for the macrocell’s output by register [847]. DFF/Shift Register or LUT are selected by register [841]. When used  
to implement LUT functions, the 4-bit LUT takes in four input signals from the connection matrix and produces a single output,  
which goes back into the connection matrix.  
When used to implement Shift Register, the four input signals from the connection matrix go to the data (D_in), clock (CLK),  
clock enable (CLK_enable), and Set/Reset (nSET/nRST) inputs for the Shift Register, with the output going back to the  
connection matrix. It is possible to define the active level for the reset/set input of Shift Register macrocell which is selected by  
register [849]. The input data (D_in) writes into LSB. The Shift Register length (up to 16 bits/memory cells) is selected by register  
[845:842]. Register [845:842] = 0 means that DFF/LATCH function is selected.  
When used to implement D Flip-Flop function, the four input signals from the connection matrix go to the data (D_in), clock  
(CLK), clock enable (CLK_enable), and Set/Reset (nSET/nRST) inputs for the Flip-Flop, with the output going back to the  
connection matrix. Macrocell in LATCH configuration have three input signals: data (D_in), clock (CLK), and Set/Reset (nSET/  
nRST). It is possible to define the active level for the reset/set input (nSET/nRST_sel which are selected by register [848]) of  
DFF/LATCH macrocell. LATCH or DFF configuration is selected by register [846].  
The operation of the D Flip-Flop and LATCH will follow the functional descriptions below:  
DFF: CLK is rising edge triggered, then Q = D; otherwise Q will not change. When clock enable (CLK_enable) is low, macrocell  
doesn't react to any pulses at clock (CLK) input.  
LATCH: when CLK is Low, then Q = D; otherwise Q remains its previous value (input D has no effect on the output, when CLK is  
High).  
It's possible to read/write the Shift Register content via I2C. See section 15.4.10 for more information.  
LUT IN1  
DFF data in  
ShRg data in  
From Connectinon  
Matrix Output [39]  
16 memory cells  
S1  
S0  
D_in  
LUT IN0  
DFF CLK  
ShRg CLK  
From Connectinon  
Matrix Output [38]  
S1  
S0  
Clk  
From Connectinon  
Matrix Output [40]  
Clk_enable  
LUT IN2  
DFF nSet/nRST  
ShRg nSet/nRST  
S0  
S1  
nSET/nRST  
nSET/nRST_sel Out[15:0] SET/RST_act_level LATCH/DFF_sel  
16  
4-bit LUT  
From Connectinon  
Matrix Output [41]  
S1  
S0  
[15]  
LUT IN3  
DFF CLK Enable  
ShRg CLK Enable  
To Connection  
Matrix Input [15]  
1111  
.
LUT config  
S0  
S1  
.
4
4
] 0 [  
.
0000  
S0  
S1  
ShRg/LUT_sel  
1-bit NVM  
ShRg_length [3:0]  
4
8
4
nQ/Q_sel  
8-bit NVM  
Figure 38: 4-bit LUT0 or DFF13 or Shift Register 13  
Datasheet  
16-Jul-2021  
Revision 2.0  
58 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Inital Value is loaded from NVM to Shift Register  
VDD  
Data  
Clk  
POR  
CLK_En  
Initial Value (xA7B2)  
10100111/10110010  
01001111 10011110 00111101 01111011 11110110 11101100 11011001 10110010 01100101 11001011 10010110 00101100 01011000 10110000 01100000 11000001 10000011 00000111  
01100101 11001011 10010110 00101100 01011000 10110000 01100000 11000001 10000011 00000111 00001111 00011111 00111110 01111100 11111001 11110011 11100110 11001100  
MSB  
LSB  
xA  
x7  
xB  
Initial Value is transmitted (xA7B2)  
x2  
Input Data  
is transmitted  
Note1 : Macrocell is configured as DFF  
Note2 : Macrocell is configured as 16-bit Shift Register  
Figure 39: DFF13 and Shift Register 13 Operation  
Inital Value is loaded from NVM to Shift Register  
VDD  
Data  
Clk  
POR  
CLK_En  
Initial Value (xA7B2)  
10100111/10110010  
11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111110 11111100 11111000 11110000 11100000 11000001 10000011 00000111  
11111111 11111111 11111110 11111100 11111000 11110000 11100000 11000001 10000011 00000111 00001111 00011111 00111110 01111100 11111001 11110011 11100110 11001100  
ShReg_Out[15:0]  
(Internal Signal)  
nSet  
(see note 1)  
Q=ShReg_Out[0]  
(see note 2)  
Q=ShReg_Out[15]  
(see note 3)  
16 Clk pulses  
Note1 : DFF Setting “Initial Value: 0”  
Note2 : Macrocell is configured as DFF  
Note3 : Macrocell is configured as 16-bits ShReg  
Figure 40: DFF13 and Shift Register 13 Operation, nSet, Initial Value: xA7B2  
Datasheet  
16-Jul-2021  
© 2021 Dialog Semiconductor  
Revision 2.0  
59 of 191  
CFR0011-120-00  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Inital Value is loaded from NVM to Shift Register  
VDD  
Data  
Clk  
POR  
CLK_En  
ShReg_Out[15:0]  
(Internal Signal)  
Initial Value (xA7B2)  
10100111/10110010  
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 00000010 00000100 00001000 00010000 00100000 01000001 10000011 00000111  
00000000 00000001 00000010 00000100 00001000 00010000 00100000 01000001 10000011 00000111 00001111 00011111 00111110 01111100 11111001 11110011 11100110 11001100  
nReset  
(see note 1)  
Q=ShReg_Out[0]  
(see note 2)  
Q=ShReg_Out[15]  
(see note 3)  
16 Clk pulses  
Note1 : DFF Setting “Initial Value: 0”  
Note2 : Macrocell is configured as DFF  
Note3 : Macrocell is configured as 16-bits ShReg  
Figure 41: DFF13 and Shift Register 13 Operation, nReset, Initial Value: xA7B2  
7.4.1 4-Bit LUT Macrocell Used as 4-Bit LUT  
Table 28: 4-bit LUT0 Truth Table  
IN3  
0
IN2  
0
IN1  
0
IN0  
0
OUT  
register [728]  
register [729]  
register [730]  
register [731]  
register [732]  
register [733]  
register [734]  
register [735]  
register [736]  
register [737]  
register [738]  
register [739]  
register [740]  
register [741]  
register [742]  
register [743]  
LSB  
0
0
0
1
0
0
1
0
0
0
1
1
0
1
0
0
0
1
0
1
0
1
1
0
0
1
1
1
1
0
0
0
1
0
0
1
1
0
1
0
1
0
1
1
1
1
0
0
1
1
0
1
1
1
1
0
1
1
1
1
MSB  
This macrocell, when programmed for a LUT function, uses a 16-bit register to define their output function:  
Datasheet  
16-Jul-2021  
Revision 2.0  
60 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
4-Bit LUT0 is defined by registers [743:728]  
Table 29: 4-bit LUT Standard Digital Functions  
Function  
AND-4  
MSB  
LSB  
1
0
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
0
1
0
1
NAND-4  
OR-4  
NOR-4  
XOR-4  
XNOR-4  
Datasheet  
16-Jul-2021  
© 2021 Dialog Semiconductor  
Revision 2.0  
61 of 191  
CFR0011-120-00  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
8
Multi-Function Macrocells  
The SLG47502/03 has 8 Multi-Function macrocells that can serve as more than one logic or timing function. In each case, they  
can serve as a LUT, DFF with flexible settings, or as CNT/DLY with multiple modes such as One Shot, Frequency Detect, Edge  
Detect, and others. Also, the macrocell is capable to combine those functions: LUT/DFF connected to CNT/DLY or CNT/DLY  
connected to LUT/DFF, see Figure 42.  
See the list below for the functions that can be implemented in these macrocells:  
Seven macrocells that can serve as 3-bit LUTs/D Flip-Flops and as 8-Bit Counter/Delays  
One macrocell that can serve as a 4-bit LUT/D Flip-Flop and as 16-Bit Counter/Delay/FSM  
To Connection Matrix  
To Connection Matrix  
From Connection  
Matrix  
To Connection  
Matrix  
From Connection  
Matrix  
To Connection  
Matrix  
LUT  
or  
DFF  
LUT  
or  
DFF  
CNT/DLY  
CNT/DLY  
Figure 42: Possible Connections Inside Multi-Function Macrocell  
Inputs/Outputs for the 8 Multi-Function function macrocells are configured from the connection matrix with specific logic functions  
being defined by the state of NVM bits.  
When used as a LUT to implement combinatorial logic functions, the outputs of the LUTs can be configured to any user defined  
function, including the following standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR).  
8.1 3-BIT LUT OR DFF/LATCH WITH 8-BIT COUNTER/DELAY MACROCELLS  
There are seven macrocells that can serve as 3-bit LUTs/D Flip-Flops and as 8-Bit Counter/Delays.  
When used to implement LUT functions, the 3-bit LUTs each takes in three input signals from the connection matrix and produces  
a single output, which goes back into the connection matrix or can be connected to CNT/DLY's input.  
When used to implement D Flip-Flop function, the three input signals from the connection matrix go to the data (D), clock (CLK),  
and Set/Reset (nRST/nSET) inputs of the Flip-Flop, with the output going back to the connection matrix or to the CNT/DLY's input.  
The operation of the D Flip-Flop and LATCH will follow the functional descriptions below:  
DFF: CLK is rising edge triggered, then Q = D; otherwise Q will not change.  
LATCH: when CLK is High, then Q = D; otherwise Q remains its previous value (input D has no effect on the output, when CLK  
is Low).  
When used to implement Counter/Delays, each macrocell has a dedicated matrix input connection. For flexibility, each of these  
macrocells has a large selection of internal and external clock sources, as well as the option to chain from the output of the  
previous (N-1) CNT/DLY macrocell, to implement longer count/delay circuits. These macrocells can also operate in a One-Shot  
mode, which will generate an output pulse of user-defined width. They can also operate in a Frequency Detection or Edge  
Detection mode.  
Counter/Delay macrocell has an initial value, which define its initial value after GPAK is powered up. It is possible to select initial  
Low or initial High, as well as initial value defined by a Delay In signal.  
Datasheet  
16-Jul-2021  
Revision 2.0  
62 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
For example, in case initial LOW option is used, the rising edge delay will start operation.  
For timing diagrams refer to sections 7.1 and 8.3.  
Note: After two DFF – counters initialize with counter data = 0 after POR.  
Initial state = 1 – counters initialize with counter data = 0 after POR.  
Initial state = 0 And After two DFF is bypass – counters initialize with counter data after POR.  
CNT6 and CNT7 current count value can be read via I2C. However, it is possible to change the counter data (value counter starts  
operating from) for any macrocell using I2C write commands. In this mode, it is possible to load count data immediately (after two  
DFF) or after counter ends counting. See Section 15.4.8 for further details.  
8.1.1 3-Bit LUT or 8-Bit CNT/DLY Block Diagrams  
register [960] DFF or Latch Select  
register [961] Output Select (Q or  
From Connection  
nQ)  
Matrix Output A [48]  
register [962] DFF Initial Polarity  
Select  
register [963] (nRST or nSET) from  
matrix Output  
IN2  
IN1  
IN0  
S0  
S1  
3-bit LUT10  
S0  
S1  
OUT  
LUT Truth  
Table  
From Connection  
Matrix Output B [47]  
To Connection  
S0  
S0  
S1  
S0  
S1  
Matrix Input [19]  
8-bits NVM  
registers [967:960]  
S1  
DFF  
Registers  
D
From Connection  
Matrix Output C [46]  
S0  
S1  
S0  
S1  
nRST/nSET  
CLK  
DFF/  
Latch15  
Q/nQ  
register [972]  
LUT/DFF Sel  
registers [999:992]  
registers [979:976]  
Mode Sel  
CNT  
Data  
ext_CLK  
To Connection  
Matrix Input [18]  
0
S0  
OUT  
CNT/DLY1  
DLY_IN/CNT Reset  
S0  
S1  
S2  
S1  
S2  
S3  
Config  
Data  
0
S3  
registers [987:984], [981:980], [975:973], [971:968]  
Figure 43: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT10/DFF15, CNT/DLY1)  
Datasheet  
16-Jul-2021  
Revision 2.0  
63 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
register [1008] DFF or Latch Select  
register [1009] Output Select (Q or  
nQ)  
From Connection  
Matrix Output [51]  
register [1110] DFF Initial Polarity  
Select  
IN2  
IN1  
IN0  
S0  
3-bit LUT11  
S0  
register [1111] (nRST or nSET) from  
matrix Output  
OUT  
S1  
S1  
LUT Truth  
Table  
From Connection  
Matrix Output [50]  
To Connection  
S0  
S0  
S1  
S0  
S1  
Matrix Input [21]  
8-bits NVM  
registers [1015:1008]  
S1  
DFF  
Registers  
D
From Connection  
Matrix Output [49]  
S0  
S1  
S0  
S1  
DFF/  
Latch16  
nRST/nSET  
CLK  
Q/nQ  
register [1020]  
LUT/DFF Sel  
registers [1047:1040]  
registers [1027:1024]  
Mode Sel  
CNT  
Data  
ext_CLK  
To Connection  
Matrix Input [20]  
0
S0  
OUT  
CNT/DLY2  
DLY_IN/CNT Reset  
S0  
S1  
S2  
S1  
S2  
S3  
Config  
Data  
0
S3  
registers [1047:1040], [1029:1027], [1023:1021], [1019:1016]  
Figure 44: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT11/DFF16, CNT/DLY2)  
Datasheet  
16-Jul-2021  
Revision 2.0  
64 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
register [1056] DFF or Latch Select  
register [1057] Output Select (Q or  
nQ)  
From Connection  
Matrix Output [54]  
register [1058] DFF Initial Polarity  
Select  
IN2  
IN1  
IN0  
S0  
3-bit LUT12  
S0  
register [1059] (nRST or nSET)  
from matrix Output  
OUT  
S1  
S1  
LUT Truth  
Table  
From Connection  
Matrix Output [53]  
To Connection  
S0  
S0  
S1  
S0  
S1  
Matrix Input [23]  
8-bits NVM  
registers [1063:1056]  
S1  
DFF  
Registers  
D
From Connection  
Matrix Output [52]  
S0  
S1  
S0  
S1  
DFF/  
Latch17  
nRST/nSET  
Q/nQ  
CLK  
register [1068]  
LUT/DFF Sel  
registers [1095:1088]  
registers [1075:1072]  
Mode Sel  
CNT  
Data  
ext_CLK  
To Connection  
Matrix Input [22]  
0
S0  
OUT  
CNT/DLY3  
DLY_IN/CNT Reset  
S0  
S1  
S2  
S1  
S2  
S3  
Config  
Data  
0
S3  
registers [1083:1080], [1077:1076], [1071:1069], [1067:1064]  
Figure 45: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT12/DFF17, CNT/DLY3)  
Datasheet  
16-Jul-2021  
Revision 2.0  
65 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
register [1104] DFF or Latch Select  
register [1105] Output Select (Q or  
nQ)  
register [1106] DFF Initial Polarity  
Select  
register [1107] (nRST or nSET) from  
matrix Output  
From Connection  
Matrix Output [57]  
IN2  
IN1  
IN0  
S0  
3-bit LUT13  
S0  
OUT  
S1  
S1  
LUT Truth  
Table  
From Connection  
Matrix Output [56]  
To Connection  
S0  
S0  
S1  
S0  
S1  
Matrix Input [25]  
8-bits NVM  
registers [1110:1104]  
S1  
DFF  
Registers  
D
From Connection  
Matrix Output [55]  
S0  
S1  
S0  
S1  
nRST/nSET DFF/  
Q/nQ  
Latch18  
CLK  
register [1116]  
LUT/DFF Sel  
registers [1143:1136]  
registers [1123:1122]  
Mode Sel  
CNT  
Data  
ext_CLK  
To Connection  
Matrix Input [24]  
0
S0  
OUT  
CNT/DLY4  
DLY_IN/CNT Reset  
S0  
S1  
S2  
S1  
S2  
S3  
Config  
Data  
0
S3  
registers [1131:1128], [1125:1124], [1119:1117], [1115:1112]  
Figure 46: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT13/DFF18, CNT/DLY4)  
Datasheet  
16-Jul-2021  
Revision 2.0  
66 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
register [1152] DFF or Latch Select  
register [1153] Output Select (Q or  
nQ)  
register [1154] DFF Initial Polarity  
Select  
register [1155] (nRST or nSET) from  
matrix Output  
From Connection  
Matrix Output [60]  
IN2  
IN1  
IN0  
S0  
3-bit LUT14  
S0  
OUT  
S1  
S1  
LUT Truth  
Table  
From Connection  
Matrix Output [59]  
To Connection  
S0  
S0  
S1  
S0  
S1  
Matrix Input [27]  
8-bits NVM  
registers [1158:1152]  
S1  
DFF  
Registers  
D
From Connection  
Matrix Output [58]  
S0  
S1  
S0  
S1  
DFF/  
Latch19  
nRST/nSET  
Q/nQ  
CLK  
register [1164]  
LUT/DFF Sel  
registers [1171:1168]  
Mode Sel  
registers [1191:1184]  
CNT  
Data  
ext_CLK  
To Connection  
Matrix Input [26]  
0
S0  
OUT  
CNT/DLY5  
DLY_IN/CNT Reset  
S0  
S1  
S2  
S1  
S2  
S3  
Config  
Data  
0
S3  
registers [1179:1176], [1173:1172], [1167:1165], [1162:1159]  
Figure 47: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT14/DFF19, CNT/DLY5)  
Datasheet  
16-Jul-2021  
Revision 2.0  
67 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
register [1200] DFF or Latch Select  
register [1201] Output Select (Q or  
nQ)  
From Connection  
Matrix Output [63]  
register [1202] DFF Initial Polarity  
Select  
IN2  
IN1  
IN0  
S0  
3-bit LUT15  
S0  
register [1203] (nRST or nSET)  
from matrix Output  
OUT  
S1  
S1  
LUT Truth  
Table  
From Connection  
Matrix Output [62]  
To Connection  
S0  
S0  
S1  
S0  
S1  
Matrix Input [29]  
8-bits NVM  
registers [1206:1200]  
S1  
DFF  
Registers  
D
From Connection  
Matrix Output [61]  
S0  
S1  
S0  
S1  
DFF/  
Latch20  
nRST/nSET  
Q/nQ  
CLK  
register [1212]  
LUT/DFF Sel  
registers [1239:1232]  
registers [1219:1216]  
Mode Sel  
CNT  
Data  
ext_CLK  
To Connection  
Matrix Input [28]  
0
S0  
OUT  
CNT/DLY6  
DLY_IN/CNT Reset  
S0  
S1  
S2  
S1  
S2  
S3  
Config  
Data  
0
S3  
registers [1227:1224], [1221:1220], [1215:1213], [1211:1207]  
Figure 48: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT15/DFF20, CNT/DLY6)  
Datasheet  
16-Jul-2021  
Revision 2.0  
68 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
register [1248] DFF or Latch Select  
register [1249] Output Select (Q or  
nQ)  
From Connection  
Matrix Output [66]  
register [1250] DFF Initial Polarity Se  
lect  
-
IN2  
IN1  
IN0  
S0  
3-bit LUT16  
S0  
register [1251] (nRST or nSET) from  
matrix Output  
OUT  
S1  
S1  
LUT Truth  
Table  
From Connection  
Matrix Output [65]  
To Connection  
S0  
S0  
S1  
S0  
S1  
Matrix Input [31]  
8-bits NVM  
registers [1255:1248]  
S1  
DFF  
Registers  
D
From Connection  
Matrix Output [64]  
S0  
S1  
S0  
S1  
DFF/  
Latch21  
nRST/nSET  
CLK  
Q/nQ  
register [1260]  
LUT/DFF Sel  
registers [1287:1280]  
registers [1267:1264]  
Mode Sel  
CNT  
Data  
ext_CLK  
To Connection  
Matrix Input [30]  
0
S0  
OUT  
CNT/DLY7  
DLY_IN/CNT Reset  
S0  
S1  
S2  
S1  
S2  
S3  
Config  
Data  
0
S3  
registers [1275:1272], [1269:1268], [1263:1261], [1259:1255]  
Figure 49: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT16/DFF21, CNT/DLY7)  
As shown in Figures 22-28 there is a possibility to use LUT/DFF and CNT/DLY simultaneously.  
Note: It is not possible to use LUT and DFF at once, one of these macrocells must be selected.  
Case 1. LUT/DFF in front of CNT/DLY. Three input signals from the connection matrix go to previously selected LUT or DFF's  
inputs and produce a single output which goes to a CND/DLY input. In its turn Counter/Delay's output goes back to the matrix.  
Case 2. CNT/DLY in front of LUT/DFF. Two input signals from the connection matrix go to CND/DLY's inputs (IN and CLK).  
Its output signal can be connected to any input of previously selected LUT or DFF, after which the signal goes back to the  
matrix.  
Case 3. Single LUT/DFF or CNT/DLY. Also, it is possible to use a standalone LUT/DFF or CNT/DLY. In this case, all inputs  
and output of the macrocell are connected to the matrix.  
Datasheet  
16-Jul-2021  
Revision 2.0  
69 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
8.1.2 3-Bit LUT or CNT/DLYs Used as 3-Bit LUTs  
Table 30: 3-bit LUT10 to 3-bit LUT16 Truth Table  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
register  
[960]  
register  
[1008]  
register  
[1056]  
register  
[1104]  
register  
[1152]  
register  
[1200]  
register  
[1248]  
LSB  
register  
[961]  
register  
[1009]  
register  
[1057]  
register  
[1105]  
register  
[1153]  
register  
[1201]  
register  
[1249]  
register  
[962]  
register  
[1010]  
register  
[1058]  
register  
[1106]  
register  
[1154]  
register  
[1202]  
register  
[1250]  
register  
[963]  
register  
[1011]  
register  
[1059]  
register  
[1107]  
register  
[1155]  
register  
[1203]  
register  
[1251]  
register  
[964]  
register  
[1012]  
register  
[1060]  
register  
[1108]  
register  
[1156]  
register  
[1204]  
register  
[1252]  
register  
[965]  
register  
[1013]  
register  
[1061]  
register  
[1109]  
register  
[1157]  
register  
[1205]  
register  
[1253]  
register  
[966]  
register  
[1014]  
register  
[1062]  
register  
[1110]  
register  
[1158]  
register  
[1206]  
register  
[1254]  
register  
[967]  
register  
[1015]  
register  
[1063]  
register  
[1111]  
register  
[1159]  
register  
[1207]  
register  
[1255]  
MSB  
Each macrocell, when programmed for a LUT function, uses an 8-bit register to define their output function:  
3-Bit LUT10 is defined by registers [967:960]  
3-Bit LUT11 is defined by registers [1015:1008]  
3-Bit LUT12 is defined by registers [1063:1056]  
3-Bit LUT13 is defined by registers [1111:1104]  
3-Bit LUT14 is defined by registers [1159:1152]  
3-Bit LUT15 is defined by registers [1207:1200]  
3-Bit LUT16 is defined by registers [1255:1248]  
Datasheet  
16-Jul-2021  
Revision 2.0  
70 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
8.2 4-BIT LUT OR DFF/LATCH WITH 16-BIT COUNTER/DELAY MACROCELL  
There is one macrocell that can serve as either 4-bit LUT or as 16-bit Counter/Delay. When used to implement LUT function, the  
4-bit LUT takes in four input signals from the Connection Matrix and produces a single output, which goes back into the Connection  
Matrix. When used to implement 16-Bit Counter/Delay function, two of the four input signals from the connection matrix go to the  
external clock (EXT_CLK) and reset (DLY_IN/CNT Reset) for the counter/delay, with the output going back to the connection  
matrix.  
This macrocell has an optional Finite State Machine (FSM) function. There are two additional matrix inputs for Up and Keep to  
support FSM functionality. FSM has an option to reset its counted value either to 0 or to user defined data.  
The behavior of FSM macrocell is described below:  
FSM output Q goes to 1 if counter value reaches 0;  
FSM Set Selection Mode sets the initial counter value to counter data;  
RST Selection Mode sets the initial counter value to 0;  
Counter value reaches maximum and overloads, after that counting starts from 0. Otherwise, in case of counting down from  
maximum to 0, after overloading counter starts from 65535;  
Mode signal synchronization (available for thee inputs) adds two extra clocks to avoid metastability issue.  
This macrocell can also operate in a one-shot mode, which will generate an output pulse of user-defined width.  
This macrocell can also operate in a frequency detection or edge detection mode.  
This macrocell can have its active count value read via I2C. See Section 15.4.8 for further details.  
Note: After two DFF – counters initialize with counter data = 0 after POR.  
Initial state = 1 – counters initialize with counter data = 0 after POR.  
Initial state = 0 And After two DFF is bypass – counters initialize with counter data after POR.  
Datasheet  
16-Jul-2021  
Revision 2.0  
71 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
8.2.1 4-Bit LUT or DFF/LATCH with 16-Bit CNT/DLY Block Diagram  
From Connection  
Matrix Output A [45]  
register [872] DFF or Latch Select  
register [873] DFF Output Select  
(Q or nQ)  
register [874] DFF Initial Polarity  
Select  
IN3  
S0  
S1  
S1  
S0  
S0  
S1  
IN2  
IN1  
From Connection  
Matrix Output B [44]  
0
4-bit LUT1  
S0  
S1  
S0  
S1  
S1  
S0  
0
OUT  
IN0  
LUT Truth  
Table  
From Connection  
Matrix Output C [43]  
S0  
S1  
To Connection  
S0  
S0  
S1  
S1  
S0  
Matrix Input [17]  
registers [897:896] =  
00, 10, 11  
16-bits NVM  
registers [887:872]  
1
S1  
From Connection  
Matrix Output D [42]  
DFF  
D
S0  
S1  
Registers  
S0  
S1  
S1  
S0  
nSET  
Q/nQ  
DFF14  
1
nRST  
CLK  
LUT/DFF Sel  
register [892]  
registers [903:902]  
registers [927:912]  
CNT  
registers [899:896]  
0
0
S0  
S1  
S2  
S3  
Data  
ext_CLK  
CMO* [44]  
CMO* [43]  
S1  
S0  
To Connection  
Matrix Input [16]  
S0  
0
S0  
S1  
S2  
S3  
CMO* [45]  
CMO* [44]  
CMO* [43]  
CMO* [42]  
S1  
S2  
S3  
OUT  
CNT/DLY0  
DLY_IN/CNT Reset  
CMO* [43]  
S1  
S0  
From Connection  
Matrix Output [44]  
0
KEEP  
UP  
From Connection  
Matrix Output [45]  
FSM  
S1  
S0  
Config  
Data  
0
Note: CMO - Connection Matrix Output  
registers [897:896] = 01  
registers [907:904], [901:900], [895:893], [891:888]  
Figure 50: 4-bit LUT1 or CNT/DLY0  
Datasheet  
16-Jul-2021  
Revision 2.0  
72 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
8.2.2 4-Bit LUT or 16-Bit Counter/Delay Macrocells Used as 4-Bit LUTs  
Table 31: 4-bit LUT1 Truth Table  
IN3  
0
IN2  
0
IN1  
0
IN0  
0
OUT  
register [872]  
register [873]  
register [874]  
register [875]  
register [876]  
register [877]  
register [878]  
register [879]  
register [880]  
register [881]  
register [882]  
register [883]  
register [884]  
register [885]  
register [886]  
register [887]  
LSB  
0
0
0
1
0
0
1
0
0
0
1
1
0
1
0
0
0
1
0
1
0
1
1
0
0
1
1
1
1
0
0
0
1
0
0
1
1
0
1
0
1
0
1
1
1
1
0
0
1
1
0
1
1
1
1
0
1
1
1
1
MSB  
This macrocell, when programmed for a LUT function, uses a 16-bit register to define their output function:  
4-Bit LUT1 is defined by registers [887:872]  
Table 32: 4-bit LUT Standard Digital Functions  
Function  
AND-4  
MSB  
LSB  
1
0
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
1
0
1
0
0
1
0
1
0
1
NAND-4  
OR-4  
NOR-4  
XOR-4  
XNOR-4  
Datasheet  
16-Jul-2021  
© 2021 Dialog Semiconductor  
Revision 2.0  
73 of 191  
CFR0011-120-00  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
8.3 CNT/DLY TIMING DIAGRAMS  
8.3.1 Delay Mode CNT/DLY0 to CNT/DLY7  
Delay macrocell can automatically start/stop oscillator (Figure 51).  
Delay In  
Asynchronous delay variable  
Asynchronous delay variable  
OSC: force power-on  
(always running)  
Delay Output  
delay = period x (counter data + 1) + variable  
variable is from 0 to 1 clock period  
delay = period x (counter data + 1) + variable  
variable is from 0 to 1 clock period  
Delay In  
offset  
offset  
OSC: auto power-on  
(powers up from delay in)  
Delay Output  
delay = offset + period x (counter data + 1)  
See offset in table 11  
delay = offset + period x (counter data + 1)  
See offset in table 11  
Figure 51: Delay Macrocell Behavior with Different Oscillators Options (Edge Select: Both, Counter Data: 3)  
The macrocell shifts the respective edge to a set time and restarts by appropriate edge. It works as a filter if the input signal is  
shorter than the delay time.  
Datasheet  
16-Jul-2021  
Revision 2.0  
74 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Delay time  
Delay time  
Delay time  
Delay time  
Delay time  
One-Shot/Freq. DET/Delay IN  
t
t
Delay time  
Delay Function  
Rising Edge Detection  
Delay Function  
Falling Edge Detection  
t
t
Delay Function  
Both Edge Detection  
Figure 52: Delay Mode Timing Diagram (Rising, Falling, and Both Edge Detection)  
8.3.2 Count Mode (Count Data: 3), Counter Reset (Rising Edge Detect) CNT/DLY0 to CNT/DLY7  
RESET_IN  
CLK  
Counter OUT  
4 CLK period pulse  
Count start in first rising edge CLK  
Figure 53: Counter Mode Timing Diagram without Two DFFs Synced Up  
Datasheet  
16-Jul-2021  
© 2021 Dialog Semiconductor  
Revision 2.0  
75 of 191  
CFR0011-120-00  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
.
RESET_IN  
CLK  
Counter OUT  
4 CLK period pulse  
Count start in 0 CLK after reset  
Figure 54: Counter Mode Timing Diagram with Two DFFs Synced Up  
Datasheet  
16-Jul-2021  
© 2021 Dialog Semiconductor  
Revision 2.0  
76 of 191  
CFR0011-120-00  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
8.3.3 One-Shot Mode CNT/DLY0 to CNT/DLY7  
This macrocell will generate a pulse whenever a selected edge is detected on its input. Register bits set the edge selection. The  
pulse width is determined by counter data and clock selection properties. The output pulse polarity (non-inverted or inverted) is  
selected by register bit. Any incoming edges will be ignored during the pulse width generation. The following diagram shows  
one-shot function for non-inverted output.  
Delay time  
Delay time  
Delay time  
Delay time  
Delay time  
One-Shot/Freq. DET/Delay IN  
t
Delay time  
One-Shot Function  
Rising Edge Detection  
t
One-Shot Function  
Falling Edge Detection  
t
One-Shot Function  
Both Edge Detection  
t
Figure 55: One-Shot Function Timing Diagram  
This macrocell generates a high level pulse with a set width (defined by counter data) when detecting the respective edge. It does  
not restart while pulse is high.  
8.3.4 Frequency Detection Mode CNT/DLY0 to CNT/DLY7  
Rising Edge: The output goes high if the time between two successive edges is less than the delay. The output goes low if the  
second rising edge has not come after the last rising edge in specified time.  
Falling Edge: The output goes high if the time between two falling edges is less than the set time. The output goes low if the  
second falling edge has not come after the last falling edge in specified time.  
Both Edge: The output goes high if the time between the rising and falling edges is less than the set time, which is equivalent to  
the length of the pulse. The output goes low if after the last rising/falling edge and specified time, the second edge has not come.  
Datasheet  
16-Jul-2021  
Revision 2.0  
77 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Delay time  
Delay time  
Delay time  
Delay time  
Delay time  
One-Shot/Freq. DET/Delay IN  
t
t
Delay time  
Frequency Detector Function  
Rising Edge Detection  
Frequency Detector Function  
Falling Edge Detection  
t
t
Frequency Detector Function  
Both Edge Detection  
Figure 56: Frequency Detection Mode Timing Diagram  
Datasheet  
16-Jul-2021  
© 2021 Dialog Semiconductor  
Revision 2.0  
78 of 191  
CFR0011-120-00  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
8.3.5 Edge Detection Mode CNT/DLY1 to CNT/DLY7  
The macrocell generates high level short pulse when detecting the respective edge. See Table 11.  
Delay time  
Delay time  
Delay time  
Delay time  
Delay time  
One-Shot/Freq. DET/Delay IN  
t
t
Edge Detector Function  
Rising Edge Detection  
Edge Detector Function  
Falling Edge Detection  
t
t
Edge Detector Function  
Both Edge Detection  
Figure 57: Edge Detection Mode Timing Diagram  
Datasheet  
16-Jul-2021  
© 2021 Dialog Semiconductor  
Revision 2.0  
79 of 191  
CFR0011-120-00  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
8.3.6 Delayed Edge Detection Mode CNT/DLY0 to CNT/DLY7  
In Delayed Edge Detection Mode, High level short pulses are generated on the macrocell output after the configured delay time,  
if the corresponding edge was detected on the input.  
If the input signal is changed during the set delay time, the pulse will not be generated. See Figure 58.  
Delay time  
Delay time  
Delay time  
Delay time  
Delay time  
One-Shot/Freq. DET/Delay IN  
t
t
Delay time  
Delayed Edge Detector Function  
Rising Edge Detection  
Delayed Edge Detector Function  
Falling Edge Detection  
t
t
Delayed Edge Detector Function  
Both Edge Detection  
Figure 58: Delayed Edge Detection Mode Timing Diagram  
Datasheet  
16-Jul-2021  
© 2021 Dialog Semiconductor  
Revision 2.0  
80 of 191  
CFR0011-120-00  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
8.3.7 Difference in Counter Value for Counter, Delay, One-Shot, and Frequency Detect Modes  
There is a difference in counter value for Counter and Delay/One-Shot/Frequency Detect modes. Compared to Counter mode,  
in Delay/One-Shot/Frequency Detect modes the counter value is shifted for two rising edges of the clock signal. See Figure 59:  
One-Shot/Freq. SET/Delay IN  
CLK  
CNT Out  
3
2
1
0
0
3
CNT Data  
2
DLY Out  
3
3
2
Delay Data  
1
3
3
3
One-Shot Out  
One-Shot Data  
3
3
2
3
1
3
3
Figure 59: Counter Value, Counter Data = 3  
8.4 FSM TIMING DIAGRAMS  
RESET IN  
KEEP  
COUNT END  
CLK  
3
2
1
0
3
2
1
0
3
2
1
3
2
1
0
0
Q
Note: Q = current counter value  
Figure 60: CNT/FSM Mode Timing Diagram (Reset Rising Edge Mode, OSC is Forced On, UP=0) for CNT Data = 3  
Datasheet  
16-Jul-2021  
Revision 2.0  
81 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
SET IN  
KEEP  
COUNT END  
CLK  
2
1
0
3
2
1
0
3
3
2
1
2
1
0
3
3
Q
Note: Q = current counter value  
Figure 61: CNT/FSM Mode Timing Diagram (Set Rising Edge Mode, OSC is Forced On, UP = 0) for CNT Data = 3  
RESET IN  
KEEP  
COUNT END  
CLK  
65534 65535  
0
7
8
9
10 11  
3
4
5
3
4
5
3
4
5
6
0
Q
Note: Q = current counter value  
Figure 62: CNT/FSM Mode Timing Diagram (Reset Rising Edge Mode, OSC is Forced On, UP = 1) for CNT Data = 3  
Datasheet  
16-Jul-2021  
Revision 2.0  
82 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
SET IN  
KEEP  
COUNT END  
CLK  
65534 65535  
0
8
9
10 11 12  
3
4
5
3
4
5
4
5
6
7
3
Q
Note: Q = current counter value  
Figure 63: CNT/FSM Mode Timing Diagram (Set Rising Edge Mode, OSC is Forced On, UP = 1) for CNT Data = 3  
Two extra clocks  
Two extra clocks  
Delay In  
Clk  
Keep  
3
2
1
3
2
1
3
Internal Counter  
Q
Figure 64: DLY/FSM Mode, Falling Edge Delay, OSC is Forced On, DFFs Synced Up, UP = 0, CNT Data = 3  
Two extra clocks  
Two extra clocks  
Delay In  
Clk  
Keep  
3
2
1
3
2
1
3
Internal Counter  
Q
Figure 65: One Shot/FSM Mode, Rising Edge, OSC is Forced On, DFFs Synced Up, UP = 0, CNT Data = 3  
Datasheet  
16-Jul-2021  
Revision 2.0  
83 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Two extra clocks  
Two extra clocks  
Delay In  
Clk  
Keep  
3
2
3
2
3
2
1
3
Internal Counter  
Q
Less than  
3 clk  
between  
2 rising edges  
Figure 66: Freq. Detector/FSM Mode, Rising Edge, OSC is Forced On, DFFs Synced Up, UP = 0, CNT Data = 3  
Time less than CNT Data  
doesnt cause any change  
Two extra clocks  
Two extra clocks  
Delay In  
Clk  
Keep  
3
2
1
3
2
1
Internal Counter  
3
Q
Figure 67: Delayed Edge Detector/FSM Mode, Rising Edge, OSC is Forced On, DFFs Synced Up, UP = 0, CNT Data = 3  
8.5 WAKE AND SLEEP CONTROLLER  
SLG47502/03 has a Wake and Sleep function for all ACMPs. The macrocell CNT/DLY0 can be reconfigured for this purpose  
registers [953:952] = 11 and register [948] = 1. The WS serves for power saving, it allows to switch on and off selected ACMPs  
on selected bit of 16-bit counter.  
Note 1: BG/Analog_Good time is long and should be considered in wake and sleep timing in case it dynamically powers on/off.  
Note 2: Wake time should be long enough to make sure ACMP and Vref have enough time to get a sample before going to sleep.  
Datasheet  
16-Jul-2021  
Revision 2.0  
84 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Power Control  
From Connection Matrix Output [96] for 2 kHz OSC0  
WS Controller  
OSC  
CNT0_out  
CNT_end  
CNT  
To Connection Matrix Input [16]  
ck  
CK_OSC  
Divider  
Analog Control Block  
ACMPx WS EN:  
registers [953:952]  
2
2
bg/regulator  
pdb  
From Connection  
Matrix Output [94:93]  
WS_out  
WS_PD  
WS_PD  
(from OSC PD)  
ACMPs_PD  
WS_out  
WS_PD to W&S out  
state selection register [947]  
registers [907:904]  
WS clock freq. selection  
registers [927:912]  
WS ratio control data  
ACMPs  
register [949]  
WS mode: normal or short wake  
Note: WS_PD is High at WS OSC  
ACMPH0,1 OUT  
2
+
-
0
1
(2 kHz OSC0) power-down  
2
To Connection  
Matrix Input  
[60, 61]  
ACMPs_PD  
WS_out  
BG/Analog_Good  
Figure 68: Wake/Sleep Controller  
Datasheet  
16-Jul-2021  
Revision 2.0  
85 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
time between Reset goes low  
and 1st WS clock rsing edge  
Force Wake  
CNT_RST  
(From Connection Matrix)  
ACMP_PD is High  
(From Connection Matrix)  
CNT0_out  
(To Connection Matrix)  
WS_out  
(internal signal)  
Data is latched  
BG/Analog_Good  
(internal signal)  
Sleep Mode  
ACMP Latches Last Data  
Normal ACMP  
Sleep Mode  
ACMP Latches New Data  
Normal ACMP  
Sleep Mode  
ACMP Latches  
New Data  
Operation  
Operation  
ACMP follows input  
ACMP follows input  
BG/Analog  
Startup time*  
BG/Analog  
Startup time*  
Note: CNT0_out is a delayed WS_out signal for 1us to make sure the data is correct during LATCH.  
Figure 69: Wake/Sleep Timing Diagram, Normal Wake Mode, Counter Reset is Used  
time between Reset goes low  
and 1st WS clock rsing edge  
Force Wake  
CNT_RST  
(From Connection Matrix)  
ACMP_PD is High  
(From Connection Matrix)  
CNT0_out  
(To Connection Matrix)  
WS_out  
(internal signal)  
Data is latched  
Data is latched  
BG/Analog_Good  
(internal signal)  
Sleep Mode  
ACMP Latches Last Data  
Sleep Mode  
ACMP Latches New Data  
Normal ACMP  
Operation for short time  
ACMP follows inout  
Sleep Mode  
ACMP Latches  
New Data  
Normal ACMP  
Operation for short time  
ACMP follows inout  
BG/Analog  
Startup time*  
BG/Analog  
Startup time*  
Note: CNT0_out is a delayed WS_out signal for 1us to make sure the data is correct during LATCH.  
Figure 70: Wake/Sleep Timing Diagram, Short Wake Mode, Counter Reset is Used  
Datasheet  
16-Jul-2021  
Revision 2.0  
86 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
time between Reset goes low  
and 1st WS clock rsing edge  
Force Sleep  
CNT_SET  
(From Connection Matrix)  
ACMP_PD is High  
(From Connection Matrix)  
CNT0_out  
(To Connection Matrix)  
WS_out  
(internal signal)  
Data is latched  
BG/Analog_Good  
(internal signal)  
Sleep Mode  
ACMP Latches Last Data  
Normal ACMP  
Sleep Mode  
ACMP Latches New Data  
Operation  
ACMP follows input  
BG/Analog  
Startup time*  
Note: CNT0_out is a delayed WS_out signal for 1us to make sure the data is correct during LATCH.  
Figure 71: Wake/Sleep Timing Diagram, Normal Wake Mode, Counter Set is Used  
time between Reset goes low  
and 1st WS clock rsing edge  
Force Sleep  
CNT_RST  
(From Connection Matrix)  
ACMP_PD is High  
(From Connection Matrix)  
CNT0_out  
(To Connection Matrix)  
WS_out  
(internal signal)  
Data is latched  
BG/Analog_Good  
(internal signal)  
Sleep Mode  
Sleep Mode  
ACMP Latches New Data  
ACMP Latches Last Data  
Normal ACMP  
Operation for short time  
ACMP follows inout  
BG/Analog  
Startup time*  
Note: CNT0_out is a delayed WS_out signal for 1us to make sure the data is correct during LATCH.  
Figure 72: Wake/Sleep Timing Diagram, Short Wake Mode, Counter Set is Used  
Note: If low power BG is powered on/off by WS, the wake time should be longer than 2.1 ms. The BG/analog start up time will  
take maximal 2 ms. Therefore, 8 periods of the Oscillator0 is recommended for the wake time, when BG is configured to Auto  
Power mode. If low power BG is always on, Oscillator0 period is longer than required wake time. The BG/analog start up time will  
take maximal 450 us for ACMP0/1. The short wake mode can be used to reduce the current consumption.  
Datasheet  
16-Jul-2021  
Revision 2.0  
87 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
To use any ACMP under WS controller, the following settings must be done:  
ACMP Power Up Input from matrix = 1 (for each ACMP separately);  
CNT/DLY0 must be set to Wake and Sleep Controller function (for all ACMP);  
Register WS → enable (for each ACMP separately);  
CNT/DLY0 set/reset input = 0 (for all ACMP).  
The user can select a period of time while the ACMP is sleeping in a range of 1 - 65535 clock cycles. Before they are sent to  
sleep their outputs are latched, so the ACMPs remain their state (High or Low) while sleeping.  
WS controller has the following settings:  
Wake and Sleep Output State (High/Low)  
If OSC is powered off (Power-down option is selected; Power-down input = 1) and Wake and Sleep Output State = High, the  
ACMP is continuously on.  
If OSC is powered off (Power-down option is selected; Power-down input = 1) and Wake and Sleep Output State = Low, the  
ACMP is continuously off.  
Both cases WS function is turned off.  
Counter Data (Range: 1 - 65535)  
User can select wake and sleep ratio of the ACMP; counter data = sleep time, one clock = wake time.  
Q mode - defines the state of WS counter data when Set/Reset signal appears Reset - when active signal appears, the WS  
counter will reset to zero and High level signal on its output will turn on the ACMPs. When Reset signal goes out, the WS  
counter will go Low and turn off the ACMP until the counter counts up to the end. Set - when active signal appears, the WS  
counter will stop and Low level signal on its output will turn off the ACMP. When Set signal goes out, the WS counter will go on  
counting and High level signal will turn on the ACMP while counter is counting up to the end.  
Note: The OSC0 matrix power-down to control ACMP WS is not supported for short wait time option.  
Edge Select defines the edge for Q mode. High level Set/Reset - switches mode Set/Reset when level is High.  
Note: Q mode operates only in case of "High Level Set/Reset”.  
Wake time selection - time required for wake signal to turn the ACMPxH on.  
Normal Wake Time - when WS signal is High, it takes BG/analog start up time to turn the ACMPs on. They will stay on until  
WS signal is Low again. Wake time is one clock period. It should be longer than BG turn on time and minimal required com-  
paring time of the ACMP.  
Short Wake Time - when WS signal is High, it takes BG/analog start up time to turn the ACMPs on. They will stay on for 1 µs  
and turn off regardless of WS signal. The WS signal width does not matter.  
Keep - pauses counting while Keep = 1  
Up - reverses counting  
If Up = 1, CNT is counting up from user selected value to 65535.  
If Up = 0, CNT is counting down from user selected value to 0.  
Datasheet  
16-Jul-2021  
Revision 2.0  
88 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
9
Analog Comparators  
There are two High Speed Rail-to-Rail General Purpose Analog Comparators (ACMP) macrocells in the SLG47502/03. For the  
ACMP cells to be used in a GreenPAK design, the power up signals (ACMP0H PWR UP and ACMP1H PWR UP) need to be  
active. By connecting to signals coming from the Connection Matrix, it is possible to have each ACMP be ON continuously, OFF  
continuously, or switched on periodically, based on a digital signal coming from the Connection Matrix. When ACMP is powered  
down, its output is low. It is possible to decrease Power-On time of ACMP by forcing internal bias current generator, register  
[1532] = 1.  
Each of the ACMP cells has a positive input signal that can be provided by a variety of external sources, and can also have a  
selectable gain stage (1x, 0.5x) before connection to the analog comparator. The gain divider is unbuffered and has input  
resistance of 1.2 MΩ (typ.) for 0.5x and 100 MΩ for 1x. Each of the ACMP cells has a negative input signal that is either created  
from an internal Vref or provided by any external source (GPIO 2). Note that the external Vref signal is filtered with a 2nd order  
low pass filter with 300 kHz typical bandwidth, see Figure 73 to Figure 74.  
Input bias current < 1 nA (typ).  
PWR UP = 1 => ACMP is powered up.  
PWR UP = 0 => ACMP is powered down.  
During power-up, the ACMP output will remain LOW, and then becomes valid after power up signal goes high for ACMP0H and  
ACMP1H (see parameter tstart in Table 18).  
It is possible to enable Low Pass Filter (LPF) either onACMP IN+ or onACMP out, registers [1497:1496] and register [1513:1512].  
Each cell also has a hysteresis selection, to offer hysteresis of (0, 25, 50, 150) mV. The hysteresis option is available when using  
an internal Vref only.  
ACMP0H IN+ options are GPIO and VDD  
.
ACMP1H IN+ options are GPIO, ACMP0H IN+ MUX output, Temperature Sensor.  
See Table 33 for ACMP Inputs selection.  
Table 33: ACMP Input Selection  
Register  
[1530]  
Register  
[1500]  
Register  
[1516]  
ACMP0H Positive Input  
ACMP1H Positive Input  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
ACMP0H+ PIN  
ACMP0H+ PIN  
VDD  
ACMP1H+ PIN  
ACMP0H+ PIN  
ACMP1H+ PIN  
VDD  
VDD  
ACMP0H+ PIN  
ACMP0H+ PIN  
VDD  
Temp Sensor  
Temp Sensor  
Temp Sensor  
Temp Sensor  
VDD  
Datasheet  
16-Jul-2021  
© 2021 Dialog Semiconductor  
Revision 2.0  
89 of 191  
CFR0011-120-00  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
9.1 ACMP0H BLOCK DIAGRAM  
Registers [1495:1494]  
to ACMP1H input MUX  
Hysteresis  
Selection  
ACMP  
Ready  
Registers [1499:1498]  
GPIOx: ACMP0H+  
VDD  
High Speed  
ACMP  
0
1
Selectable  
Gain  
0
1
to Connection  
Matrix Input [60]  
GPIOx in analog IO mode;  
Registers [1500]  
Pwr Up  
LATCH  
from Connection  
Matrix Output [93]  
W/S Control  
Registers [953:952]  
Ext. Vref0  
Low Pass  
Filter*  
111111  
Vref  
34 100001  
...  
Internal Vref  
000000  
Registers [1493:1488]  
Note*: 2nd order low pass filter  
typical bandwidth is 300 kHz  
Figure 73: ACMP0H Block Diagram  
Datasheet  
16-Jul-2021  
Revision 2.0  
90 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
9.2 ACMP1H BLOCK DIAGRAM  
Registers [1511:1510]  
Hysteresis  
Selection  
ACMP  
Ready  
Registers  
[1515:1514]  
GPIOx: ACMP1H+  
00  
High Speed  
ACMP  
From ACMP0H IN+ MUX Output 01  
Selectable  
Gain  
10  
0
1
Temperature sensor out  
to Connection  
Matrix Input [61]  
11  
Pwr Up  
LATCH  
2
GPIOx in analog IO mode;  
Registers [1526:1525]  
from Connection  
Matrix Output [94]  
W/S Control  
Ext Vref0 input  
Register [953:952]  
1
0
Low Pass  
Filter*  
111111  
Ext Vref1 input  
Register [1517]  
34 100001  
...  
Internal Vref  
000000  
Registers [1509:1504]  
Note*: 2nd order low pass filter  
typical bandwidth is 300 kHz  
Figure 74: ACMP1H Block Diagram  
Datasheet  
16-Jul-2021  
Revision 2.0  
91 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
9.3 ACMP TYPICAL PERFORMANCE  
3
High To Low, Overdrive = 10 mV  
Low to High, Overdrive = 10 mV  
Low to High, Overdrive = 100 mV  
High to Low, Overdrive = 100 mV  
2.5  
2
1.5  
1
0.5  
0
25  
250  
425  
650  
850  
Vref (mV)  
Figure 75: Typical Propagation Delay vs. Vref for ACMPxH at T = 25 °C, VDD = 1.1 V to 1.3 V, Gain = 1, Hysteresis = 0  
8
6
4
2
0
-2  
-4  
-6  
-8  
25  
250  
425  
650  
850  
Vref (mV)  
Figure 76: ACMPxH Input Offset Voltage vs. Vref at T = -40 °C to 85 °C, VDD = 1.1 V to 1.3 V  
Datasheet  
16-Jul-2021  
© 2021 Dialog Semiconductor  
Revision 2.0  
92 of 191  
CFR0011-120-00  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
10 Programmable Delay/Edge Detector  
The SLG47502/03 has a programmable time delay logic cell that can generate a delay that is selectable from one of four timings  
configured in the GreenPAK Designer. The programmable time delay cell can generate one of four different delay patterns, rising  
edge detection, falling edge detection, both edge detection, and both edge delay. These four patterns can be further modified  
with the addition of delayed edge detection, which adds an extra unit of delay, as well as glitch rejection during the delay period.  
See Figure 77 and Figure 78 for further information.  
Note: The input signal must be longer than the delay, otherwise it will be filtered out.  
registers [1443:1442]  
Delay Value Selection  
registers [1441:1440]  
Edge Mode Selection  
To Connection  
Matrix Input [40]  
Programmable  
From Connection Matrix Output [92]  
IN  
OUT  
Delay  
Figure 77: Programmable Delay  
10.1 PROGRAMMABLE DELAY TIMING DIAGRAM - EDGE DETECTOR OUTPUT  
width  
width  
IN  
time1  
Rising Edge Detector  
time1  
Falling Edge Detector  
Edge Detector  
Output  
Both Edge Detector  
Both Edge Delay  
time2  
time2  
time1 is a fixed value  
time2 delay value is selected via register  
Figure 78: Edge Detector Output  
Please refer to Table 11.  
Datasheet  
16-Jul-2021  
© 2021 Dialog Semiconductor  
Revision 2.0  
93 of 191  
CFR0011-120-00  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
11 Additional Logic Function. Deglitch Filter  
The SLG47502/03 has one Deglitch Filter macrocell with inverter function that is connected directly to the Connection Matrix  
inputs and outputs. The filter blocks the input signal for pulse width < tblock (at typical temperature 25 °C. See Table 14) and pass  
the input signal for pulse width > tpass (at typical temperature 25 °C). For width in between, the output pulse width will be reduced.  
The SLG47502/03 has one Deglitch Filter macrocell with inverter function that is connected directly to the Connection Matrix  
inputs and outputs.  
In addition, this macrocell can be configured as an Edge Detector, with the following settings:  
Rising Edge Detector  
Falling Edge Detector  
Both Edge Detector  
Both Edge Delay  
Filter  
R
From Connection Matrix  
Output [91]  
0
1
C
0
1
To Connection Matrix  
Input [41]  
Edge  
Detector  
Logic  
register [1435]  
registers [1434:1433]  
register [1432]  
Figure 79: Deglitch Filter/Edge Detector Simplified Structure  
Datasheet  
16-Jul-2021  
© 2021 Dialog Semiconductor  
Revision 2.0  
94 of 191  
CFR0011-120-00  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
12 Voltage Reference  
12.1 VOLTAGE REFERENCE OVERVIEW  
The SLG47502/03 has a Voltage Reference (Vref) macrocell to provide references to the two analog comparators. This macrocell  
can supply a user selection of fixed voltage references, or temperature sensor output. The macrocell also has the option to output  
reference voltages on GPIO. See Table 34 for the available selections for each analog comparator.  
When changing power-down source settings or power-down register settings in a Voltage Reference block, similar changes of  
these settings automatically occur in an Analog Temperature Sensor block.  
Also see Figure 80, which shows the reference output structure.  
12.2 VREF SELECTION TABLE  
Table 34: Vref Selection Table  
SEL[5:0]  
Vref  
0.025  
0.05  
0.075  
0.1  
SEL[5:0]  
18  
Vref  
0.475  
0.5  
0
1
19  
2
20  
0.525  
0.55  
3
21  
4
0.125  
0.15  
0.175  
0.2  
22  
0.575  
0.6  
5
23  
6
24  
0.625  
0.65  
7
25  
8
0.225  
0.25  
0.275  
0.3  
26  
0.675  
0.7  
9
27  
10  
11  
12  
13  
14  
15  
16  
17  
28  
0.725  
0.75  
29  
0.325  
0.35  
0.375  
0.4  
30  
0.775  
0.8  
31  
32  
0.825  
0.850  
0.850  
Ext. Vref  
33  
0.425  
0.45  
34 to 62  
63  
Datasheet  
16-Jul-2021  
© 2021 Dialog Semiconductor  
Revision 2.0  
95 of 191  
CFR0011-120-00  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
12.3 VREF BLOCK DIAGRAM  
register [1521]  
register [1531]  
register [1528]  
0
1
From analog  
macrocells  
0
1
From Connectinon  
Matrix Output [95]  
Ext Vref0 ref  
selection  
register [1529]  
register [1522]  
PwrUp  
Ext Vref0 input  
111111  
0.850  
0.850  
111110  
none  
Vref_Buf  
PwrUp  
Bandgap  
S0  
0.850  
0.825  
0.850  
0.825  
Vref_Out  
aio_en  
100001  
100000  
S1  
S2  
S1  
S0  
6-bit  
divider  
Vref  
S3  
0.050  
0.025  
0.050  
0.025  
register[1523]  
000001  
000000  
registers [1526:1525]  
Temp  
registers [1493:1488]  
Sensor  
Ext Vref1 ref  
selection  
1
0
Ext Vref1 input  
111111  
0.850  
111110  
register [1517]  
0.850  
100001  
0.825  
100000  
0.050  
000001  
0.025  
000000  
registers [1509:1504]  
Figure 80: Voltage Reference Block Diagram  
Datasheet  
16-Jul-2021  
Revision 2.0  
96 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
12.4 VREF TYPICAL PERFORMANCE  
Note 1 It is not recommended to use Vref connected to external pin without buffer.  
250  
200  
150  
100  
50  
VDD = 1.3 V  
VDD = 1.2 V  
VDD = 1.1 V  
0
0
1
2
3
4
5
6
7
8
9
10  
I, mA  
Figure 81: Typical Load Regulation, Vref = 200 mV, T = -40 °C to +85 °C, Buffer - Enable  
450  
VDD = 1.3 V  
400  
VDD = 1.2 V  
VDD = 1.1 V  
350  
300  
250  
200  
150  
100  
50  
0
0
1
2
3
4
5
6
7
8
9
10  
I, mA  
Figure 82: Typical Load Regulation, Vref = 400 mV, T = -40 °C to +85 °C, Buffer - Enable  
Datasheet  
16-Jul-2021  
© 2021 Dialog Semiconductor  
Revision 2.0  
97 of 191  
CFR0011-120-00  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
700  
600  
500  
400  
300  
200  
100  
0
VDD = 1.3 V  
VDD = 1.2 V  
VDD = 1.1 V  
0
1
2
3
4
5
6
7
8
9
10  
I, mA  
Figure 83: Typical Load Regulation, Vref = 600 mV, T = -40 °C to +85 °C, Buffer - Enable  
900  
VDD = 1.3 V  
800  
VDD = 1.2 V  
VDD = 1.1 V  
700  
600  
500  
400  
300  
200  
100  
0
0
1
2
3
4
5
6
7
8
9
10  
I, mA  
Figure 84: Typical Load Regulation, Vref = 850 mV, T = -40 °C to +85 °C, Buffer - Enable  
Datasheet  
16-Jul-2021  
© 2021 Dialog Semiconductor  
Revision 2.0  
98 of 191  
CFR0011-120-00  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
1.20  
1.10  
1.00  
0.90  
0.80  
0.70  
0.60  
0.50  
25  
75  
125  
175  
225  
275  
325  
375  
425  
475  
525  
575  
625  
675  
725  
775  
825  
Vref (mV)  
Figure 85: Typical Input Offset Voltage vs. Vref at VDD = 1.2 V, T = 25 °C  
Datasheet  
16-Jul-2021  
© 2021 Dialog Semiconductor  
Revision 2.0  
99 of 191  
CFR0011-120-00  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
13 Clocking  
13.1 OSC GENERAL DESCRIPTION  
The SLG47502/03 has two internal oscillators to support a variety of applications:  
Oscillator0 (2.048 kHz)  
Oscillator1 (25 MHz).  
There are two divider stages for each oscillator that give the user flexibility for introducing clock signals to connection matrix, as  
well as various other macrocells. The pre-divider (first stage) for Oscillator0 allows the selection of /1, /2, /4, or /8 to divide down  
frequency from the fundamental. The pre-divider (first stage) for Oscillator1 allows the selection of /1, /2, /4, /8, /12, /24, /48, /96  
to divide down frequency from the fundamental. The second stage divider of oscillators has an input of frequency from the pre-  
divider, and outputs one of eight different frequencies divided by /1, /2, /3, /4, /8, /12, /24, or /64 on Connection Matrix Input lines  
[57], [58] and [59]. Please see Figure 86, Figure 87, and Figure 88 for more details on the SLG47502/03 clock scheme.  
Oscillator1 (25 MHz) has an additional function of 100 ns delayed startup, which can be enabled/disabled by register [1480]. This  
function is recommended to use when analog blocks are used along with the Oscillator.  
The Matrix Power-down/Force On function allows switching off or force on the oscillator using an external pin. The Matrix Power-  
down/Force On (Connection Matrix Output [96], [97]) signal has the highest priority. The OSC operates according to the following  
table:  
Table 35: Oscillator Operation Mode Configuration Settings  
OSC  
Register:  
Register:  
Auto  
Signal  
From  
Connection  
Matrix  
Enable  
Signalfrom Operation  
CNT/DLY  
Macrocells  
OSC  
External  
Clock  
Selection  
Power-Down  
POR  
or Force On Power-On  
by Matrix  
Input  
or  
Mode  
Force On  
0
1
X
1
X
X
X
X
X
X
OFF  
Internal  
OSC is  
OFF, logic  
X
X
is ON  
1
0
1
0
X
X
OFF  
1
1
0
0
1
0
1
X
1
X
X
ON  
ON  
X
CNT/DLY  
requires  
OSC  
1
0
0
X
X
0
ON  
CNT/DLY  
does not  
require  
OSC  
1
0
0
0
OFF  
Note 1 The OSC will run only when any macrocell that uses OSC is powered on.  
To avoid metastability issue user can select synchronization type for Power-down signal:  
registers [1483:1482], [1487:1486] = 00 – two-DFF synchronization. Oscillator will have from 1 to 2 output pulses after Power-  
Datasheet  
16-Jul-2021  
Revision 2.0  
100 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
down.  
registers [1483:1482], [1487:1486] = 01 – one-DFF synchronization by clock falling edge. When Oscillator Power-down signal  
comes, Oscillator generates full output pulse and then stops.  
registers [1483:1482], [1487:1486] = 10 or 11 – without synchronization (asynchronous reset). When Oscillator Power-down  
signal comes, Oscillator output goes low immediately.  
If I2C is used to change the synchronization mode there will be a pulse at the Oscillator output when the synchronization mode  
is changed from 10 or 11 (asynchronous reset).  
13.2 OSCILLATOR0 (2.048 KHZ)  
from Connection Matrix  
Output [96]  
PWR DOWN/Force On  
to CNT/DLYs Clock Scheme  
Matrix Output control register [1449]  
OSC Power Mode  
register [1450]  
PWR DOWN/  
FORCEON  
2.048 kHz Pre-divider Clock  
registers [1454:1453]  
OSC0  
(2.048 kHz)  
Auto Power On  
OUT  
0
0
1
Force Power On  
0
1
2
DIV /1 /2 /4/8  
Ext. Clock  
/2  
/3  
1
Predivider  
OSC0 matrix out0 enable reg [1451]  
to Connection Matrix  
Ext. CLK Sel register [1448]  
/4  
3
4
5
6
7
OUT0  
Input [57]  
/8  
to Connection Matrix  
Input [58]  
OUT1  
/12  
/24  
/64  
OSC0 matrix out1 enable reg [1452]  
registers [1466:1464]  
registers [1470:1468]  
Second Stage  
Divider  
Figure 86: Oscillator0 Block Diagram  
Note: It's highly recommended to use OSC0 without the startup delay (register[1484] = 1).  
Datasheet  
16-Jul-2021  
Revision 2.0  
101 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
13.3 OSCILLATOR1 (25 MHZ)  
from Connection Matrix  
Output [97]  
PWR DOWN/Force On  
to CNT/DLYs Clock Scheme  
25 MHz Pre-divider Clock  
Matrix Output control register [1457]  
OSC Power Mode  
PWR DOWN/  
register [1458]  
FORCE ON  
registers [1462:1460]  
OSC1  
(25 MHz)  
Auto Power On  
OUT  
0
0
1
Force Power On  
DIV/1 /2 /4/8 /  
12 /24 /48 /96  
Startup delay  
0
1
2
register [1480]  
/2  
/3  
1
Predivider  
Ext. Clock  
OSC1 matrix out enable reg [1459]  
Ext. CLK Sel register [1456]  
/4  
3
4
5
6
7
to Connection Matrix  
/8  
Input [59]  
/12  
/24  
/64  
registers [1474:1472]  
Second Stage  
Divider  
Figure 87: Oscillator1 Block Diagram  
Datasheet  
16-Jul-2021  
Revision 2.0  
102 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
13.4 CNT/DLY CLOCK SCHEME  
Each CNT/DLY within Multi-Function macrocell has its own additional clock divider connected to oscillators pre-divider. Available  
dividers are:  
OSC0/1, OSC0/8, OSC0/64, OSC0/512, OSC0/4096, OSC0/32768, OSC0/262144  
OSC1/1, OSC1/4, OSC1/8, OSC1/64, OSC1/512  
registers [3:0]  
0
from 25 MHz Pre-divided clock  
1
/4  
/8  
2
3
4
5
6
7
8
/64  
/512  
CNT/DLY/  
ONESHOT/  
FREQ_DET/  
from 2.048 kHz Pre-divided clock  
/8  
/64  
DLY_EDGE_DET  
/512  
/4096  
/32768  
/262144  
9
CNT overflow  
10  
11  
12  
13  
14  
15  
CNT (x-1) overflow  
from Connection Matrix out  
(separate for each CNT/DLY macrocell)  
reserved  
reserved  
CNT0/CNT1/CNT2/CNT3/  
CNT4/CNT5/CNT6/CNT7  
Figure 88: Clock Scheme  
13.5 EXTERNAL CLOCKING  
The SLG47502/03 supports several ways to use an external, higher accuracy clock as a reference source for internal operations.  
13.5.1 GPIO Source for Oscillator0 (2.048 kHz)  
When register [1448] is set to 1, an external clocking signal on GPIOx will be routed in place of the internal oscillator derived  
2.048 kHz clock source. See Figure 86. The low and high limits for external frequency that can be selected are 0 MHz and 10 MHz.  
13.5.2 GPIO Source for Oscillator1 (25 MHz)  
When register [1456] is set to 1, an external clocking signal on GPIOx will be routed in place of the internal oscillator derived  
25 MHz clock source. See Figure 87. The external frequency range is 0 MHz to 20 MHz at VDD = 1.1 V, 30 MHz at VDD = 1.2 V,  
50 MHz at VDD = 1.3 V.  
Datasheet  
16-Jul-2021  
Revision 2.0  
103 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
13.6 OSCILLATORS ACCURACY  
Note: OSC power setting: Force Power-On; Clock to matrix input - enable; Bandgap: turn on by register - enable.  
2.15  
2.1  
2.05  
2
1.95  
1.9  
Fmax @ VDD = 1.1 V to 1.3 V  
1.85  
Ftyp @ VDD = 1.2 V  
Fmin @ VDD = 1.1 V to 1.3 V  
1.8  
1.75  
T (°C)  
Figure 89: Oscillator0 Frequency vs. Temperature, OSC0 = 2.048 kHz  
26  
25.5  
25  
24.5  
24  
Fmax @ VDD = 1.1 V to 1.3 V  
Ftyp @ VDD = 1.2 V  
23.5  
Fmin @ VDD = 1.1 V to 1.3 V  
23  
T (°C)  
Figure 90: Oscillator1 Frequency vs. Temperature, OSC1 = 25 MHz  
Datasheet  
16-Jul-2021  
Revision 2.0  
104 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Note: For more information see Section 3.9.  
12  
2.048 kHz Total Error @ VDD = 1.1 V to 1.3 V  
25 MHz Total Error @ VDD = 1.1 V to 1.3 V  
10  
8
6
4
2
0
T (°C)  
Figure 91: Oscillators Total Error vs. Temperature  
Datasheet  
16-Jul-2021  
Revision 2.0  
105 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
13.7 OSCILLATORS SETTLING TIME  
490  
488  
486  
484  
482  
480  
478  
476  
474  
472  
470  
0
1
2
3
4
Period  
Figure 92: Oscillator0 Settling Time, VDD = 1.2 V, T = 25 °C, OSC0 = 2.048 kHz  
90  
80  
70  
60  
50  
40  
30  
20  
0
1
2
3
4
5
6
7
8
Period  
Figure 93: Oscillator1 Settling Time, VDD = 1.2 V, T = 25 °C, OSC1 = 25 MHz (Normal Start)  
Datasheet  
16-Jul-2021  
Revision 2.0  
106 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
160  
140  
120  
100  
80  
60  
40  
20  
0
1
2
3
4
5
6
7
8
Period  
Figure 94: Oscillator1 Settling Time, VDD = 1.2 V, T = 25 °C, OSC1 = 25 MHz (Start with Delay)  
Datasheet  
16-Jul-2021  
Revision 2.0  
107 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
14 Power-On Reset  
The SLG47502/03 has a Power-On Reset (POR) macrocell to ensure correct device initialization and operation of all macrocells  
in the device. The purpose of the POR circuit is to have consistent behavior and predictable results when the VDD power is first  
ramping to the device, and also while the VDD is falling during power-down. To accomplish this goal, the POR drives a defined  
sequence of internal events that trigger changes to the states of different macrocells inside the device, and finally to the state of  
the IOs.  
14.1 GENERAL OPERATION  
The SLG47502/03 is guaranteed to be powered down and non-operational when the VDD voltage (voltage on PIN1) is less than  
Power-Off Threshold (see in Table 6), but not less than -0.6 V. Another essential condition for the chip to be powered down is  
that no voltage higher (Note) than the VDD voltage is applied to any other PIN. For example, if VDD voltage is 0.3 V, applying a  
voltage higher than 0.3 V to any other PIN is incorrect, and can lead to incorrect or unexpected device behavior.  
Note: There is a 0.6 V margin due to forward drop voltage of the ESD protection diodes.  
To start the POR sequence in the SLG47502/03, the voltage applied on the VDD should be higher than the Power-On Threshold  
(Note). The full operational VDD range for the SLG47502/03 is 1.1 V to 1.3 V. This means that the VDD voltage must ramp up to  
the operational voltage value, but the POR sequence will start earlier, as soon as the VDD voltage rises to the Power-On Thresh-  
old. After the POR sequence has started, the SLG47502/03 will have a typical period of time to go through all the steps in the  
sequence (noted in the datasheet for that device) and will be ready and completely operational after the POR sequence is  
complete.  
Note: The Power-On Threshold is defined in Table 5.  
To power down the chip the VDD voltage should be lower than the operational and to guarantee that chip is powered down it  
should be less than Power-Off Threshold.  
All PINs are in high impedance state when the chip is powered down and while the POR sequence is taking place. The last step  
in the POR sequence releases the IO structures from the high impedance state, at which time the device is operational. The pin  
configuration at this point in time is defined by the design programmed into the chip. Also, as it was mentioned before the voltage  
on PINs can’t be bigger than the VDD, this rule also applies to the case when the chip is powered on.  
Datasheet  
16-Jul-2021  
Revision 2.0  
108 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
14.2 POR SEQUENCE  
The POR system generates a sequence of signals that enable certain macrocells. The sequence is shown in Figure 95.  
VDD  
t
t
t
t
t
t
t
t
POR_NVM  
(reset for NVM)  
NVM_ready_out  
POR_GPI  
(reset for input enable)  
POR_LUT  
(reset for LUT/FILTER)  
POR_CORE  
(reset for DLY/OSC/DFF/  
LATCH/ACMP/  
Edge Detector in Filter)  
POR_OUT  
(generate low to high to matrix)  
POR_GPO  
(reset for output enable)  
Figure 95: POR Sequence  
As can be seen from Figure 95 after the VDD has start ramping up and crosses the Power-On Threshold, first, the on-chip NVM  
memory is reset. Next, the chip reads the data from NVM, and transfers this information to a CMOS LATCH, that serves to con-  
figure each macrocell, and the Connection Matrix which routes signals between macrocells. The third stage causes the reset of  
the input pins, and then to enable them. After that, the LUTs are reset and become active. After LUTs the Delay cells, RC OSC,  
DFFs, and LATCHES are initialized. Only after all macrocells are initialized internal POR signal (POR macrocell output) goes  
from LOW to HIGH. The last portion of the device to be initialized are the output pins, which transition from high impedance to  
active at this point.  
The typical time that takes to complete the POR sequence varies by device type in the GreenPAK family. It also depends on many  
environmental factors, such as: slew rate, VDD value, temperature, and even will vary from chip to chip (process influence).  
14.3 MACROCELLS OUTPUT STATES DURING POR SEQUENCE  
To have a full picture of SLG47502/03 operation during powering and POR sequence, review the overview the macrocell output  
states during the POR sequence (Figure 96 describes the output signals states).  
First, before the NVM has been reset, all macrocells have their output set to logic LOW (except the output pins which are in high  
impedance state). On the next step, some of the macrocells start initialization: input pins output state becomes LOW; LUTs also  
output LOW. Only P DLY macrocell configured as edge detector becomes active at this time. After that input pins are enabled.  
Datasheet  
16-Jul-2021  
Revision 2.0  
109 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Next, only LUTs are configured. Next, all other macrocells are initialized. After macrocells are initialized, internal POR matrix  
signal switches from LOW to HIGH. The last are output pins that become active and determined by the input signals.  
VDD  
Guaranteed HIGH before POR_GPI  
Unpredictable  
t
VDD _out  
to matrix  
t
t
Input PIN _out  
to matrix  
Unpredictable  
Unpredictable  
Unpredictable  
Unpredictable  
Unpredictable  
Determined by External Signal  
Determined by Input signals  
LUT/FILTER_out  
to matrix  
Determined by input signals  
OUT = IN without Delay  
t
t
t
t
t
t
Programmable Delay_out  
to matrix  
Determined by Input signals  
Starts to detect input edges  
Determined by initial state  
DFF/LATCH/ACMP/  
Edge Detector in  
Filter_out to matrix  
Determined by Input signals  
Determined by input signals  
OUT = IN without Delay  
Delay_out  
to matrix  
Determined by Input signals  
Starts to detect input edges  
POR_out  
to matrix  
Unpredictable  
Ext. GPO  
Tri-state  
Determined by input signals  
Output State Unpredictable  
Figure 96: Internal Macrocell States During POR Sequence  
14.3.1 Initialization  
All internal macrocells by default have initial low level. Starting from indicated power-up time of 0.811 V to 1.078 V, macrocells in  
SLG47502/03 are powered on while forced to the reset state. All outputs are in Hi-Z and chip starts loading data from NVM. Then  
the reset signal is released for internal macrocells and they start to initialize according to the following sequence:  
1. Input pins, ACMP, Pull-up/down.  
2. LUTs.  
3. DFFs, Delays/Counters.  
4. POR output to matrix.  
5. Output pin corresponds to the internal logic.  
The Vref output pin driving signal can precede POR output signal going high by 3 µs to 5 µs. The POR signal going high indicates  
the mentioned power-up sequence is complete.  
Note: The maximum voltage applied to any pin should not be higher than the VDD level. There are ESD Diodes between pin  
→VDD and pin → GND on each pin. So, if the input signal applied to pin is higher than VDD, then current will sink through the  
diode to VDD. Exceeding VDD results in leakage current on the input pin, and VDD will be pulled up, following the voltage on the  
input pin.There is no effect from input pin when input voltage is applied at the same time as VDD  
.
Datasheet  
16-Jul-2021  
Revision 2.0  
110 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
14.3.2 Power-Down  
VDD(V)  
2 V  
1 V  
0.735 V  
0.393 V  
Time  
Not guaranteed output state  
Figure 97: Power-Down  
During Power-down, macrocells in SLG47502/03 are powered off after VDD falling down below Power-Off Threshold. Please note  
that during a slow rampdown, outputs can possibly switch state during this time.  
Datasheet  
16-Jul-2021  
Revision 2.0  
111 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
2
15 I C Serial Communications Macrocell  
15.1 I2C SERIAL COMMUNICATIONS MACROCELL OVERVIEW  
In the standard use case for the GreenPAK devices, the configuration choices made by the user are stored as bit settings in the  
Non-Volatile Memory (NVM), and this information is transferred at startup time to volatile RAM registers that enable the configu-  
ration of the macrocells. Other RAM registers in the device are responsible for setting the connections in the Connection Matrix  
to route signals in the manner most appropriate for the user’s application.  
The I2C Serial Communications Macrocell in this device allows an I2C bus Master to read and write this information via a serial  
channel directly to the RAM registers, allowing the remote re-configuration of macrocells, and remote changes to signal chains  
within the device.  
The I2C bus Master is also able to read and write other register bits that are not associated with NVM memory.  
The user has the flexibility to control read access and write access via registers bits registers [1723:1720]. See Section 15.5 for  
more details on I2C read/write memory protection.  
It is possible to use I2C in Standard/fast mode or Fast mode+. To use I2C in Fast mode+ registers [1312], [1328] should be enabled.  
Note that extra current consumption can occur if I2C transaction was corrupted and Stop condition was not received. Next correct  
I2C transaction restores normal current consumption.  
15.2 I2C SERIAL COMMUNICATIONS DEVICE ADDRESSING  
Each command to the I2C Serial Communications macrocell begins with a Control Byte. The bits inside this Control Byte are  
shown in Figure 98. After the Start bit, the first four bits are a control code. Each bit in a control code can be sourced independently  
from the register or by value defined externally by GPI, GPIO3, GPIO4, and GPIO8. The LSB of the control code is defined by  
the value of GPI, while the MSB is defined by the value of GPIO8. The address source (either register bit or PIN) for each bit in  
the control code is defined by registers [30:24]. This gives the user flexibility on the chip level addressing of this device and other  
devices on the same I2C bus. The Block Address is the next three bits (A10, A9, A8), which will define the most significant bits  
in the addressing of the data to be read or written by the command. The last bit in the Control Byte is the R/W bit, which selects  
whether a read command or write command is requested, with a “1” selecting for a Read command, and a “0” selecting for a Write  
command. This Control Byte will be followed by an Acknowledge bit (ACK), which is sent by this device to indicate successful  
communication of the Control Byte data.  
In the I2C -bus specification and user manual, there are two groups of eight addresses (0000 xxx and 1111 xxx) that are reserved  
for the special functions, such as a system General Call address. If the user of this device choses to set the Control Code to either  
“1111” or “0000” in a system with other slave device, please consult the I2C-bus specification and user manual to understand the  
addressing and implementation of these special functions, to ensure reliable operation.  
In the read and write command address structure, there are a total of 11 bits of addressing, each pointing to a unique byte of  
information, resulting in a total address space of 2K bytes. Of this 2K byte address space, the valid addresses accessible to the  
I2C Macrocell on the SLG47502/03 are in the range from 0 (0x00) to 255 (0xFF). The MSB address bits (A10, A9, and A8) will  
be “0” for all commands to the SLG47502/03.  
With the exception of the Current Address Read command, all commands will have the Control Byte followed by the Word  
Address. Figure 98 shows this basic command structure.  
Datasheet  
16-Jul-2021  
Revision 2.0  
112 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Start  
bit  
Acknowledge  
bit  
Control Byte  
Word Address  
A
10  
A
9
A
8
A
7
A
0
S
X
X
X
X
R/W ACK  
Control  
Code  
Block  
Address  
Not used, set to  
0
Read/Write bit  
(1 = Read, 0 = Write)  
Figure 98: Basic Command Structure  
15.3 I2C SERIAL GENERAL TIMING  
General timing characteristics for the I2C Serial Communications macrocell are shown in Figure 99. Timing specifications can be  
found in the AC Characteristics section.  
tHIGH  
tF  
tR  
tLOW  
SCL  
tSU_STA  
tHD_DAT  
tHD_STA  
tSU_DAT  
tSU_STO  
SDA IN  
tBUF  
tVD_ACK  
tVD_DAT  
SDA OUT  
Figure 99: I2C General Timing Characteristics  
15.4 I2C SERIAL COMMUNICATIONS COMMANDS  
15.4.1 Byte Write Command  
Following the Start condition from the Master, the Control Code [4 bits], the Block Address [3 bits], and the R/W bit (set to “0”),  
are placed onto the I2C bus by the Master. After the SLG47502/03 sends an Acknowledge bit (ACK), the next byte transmitted  
by the Master is the Word Address. The Block Address (A10, A9, A8), combined with the Word Address (A7 through A0), together  
set the internal address pointer in the SLG47502/03, where the data byte is to be written. After the SLG47502/03 sends another  
Acknowledge bit, the Master will transmit the data byte to be written into the addressed memory location. The SLG47502/03 again  
provides an Acknowledge bit and then the Master generates a Stop condition. The internal write cycle for the data will take place  
at the time that the SLG47502/03 generates the Acknowledge bit.  
It is possible to latch all IOs during I2C write command, register [1425] = 1 - Enable. It means that IOs will remain their state until  
the write command is done.  
Datasheet  
16-Jul-2021  
Revision 2.0  
113 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Acknowledge  
bit  
Acknowledge  
Start  
bit  
Acknowledge  
Bus Activity  
bit  
Control Byte  
bit  
Word Address  
Data  
A
10  
A
9
A
8
A
7
A
0
D
7
D
0
S
X
X
X
X
W
ACK  
ACK  
ACK  
SDA LINE  
P
Control  
Code  
Block  
Address  
Stop  
bit  
Not used, set to  
0
R/W bit = 0  
Figure 100: Byte Write Command, R/W = 0  
15.4.2 Sequential Write Command  
The write Control Byte, Word Address and the first data byte are transmitted to the SLG47502/03 in the same way as in a Byte  
Write command. However, instead of generating a Stop condition, the Bus Master continues to transmit data bytes to the  
SLG47502/03. Each subsequent data byte will increment the internal address counter, and will be written into the next higher  
byte in the command addressing. As in the case of the Byte Write command, the internal write cycle will take place at the time  
that the SLG47502/03 generates the Acknowledge bit.  
Acknowledge  
Acknowledge  
bit  
Start  
bit  
bit  
Bus Activity  
Data (n + 1)  
Data (n + x)  
Control Byte  
Word Address (n)  
Data (n)  
A
10  
A
9
A
8
ACK  
ACK  
P
SDA LINE  
S
X
X
X
X
W
ACK  
ACK  
ACK  
Control  
Code  
Block  
Address  
Stop  
bit  
Not used, set  
to 0  
Write bit  
Figure 101: Sequential Write Command  
15.4.3 Current Address Read Command  
The Current Address Read Command reads from the current pointer address location. The address pointer is incremented at the  
first STOP bit following any write control byte. For example, if a Sequential Read command (which contains a write control byte)  
reads data up to address n, the address pointer would get incremented to n + 1 upon the STOP of that command. Subsequently,  
a Current Address Read that follows would start reading data at n + 1. The Current Address Read Command contains the Control  
Byte sent by the Master, with the R/W bit = “1”. The SLG47502/03 will issue an Acknowledge bit, and then transmit eight data  
bits for the requested byte. The Master will not issue an Acknowledge bit, and follow immediately with a Stop condition.  
Datasheet  
16-Jul-2021  
Revision 2.0  
114 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Start  
bit  
Acknowledge  
bit  
Stop  
bit  
Bus Activity  
Control Byte  
Data (n)  
A
10  
A
9
A
8
S
X
X
X
X
R
ACK  
SDA LINE  
P
Control  
Code  
Block  
Address  
No ACK  
bit  
Not used, set to 0  
R/W bit = 1  
Figure 102: Current Address Read Command, R/W = 1  
15.4.4 Random Read Command  
The Random Read command starts with a Control Byte (with R/W bit set to “0”, indicating a write command) and Word Address  
to set the internal byte address, followed by a Start bit, and then the Control Byte for the read (exactly the same as the Byte Write  
command). The Start bit in the middle of the command will halt the decoding of a Write command, but will set the internal address  
counter in preparation for the second half of the command. After the Start bit, the Bus Master issues a second control byte with  
the R/W bit set to “1”, after which the SLG47502/03 issues an Acknowledge bit, followed by the requested eight data bits.  
Acknowledge  
Stop  
bit  
Start  
bit  
bit  
Bus Activity  
SDA LINE  
Not used, s  
Data (n)  
Control Byte  
Word Address (n)  
Control Byte  
A
A
9
A
8
A
A
9
A
8
R
ACK  
P
S
ACK  
X
X
X
X
W
ACK  
S
X
X
X
X
10  
10  
Control  
Code  
Block  
Address  
Control  
Code  
Block  
Address  
No ACK  
bit  
et to 0  
Write bit  
Read bit  
Figure 103: Random Read Command  
15.4.5 Sequential Read Command  
The Sequential Read command is initiated in the same way as a Random Read command, except that once the SLG47502/03  
transmits the first data byte, the Bus Master issues an Acknowledge bit as opposed to a Stop condition in a random read. The  
Bus Master can continue reading sequential bytes of data, and will terminate the command with a Stop condition.  
Acknowledge  
Start  
bit  
bit  
Bus Activity  
Data (n + 2)  
Data (n + x)  
Control Byte  
Data (n)  
Data (n + 1)  
A
10  
A
9
A
8
ACK  
P
SDA LINE  
S
X
X
X
X
R
ACK  
ACK  
ACK  
Control  
Code  
Block  
Address  
Stop  
bit  
No ACK  
bit  
Read bit  
Figure 104: Sequential Read Command  
Datasheet  
16-Jul-2021  
Revision 2.0  
115 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
15.4.6 I2C Serial Reset Command  
If I2C serial communication is established with the device, it is possible to reset the device to initial power up conditions, including  
configuration of all macrocells, and all connections provided by the Connection Matrix. This is implemented by setting  
register [17:16] I2C reset bit to “1”, which causes the device to re-enable the Power-On Reset (POR) sequence, including the  
reload of all register data from NVM. During the POR sequence, the outputs of the device will be in tri-state. After the reset has  
taken place, the contents of register [17:16] will be set to “0” automatically. Figure 105 illustrates the sequence of events for this  
reset function.  
Acknowledge  
bit  
Acknowledge  
bit  
Start  
bit  
Acknowledge  
bit  
Bus Activity  
Control Byte  
Word Address  
Data  
A
10  
A
9
A
8
A
7
A
0
D
7
D
0
S
X
X
X
X
W
ACK  
ACK  
ACK  
SDA LINE  
P
Internal Reset bit  
Control  
Code  
Block  
Address  
Stop  
bit  
Not used, set to 0  
Write bit  
by I2C Stop Signal  
Reset-bit register output  
DFF output gated by stop signal  
Internal POR for core only  
Figure 105: Reset Command Timing  
15.4.7 I2C Additional Options  
When Output latching during I2C write, register [1425] = 1 allows all PINs output value to be latched until I2C write is done. It will  
protect the output change due to configuration process during I2C write in case multiple register bytes are changed. Inputs and  
internal macrocells retain their status during I2C write.  
If the user sets GPIO0 and GPIO1 function to a selection other than SDA and SCL, all access via I2C will be disabled.  
Note: Any write commands that come to the device via I2C that are not blocked, based on the protection bits, will change the  
contents of the RAM register bits that mirror the NVM bits. These write commands will not change the NVM bits themselves, and  
a POR event will restore the register bits to original programmed contents of the NVM.  
See Section 17 for detailed information on all registers.  
15.4.8 Reading Counter Data via I2C  
The current count value in all counters in the device can be read via I2C.  
15.4.9 I2C Byte Write Bit Masking  
The I2C macrocell inside SLG47502/03 supports masking of individual bits within a byte that is written to the RAM memory space.  
This function is supported across the entire RAM memory space. To implement this function, the user performs a Byte Write  
Command (see Section 15.4.1 for details) on the I2C Byte Write Mask Register (address 0F6H) with the desired bit mask pattern.  
This sets a bit mask pattern for the target memory location that will take effect on the next Byte Write Command to this register  
byte. Any bit in the mask that is set to “1” in the I2C Byte Write Mask Register will mask the effect of changing that particular bit  
in the target register, during the next Byte Write Command. The contents of the I2C Byte Write Mask Register are reset (set to  
Datasheet  
16-Jul-2021  
Revision 2.0  
116 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
00h) after valid Byte Write Command. If the next command received by the device is not a Byte Write Command, the effect of the  
bit masking function will be aborted, and the I2C Byte Write Mask Register will be reset with no effect. Figure 106 shows an  
example of this function.  
User Actions  
Byte Write Command, Address = F6h, Data = 11110000b [sets mask bits]  
Byte Write Command, Address = 74h, Data = 10101010b [writes data with mask]  
Memory Address 74h (original contents)  
Mask to choose bit from new  
write command  
1
1
1
1
0
0
1
1
0
0
0
0
Mask to choose bit from  
original register contents  
Memory Address 74h (new data in write command)  
0 1  
1
0
1
0
Bit from new write command  
Memory Address F6h (mask register)  
1
1
1
0
0
0
Bit from original register  
contents  
Memory Address 74h (new contents after write command)  
1
1
0
0
1
0
1
0
Figure 106: Example of I2C Byte Write Bit Masking  
15.4.10 Writing a New Value to the Shift Register via I2C  
The new value can be written to the Shift Register if low logic level presents at the CLK input of the macrocell. Otherwise, if the  
logic level at CLK input is high, the new value will be ignored.  
It’s recommended to perform the following actions to write the new value to the Shift Register:  
Read Shift Register value (Old_Value);  
Write new Shift Register value;  
Read Shift Register value (New_Value) and compare it with the result of the last read (Old_Value). If New_Value isn’t equal to  
the Old_Value, the writing procedure was successful. Otherwise, if New_Value is equal to the Old_Value, the content of the  
Shift Register hasn’t been updated (the logic level at the CLK input is high). I2C master should perform the following steps:  
Connect the CLK input of the Shift Register to the GND (connect the corresponding matrix output to the matrix input x00);  
Analyze the LSB, if the new value to be written to the Shift Register, for example xxxx xxx(y). y is the LSB of the 8-bit value  
to be written to the Shift Register.  
Datasheet  
16-Jul-2021  
Revision 2.0  
117 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
If (y) is 0, then connect D input of the Shift Register to GND (connect the corresponding matrix output to the matrix input x00);  
If (y) is 1, then connect D input of the Shift Register to VDD (connect the corresponding matrix output to the matrix input x3F);  
Shift the new value to one bit right and write it to the Shift Register, for example if the data to be written to the Shift Register  
is x5A (1010 0101), then the I2C master should write x52 (01010010) to the Shift Register.  
Connect CLK input of the Shift Register to its original source (change the matrix output setting from x00 to original source  
code). This will clock the Shift Register to one bit left.  
Connect D input of the Shift Register to its original source (change the matrix output setting from VDD (x3F) or GND (x00)  
to the original source code).  
15.5 I2C SERIAL COMMAND REGISTER MAP  
There are seven read/write protect modes for the design sequence from being corrupted or copied. See Table 36 for details.  
Table 36: Read/Write Protection Options  
Protection Modes Configuration  
Partly  
Lock  
Partly  
Lock Read&  
Configurations  
Data  
Output ter Ad-  
From  
Regis-  
Partly  
Lock  
Read  
Partly  
Lock  
Write  
Lock Read& Partly  
Lock  
Read/  
Write  
Unlock  
Read/  
Write  
Lock  
Write  
Lock  
Write  
Lock  
Read  
Lock  
Write  
dress  
RPR[1:0]  
WPR[1:0]  
00  
00  
01  
00  
00  
01  
01  
01  
01  
10  
10  
01  
10  
00  
00  
10  
10  
10  
I2C Write Mask  
ControlRegister  
(section 15.4.9)  
I2C Virtual Input  
Control Register  
(section 6.3)  
I2C Reset  
Control Register  
(section 15.4.6)  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
W
R/W  
R/W  
R/W  
R
R/W  
R/W  
R/W  
R
R/W  
R/W  
R/W  
R
R/W  
R/W  
R/W  
R
R/W  
R/W  
R/W  
R/W  
W
R/W  
R/W  
R/W  
R
R/W  
R/W  
R/W  
R
Memory  
00  
01  
02  
Macro-  
cell  
Memory  
I2C  
Configuration  
Register  
Memory 03~04  
Memory 05~4E  
Matrix Output  
Configuration  
(section 6.2)  
R
-
-
-
R
-
Combination  
Function  
Macrocell  
R/W  
W
R
-
-
-
W
R
-
Memory 4F~6C  
Configuration  
Multi-Function  
Macrocell  
Configuration  
R/W  
R/W  
R/W  
W
W
W
R
R
R
-
-
-
-
-
-
-
-
-
W
W
W
R
R
R
-
-
-
Memory 6D~A1  
Memory A2~B2  
Memory B3~C0  
IO Configuration  
OSC, ACMP,  
Vref  
Configuration  
R/W  
W
R
Allow Read and Write Data  
Allow Write Data Only  
Allow Read Data Only  
-
The Data is protected for Read and Write  
Datasheet  
16-Jul-2021  
Revision 2.0  
118 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
It is possible to read some data from macrocells, such as counter current value, connection matrix, and connection matrix virtual  
inputs. The I2C write will not have any impact on data in case data comes from macrocell output, except Connection Matrix Virtual  
Inputs. The silicon identification service bits allows identifying silicon family, its revision, and others.  
See Section 17 for detailed information on all registers.  
Datasheet  
16-Jul-2021  
Revision 2.0  
119 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
16 Analog Temperature Sensor  
The SLG47502/03 has an Analog Temperature Sensor (TS) with an output voltage linearly-proportional to the Centigrade tem-  
perature. The TS cell shares buffer with Vref 0, so it is impossible to use both cells simultaneously, its output can be connected  
directly to the GPIO or to the ACPM1_H positive input. Using buffer causes low-output impedance, linear output and makes  
interfacing to readout or control circuitry especially easy. The TS is rated to operate over a -40 °C to 85 °C temperature range.  
The error in the whole temperature range does not exceed ±2.5 %. TS output voltage variation over VDD at constant temperature  
is less than ±1.5 %. When changing power-down source settings or enable temperature sensor settings in the Analog Tempera-  
ture Sensor block, similar changes of these settings automatically occur in the Voltage Reference block. For more details refer to  
section 4.  
The equation below calculates the typical analog voltage passed from the TS to the ACMPs' IN+ source input. It is important to  
note that there will be a chip to chip variation of about ±2 °C.  
VTS = -1.95 x T + 734  
where:  
TS (mV) - TS Output Voltage  
V
T (°C) - Temperature  
Temperature hysteresis can be setup by enabling the GreenPAK's internal ACMP hysteresis.  
From Connectinon  
Matrix Output [95]  
TS  
V
DD  
TS Power Up  
Buf_sel[1526:1525]  
GPIO  
register [1528] = 1  
OUT  
11  
10  
01  
00  
ACMP1H Vref  
ACMP0H Vref  
Reserved  
Figure 107: Analog Temperature Sensor Structure Diagram  
Datasheet  
16-Jul-2021  
Revision 2.0  
120 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
17 Register Definitions  
17.1 REGISTER MAP  
Table 37: Register Map  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
Matrix Output  
0
1
2
3
4
Host write data bit-mask:  
0: write  
1: mask (don't change)  
0
I2C Write Mask Control  
(This mask does not effect on NVM write and masks register  
update)  
5
6
7
8
9
10  
11  
Host Virtual Input Bit 0  
Host Virtual Input Bit 1  
Host Virtual Input Bit 2  
Host Virtual Input Bit 3  
Host Virtual Input Bit 4  
Host Virtual Input Bit 5  
Host Virtual Input Bit 6  
Host Virtual Input Bit 7  
1
I2C Virtual Input Control  
12  
13  
14  
15  
0: Normal  
1: Reset  
16  
(Self-Clear Bit. Shuts down device (simulates a Chip POR))  
Reserved  
17  
I2C Reset Control  
18  
2
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
19  
20  
21  
22  
23  
24  
25  
26  
27  
Bit[6:3] can be optional selected to GPIOx with  
I2C_CONTROL_CODE_BITx_SEL configuration  
I2C Interfaces Base Address  
I2C Mode Enable  
3
28  
29  
30  
0: I2C mode disable  
1: I2C mode enable  
31  
Datasheet  
16-Jul-2021  
Revision 2.0  
121 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 37: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
0: Used I2C_CONTROL_CODE Value  
1: Use SLA_0 Value  
0: Used I2C_CONTROL_CODE Value  
1: Use SLA_0 Value  
0: Used I2C_CONTROL_CODE Value  
1: Use SLA_0 Value  
0: Used I2C_CONTROL_CODE Value  
1: Use SLA_0 Value  
32  
33  
34  
35  
I2C CONTROL CODE BIT3 SEL  
I2C CONTROL CODE BIT4 SEL  
I2C CONTROL CODE BIT5 SEL  
I2C CONTROL CODE BIT6 SEL  
4
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
Reserved  
Reserved  
Reserved  
Reserved  
OUT0:  
IN0 of LUT2_0 or Clock Input of DFF0 or Clock Input of  
Shift_Reg0  
5
LUT2_0 & DFF0  
OUT1:  
IN1 of LUT2_0 or Data Input of DFF0 or Data Input of  
Shift_Reg0  
6
OUT2:  
IN0 of LUT2_1 or Clock Input of DFF1 or Clock Input of  
Shift_Reg1  
LUT2_1 & DFF1  
7
8
OUT3:  
IN1 of LUT2_1 or Data Input of DFF1 or Data Input of  
Shift_Reg1  
OUT4:  
LUT2_2 & DFF2  
IN0 of LUT2_2 or Clock Input of DFF2 or Clock Input of  
Shift_Reg2  
Datasheet  
16-Jul-2021  
Revision 2.0  
122 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 37: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
70  
Byte  
8
71  
72  
73  
74  
OUT5:  
LUT2_2 & DFF2  
IN1 of LUT2_2 or Data Input of DFF2 or Data Input of  
Shift_Reg2  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
9
A
B
C
D
OUT6:  
IN0 of LUT2_3 or Clock Input of PGen0  
LUT2_3 & PGen  
OUT7:  
IN1 of LUT2_3 or nRST of PGen0  
OUT8:  
IN0 of LUT3_0 or Clock Input of DFF3 or Clock Input of  
Shift_Reg3  
OUT9:  
LUT3_0 & DFF3  
IN1 of LUT3_0 or Data Input of DFF3 or Data Input of  
Shift_Reg3  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
OUT10:  
IN2 of LUT3_0 or nRST(nSET) of DFF3 or nRST (nSET) of  
Shift_Reg3  
OUT11:  
LUT3_1 & DFF4  
IN0 of LUT3_1 or Clock Input of DFF4 or Clock Input of  
Shift_Reg4  
Datasheet  
16-Jul-2021  
Revision 2.0  
123 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 37: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
OUT12:  
IN1 of LUT3_1 or Data Input of DFF4 or Data Input of  
Shift_Reg4  
E
LUT3_1 & DFF4  
OUT13:  
IN2 of LUT3_1 or nRST (nSET) of DFF4 or nRST(nSET) of  
Shift_Reg4  
F
OUT14:  
IN0 of LUT3_2 or Clock Input of DFF5 or Clock Input of  
Shift_Reg5  
10  
11  
12  
13  
OUT15:  
LUT3_2 & DFF5  
IN1 of LUT3_2 or Data Input of DFF5 or Data Input of  
Shift_Reg5  
OUT16:  
IN2 of LUT3_2 or nRST(nSET) of DFF5 or nRST(nSET) of  
Shift_Reg5  
OUT17:  
IN0 of LUT3_3 or Clock Input of DFF6 or Clock Input of  
Shift_Reg6  
OUT18:  
LUT3_3 & DFF6  
IN1 of LUT3_3 or Data Input of DFF6 or Data Input of  
Shift_Reg6  
OUT19:  
IN2 of LUT3_3 or nRST(nSET) of DFF6 or nRST(nSET) of  
Shift_Reg6  
Datasheet  
16-Jul-2021  
Revision 2.0  
124 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 37: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
OUT20:  
IN0 of LUT3_4 or Clock Input of DFF7 or Clock Input of  
Shift_Reg7  
14  
OUT21:  
LUT3_4 & DFF7  
IN1 of LUT3_4 or Data Input of DFF7 or Data Input of  
Shift_Reg7  
15  
16  
17  
18  
19  
OUT22:  
IN2 of LUT3_4 or nRST(nSET) of DFF7 or nRST(nSET) of  
Shift_Reg7  
OUT23:  
IN0 of LUT3_5 or Clock Input of DFF8 or Clock Input of  
Shift_Reg8  
OUT24:  
LUT3_5 & DFF8  
IN1 of LUT3_5 or Data Input of DFF8 or Data Input of  
Shift_Reg8  
OUT25:  
IN2 of LUT3_5 or nRST(nSET) of DFF8 or nRST(nSET) of  
Shift_Reg8  
OUT26:  
IN0 of LUT3_6 or Clock Input of DFF9 or Clock Input of  
Shift_Reg9  
LUT3_6 & DFF9  
OUT27:  
IN1 of LUT3_6 or Data Input of DFF9 or Data Input of  
Shift_Reg9  
Datasheet  
16-Jul-2021  
Revision 2.0  
125 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 37: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
OUT28:  
LUT3_6 & DFF9  
IN2 of LUT3_6 or nRST(nSET) of DFF9 or nRST(nSET) of  
Shift_Reg9  
1A  
OUT29:  
IN0 of LUT3_7 or Clock Input of DFF10 or Clock Input of  
Shift_Reg10  
1B  
1C  
1D  
OUT30:  
LUT3_7 & DFF10  
IN1 of LUT3_7 or Data Input of DFF10 or Data Input of  
Shift_Reg10  
OUT31:  
IN2 of LUT3_7 or nRST(nSET) of DFF10 or nRST(nSET) of  
Shift_Reg10  
OUT32:  
IN0 of LUT3_8 or Clock Input of DFF11 or Clock Input of  
Shift_Reg11  
OUT33:  
LUT3_8 & DFF11  
IN1 of LUT3_8 or Data Input of DFF11 or Data Input of  
Shift_Reg11  
1E  
1F  
OUT34:  
IN2 of LUT3_8 or nRST(nSET) of DFF11 or nRST(nSET) of  
Shift_Reg11  
Datasheet  
16-Jul-2021  
Revision 2.0  
126 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 37: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
250  
251  
252  
253  
254  
255  
256  
257  
258  
259  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
275  
276  
277  
278  
279  
280  
281  
282  
283  
284  
285  
286  
287  
288  
289  
290  
291  
OUT35:  
1F  
IN0 of LUT3_9 or Clock Input of DFF12 or Clock Input of  
Shift_Reg12  
OUT36:  
LUT3_9 & DFF12  
IN1 of LUT3_9 or Data Input of DFF12 or Data Input of  
Shift_Reg12  
20  
21  
22  
OUT37:  
IN2 of LUT3_9 or nRST(nSET) of DFF12 or nRST(nSET) of  
Shift_Reg12  
OUT38:  
IN0 of LUT4_0 or Clock Input of DFF13 or Clock Input of  
Shift_Reg13  
OUT39:  
IN1 of LUT4_0 or Data Input of DFF13 or Data Input of  
Shift_Reg13  
LUT4_0 & DFF13  
OUT40:  
IN2 of LUT4_0 or nRST(nSET) of DFF13 or nRST(nSET) of  
Shift_Reg13  
23  
24  
OUT41:  
IN3 of LUT4_0 or Clock Enable of DFF13 or Clock Enable of  
Shift_Reg13  
Datasheet  
16-Jul-2021  
Revision 2.0  
127 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 37: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
292  
293  
294  
295  
296  
297  
298  
299  
300  
301  
302  
303  
304  
305  
306  
307  
308  
309  
310  
311  
312  
313  
314  
315  
316  
317  
318  
319  
320  
321  
322  
323  
324  
325  
326  
327  
24  
OUT42:  
IN0 of MLT0_LUT4_1 or Clock Input of DFF14 or Delay0 Input  
(or Counter0 nRST Input)  
25  
26  
27  
28  
OUT43:  
IN1 of MLT0_LUT4_1 or nRST of DFF14 or Delay0 Input (or  
Counter0 nRST Input or External Clock Source)  
Multi-function0  
OUT44:  
IN2 of IN2 of MLT0_LUT4_1 or nSET of DFF14 or KEEP of  
Delay0/Counter0  
OUT45:  
IN3 of MLT0_LUT4_1 or Data Input of DFF14 or UPof Delay0/  
Counter0  
OUT46:  
IN0 of MLT1_LUT3_10 or Clock Input of DFF15 or Delay1  
Input (or Counter1 nRST Input)  
Multi-function1  
OUT47:  
IN1 of MLT1_LUT3_10 or nRST(nSET) of DFF15 or Delay1  
Input (or Counter1 nRST Input or External Clock Source)  
Datasheet  
16-Jul-2021  
Revision 2.0  
128 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 37: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
328  
329  
330  
331  
332  
333  
334  
335  
336  
337  
338  
339  
340  
341  
342  
343  
344  
345  
346  
347  
348  
349  
350  
351  
352  
353  
354  
355  
356  
357  
358  
359  
360  
361  
362  
363  
364  
365  
366  
367  
368  
369  
370  
371  
372  
373  
374  
375  
OUT48:  
Multi-function1  
IN2ofMLT1_LUT3_10orDataInputofDFF15orDelay1Input  
(or Counter1 nRST Input)  
29  
OUT49:  
IN0 of MLT2_LUT3_11 or Clock Input of DFF16 or Delay2  
Input (or Counter2 nRST Input)  
2A  
2B  
2C  
2D  
2E  
OUT50:  
Multi-function2  
IN1 of MLT2_LUT3_11 or nRST(nSET) of DFF16 or Delay2  
Input (or Counter2 nRST Input or External Clock Source  
OUT51:  
IN2ofMLT2_LUT3_11or DataInputofDFF16orDelay2 Input  
(or Counter2 nRST Input)  
OUT52:  
IN0 of MLT3_LUT3_12 or Clock Input of DFF17 or Delay3  
Input (or Counter3 nRST Input)  
OUT53:  
Multi-function3  
IN1 of MLT3_LUT3_12 or nRST(nSET) of DFF17 or Delay3  
Input (or Counter3 nRST Input or External Clock Source)  
OUT54:  
IN2ofMLT3_LUT3_12orDataInputofDFF17orDelay3Input  
(or Counter3 nRST Input)  
OUT55:  
Multi-function4  
IN0 of MLT4_LUT3_13 or Clock Input of DFF18 or Delay4  
Input (or Counter4 nRST Input)  
Datasheet  
16-Jul-2021  
Revision 2.0  
129 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 37: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
376  
377  
378  
379  
380  
381  
382  
383  
384  
385  
386  
387  
388  
389  
390  
391  
392  
393  
394  
395  
396  
397  
398  
399  
400  
401  
402  
403  
404  
405  
406  
407  
408  
409  
410  
411  
412  
413  
414  
415  
416  
417  
418  
419  
420  
421  
422  
423  
OUT56:  
IN1 of MLT4_LUT3_13 or nRST(nSET) of DFF18 or Delay4  
Input (or Counter4 nRST Input or External Clock Source  
2F  
Multi-function4  
OUT57:  
IN2ofMLT4_LUT3_13orDataInputofDFF18orDelay4Input  
(or Counter4 nRST Input)  
30  
31  
32  
33  
34  
OUT58:  
IN0 of MLT5_LUT3_14 or Clock Input of DFF19 or Delay5  
Input (or Counter5 nRST Input)  
OUT59:  
Multi-function5  
IN1 of MLT5_LUT3_14 or nRST(nSET) of DFF19 or Delay5  
Input (or Counter5 nRST Input or External Clock Source)  
OUT60:  
IN2ofMLT5_LUT3_14orDataInputofDFF19orDelay5Input  
(or Counter5 nRST Input)  
OUT61:  
IN0 of MLT6_LUT3_15 or Clock Input of DFF20 or Delay6  
Input (or Counter6 nRST Input)  
OUT62:  
Multi-function6  
IN1 of MLT6_LUT3_15 or nRST(nSET) of DFF20 or Delay6  
Input (or Counter6 nRST Input or External Clock Source)  
OUT63:  
IN2ofMLT6_LUT3_15orDataInputofDFF20orDelay6Input  
(or Counter6 nRST Input)  
Datasheet  
16-Jul-2021  
Revision 2.0  
130 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 37: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
424  
425  
426  
427  
428  
429  
430  
431  
432  
433  
434  
435  
436  
437  
438  
439  
440  
441  
442  
443  
444  
445  
446  
447  
448  
449  
450  
451  
452  
453  
454  
455  
456  
457  
458  
459  
460  
461  
462  
463  
464  
465  
466  
467  
468  
469  
470  
471  
OUT64:  
IN0 of MLT7_LUT3_16 or Clock Input of DFF21 or Delay7  
Input (or Counter7 nRST Input)  
35  
OUT65:  
Multi-function7  
IN1 of MLT7_LUT3_16 or nRST(nSET) of DFF21 or Delay7  
Input (or Counter7 nRST Input or External Clock Source)  
36  
37  
38  
39  
3A  
OUT66:  
IN2ofMLT7_LUT3_16orDataInputofDFF21orDelay7Input  
(or Counter7 nRST Input)  
OUT67:  
GPIO0 Digital Output  
GPIO0  
GPIO1  
OUT68:  
GPIO1 Digital Output  
OUT69:  
GPIO2 Digital Output OE  
GPIO2  
OUT70:  
GPIO2 Digital Output  
OUT71:  
GPIO3 Digital Output OE  
GPIO3  
Datasheet  
16-Jul-2021  
Revision 2.0  
131 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 37: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
472  
473  
474  
475  
476  
477  
478  
479  
480  
481  
482  
483  
484  
485  
486  
487  
488  
489  
490  
491  
492  
493  
494  
495  
496  
497  
498  
499  
500  
501  
502  
503  
504  
505  
506  
507  
508  
509  
510  
511  
512  
513  
514  
515  
516  
517  
518  
519  
OUT72:  
GPIO3 Digital Output  
GPIO3  
3B  
OUT73:  
GPIO4 Digital Output OE  
3C  
3D  
3E  
3F  
40  
GPIO4  
OUT74:  
GPIO4 Digital Output  
OUT75:  
GPIO5 Digital Output OE  
GPIO5  
OUT76:  
GPIO5 Digital Output  
OUT77:  
GPIO6 Digital Output OE  
GPIO6  
OUT78:  
GPIO6 Digital Output  
OUT79:  
GPIO7 Digital Output OE  
GPIO7  
Datasheet  
16-Jul-2021  
Revision 2.0  
132 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 37: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
520  
521  
522  
523  
524  
525  
526  
527  
528  
529  
530  
531  
532  
533  
534  
535  
536  
537  
538  
539  
540  
541  
542  
543  
544  
545  
546  
547  
548  
549  
550  
551  
552  
553  
554  
555  
556  
557  
558  
559  
560  
561  
562  
563  
564  
565  
566  
567  
OUT80:  
GPIO7 Digital Output  
GPIO7  
41  
OUT81:  
GPIO8 Digital Output OE  
42  
43  
44  
45  
46  
GPIO8  
OUT82:  
GPIO8 Digital Output  
OUT83:  
GPIO9 Digital Output OE (16-PIN Version)  
GPIO9  
OUT84:  
GPIO9 Digital Output (16-PIN Version)  
OUT85:  
GPIO10 Digital Output OE (16-PIN Version)  
GPIO10  
OUT86:  
GPIO10 Digital Output (16-PIN Version)  
OUT87:  
GPIO11  
GPIO11 Digital Output OE (16-PIN Version)  
Datasheet  
16-Jul-2021  
Revision 2.0  
133 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 37: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
568  
569  
570  
571  
572  
573  
574  
575  
576  
577  
578  
579  
580  
581  
582  
583  
584  
585  
586  
587  
588  
589  
590  
591  
592  
593  
594  
595  
596  
597  
598  
599  
600  
601  
602  
603  
604  
605  
606  
607  
608  
609  
610  
611  
612  
613  
614  
615  
OUT88:  
GPIO11  
GPIO11 Digital Output (16-PIN Version)  
47  
OUT89:  
GPIO12 Digital Output OE (16-PIN Version)  
48  
49  
4A  
4B  
4C  
GPIO12  
OUT90:  
GPIO12 Digital Output (16-PIN Version)  
OUT91:  
Filter/Edge detect input  
Filter/Edge detect  
Programmable delay/edge detect  
ACMP0H  
OUT92:  
Programmable delay/edge detect input  
OUT93:  
Power Up of ACMP0_H  
OUT94:  
Power Up of ACMP1_H  
ACMP1H  
OUT95:  
Temp sensor  
Temp sensor, Vref Out_0 Power Up  
Datasheet  
16-Jul-2021  
Revision 2.0  
134 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 37: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
616  
617  
618  
619  
620  
621  
622  
623  
624  
625  
626  
627  
628  
629  
630  
631  
632  
633  
634  
635  
636  
637  
638  
639  
640  
641  
642  
643  
644  
645  
646  
647  
648  
649  
650  
651  
652  
653  
654  
655  
656  
657  
658  
659  
660  
661  
662  
663  
OUT96:  
OSC0  
Oscillator0 (LFOSC) ENABLE  
4D  
OUT97:  
OSC1  
Oscillator1 (RINGOSC) ENABLE  
4E  
4F  
50  
51  
52  
Reserved  
Reserved  
Reserved  
Reserved  
LUT2_0 bit[0]/Shift_Reg0 bit[0]  
LUT2_0 bit[1]/Shift_Reg0 bit[1]  
LUT2_0 bit[2]/Shift_Reg0 bit[2]  
LUT2_0 bit[3]/DFF0 /Shift_Reg0 bit[3]  
LUT2_1 bit[0]/Shift_Reg1 bit[0]  
LUT2_1 bit[1]/Shift_Reg1 bit[1]  
LUT2_1 bit[2]/Shift_Reg1 bit[2]  
LUT2_1 bit[3]/DFF1 /Shift_Reg1 bit[3]  
LUT2_2 bit[0]/Shift_Reg2 bit[0]  
LUT2_2 bit[1]/Shift_Reg2 bit[1]  
LUT2_2 bit[2]/Shift_Reg2 bit[2]  
LUT2_2 bit[3]/DFF2 /Shift_Reg2 bit[3]  
LUT2_3 bit[0]/PGEN0 Size bit [0]  
LUT2_3 bit[1]/PGEN0 Size bit [1]  
LUT2_3 bit[2]/PGEN0 Size bit [2]  
LUT2_3 bit[3]/PGEN0 Size bit [3]  
LUT3_0 bit[0]/Shift_Reg3 bit[0]  
LUT3_0 bit[1]/Shift_Reg3 bit[1]  
LUT3_0 bit[2]/Shift_Reg3 bit[2]  
LUT3_0 bit[3]/Shift_Reg3 bit[3]  
LUT3_0 bit[4]/Shift_Reg3 bit[4]  
LUT3_0 bit[5]/Shift_Reg3 bit[5]  
LUT3_0 bit[6]/Shift_Reg3 bit[6]  
LUT3_0 bit[7]/DFF3/Shift_Reg3 bit[7]  
LUT3_1 bit[0]/Shift_Reg4 bit[0]  
LUT3_1 bit[1]/Shift_Reg4 bit[1]  
LUT3_1 bit[2]/Shift_Reg4 bit[2]  
LUT3_1 bit[3]/Shift_Reg4 bit[3]  
LUT3_1 bit[4]/Shift_Reg4 bit[4]  
LUT3_1 bit[5]/Shift_Reg4 bit[5]  
LUT3_1 bit[6]/Shift_Reg4 bit[6]  
LUT3_1 bit[7]/DFF4/Shift_Reg4 bit[7]  
LUT2_0_DFF0_SHR0  
LUT2_1_DFF1_SHR1  
LUT2_2_ DFF2_SHR2  
LUT2_3_PGEN0  
LUT3_0_DFF3_SHR3  
LUT3_1_DFF4_SHR4  
Datasheet  
16-Jul-2021  
Revision 2.0  
135 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 37: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
664  
665  
666  
667  
668  
669  
670  
671  
672  
673  
674  
675  
676  
677  
678  
679  
680  
681  
682  
683  
684  
685  
686  
687  
688  
689  
690  
691  
692  
693  
694  
695  
696  
697  
698  
699  
700  
701  
702  
703  
704  
705  
706  
707  
708  
709  
710  
711  
LUT3_2 bit[0]/Shift_Reg5 bit[0]  
LUT3_2 bit[1]/Shift_Reg5 bit[1]  
LUT3_2 bit[2]/Shift_Reg5 bit[2]  
LUT3_2 bit[3]/Shift_Reg5 bit[3]  
LUT3_2 bit[4]/Shift_Reg5 bit[4]  
LUT3_2 bit[5]/Shift_Reg5 bit[5]  
LUT3_2 bit[6]/Shift_Reg5 bit[6]  
LUT3_2 bit[7]/DFF5/Shift_Reg5 bit[7]  
LUT3_3 bit[0]/Shift_Reg6 bit[0]  
LUT3_3 bit[1]/Shift_Reg6 bit[1]  
LUT3_3 bit[2]/Shift_Reg6 bit[2]  
LUT3_3 bit[3]/Shift_Reg6 bit[3]  
LUT3_3 bit[4]/Shift_Reg6 bit[4]  
LUT3_3 bit[5]/Shift_Reg6 bit[5]  
LUT3_3 bit[6]/Shift_Reg6 bit[6]  
LUT3_3 bit[7]/DFF6/Shift_Reg6 bit[7]  
LUT3_4 bit[0]/Shift_Reg7 bit[0]  
LUT3_4 bit[1]/Shift_Reg7 bit[1]  
LUT3_4 bit[2]/Shift_Reg7 bit[2]  
LUT3_4 bit[3]/Shift_Reg7 bit[3]  
LUT3_4 bit[4]/Shift_Reg7 bit[4]  
LUT3_4 bit[5]/Shift_Reg7 bit[5]  
LUT3_4 bit[6]/Shift_Reg7 bit[6]  
LUT3_4 bit[7]/DFF7/Shift_Reg7 bit[7]  
LUT3_5 bit[0]/Shift_Reg8 bit[0]  
LUT3_5 bit[1]/Shift_Reg8 bit[1]  
LUT3_5 bit[2]/Shift_Reg8 bit[2]  
LUT3_5 bit[3]/Shift_Reg8 bit[3]  
LUT3_5 bit[4]/Shift_Reg8 bit[4]  
LUT3_5 bit[5]/Shift_Reg8 bit[5]  
LUT3_5 bit[6]/Shift_Reg8 bit[6]  
LUT3_5 bit[7]/DFF8/Shift_Reg8 bit[7]  
LUT3_6 bit[0]/Shift_Reg9 bit[0]  
LUT3_6 bit[1]/Shift_Reg9 bit[1]  
LUT3_6 bit[2]/Shift_Reg9 bit[2]  
LUT3_6 bit[3]/Shift_Reg9 bit[3]  
LUT3_6 bit[4]/Shift_Reg9 bit[4]  
LUT3_6 bit[5]/Shift_Reg9 bit[5]  
LUT3_6 bit[6]/Shift_Reg9 bit[6]  
LUT3_6 bit[7]/DFF9 /Shift_Reg9 bit[7]  
LUT3_7 bit[0]/Shift_Reg10 bit[0]  
LUT3_7 bit[1]/Shift_Reg10 bit[1]  
LUT3_7 bit[2]/Shift_Reg10 bit[2]  
LUT3_7 bit[3]/Shift_Reg10 bit[3]  
LUT3_7 bit[4]/Shift_Reg10 bit[4]  
LUT3_7 bit[5]/Shift_Reg10 bit[5]  
LUT3_7 bit[6]/Shift_Reg10 bit[6]  
LUT3_7 bit[7]/DFF10/Shift_Reg10 bit[7]  
53  
LUT3_2_DFF5_SHR5  
54  
55  
56  
57  
58  
LUT3_3_DFF6_SHR6  
LUT3_4_DFF7_SHR7  
LUT3_5_DFF8_SHR8  
LUT3_6_DFF9_SHR9  
LUT3_7_DFF10_SHR10  
Datasheet  
16-Jul-2021  
Revision 2.0  
136 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 37: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
712  
713  
714  
715  
716  
717  
718  
719  
720  
721  
722  
723  
724  
725  
726  
727  
728  
729  
730  
731  
732  
733  
734  
735  
736  
737  
738  
739  
740  
741  
742  
743  
LUT3_8 bit[0]/Shift_Reg11 bit[0]  
LUT3_8 bit[1]/Shift_Reg11 bit[1]  
LUT3_8 bit[2]/Shift_Reg11 bit[2]  
LUT3_8 bit[3]/Shift_Reg11 bit[3]  
LUT3_8 bit[4]/Shift_Reg11 bit[4]  
LUT3_8 bit[5]/Shift_Reg11 bit[5]  
LUT3_8 bit[6]/Shift_Reg11 bit[6]  
LUT3_8 bit[7]/DFF11/Shift_Reg11 bit[7]  
LUT3_9 bit[0]/Shift_Reg12 bit[0]  
LUT3_9 bit[1]/Shift_Reg12 bit[1]  
LUT3_9 bit[2]/Shift_Reg12 bit[2]  
LUT3_9 bit[3]/Shift_Reg12 bit[3]  
LUT3_9 bit[4]/Shift_Reg12 bit[4]  
LUT3_9 bit[5]/Shift_Reg12 bit[5]  
LUT3_9 bit[6]/Shift_Reg12 bit[6]  
LUT3_9 bit[7]/DFF12/Shift_Reg12 bit[7]  
LUT4_0 bit[0]/Shift_Reg13 bit[0]  
LUT4_0 bit[1]/Shift_Reg13 bit[1]  
LUT4_0 bit[2]/Shift_Reg13 bit[2]  
LUT4_0 bit[3]/Shift_Reg13 bit[3]  
LUT4_0 bit[4]/Shift_Reg13 bit[4]  
LUT4_0 bit[5]/Shift_Reg13 bit[5]  
LUT4_0 bit[6]/Shift_Reg13 bit[6]  
LUT4_0 bit[7]/Shift_Reg13 bit[7]  
LUT4_0 bit[8]/Shift_Reg13 bit[8]  
LUT4_0 bit[9]/Shift_Reg13 bit[9]  
LUT4_0 bit[10]/Shift_Reg13 bit[10]  
LUT4_0 bit[11]/Shift_Reg13 bit[11]  
LUT4_0 bit[12]/Shift_Reg13 bit[12]  
LUT4_0 bit[13]/Shift_Reg13 bit[13]  
LUT4_0 bit[14]/Shift_Reg13 bit[14]  
LUT4_0 bit[15]/DFF13/Shift_Reg13 bit[15]  
59  
LUT3_8_DFF11_SHR11  
5A  
5B  
5C  
LUT3_9_DFF12_SHR12  
LUT4_0_DFF13_SHR13  
LUT2_0_DFF0_SHR0 DFF/Latch/Shift or LUT 0: LUT  
744  
745  
Select  
1: DFF/Latch/Shift Register  
Value=0 DFF/Latch Mode,  
Value=1 Length=2,  
Value=2 Length=3,  
LUT2_0_DFF0_SHR0 Shift Register Length  
746  
Value=3 Length=4...  
0: DFF  
747  
748  
LUT2_0_DFF0_SHR0 DFF or Latch Select  
LUT2_0_DFF0_SHR0 Output Polarity Select  
1: Latch  
(Only valid when LUT_SEL=0 and SHR_LEN=0)  
0: Non-inverted  
1: Inverted  
5D  
LUT2_1_DFF1_SHR1 DFF/Latch/Shift or LUT 0: LUT  
749  
750  
Select  
1: DFF/Latch/Shift Register  
Value=0 DFF/Latch Mode,  
Value=1 Length=2,  
LUT2_1_DFF1_SHR1 Shift Register Length  
Value=2 Length=3,  
751  
Value=3 Length=4...  
Datasheet  
16-Jul-2021  
Revision 2.0  
137 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 37: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
0: DFF  
LUT2_1_DFF1_SHR1 DFF or Latch Select  
752  
753  
1: Latch  
(Only valid when LUT_SEL=0 and SHR_LEN=0)  
0: Non-inverted  
1: Inverted  
LUT2_1_DFF1_SHR1 Output Polarity Select  
LUT2_2_DFF2_SHR2 DFF/Latch/Shift or LUT 0: LUT  
754  
755  
Select  
1: DFF/Latch/Shift Register  
Value=0 DFF/Latch Mode,  
Value=1 Length=2,  
Value=2 Length=3,  
5E  
LUT2_2_DFF2_SHR2 Shift Register Length  
756  
757  
Value=3 Length=4...  
0: DFF  
1: Latch  
LUT2_2_DFF2_SHR2 DFF or Latch Select  
(Only valid when LUT_SEL=0 and SHR_LEN=0)  
0: Non-inverted  
1: Inverted  
0: LUT  
1: Pattern Generator  
0: Active Low Level for reset/set  
1: Active High Level for reset/set  
758  
759  
760  
761  
LUT2_2_DFF2_SHR2 Output Polarity Select  
LUT2_3_PGEN0 Function Select  
LUT2_3_PGEN0 Active Level Selection for  
RST/SET  
LUT3_0_DFF3_SHR3 DFF/Latch/Shift or LUT 0: LUT  
Select  
1: DFF/Latch/Shift Register  
762  
763  
Value=0 DFF/Latch Mode,  
Value=1 Length=2,  
Value=2 Length=3,  
LUT3_0_DFF3_SHR3 Shift Register Length  
764  
Value=3 Length=4...  
5F  
0: DFF  
765  
LUT3_0_DFF3_SHR3 DFF or Latch Select  
LUT3_0_DFF3_SHR3 Output Polarity Select  
LUT3_0_DFF3_SHR3 nRST/nSet Select  
1: Latch  
(Only valid when LUT_SEL=0 and SHR_LEN=0)  
0: Non-inverted  
1: Inverted  
0: DFF/SHR use nRST  
1: DFF/SHR use nSET  
(Only valid in DFF/Latch mode)  
766  
767  
0: Active Low  
1: Active High  
0: LUT  
LUT3_0_DFF3_SHR3 Set/Reset active level  
select  
768  
769  
LUT3_1_DFF4_SHR4 DFF/Latch/Shift or LUT  
Select  
1: DFF/Latch/Shift Register  
770  
771  
Value=0 DFF/Latch Mode,  
Value=1 Length=2,  
Value=2 Length=3,  
LUT3_1_DFF4_SHR4 Shift Register Length  
772  
Value=3 Length=4...  
60  
0: DFF  
1: Latch  
LUT3_1_DFF4_SHR4 DFF or Latch Select.  
Only valid when LUT_SEL=0 and SHR_LEN=0  
773  
(Only valid when LUT_SEL=0 and SHR_LEN=0)  
0: Non-inverted  
1: Inverted  
0: DFF/SHR use nRST  
1: DFF/SHR use nSET  
(Only valid in DFF/Latch mode)  
774  
775  
LUT3_1_DFF4_SHR4 Output Polarity Select  
LUT3_1_DFF4_SHR4 nRST/nSet Select  
Datasheet  
16-Jul-2021  
Revision 2.0  
138 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 37: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
0: Active Low  
1: Active High  
LUT3_2_DFF5_SHR5 DFF/Latch/Shift or LUT 0: LUT  
LUT3_1_DFF4_SHR4 Set/Reset active level  
select  
776  
777  
Select  
1: DFF/Latch/Shift Register  
778  
779  
Value=0 DFF/Latch Mode,  
Value=1 Length=2,  
Value=2 Length=3,  
LUT3_2_DFF5_SHR5 Shift Register Length  
780  
Value=3 Length=4...  
61  
0: DFF  
781  
LUT3_2_DFF5_SHR5 DFF or Latch Select  
LUT3_2_DFF5_SHR5 Output Polarity Select  
LUT3_2_DFF5_SHR5 nRST/nSet Select  
1: Latch  
(Only valid when LUT_SEL=0 and SHR_LEN=0)  
0: Non-inverted  
1: Inverted  
0: DFF/SHR use nRST  
1: DFF/SHR use nSET  
(Only valid in DFF/Latch mode)  
782  
783  
0: Active Low  
1: Active High  
0: LUT  
LUT3_2_DFF5_SHR5 Set/Reset active level  
select  
784  
785  
LUT3_3_DFF6_SHR6 DFF/Latch/Shift or LUT  
Select  
1: DFF/Latch/Shift Register  
786  
787  
Value=0 DFF/Latch Mode,  
Value=1 Length=2,  
Value=2 Length=3,  
LUT3_3_DFF6_SHR6 Shift Register Length  
788  
Value=3 Length=4...  
62  
0: DFF  
789  
LUT3_3_DFF6_SHR6 DFF or Latch Select  
LUT3_3_DFF6_SHR6 Output Polarity Select  
LUT3_3_DFF6_SHR6 nRST/nSet Select  
1: Latch  
(Only valid when LUT_SEL=0 and SHR_LEN=0)  
0: Non-inverted  
1: Inverted  
0: DFF/SHR use nRST  
1: DFF/SHR use nSET  
(Only valid in DFF/Latch mode)  
790  
791  
LUT3_3_DFF6_SHR6 Set/Reset active level 0: Active Low  
792  
793  
select  
1: Active High  
0: LUT  
LUT3_4_DFF7_SHR7 DFF/Latch/Shift or LUT  
Select  
1: DFF/Latch/Shift Register  
794  
795  
Value=0 DFF/Latch Mode,  
Value=1 Length=2,  
Value=2 Length=3,  
LUT3_4_DFF7_SHR7 Shift Register Length  
796  
Value=3 Length=4...  
63  
0: DFF  
797  
LUT3_4_DFF7_SHR7 DFF or Latch Select  
LUT3_4_DFF7_SHR7 Output Polarity Select  
LUT3_4_DFF7_SHR7 nRST/nSet Select  
1: Latch  
(Only valid when LUT_SEL=0 and SHR_LEN=0)  
0: Non-inverted  
1: Inverted  
0: DFF/SHR use nRST  
1: DFF/SHR use nSET  
(Only valid in DFF/Latch mode)  
798  
799  
800  
0: Active Low  
1: Active High  
LUT3_4_DFF7_SHR7 Set/Reset active level  
select  
64  
Datasheet  
16-Jul-2021  
Revision 2.0  
139 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 37: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
LUT3_5_DFF8_SHR8 DFF/Latch/Shift or LUT 0: LUT  
801  
Select  
1: DFF/Latch/Shift Register  
802  
803  
Value=0 DFF/Latch Mode,  
Value=1 Length=2,  
Value=2 Length=3,  
LUT3_5_DFF8_SHR8 Shift Register Length  
804  
Value=3 Length=4...  
0: DFF  
1: Latch  
64  
805  
LUT3_5_DFF8_SHR8 DFF or Latch Select.  
LUT3_5_DFF8_SHR8 Output Polarity Select  
LUT3_5_DFF8_SHR8 nRST/nSet Select  
(Only valid when LUT_SEL=0 and SHR_LEN=0)  
0: Non-inverted  
1: Inverted  
0: DFF/SHR use nRST  
1: DFF/SHR use nSET  
(Only valid in DFF/Latch mode)  
806  
807  
LUT3_5_DFF8_SHR8 Set/Reset active level 0: Active Low  
808  
809  
select  
1: Active High  
0: LUT  
LUT3_6_DFF9_SHR9 DFF/Latch/Shift or LUT  
Select  
1: DFF/Latch/Shift Register  
810  
811  
Value=0 DFF/Latch Mode,  
Value=1 Length=2,  
Value=2 Length=3,  
LUT3_6_DFF9_SHR9 Shift Register Length  
812  
Value=3 Length=4...  
65  
0: DFF  
813  
LUT3_6_DFF9_SHR9 DFF or Latch Select  
LUT3_6_DFF9_SHR9 Output Polarity Select  
LUT3_6_DFF9_SHR9 nRST/nSet Select  
1: Latch  
(Only valid when LUT_SEL=0 and SHR_LEN=0)  
0: Non-inverted  
1: Inverted  
0: DFF/SHR use nRST  
1: DFF/SHR use nSET  
(Only valid in DFF/Latch mode)  
814  
815  
0: Active Low  
1: Active High  
0: LUT  
LUT3_6_DFF9_SHR9 Set/Reset active level  
select  
816  
817  
LUT3_7_DFF10_SHR10 DFF/Latch/Shift or  
LUT Select  
1: DFF/Latch/Shift Register  
818  
819  
Value=0 DFF/Latch Mode,  
Value=1 Length=2,  
Value=2 Length=3,  
LUT3_7_DFF10_SHR10 Shift Register Length  
820  
Value=3 Length=4...  
66  
0: DFF  
821  
LUT3_7_DFF10_SHR10 DFF or Latch Select 1: Latch  
(Only valid when LUT_SEL=0 and SHR_LEN=0)  
LUT3_7_DFF10_SHR10 Output Polarity Se- 0: Non-inverted  
822  
823  
lect  
1: Inverted  
0: DFF/SHR use nRST  
1: DFF/SHR use nSET  
(Only valid in DFF/Latch mode)  
LUT3_7_DFF10_SHR10 nRST/nSet Select  
0: Active Low  
1: Active High  
0: LUT  
LUT3_7_DFF10_SHR10Set/Resetactivelevel  
select  
824  
825  
67  
LUT3_8_DFF11_SHR11 DFF/Latch/Shift or  
LUT Select  
1: DFF/Latch/Shift Register  
Datasheet  
16-Jul-2021  
Revision 2.0  
140 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 37: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
826  
827  
Value=0 DFF/Latch Mode,  
Value=1 Length=2,  
Value=2 Length=3,  
LUT3_8_DFF11_SHR11 Shift Register Length  
828  
Value=3 Length=4...  
0: DFF  
829  
LUT3_8_DFF11_SHR11 DFF or Latch Select 1: Latch  
(Only valid when LUT_SEL=0 and SHR_LEN=0)  
67  
0: Non-inverted  
1: Inverted  
0: DFF/SHR use nRST  
1: DFF/SHR use nSET  
(Only valid in DFF/Latch mode)  
830  
831  
LUT3_8_DFF11_SHR11 OutputPolarity Select  
LUT3_8_DFF11_SHR11 nRST/nSet Select  
LUT3_8_DFF11_SHR11 Set/Reset active level 0: Active Low  
832  
833  
select  
1: Active High  
0: LUT  
LUT3_9_DFF12_SHR12 DFF/Latch/Shift or  
LUT Select  
1: DFF/Latch/Shift Register  
834  
835  
Value=0 DFF/Latch Mode,  
Value=1 Length=2,  
Value=2 Length=3,  
LUT3_9_DFF12_SHR12 Shift Register Length  
836  
Value=3 Length=4...  
68  
0: DFF  
837  
LUT3_9_DFF12_SHR12 DFF or Latch Select 1: Latch  
(Only valid when LUT_SEL=0 and SHR_LEN=0)  
0: Non-inverted  
1: Inverted  
0: DFF/SHR use nRST  
1: DFF/SHR use nSET  
(Only valid in DFF/Latch mode)  
LUT3_9_DFF12_SHR12 Output Polarity Se-  
838  
839  
lect  
LUT3_9_DFF12_SHR12 nRST/nSet Select  
0: Active Low  
1: Active High  
0: LUT  
LUT3_9_DFF12_SHR12Set/Resetactivelevel  
select  
840  
841  
LUT4_0_DFF13_SHR13 DFF/Latch/Shift or  
LUT Select  
1: DFF/Latch/Shift Register  
842  
843  
844  
845  
Value=0 DFF/Latch Mode,  
Value=1 Length=2,  
Value=2 Length=3,  
LUT4_0_DFF13_SHR13 Shift Register Length  
69  
Value=3 Length=4...  
0: DFF  
846  
847  
848  
849  
LUT4_0_DFF13_SHR13 DFF or Latch Select 1: Latch  
(Only valid when LUT_SEL=0 and SHR_LEN=0)  
0: Non-inverted  
1: Inverted  
0: DFF/SHR use nRST  
1: DFF/SHR use nSET  
(Only valid in DFF/Latch mode)  
LUT4_0_DFF13_SHR13 Output Polarity Se-  
lect  
LUT4_0_DFF13_SHR13 nRST/nSet Select  
LUT4_0_DFF13_SHR13Set/Resetactivelevel 0: Active Low  
select  
1: Active High  
6A  
6A  
850  
851  
852  
853  
854  
855  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Datasheet  
16-Jul-2021  
Revision 2.0  
141 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 37: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
856  
857  
858  
859  
860  
861  
862  
863  
864  
865  
866  
867  
868  
869  
870  
871  
6B  
LUT2_3_PGEN0_DATA_LSB[7:0]  
Pattern Data LSB  
6C  
6D  
6E  
LUT2_3_PGEN0_DATA_MSB[7:0]  
Pattern Data MSB  
MLT0_LUT4_1 bit[0]/DFF14 DFF or Latch Select:  
0: LUT: LUT[0]; DFF: DFF function  
1: LUT: LUT[0]; DFF: Latch function  
MLT0_LUT4_1 bit[1]/DFF14 Output Select:  
0: LUT: LUT[1]; DFF: Q output  
1: LUT: LUT[1]; DFF: QB output  
MLT0_LUT4_1 bit[2]/DFF14 Initial Polarity Select:  
0: LUT: LUT[2]; DFF: Low  
1: LUT: LUT[2]; DFF: High  
MLT0_LUT4_1 bit[3]  
MLT0_LUT4_1 bit[4]  
MLT0_LUT4_1 bit[5]  
MLT0_LUT4_1 bit[6]  
MLT0_LUT4_1 bit[7]  
MLT0_LUT4_1 bit[8]  
MLT0_LUT4_1 bit[9]  
MLT0_LUT4_1 bit[10]  
MLT0_LUT4_1 bit[11]  
MLT0_LUT4_1 bit[12]  
MLT0_LUT4_1 bit[13]  
MLT0_LUT4_1 bit[14]  
MLT0_LUT4_1 bit[15]  
872  
873  
874  
875  
876  
877  
878  
879  
880  
881  
882  
883  
884  
885  
886  
887  
LUT4_1_DFF14_CNTDLY0  
Datasheet  
16-Jul-2021  
Revision 2.0  
142 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 37: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
888  
889  
890  
0000: Both edge Delay  
0001: Falling edge Delay  
0010: Rising edge Delay  
0011: Prohibited  
0100: Both edge One Shot  
0101: Falling edge One Shot  
0110: Rising edge One Shot  
0111: Prohibited  
1000: Both edge frequency detect  
1001: Falling edge frequency detect  
1010: Rising edge frequency detect  
1011: Prohibited  
CNTDLY0 Function and Edge mode selection  
891  
1100: Both edge reset CNT  
1101: Falling edge reset CNT  
1110: Rising edge reset CNT  
1111: High level reset CNT  
6F  
MLT0_LUT4_1_DFF14 LUT/DFF Function Se- 0: LUT  
892  
893  
894  
lect  
1: DFF/Latch  
0: Default Output  
1: Inverted Output  
CNT0 CNT/DLY output Polarity selection  
0: Normal  
CNT0 DLY mode edge detection selection  
CNT0 CNT mode synchronizer selection  
1: Enable DLY mode edge detection  
0: Bypass synchronizer  
1: Enable synchronizer (after two DFFs)  
895  
896  
00: Single LUT or DFF (DLY input is low)  
LUT4_1_DFF14_CNTDLY0 Multi function se- 01: Single CNT/DLY (DLY output connect to LUT/DFF)  
lection  
10: CNT/DLY connected to LUT or DFF  
11: LUT or DFF connected to CNT/DLY  
897  
898  
00: DLY input from matrix A;  
DLY output connected to LUT's In3 or DFF's D  
01: DLY input from matrix B;  
MLT0_LUT4_1_DFF14_CNTDLY0 CNT/DLY  
and LUT or DFF connection  
(only works when multi_func_sel_reg is 2'b10)  
DLY output connected to LUT's In2 or DFF's nSET  
10: DLY input from matrix C;  
899  
DLY output connected to LUT's In1 or DFF's nRST  
11: DLY input from matrix D;  
70  
DLY output connected to LUT's In0 or DFF's CLK  
900  
901  
902  
903  
00: Bypass the initial  
01: Bypass the initial  
10: Initial 0  
CNT0 CNT/DLY initial value selection  
11: Initial 1  
00: Connected to LOW  
01: Form matrix B  
CNT0 CNT external clock selection  
(only works when multi_func_sel_reg is not  
2'b00)  
10: From matrix C  
11: Connected to LOW  
Datasheet  
16-Jul-2021  
Revision 2.0  
143 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 37: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
904  
905  
906  
0000: RingOSC(25 MHz)  
0001: RingOSC(25 MHz)/4  
0010: RingOSC(25 MHz)/8  
0011: RingOSC(25 MHz)/64  
0100: RingOSC(25 MHz)/512  
0101: LFOSC(2 kHz)  
0110: LFOSC(2 kHz)/8  
0111: LFOSC(2 kHz)/64  
1000: LFOSC(2KkHz)/512  
1001: LFOSC(2 kHz)/4096  
1010: LFOSC(2 kHz)/32768  
1011: LFOSC(2 kHz)/262144  
1100: CNTx_END  
CNT0 CNT/DLY clock source selection  
907  
71  
1101: External  
1110: Not used  
1111: Not used  
908  
909  
910  
911  
912  
913  
914  
915  
916  
917  
918  
919  
920  
921  
922  
923  
924  
925  
926  
927  
928  
929  
930  
931  
932  
933  
934  
935  
936  
937  
938  
939  
940  
941  
942  
943  
Reserved  
Reserved  
Reserved  
Reserved  
72  
73  
74  
75  
CNT0 MSB of CNT Data  
Data [15:8]  
Data [7:0]  
Data [15:8]  
Data [7:0]  
CNT0 LSB of CNT Data  
CNT0 MSB of Current CNT Value  
CNT0 LSB of Current CNT Value  
Datasheet  
16-Jul-2021  
Revision 2.0  
144 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 37: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
0: Reset to 0  
1: Set to data  
0: Bypass synchronizer  
1: Enable synchronizer (after two DFFs)  
0: Bypass synchronizer  
1: Enable synchronizer (after two DFFs)  
0: Low  
1: High  
944  
945  
946  
947  
CNT0 CNT set or rest selection  
CNT0 CNT up signal synchronizer selection  
CNT0 CNT keep signal synchronizer selection  
CNT0 Wake sleep power-down state selection  
76  
0: Default mode  
948  
CNT0 CNT wake sleep mode selection  
CNT0 ACMP Wake/Sleep time selection  
1: Wake-up sleep mode  
(func_sel_reg configure as CNT mode)  
0: Normal  
1: Short Time  
0: Disable  
1: Enable  
949  
950  
951  
952  
953  
CNT0 Allow short wake-up signal  
Reserved  
0: Disable  
1: Enable  
0: Disable  
1: Enable  
ACMP0 wake sleep enable  
ACMP1 wake sleep enable  
954  
955  
956  
957  
958  
959  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
77  
MLT1_LUT3_10 bit[0]/DFF15 DFF or Latch Select:  
0: LUT: LUT[0]; DFF: DFF function  
960  
961  
962  
963  
1: LUT: LUT[0]; DFF: Latch function  
MLT1_LUT3_10 bit[1]/DFF15 Output Select:  
0: LUT: LUT[1]; DFF: Q output  
1: LUT: LUT[1]; DFF: QB output  
MLT1_LUT3_10 bit[2]/DFF15 Initial Polarity Select:  
0: LUT: LUT[2]; DFF: Low  
1: LUT: LUT[2]; DFF: High  
MLT1_LUT3_10 bit[3]/DFF15 nRST or nSET Select:  
0: LUT: LUT[3]; DFF: nRST  
1: LUT: LUT[3]; DFF: nSET  
78  
LUT3_10_DFF15_CNTDLY1  
964  
965  
966  
967  
MLT1_LUT3_10 bit[4]  
MLT1_LUT3_10 bit[5]  
MLT1_LUT3_10 bit[6]  
MLT1_LUT3_10 bit[7]  
Datasheet  
16-Jul-2021  
Revision 2.0  
145 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 37: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
968  
969  
970  
0000: both edge Delay  
0001: falling edge Delay  
0010: rising edge Delay  
0011: both edge One Shot  
0100: falling edge One Shot  
0101: rising edge One Shot  
0110: both edge freq detect  
0111: falling edge freq detect  
1000: rising edge freq detect  
1001: both edge detect  
1010: falling edge detect  
1011: rising edge detect  
1100: both edge reset CNT  
1101: falling edge reset CNT  
1110: rising edge reset CNT  
1111: high level reset CNT  
CNTDLY1 Function and Edge mode selection  
971  
79  
MLT1_LUT3_10_DFF15 LUT/DFF Function  
Select  
0: LUT  
972  
973  
974  
1: DFF/Latch  
0: Default Output  
1: Inverted Output  
0: Normal  
1: Enable DLY mode edge detection  
0: Bypass synchronizer  
1: Enable synchronizer (after two DFFs)  
00: Single LUT or DFF (DLY input is low)  
CNT1 CNT/DLY output Polarity selection  
CNT1 DLY mode edge detection selection  
CNT1 CNT mode synchronizer selection  
975  
976  
LUT3_10_DFF15_CNTDLY1 Multi function se- 01: Single CNT/DLY (DLY output connect to LUT/DFF)  
lection  
10: CNT/DLY connected to LUT or DFF  
11: LUT or DFF connected to CNT/DLY  
977  
978  
00: DLY input from matrix A;  
DLY output connected to LUT's In2 or DFF's D  
MLT1_LUT3_10_DFF15_CNTDLY1 CNT/DLY 01: DLY input from matrix B;  
and LUT or DFF connection  
DLY output connected to LUT's In1 or DFF's nSET/nRST  
979  
(only works when multi_func_sel_reg is 2'b10) 10: DLY input from matrix C;  
7A  
DLY output connected to LUT's In0 or DFF's CLK  
11: Prohibited  
980  
981  
00: Bypass the initial  
01: Bypass the initial  
10: Initial 0  
CNT1 CNT/DLY initial value selection  
11: Initial 1  
982  
983  
984  
985  
986  
Reserved  
Reserved  
0000: RingOSC(25 MHz)  
0001: RingOSC(25 MHz)/4  
0010: RingOSC(25 MHz)/8  
0011: RingOSC(25 MHz)/64  
0100: RingOSC(25 MHz)/512  
0101: LFOSC(2 kHz)  
0110: LFOSC(2 kHz)/8  
0111: LFOSC(2 kHz)/64  
1000: LFOSC(2 kHz)/512  
1001: LFOSC(2 kHz)/4096  
1010: LFOSC(2 kHz)/32768  
1011:LFOSC(2 kHz)/262144  
1100: CNTx_END  
7B  
CNT1 CNT/DLY clock source selection  
987  
1101: External  
1110: Not used  
1111: Not used  
Datasheet  
16-Jul-2021  
Revision 2.0  
146 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 37: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
988  
989  
990  
991  
Reserved  
Reserved  
Reserved  
Reserved  
7B  
992  
993  
994  
995  
996  
7C  
CNT1 CNT Data  
Data [7:0]  
997  
998  
999  
1000  
1001  
1002  
1003  
1004  
1005  
1006  
1007  
7D  
CNT1 Current CNT Value  
Data [7:0]  
MLT2_LUT3_11 bit[0]/DFF16 DFF or Latch Select:  
0: LUT: LUT[0]; DFF: DFF function  
1008  
1009  
1010  
1011  
1: LUT: LUT[0]; DFF: Latch function  
MLT2_LUT3_11 bit[1]/DFF16 Output Select:  
0: LUT: LUT[1]; DFF: Q output  
1: LUT: LUT[1]; DFF: QB output  
MLT2_LUT3_11 bit[2]/DFF16 Initial Polarity Select:  
0: LUT: LUT[2]; DFF: Low  
1: LUT: LUT[2]; DFF: High  
MLT2_LUT3_11 bit[3]/DFF16 nRST or nSET Select:  
0: LUT: LUT[3]; DFF: nRST  
1: LUT: LUT[3]; DFF: nSET  
7E  
LUT3_11_DFF16_CNTDLY2  
1012  
1013  
1014  
1015  
MLT2_LUT3_11 bit[4]  
MLT2_LUT3_11 bit[5]  
MLT2_LUT3_11 bit[6]  
MLT2_LUT3_11 bit[7]  
Datasheet  
16-Jul-2021  
Revision 2.0  
147 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 37: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1016  
1017  
1018  
0000: both edge Delay  
0001: falling edge delay  
0010: rising edge delay  
0011: both edge One Shot  
0100: falling edge One Shot  
0101: rising edge One Shot  
0110: both edge freq detect  
0111: falling edge freq detect  
1000: rising edge freq detect  
1001: both edge detect  
1010: falling edge detect  
1011: rising edge detect  
1100: both edge reset CNT  
1101: falling edge reset CNT  
1110: rising edge reset CNT  
1111: high level reset CNT  
CNTDLY2 Function and Edge mode selection  
1019  
7F  
MLT2_LUT3_11_DFF16 LUT/DFF Function  
Select  
0: LUT  
1020  
1021  
1022  
1: DFF/Latch  
0: Default Output  
1: Inverted Output  
0: Normal  
1: Enable DLY mode edge detection  
0: Bypass synchronizer  
1: Enable synchronizer (after two DFFs)  
00: Single LUT or DFF (DLY input is low)  
CNT2 CNT/DLY output Polarity selection  
CNT2 DLY mode edge detection selection  
CNT2 CNT mode synchronizer selection  
1023  
1024  
LUT3_11_DFF16_CNTDLY2 Multi function se- 01: Single CNT/DLY (DLY output connect to LUT/DFF)  
lection  
10: CNT/DLY connected to LUT or DFF  
11: LUT or DFF connected to CNT/DLY  
1025  
1026  
00: DLY input from matrix A;  
DLY output connected to LUT's In2 or DFF's D  
MLT2_LUT3_11_DFF16_CNTDLY2 CNT/DLY 01: DLY input from matrix B;  
and LUT or DFF connection  
DLY output connected to LUT's In1 or DFF's nSET/nRST  
1027  
(only works when multi_func_sel_reg is 2'b10) 10: DLY input from matrix C;  
80  
DLY output connected to LUT's In0 or DFF's CLK  
11: Prohibited  
1027  
1029  
00: Bypass the initial  
01: Bypass the initial  
10: Initial 0  
CNT2 CNT/DLY initial value selection  
11: Initial 1  
1030  
1031  
1032  
1033  
1034  
Reserved  
Reserved  
0000: RingOSC(25 MHz)  
0001: RingOSC(25 MHz)/4  
0010: RingOSC(25 MHz)/8  
0011: RingOSC(25 MHz)/64  
0100: RingOSC(25MHz)/512  
0101: LFOSC(2 kHz)  
0110: LFOSC(2 kHz)/8  
0111: LFOSC(2 kHz)/64  
1000: LFOSC(2 kHz)/512  
1001: LFOSC(2 kHz)/4096  
1010: LFOSC(2 kHz)/32768  
1011: LFOSC(2 kHz)/262144  
1100: CNTx_END  
81  
Matrix Divider Ratio Control  
1035  
1101: External  
1110: Not used  
1111: Not used  
Datasheet  
16-Jul-2021  
Revision 2.0  
148 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 37: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1036  
1037  
1038  
1039  
1040  
1041  
1042  
1043  
1044  
1045  
1046  
1047  
1048  
1049  
1050  
1051  
1052  
1053  
1054  
1055  
Reserved  
Reserved  
Reserved  
Reserved  
81  
82  
CNT2 CNT Data  
Data [7:0]  
83  
CNT2 Current CNT Value  
Data [7:0]  
MLT3_LUT3_12 bit[0]/DFF17 DFF or Latch Select:  
0: LUT: LUT[0]; DFF: DFF function  
1056  
1057  
1058  
1059  
1: LUT: LUT[0]; DFF: Latch function  
MLT3_LUT3_12 bit[1]/DFF17 Output Select:  
0: LUT: LUT[1]; DFF: Q output  
1: LUT: LUT[1]; DFF: QB output  
MLT3_LUT3_12 bit[2]/DFF17 Initial Polarity Select:  
0: LUT: LUT[2]; DFF: Low  
1: LUT: LUT[2]; DFF: High  
MLT3_LUT3_12 bit[3]/DFF17 nRST or nSET Select:  
0: LUT: LUT[3]; DFF: nRST  
1: LUT: LUT[3]; DFF: nSET  
84  
LUT3_12_DFF17_CNTDLY3  
1060  
1061  
1062  
1063  
MLT3_LUT3_12 bit[4]  
MLT3_LUT3_12 bit[5]  
MLT3_LUT3_12 bit[6]  
MLT3_LUT3_12 bit[7]  
Datasheet  
16-Jul-2021  
Revision 2.0  
149 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 37: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1064  
1065  
1066  
0000: both edge Delay  
0001: falling edge Delay  
0010: rising edge Delay  
0011: both edge One Shot  
0100: falling edge One Shot  
0101: rising edge One Shot  
0110: both edge freq detect  
0111: falling edge freq detect  
1000: rising edge freq detect  
1001: both edge detect  
1010: falling edge detect  
1011: rising edge detect  
1100: both edge reset CNT  
1101: falling edge reset CNT  
1110: rising edge reset CNT  
1111: high level reset CNT  
CNTDLY3 Function and Edge mode selection  
1067  
85  
MLT3_LUT3_12_DFF17 LUT/DFF Function  
Select  
0: LUT  
1068  
1069  
1070  
1: DFF/Latch  
0: Default Output  
1: Inverted Output  
0: Normal  
1: Enable DLY mode edge detection  
0: Bypass synchronizer  
1: Enable synchronizer (after two DFFs)  
00: Single LUT or DFF (DLY input is low)  
CNT3 CNT/DLY output Polarity selection  
CNT3 DLY mode edge detection selection  
CNT3 CNT mode synchronizer selection  
1071  
1072  
LUT3_12_DFF17_CNTDLY3 Multi function se- 01: Single CNT/DLY (DLY output connect to LUT/DFF)  
lection  
10: CNT/DLY connected to LUT or DFF  
11: LUT or DFF connected to CNT/DLY  
1073  
1074  
00: DLY input from matrix A;  
DLY output connected to LUT's In2 or DFF's D  
MLT3_LUT3_12_DFF17_CNTDLY3 CNT/DLY 01: DLY input from matrix B;  
and LUT or DFF connection  
DLY output connected to LUT's In1 or DFF's nSET/nRST  
1075  
(only works when multi_func_sel_reg is 2'b10) 10: DLY input from matrix C;  
86  
DLY output connected to LUT's In0 or DFF's CLK  
11: Prohibited  
1076  
1077  
00: Bypass the initial  
01: Bypass the initial  
10: Initial 0  
CNT3 CNT/DLY initial value selection  
11: Initial 1  
1078  
1079  
Reserved  
Reserved  
Datasheet  
16-Jul-2021  
Revision 2.0  
150 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 37: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1080  
1081  
1082  
0000: RingOSC(25 MHz)  
0001: RingOSC(25 MHz)/4  
0010: RingOSC(25 MHz)/8  
0011:RingOSC(25 MHz)/64  
0100: RingOSC(25 MHz)/512  
0101: LFOSC(2 kHz)  
0110: LFOSC(2 kHz)/8  
0111: LFOSC(2 kHz)/64  
1000:LFOSC(2 kHz)/512  
1001: LFOSC(2 kHz)/4096  
1010: LFOSC(2 kHz)/32768  
1011:LFOSC(2 kHz)/262144  
1100: CNTx_END  
CNT3 CNT/DLY clock source selection  
1083  
87  
1101: External  
1110: Not used  
1111: Not used  
1084  
1085  
1086  
1087  
1088  
1089  
1090  
1091  
1092  
1093  
1094  
1095  
1096  
1097  
1098  
1099  
1100  
1101  
1102  
1103  
Reserved  
Reserved  
Reserved  
Reserved  
88  
CNT3 CNT Data  
Data [7:0]  
89  
CNT3 Current CNT Value  
Data [7:0]  
MLT4_LUT3_13 bit[0]/DFF18 DFF or Latch Select:  
0: LUT: LUT[0]; DFF: DFF function  
1104  
1105  
1106  
1107  
1: LUT: LUT[0]; DFF: Latch function  
MLT4_LUT3_13 bit[1]/DFF18 Output Select:  
0: LUT: LUT[1]; DFF: Q output  
1: LUT: LUT[1]; DFF: QB output  
MLT4_LUT3_13 bit[2]/DFF18 Initial Polarity Select:  
0: LUT: LUT[2]; DFF: Low  
1: LUT: LUT[2]; DFF: High  
MLT4_LUT3_13 bit[3]/DFF18 nRST or nSET Select:  
0: LUT: LUT[3]; DFF: nRST  
1: LUT: LUT[3]; DFF: nSET  
MLT4_LUT3_13 bit[4]  
MLT4_LUT3_13 bit[5]  
MLT4_LUT3_13 bit[6]  
MLT4_LUT3_13 bit[7]  
8A  
8A  
LUT3_13_DFF18_CNTDLY4  
LUT3_13_DFF18_CNTDLY4  
1108  
1109  
1110  
1111  
Datasheet  
16-Jul-2021  
Revision 2.0  
151 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 37: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1112  
1113  
1114  
0000: both edge Delay  
0001: falling edge Delay  
0010: rising edge Delay  
0011: both edge One Shot  
0100: falling edge One Shot  
0101: rising edge One Shot  
0110: both edge freq detect  
CNTDLY4 Function and Edge mode selection 0111: falling edge freq detect  
1000: rising edge freq detect  
1001: both edge detect  
1115  
1010: falling edge detect  
1011: rising edge detect  
1100: both edge reset CNT  
8B  
1101: falling edge reset CNT  
1110: rising edge reset CNT  
1111: high level reset CNT  
MLT4_LUT3_13_DFF18 LUT/DFF Function  
Select  
0: LUT  
1116  
1117  
1118  
1: DFF/Latch  
0: Default Output  
1: Inverted Output  
0: Normal  
1: Enable DLY mode edge detection  
0: Bypass synchronizer  
1: Enable synchronizer (after two DFFs)  
00: Single LUT or DFF (DLY input is low)  
CNT4 CNT/DLY output Polarity selection  
CNT4 DLY mode edge detection selection  
CNT4 CNT mode synchronizer selection  
1119  
1120  
LUT3_13_DFF18_CNTDLY4 Multi function se- 01: Single CNT/DLY (DLY output connect to LUT/DFF)  
lection  
10: CNT/DLY connected to LUT or DFF  
11: LUT or DFF connected to CNT/DLY  
00: DLY input from matrix A;  
DLY output connected to LUT's In2 or DFF's D  
01: DLY input from matrix B;  
DLY output connected to LUT's In1 or DFF's nSET/nRST  
10: DLY input from matrix C;  
DLY output connected to LUT's In0 or DFF's CLK  
11: Prohibited  
1121  
1122  
MLT4_LUT3_13_DFF18_CNTDLY4 CNT/DLY  
and LUT or DFF connection  
(only works when multi_func_sel_reg is 2'b10)  
1123  
8C  
1124  
1125  
00: Bypass the initial  
01: Bypass the initial  
10: Initial 0  
CNT4 CNT/DLY initial value selection  
11: Initial 1  
1126  
1127  
Reserved  
Reserved  
Datasheet  
16-Jul-2021  
Revision 2.0  
152 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 37: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1128  
1129  
1130  
0000: RingOSC(25 MHz)  
0001: RingOSC(25 MHz)/4  
0010: RingOSC(25 MHz)/8  
0011:RingOSC(25 MHz)/64  
0100: RingOSC(25 MHz)/512  
0101: LFOSC(2 kHz)  
0110: LFOSC(2 kHz)/8  
0111: LFOSC(2 kHz)/64  
1000:LFOSC(2 kHz)/512  
1001: LFOSC(2 kHz)/4096  
1010: LFOSC(2 kHz)/32768  
1011:LFOSC(2 kHz)/262144  
1100: CNTx_END  
CNT4 CNT/DLY clock source selection  
1131  
8D  
1101: External  
1110: Not used  
1111: Not used  
1132  
1133  
1134  
1135  
1136  
1137  
1138  
1139  
1140  
1141  
1142  
1143  
1144  
1145  
1146  
1147  
1148  
1149  
1150  
1151  
Reserved  
Reserved  
Reserved  
Reserved  
8E  
CNT4 CNT Data  
Data [7:0]  
8F  
CNT4 Current CNT Value  
Data [7:0]  
MLT5_LUT3_14 bit[0]/DFF19 DFF or Latch Select:  
0: LUT: LUT[0]; DFF: DFF function  
1152  
1153  
1154  
1155  
1: LUT: LUT[0]; DFF: Latch function  
MLT5_LUT3_14 bit[1]/DFF19 Output Select:  
0: LUT: LUT[1]; DFF: Q output  
1: LUT: LUT[1]; DFF: QB output  
MLT5_LUT3_14 bit[2]/DFF19 Initial Polarity Select:  
0: LUT: LUT[2]; DFF: Low  
1: LUT: LUT[2]; DFF: High  
MLT5_LUT3_14 bit[3]/DFF19 nRST or nSET Select:  
0: LUT: LUT[3]; DFF: nRST  
1: LUT: LUT[3]; DFF: nSET  
MLT5_LUT3_14 bit[4]  
MLT5_LUT3_14 bit[5]  
MLT5_LUT3_14 bit[6]  
MLT5_LUT3_14 bit[7]  
90  
90  
LUT3_14_DFF19_CNTDLY5  
LUT3_14_DFF19_CNTDLY5  
1156  
1157  
1158  
1159  
Datasheet  
16-Jul-2021  
Revision 2.0  
153 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 37: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1160  
1161  
1162  
0000: both edge Delay  
0001: falling edge Delay  
0010: rising edge Delay  
0011: both edge One Shot  
0100: falling edge One Shot  
0101: rising edge One Shot  
0110: both edge freq detect  
0111: falling edge freq detect  
1000: rising edge freq detect  
1001: both edge detect  
1010: falling edge detect  
1011: rising edge detect  
1100: both edge reset CNT  
1101: falling edge reset CNT  
1110: rising edge reset CNT  
1111: high level reset CNT  
CNTDLY5 Function and Edge mode selection  
1163  
91  
MLT5_LUT3_14_DFF19 LUT/DFF Function  
Select  
0: LUT  
1164  
1165  
1166  
1: DFF/Latch  
0: Default Output  
1: Inverted Output  
0: Normal  
1: Enable DLY mode edge detection  
0: Bypass synchronizer  
1: Enable synchronizer (after two DFFs)  
00: Single LUT or DFF (DLY input is low)  
CNT5 CNT/DLY output Polarity selection  
CNT5 DLY mode edge detection selection  
CNT5 CNT mode synchronizer selection  
1167  
1168  
LUT3_14_DFF19_CNTDLY5 Multi function se-  
lection  
01: Single CNT/DLY (DLY output connect to LUT/DFF)  
10: CNT/DLY connected to LUT or DFF  
11: LUT or DFF connected to CNT/DLY  
1169  
1170  
00: DLY input from matrix A;  
DLY output connected to LUT's In2 or DFF's D  
MLT5_LUT3_14_DFF19_CNTDLY5 CNT/DLY 01: DLY input from matrix B;  
and LUT or DFF connection  
DLY output connected to LUT's In1 or DFF's nSET/nRST  
1171  
(only works when multi_func_sel_reg is 2'b10) 10: DLY input from matrix C;  
92  
DLY output connected to LUT's In0 or DFF's CLK  
11: Prohibited  
1172  
1173  
00: Bypass the initial  
01: Bypass the initial  
10: Initial 0  
CNT5 CNT/DLY initial value selection  
11: Initial 1  
1174  
1175  
Reserved  
Reserved  
Datasheet  
16-Jul-2021  
Revision 2.0  
154 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 37: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1176  
1177  
1178  
0000: RingOSC(25 MHz)  
0001: RingOSC(25 MHz)/4  
0010: RingOSC(25 MHz)/8  
0011:RingOSC(25 MHz)/64  
0100: RingOSC(25 MHz)/512  
0101: LFOSC(2 kHz)  
0110: LFOSC(2 kHz)/8  
0111: LFOSC(2 kHz)/64  
1000:LFOSC(2 kHz)/512  
1001: LFOSC(2 kHz)/4096  
1010: LFOSC(2 kHz)/32768  
1011:LFOSC(2 kHz)/262144  
1100: CNTx_END  
CNT5 CNT/DLY clock source selection  
1179  
93  
1101: External  
1110: Not used  
1111: Not used  
1180  
1181  
1182  
1183  
1184  
1185  
1186  
1187  
1188  
1189  
1190  
1191  
1192  
1193  
1194  
1195  
1196  
1197  
1198  
1199  
Reserved  
Reserved  
Reserved  
Reserved  
94  
CNT5 CNT Data  
Data [7:0]  
95  
CNT5 Current CNT Value  
Data [7:0]  
MLT6_LUT3_15 bit[0]/DFF20 DFF or Latch Select:  
0: LUT: LUT[0]; DFF: DFF function  
1200  
1201  
1202  
1203  
1: LUT: LUT[0]; DFF: Latch function  
MLT6_LUT3_15 bit[1]/DFF20 Output Select:  
0: LUT: LUT[1]; DFF: Q output  
1: LUT: LUT[1]; DFF: QB output  
MLT6_LUT3_15 bit[2]/DFF20 Initial Polarity Select:  
0: LUT: LUT[2]; DFF: Low  
1: LUT: LUT[2]; DFF: High  
MLT6_LUT3_15 bit[3]/DFF20 nRST or nSET Select:  
0: LUT: LUT[3]; DFF: nRST  
1: LUT: LUT[3]; DFF: nSET  
MLT6_LUT3_15 bit[4]  
MLT6_LUT3_15 bit[5]  
MLT6_LUT3_15 bit[6]  
MLT6_LUT3_15 bit[7]  
96  
96  
LUT3_15_DFF20_CNTDLY6  
LUT3_15_DFF20_CNTDLY6  
1204  
1205  
1206  
1207  
Datasheet  
16-Jul-2021  
Revision 2.0  
155 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 37: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1208  
1209  
1210  
0000: both edge Delay  
0001: falling edge Delay  
0010: rising edge Delay  
0011: both edge One Shot  
0100: falling edge One Shot  
0101: rising edge One Shot  
0110: both edge freq detect  
0111: falling edge freq detect  
1000: rising edge freq detect  
1001: both edge detect  
1010: falling edge detect  
1011: rising edge detect  
1100: both edge reset CNT  
1101: falling edge reset CNT  
1110: rising edge reset CNT  
1111: high level reset CNT  
CNTDLY6 Function and Edge mode selection  
1211  
97  
MLT6_LUT3_15_DFF20 LUT/DFF Function  
Select  
0: LUT  
1212  
1213  
1214  
1: DFF/Latch  
0: Default Output  
1: Inverted Output  
0: Normal  
1: Enable DLY mode edge detection  
0: Bypass synchronizer  
1: Enable synchronizer (after two DFFs)  
00: Single LUT or DFF (DLY input is low)  
CNT6 CNT/DLY output Polarity selection  
CNT6 DLY mode edge detection selection  
CNT6 CNT mode synchronizer selection  
1215  
1216  
LUT3_15_DFF20_CNTDLY6 Multi function se- 01: Single CNT/DLY (DLY output connect to LUT/DFF)  
lection  
10: CNT/DLY connected to LUT or DFF  
11: LUT or DFF connected to CNT/DLY  
00: DLY input from matrix A;  
DLY output connected to LUT's In2 or DFF's D  
01: DLY input from matrix B;  
DLY output connected to LUT's In1 or DFF's nSET/nRST  
10: DLY input from matrix C;  
DLY output connected to LUT's In0 or DFF's CLK  
11: Prohibited  
1217  
1218  
MLT6_LUT3_15_DFF20_CNTDLY6 CNT/DLY  
and LUT or DFF connection (only works when  
multi_func_sel_reg is 2'b10)  
1219  
98  
1220  
1221  
00: Bypass the initial  
01: Bypass the initial  
10: Initial 0  
CNT6 CNT/DLY initial value selection  
11: Initial 1  
1222  
1223  
Reserved  
Reserved  
Datasheet  
16-Jul-2021  
Revision 2.0  
156 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 37: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1224  
1225  
1226  
0000: RingOSC(25 MHz)  
0001: RingOSC(25 MHz)/4  
0010: RingOSC(25 MHz)/8  
0011:RingOSC(25 MHz)/64  
0100: RingOSC(25 MHz)/512  
0101: LFOSC(2 kHz)  
0110: LFOSC(2 kHz)/8  
0111: LFOSC(2 kHz)/64  
1000:LFOSC(2 kHz)/512  
1001: LFOSC(2 kHz)/4096  
1010: LFOSC(2 kHz)/32768  
1011:LFOSC(2 kHz)/262144  
1100: CNTx_END  
CNT6 CNT/DLY clock source selection  
1227  
99  
1101: External  
1110: Not used  
1111: Not used  
1228  
1229  
1230  
1231  
1232  
1233  
1234  
1235  
1236  
1237  
1238  
1239  
1240  
1241  
1242  
1243  
1244  
1245  
1246  
1247  
Reserved  
Reserved  
Reserved  
Reserved  
9A  
CNT6 CNT Data  
Data [7:0]  
9B  
CNT6 Current CNT Value  
Data [7:0]  
MLT7_LUT3_16 bit[0]/DFF21 DFF or Latch Select:  
0: LUT: LUT[0]; DFF: DFF function  
1248  
1249  
1250  
1251  
1: LUT: LUT[0]; DFF: Latch function  
MLT7_LUT3_16 bit[1]/DFF21 Output Select:  
0: LUT: LUT[1]; DFF: Q output  
1: LUT: LUT[1]; DFF: QB output  
MLT7_LUT3_16 bit[2]/DFF21 Initial Polarity Select:  
0: LUT: LUT[2]; DFF: Low  
1: LUT: LUT[2]; DFF: High  
MLT7_LUT3_16 bit[3]/DFF21 nRST or nSET Select:  
0: LUT: LUT[3]; DFF: nRST  
1: LUT: LUT[3]; DFF: nSET  
MLT7_LUT3_16 bit[4]  
MLT7_LUT3_16 bit[5]  
MLT7_LUT3_16 bit[6]  
MLT7_LUT3_16 bit[7]  
9C  
9C  
LUT3_16_DFF21_CNTDLY7  
LUT3_16_DFF21_CNTDLY7  
1252  
1253  
1254  
1255  
Datasheet  
16-Jul-2021  
Revision 2.0  
157 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 37: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1256  
1257  
1258  
0000: both edge Delay  
0001: falling edge Delay  
0010: rising edge Delay  
0011: both edge One Shot  
0100: falling edge One Shot  
0101: rising edge One Shot  
0110: both edge freq detect  
0111: falling edge freq detect  
1000: rising edge freq detect  
1001: both edge detect  
1010: falling edge detect  
1011: rising edge detect  
1100: both edge reset CNT  
1101: falling edge reset CNT  
1110: rising edge reset CNT  
1111: high level reset CNT  
CNTDLY7 Function and Edge mode selection  
1259  
9D  
MLT7_LUT3_16_DFF21 LUT/DFF Function  
Select  
0: LUT  
1260  
1261  
1262  
1: DFF/Latch  
0: Default Output  
1: Inverted Output  
0: Normal  
1: Enable DLY mode edge detection  
0: Bypass synchronizer  
1: Enable synchronizer (after two DFFs)  
00: Single LUT or DFF (DLY input is low)  
CNT7 CNT/DLY output Polarity selection  
CNT7 DLY mode edge detection selection  
CNT7 CNT mode synchronizer selection  
1263  
1264  
LUT3_16_DFF21_CNTDLY7 Multi function se- 01: Single CNT/DLY (DLY output connect to LUT/DFF)  
lection  
10: CNT/DLY connected to LUT or DFF  
11: LUT or DFF connected to CNT/DLY  
00: DLY input from matrix A;  
DLY output connected to LUT's In2 or DFF's D  
01: DLY input from matrix B;  
DLY output connected to LUT's In1 or DFF's nSET/nRST  
10: DLY input from matrix C;  
DLY output connected to LUT's In0 or DFF's CLK  
11: Prohibited  
1265  
1266  
MLT7_LUT3_16_DFF21_CNTDLY7 CNT/DLY  
and LUT or DFF connection  
(only works when multi_func_sel_reg is 2'b10)  
1267  
9E  
1268  
1269  
00: Bypass the initial  
01: Bypass the initial  
10: Initial 0  
CNT7 CNT/DLY initial value selection  
11: Initial 1  
1270  
1271  
Reserved  
Reserved  
Datasheet  
16-Jul-2021  
Revision 2.0  
158 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 37: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1272  
1273  
1274  
0000: RingOSC(25 MHz)  
0001: RingOSC(25 MHz)/4  
0010: RingOSC(25 MHz)/8  
0011:RingOSC(25 MHz)/64  
0100: RingOSC(25 MHz)/512  
0101: LFOSC(2 kHz)  
0110: LFOSC(2 kHz)/8  
0111: LFOSC(2kHz)/64  
1000:LFOSC(2 kHz)/512  
1001: LFOSC(2 kHz)/4096  
1010: LFOSC(2 kHz)/32768  
1011:LFOSC(2 kHz)/262144  
1100: CNTx_END  
CNT7 CNT/DLY clock source selection  
1275  
9F  
1101: External  
1110: Not used  
1111: Not used  
1276  
1277  
1278  
1279  
1280  
1281  
1282  
1283  
1284  
1285  
1286  
1287  
1288  
1289  
1290  
1291  
1292  
1293  
1294  
1295  
1296  
Reserved  
Reserved  
Reserved  
Reserved  
A0  
CNT7 CNT Data  
Data [7:0]  
A1  
CNT7 Current CNT Value  
Data [7:0]  
00: Digital in without Schmitt Trigger  
01: Digital in with Schmitt Trigger  
10: Low voltage digital in mode  
11: Reserved/Analog IO  
GPI0 input mode configuration  
1297  
1298  
1299  
1300  
1301  
1302  
1303  
Reserved  
Reserved  
Reserved  
A2  
Reserved  
Reserved  
Datasheet  
16-Jul-2021  
Revision 2.0  
159 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 37: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1304  
00: Digital in without Schmitt Trigger  
01: Digital in with Schmitt Trigger  
10: Low voltage digital in mode  
11: Reserved/Analog IO  
GPIO0 input mode configuration  
1305  
1306  
1307  
1308  
1309  
Reserved  
Reserved  
Reserved  
A3  
00: Floating (disconnected)  
01: 10 kΩ  
GPIO0 Pull-up or Pull-down resistor selection  
10: 100 kΩ  
1310  
11: 1 MΩ  
0: Pull-down  
1: Pull-up  
0: enable  
1: disable  
1311  
1312  
GPIO0 Pull-up or Pull-down mode selection  
GPIO0 I2C fast mode plus enable  
0: disable (Output = HiZ)  
1: enable  
1313  
GPIO0 Open-Drain mode enable  
(Applicable only when i2c_en = 0 )  
1314  
1315  
1316  
1317  
1318  
1319  
1320  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
A4  
A5  
A6  
00: Digital in without Schmitt Trigger  
01: Digital in with Schmitt Trigger  
10: Low voltage digital in mode  
11: Reserved/Analog IO  
GPIO1 input mode configuration  
1321  
1322  
1323  
1324  
1325  
Reserved  
Reserved  
Reserved  
00: Floating (disconnected)  
01: 10 kΩ  
10: 100 kΩ  
11: 1 MΩ  
0: Pull-down  
1: Pull-up  
0: enable  
1: disable  
0: disable (Output = HiZ)  
1: enable  
(Applicable only when i2c_en = 0)  
GPIO1 Pull-up or Pull-down resistor selection  
1326  
1327  
1328  
GPIO1 Pull-up or Pull-down mode selection  
GPIO1 I2C fast mode plus enable  
1329  
GPIO1 Open-Drain mode enable  
1330  
1331  
1332  
1333  
1334  
1335  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Datasheet  
16-Jul-2021  
Revision 2.0  
160 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 37: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1336  
00: Digital in without Schmitt Trigger  
01: Digital in with Schmitt Trigger  
10: Low voltage digital in mode  
11: Reserved/Analog IO  
00: 1x Push-Pull  
01: 2x Push-Pull  
10: 1x Open-Drain pull down  
11: 2x Open-Drain pull down  
GPIO2 input mode configuration  
1337  
1338  
1339  
GPIO2 output mode configuration  
Reserved  
A7  
1340  
1341  
00: Floating (disconnected)  
01: 10 kΩ  
10: 100 kΩ  
11: 1 MΩ  
GPIO2 Pull-up or Pull-down resistor selection  
1342  
0: Pull-down  
1: Pull-up  
00: Digital in without Schmitt Trigger  
01: Digital in with Schmitt Trigger  
10: Low voltage digital in mode  
11: Reserved/Analog IO  
00: 1x Push-Pull  
01: 2x Push-Pull  
10: 1x Open-Drain pull down  
11: 2x Open-Drain pull down  
1343  
1344  
GPIO2 Pull-up or Pull-down mode selection  
GPIO3 input mode configuration  
1345  
1346  
1347  
GPIO3 output mode configuration  
Reserved  
A8  
1348  
1349  
00: Floating (disconnected)  
01: 10 kΩ  
10: 100 kΩ  
11: 1 MΩ  
GPIO3 Pull-up or Pull-down resistor selection  
1350  
0: Pull-down  
1: Pull-up  
00: Digital in without Schmitt Trigger  
01: Digital in with Schmitt Trigger  
10: Low voltage digital in mode  
11: Reserved/Analog IO  
00: 1x Push-Pull  
01: 2x Push-Pull  
10: 1x Open-Drain pull down  
11: 2x Open-Drain pull down  
1351  
1352  
GPIO3 Pull-up or Pull-down mode selection  
GPIO4 input mode configuration  
1353  
1354  
1355  
GPIO4 output mode configuration  
Reserved  
A9  
1356  
1357  
00: Floating (disconnected)  
01: 10 kΩ  
10: 100 kΩ  
11: 1 MΩ  
0: Pull-down  
1: Pull-up  
GPIO4 Pull-up or Pull-down resistor selection  
1358  
1359  
GPIO4 Pull-up or Pull-down mode selection  
Datasheet  
16-Jul-2021  
Revision 2.0  
161 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 37: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1360  
00: Digital in without Schmitt Trigger  
01: Digital in with Schmitt Trigger  
10: Low voltage digital in mode  
11: Reserved/Analog IO  
00: 1x Push-Pull  
01: 2x Push-Pull  
10: 1x Open-Drain pull down  
11: 2x Open-Drain pull down  
GPIO5 input mode configuration  
1361  
1362  
1363  
GPIO5 output mode configuration  
Reserved  
AA  
1364  
1365  
00: Floating (disconnected)  
01: 10 kΩ  
10: 100 kΩ  
11: 1 MΩ  
GPIO5 Pull-up or Pull-down resistor selection  
1366  
0: Pull-down  
1: Pull-up  
00: Digital in without Schmitt Trigger  
01: Digital in with Schmitt Trigger  
10: Low voltage digital in mode  
11: Reserved/Analog IO  
00: 1x Push-Pull  
01: 2x Push-Pull  
10: 1x Open-Drain pull down  
11: 2x Open-Drain pull down  
1367  
1368  
GPIO5 Pull-up or Pull-down mode selection  
GPIO6 input mode configuration  
1369  
1370  
1371  
GPIO6 output mode configuration  
Reserved  
AB  
1372  
1373  
00: Floating (disconnected)  
01: 10 kΩ  
10: 100 kΩ  
11: 1 MΩ  
GPIO6 Pull-up or Pull-down resistor selection  
1374  
0: Pull-down  
1: Pull-up  
00: Digital in without Schmitt Trigger  
01: Digital in with Schmitt Trigger  
10: Low voltage digital in mode  
11: Reserved/Analog IO  
00: 1x Push-Pull  
01: 2x Push-Pull  
10: 1x Open-Drain pull down  
11: 2x Open-Drain pull down  
1375  
1376  
GPIO6 Pull-up or Pull-down mode selection  
GPIO7 input mode configuration  
1377  
1378  
1379  
GPIO7 output mode configuration  
Reserved  
AC  
1380  
1381  
00: Floating (disconnected)  
01: 10 kΩ  
10: 100 kΩ  
11: 1 MΩ  
0: Pull-down  
1: Pull-up  
GPIO7 Pull-up or Pull-down resistor selection  
1382  
1383  
GPIO7 Pull-up or Pull-down mode selection  
Datasheet  
16-Jul-2021  
Revision 2.0  
162 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 37: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1384  
00: Digital in without Schmitt Trigger  
01: Digital in with Schmitt Trigger  
10: Low voltage digital in mode  
11: Reserved/Analog IO  
00: 1x Push-Pull  
01: 2x Push-Pull  
10: 1x Open-Drain pull down  
11: 2x Open-Drain pull down  
GPIO8 input mode configuration  
1385  
1386  
1387  
GPIO8 output mode configuration  
Reserved  
AD  
1388  
1389  
00: Floating (disconnected)  
01: 10 kΩ  
10: 100 kΩ  
11: 1 MΩ  
GPIO8 Pull-up or Pull-down resistor selection  
1390  
0: Pull-down  
1: Pull-up  
00: Digital in without Schmitt Trigger  
01: Digital in with Schmitt Trigger  
10: Low voltage digital in mode  
11: Reserved/Analog IO  
00: 1x Push-Pull  
01: 2x Push-Pull  
10: 1x Open-Drain pull down  
11: 2x Open-Drain pull down  
1391  
1392  
GPIO8 Pull-up or Pull-down mode selection  
GPIO9 input mode configuration  
1393  
1394  
1395  
GPIO9 output mode configuration  
Reserved  
AE  
1396  
1397  
00: Floating (disconnected)  
01: 10 kΩ  
10: 100 kΩ  
11: 1 MΩ  
GPIO9 Pull-up or Pull-down resistor selection  
1398  
0: Pull-down  
1: Pull-up  
00: Digital in without Schmitt Trigger  
01: Digital in with Schmitt Trigger  
10: Low voltage digital in mode  
11: Reserved/Analog IO  
00: 1x Push-Pull  
01: 2x Push-Pull  
10: 1x Open-Drain pull down  
11: 2x Open-Drain pull down  
1399  
1400  
GPIO9 Pull-up or Pull-down mode selection  
GPIO10 input mode configuration  
1401  
1402  
1403  
GPIO10 output mode configuration  
Reserved  
AF  
1404  
1405  
00: Floating (disconnected)  
01: 10 kΩ  
10: 100 kΩ  
11: 1 MΩ  
0: Pull-down  
1: Pull-up  
GPIO10 Pull-up or Pull-down resistor selection  
1406  
1407  
GPIO10 Pull-up or Pull-down mode selection  
Datasheet  
16-Jul-2021  
Revision 2.0  
163 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 37: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1408  
00: Digital in without Schmitt Trigger  
01: Digital in with Schmitt Trigger  
10: Low voltage digital in mode  
11: Reserved/Analog IO  
00: 1x Push-Pull  
01: 2x Push-Pull  
10: 1x Open-Drain pull down  
11: 2x Open-Drain pull down  
GPIO11 input mode configuration  
1409  
1410  
1411  
GPIO11 output mode configuration  
Reserved  
B0  
1412  
1413  
00: Floating (disconnected)  
01: 10 kΩ  
10: 100 kΩ  
11: 1 MΩ  
GPIO11 Pull-up or Pull-down resistor selection  
1414  
0: Pull-down  
1: Pull-up  
00: Digital in without Schmitt Trigger  
01: Digital in with Schmitt Trigger  
10: Low voltage digital in mode  
11: Reserved/Analog IO  
00: 1x Push-Pull  
01: 2x Push-Pull  
10: 1x Open-Drain pull down  
11: 2x Open-Drain pull down  
1415  
1416  
GPIO11 Pull-up or Pull-down mode selection  
GPIO12 input mode configuration  
1417  
1418  
1419  
GPIO12 output mode configuration  
Reserved  
B1  
1420  
1421  
00: Floating (disconnected)  
01: 10 kΩ  
10: 100 kΩ  
11: 1 MΩ  
GPIO12 Pull-up or Pull-down resistor selection  
1422  
0: Pull-down  
1: Pull-up  
0: Turn on I2C open drain fast  
1: Turn on I2C open drain slow  
1423  
1424  
1425  
GPIO12 Pull-up or Pull-down mode selection  
Turn on I2C open drain fast or slow  
0: Disable  
IO Latching Enable During Host Write  
1: Pad digital output latches at previous state  
0: Disable  
1: Enable  
1426  
1427  
Fast pull up or pull down during power up  
Pull pad to high when gpi_from_pad is high  
(During power-up, GPIO Pull-up/down resistance will switch  
to 2.6 kinitially and then it will switch to normal setting value)  
0: Disable  
1: Enable  
B2  
1428  
1429  
1430  
1431  
Reserved  
Reserved  
Reserved  
Reserved  
0: Non-inverted  
1: Inverted  
00: Rising Edge Detector  
01: Falling Edge Detector  
10: Both Edge Detector  
11: Both Edge Delay  
1432  
1433  
Filter/Edge Detector Output Polarity  
Edge Detect Mode  
1434  
B3  
0: Filter  
1: Edge Detect  
1435  
Edge Detect Filter Function Select  
1436  
1437  
1438  
1439  
Reserved  
Reserved  
Reserved  
Reserved  
Datasheet  
16-Jul-2021  
Revision 2.0  
164 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 37: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1440  
00: Rising Edge Detector  
01: Falling Edge Detector  
10: Both Edge Detector  
11: Both Edge Delay  
00: 125 ns  
01: 250 ns  
10: 375 ns  
11: 500 ns  
Edge Detect Mode  
1441  
1442  
1443  
Programmable Delay Selection  
B4  
1444  
1445  
1446  
1447  
Reserved  
Reserved  
Reserved  
Reserved  
0: Use OSC  
1: Use External Clock Source  
0: Matrix Down  
1: Matrix On  
0: Auto on by Multi-Func CNT  
1: Always On  
0: Disable  
1: Enable  
0: Disable  
1: Enable  
00: DIV1  
01: DIV2  
10: DIV4  
11: DIV8  
1448  
1449  
1450  
1451  
OSC0 Divider Clock Source  
OSC0 Matrix power down or on selection  
OSC0 turn on by register  
OSC0 Divider Output0 control by matrix  
OSC0 Divider Output1 control by matrix  
B5  
1452  
1453  
OSC0 Pre-Divider Selection  
1454  
1455  
1456  
Reserved  
0: Use OSC  
1: Use External Clock Source  
OSC1 Divider Clock Source  
0: Matrix Down  
1: Matrix On  
0: Auto on by Multi-Func CNT  
1: Always On  
0: Disable  
1: Enable  
1457  
1458  
1459  
OSC1 Matrix power down or on selection  
OSC1 turn on by register  
B6  
OSC1 Divider Output0 control by matrix  
1460  
1461  
000: DIV1  
001: DIV2  
010: DIV4  
011: DIV8  
100: DIV12  
101: DIV24  
110: DIV48  
111: DIV96  
OSC1 Pre-Divider Selection  
Reserved  
B6  
1462  
1463  
Datasheet  
16-Jul-2021  
Revision 2.0  
165 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 37: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1464  
1465  
000: DIV1  
001: DIV2  
010: DIV3  
011: DIV4  
100: DIV8  
101: DIV12  
110: DIV24  
111: DIV64  
OSC0 OUT0 Post-Divider Selection  
Reserved  
1466  
1467  
1468  
1469  
B7  
000: DIV1  
001: DIV2  
010: DIV3  
011: DIV4  
100: DIV8  
101: DIV12  
110: DIV24  
111: DIV64  
OSC0 OUT1 Post-Divider Selection  
Reserved  
1470  
1471  
1472  
1473  
000: DIV1  
001: DIV2  
010: DIV3  
011: DIV4  
100: DIV8  
101: DIV12  
110: DIV24  
111: DIV64  
OSC1 OUT0 Post-Divider Selection  
1474  
B8  
1475  
1476  
1477  
1478  
1479  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0: no delay  
1: 100 ns delay  
1480  
OSC1 Enable 100 ns delay  
0: Enable  
1: Disable  
1481  
1482  
OSC1 Enable startup 1st edge function  
00: OSC will have 1-2 output pulses after Power Down  
01: When OSC Power Down signal comes, OSC generates  
full output pulse and then stops  
10: When OSC Power Down signal comes, OSC output goes  
low immediately  
11: When OSC Power Down signal comes, OSC output goes  
low immediately  
B9  
OSC1 output synchronous type select  
1483  
0: 500 µs delay  
1: no delay  
1484  
OSC0 Enable 500 µs delay  
1485  
1486  
Reserved  
00: OSC will have 1-2 output pulses after Power Down  
01: When OSC Power Down signal comes, OSC generates  
full output pulse and then stops  
B9  
10: When OSC Power Down signal comes, OSC output goes  
low immediately  
OSC0 output synchronous type select  
1487  
11: When OSC Power Down signal comes, OSC output goes  
low immediately  
Datasheet  
16-Jul-2021  
Revision 2.0  
166 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 37: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1488  
1489  
1490  
1491  
1492  
000000: 25 mV  
000001: 50 mV  
011110: 775 mV  
011111: 800 mV  
100000: 825 mV  
100001: 850 mV  
100010~111110: Reserved  
111111: external Vref  
(Default 25 mV)  
ACMP0 Vref Selection  
BA  
1493  
1494  
00: 0 mV  
01: 25 mV  
10: 50 mV  
11: 150 mV  
ACMP0 Hysteresis selection  
1495  
1496  
1497  
1498  
Reserved  
Reserved  
00: 1x  
01: 0.5x  
ACMPH0 Input Divider  
10: Reserved  
11: Reserved  
1499  
BB  
0: Do not pull  
1: Pull to VDD  
(Pull positive input up to VDD  
1500  
ACMP0 Input tie to VDD Enable  
)
1501  
1502  
1503  
1504  
1505  
1506  
1507  
1508  
Reserved  
Reserved  
Reserved  
000000: 25 mV  
000001: 50 mV  
011110: 775 mV  
011111: 800 mV  
100000: 825 mV  
100001: 850 mV  
100010~111110: Reserved  
111111: external Vref  
(Default: 25 mV)  
BC  
BC  
ACMPH1 Vref Selection  
1509  
1510  
00: 0 mV  
01: 25 mV  
10: 50 mV  
11: 150 mV  
ACMP1 Hysteresis selection  
1511  
1512  
1513  
1514  
Reserved  
Reserved  
00: 1x  
01: 0.5x  
ACMPH1 Input Divider  
10: Reserved  
11: Reserved  
1515  
0: Do not pull  
1: Pull to input of ACMPH0  
(Pull positive input of ACMPH1 as the input of ACMPH0)  
0: Vinn of ACMPH1 from Pin  
1: Vinn of ACMPH1 from Vinn of ACMPH0  
BD  
1516  
1517  
ACMPH1 Input tie to ACMPH0 Enable  
ACMP1 External Vref Select  
1518  
1519  
Reserved  
Reserved  
Datasheet  
16-Jul-2021  
Revision 2.0  
167 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 37: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
0: Disable  
1: Enable  
0: Disable  
1: Enable  
0: Enable by reg_buf_en  
1: Enable by tempsense_en  
0: Disable and pass input voltage directly to output  
1: Enable and apply UGB  
0: Disable discharge PIN9, GPIO5  
1: Enable discharge PIN9, GPIO5  
00: Reserved (GND)  
01: avref_acmph0  
10: avref_acmph1  
11: Tempsense Output  
1520  
1521  
1522  
1523  
ACMP reference voltage generator enable  
ACMP Buffer Enable  
ACMP Buffer Enable Selection  
ACMP Unit-gain-buffer enable  
ACMP Buffer Discharge  
BE  
1524  
1525  
ACMP Buffer Select  
1526  
1527  
1528  
Reserved  
0: Do not select tempsense output as buffer out  
1: Select tempsense output as buffer out  
ACMP Temp Sensor Enable  
0: Enable by tempsense_en  
1529  
1530  
1531  
1532  
ACMP Temp Sensor Enable Select  
Pass buffer output to ACMPH1 input  
Bandgap control  
1: Enable by tempsense_en_matrix  
0: Do not pass  
1: Pass  
0: BG always wake, non sleep  
1: Sleep when w/s sleep  
0: No change in ibias_en  
1: Force ibias_en equal to bg_en  
BF  
Option of Ibias enable  
1533  
1534  
1535  
Reserved  
Reserved  
Reserved  
0: With hysteresis 0.1V  
1: without hysteresis  
1536  
VDD detector hysteresis selection  
0: Enable BG Vref gen and ACMP at same time  
1: Enable BG first. After BG_ok, enable Vrefgen;After BG_ok  
and Vref_ok, enable ACMP  
BG, Vref gen and ACMP wake up sequence se-  
lection  
1537  
1538  
1539  
1540  
1541  
1542  
1543  
1544  
1545  
1546  
1547  
1548  
1549  
1550  
1551  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
C0  
C1  
Datasheet  
16-Jul-2021  
Revision 2.0  
168 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 37: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1552  
1553  
1554  
1555  
1556  
1557  
1558  
1559  
1560  
1561  
1562  
1563  
1564  
1565  
1566  
1567  
1568  
1569  
1570  
1571  
1572  
1573  
1574  
1575  
1576  
1577  
1578  
1579  
1580  
1581  
1582  
1583  
1584  
1585  
1586  
1587  
1588  
1589  
1590  
1591  
1592  
1593  
1594  
1595  
1596  
1597  
1598  
1599  
C2  
Reserved  
Reserved  
Reserved  
Reserved  
C3  
C4  
C5  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
C6  
C6  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
C7  
Reserved  
Reserved  
Reserved  
Reserved  
Datasheet  
16-Jul-2021  
Revision 2.0  
169 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 37: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1600  
1601  
1602  
1603  
1604  
1605  
1606  
1607  
1608  
1609  
1610  
1611  
1612  
1613  
1614  
1615  
1616  
1617  
1618  
1619  
1620  
1621  
1622  
1623  
1624  
1625  
1626  
1627  
1628  
1629  
1630  
1631  
1632  
1633  
1634  
1635  
1636  
1637  
1638  
1639  
1640  
1641  
1642  
1643  
1644  
1645  
1646  
1647  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
C8  
C9  
C9  
CA  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
CB  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
CC  
CC  
CD  
Datasheet  
16-Jul-2021  
Revision 2.0  
170 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 37: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1648  
1649  
1650  
1651  
1652  
1653  
1654  
1655  
1656  
1657  
1658  
1659  
1660  
1661  
1662  
1663  
1664  
1665  
1666  
1667  
1668  
1669  
1670  
1671  
1672  
1673  
1674  
1675  
1676  
1677  
1678  
1679  
1680  
1681  
1682  
1683  
1684  
1685  
1686  
1687  
1688  
1689  
1690  
1691  
1692  
1693  
1694  
1695  
Reserved  
CE  
Reserved  
Reserved  
Reserved  
Reserved  
CF  
D0  
D1  
D2  
D3  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Datasheet  
16-Jul-2021  
Revision 2.0  
171 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 37: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1696  
1697  
1698  
1699  
1700  
1701  
1702  
1703  
1704  
1705  
1706  
1707  
1708  
1709  
1710  
1711  
1712  
1713  
1714  
1715  
1716  
1717  
1718  
1719  
1720  
Reserved  
D4  
Reserved  
Reserved  
Reserved  
D5  
Reserved  
D6  
Reserved  
Registers Read Protection Register.  
Valid only when PROTECT_EN is 1  
00: 1K register data is unprotected for read  
01: 1K register data is partly protected for read  
10: 1K register data is fully protected for read  
11: 1K register data is fully protected for read  
Registers Write Protection Register.  
Valid only when PROTECT_EN is 1  
00: 1K register data is unprotected for write  
01: 1K register data is partly protected for write  
10: 1K register data is fully protected for write  
11: 1K register data is fully protected for write  
RPR  
1721  
1722  
1723  
D7  
WPR  
1724  
1725  
1726  
1727  
1728  
1729  
1730  
1731  
1732  
1733  
1734  
1735  
Reserved  
Reserved  
Reserved  
D8  
Reserved  
Datasheet  
16-Jul-2021  
Revision 2.0  
172 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 37: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1736  
1737  
1738  
1739  
1740  
1741  
1742  
1743  
1744  
1745  
1746  
1747  
1748  
1749  
1750  
1751  
1752  
1753  
1754  
1755  
1756  
1757  
1758  
1759  
1760  
1761  
1762  
1763  
1764  
1765  
1766  
1767  
1768  
1769  
1770  
1771  
1772  
1773  
1774  
1775  
1776  
1777  
1778  
1779  
1780  
1781  
1782  
1783  
D9  
Reserved  
DA  
DB  
DC  
DD  
DE  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Datasheet  
16-Jul-2021  
Revision 2.0  
173 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 37: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1784  
1785  
1786  
1787  
1788  
1789  
1790  
1791  
1792  
1793  
1794  
1795  
1796  
1797  
1798  
1799  
1800  
1801  
1802  
1803  
1804  
1805  
1806  
1807  
1808  
1809  
1810  
1811  
1812  
1813  
1814  
1815  
1816  
1817  
1818  
1819  
1820  
1821  
1822  
1823  
1824  
1825  
1826  
1827  
1828  
1829  
1830  
1831  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
DF  
E0  
E1  
E2  
E3  
E4  
Datasheet  
16-Jul-2021  
Revision 2.0  
174 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 37: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1832  
1833  
1834  
1835  
1836  
1837  
1838  
1839  
1840  
1841  
1842  
1843  
1844  
1845  
1846  
1847  
1848  
1849  
1850  
1851  
1852  
1853  
1854  
1855  
1856  
1857  
1858  
1859  
1860  
1861  
1862  
1863  
1864  
1865  
1866  
1867  
1868  
1869  
1870  
1871  
1872  
1873  
1874  
1875  
1876  
1877  
1878  
1879  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
E5  
E6  
E7  
E8  
E9  
EA  
Datasheet  
16-Jul-2021  
Revision 2.0  
175 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 37: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1880  
1881  
1882  
1883  
1884  
1885  
1886  
1887  
1888  
1889  
1890  
1891  
1892  
1893  
1894  
1895  
1896  
1897  
1898  
1899  
1900  
1901  
1902  
1903  
1904  
1905  
1906  
1907  
1908  
1909  
1910  
1911  
1912  
1913  
1914  
1915  
1916  
1917  
1918  
1919  
1920  
1921  
1922  
1923  
1924  
1925  
1926  
1927  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
EB  
EC  
ED  
EE  
EF  
F0  
Datasheet  
16-Jul-2021  
Revision 2.0  
176 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 37: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1928  
1929  
1930  
1931  
1932  
1933  
1934  
1935  
1936  
1937  
1938  
1939  
1940  
1941  
1942  
1943  
1944  
1945  
1946  
1947  
1948  
1949  
1950  
1951  
1952  
1953  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
F1  
F2  
F3  
1954  
Reserved  
1955  
1956  
1957  
1958  
1959  
1960  
1961  
1962  
1963  
1964  
1965  
1966  
1967  
1968  
1969  
1970  
1971  
1972  
1973  
1974  
1975  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
F4  
F5  
F6  
Datasheet  
16-Jul-2021  
Revision 2.0  
177 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 37: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1976  
1977  
1978  
1979  
1980  
1981  
1982  
1983  
1984  
1985  
1986  
1987  
1988  
1989  
1990  
1991  
1992  
1993  
1994  
1995  
1996  
1997  
1998  
1999  
2000  
2001  
2002  
2003  
2004  
2005  
2006  
2007  
2008  
2009  
2010  
2011  
2012  
2013  
2014  
2015  
2016  
2017  
2018  
2019  
2020  
2021  
2022  
2023  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
F7  
F8  
F9  
FA  
FB  
FC  
Datasheet  
16-Jul-2021  
Revision 2.0  
178 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Table 37: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
2024  
2025  
2026  
2027  
2028  
2029  
2030  
2031  
2032  
2033  
2034  
2035  
2036  
2037  
2038  
2039  
2040  
2041  
2042  
2043  
2044  
2045  
2046  
2047  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
FD  
FE  
FF  
Datasheet  
16-Jul-2021  
Revision 2.0  
179 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
18 Package Top Marking Definitions  
18.1 STQFN 12L 1.6 MM X 1.6 MM X 0.55 MM 0.4P FC  
PPP  
WWR  
NN  
Part Code  
Date Code +  
Revision Code  
Pin 1 Identifier  
Serial Number Code  
18.2 MSTQFN 16L 1.6 MM X 1.6 MM X 0.55 MM 0.4P  
PPP  
WWR  
NN  
Part Code  
Date Code +  
Revision Code  
Pin 1 Identifier  
Serial Number Code  
Datasheet  
16-Jul-2021  
© 2021 Dialog Semiconductor  
Revision 2.0  
180 of 191  
CFR0011-120-00  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
19 Package Information  
19.1 PACKAGE OUTLINES FOR STQFN 12L 1.6 MM X 1.6 MM X 0.55 MM 0.4P FC PACKAGE  
Datasheet  
16-Jul-2021  
Revision 2.0  
181 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
19.2 PACKAGE OUTLINES FOR MSTQFN 16L 1.6 MM X 1.6 MM X 0.55 MM 0.4P PACKAGE  
Bottom View  
Side View  
Top View  
Controlling Dimensions: mm  
Datasheet  
16-Jul-2021  
© 2021 Dialog Semiconductor  
Revision 2.0  
182 of 191  
CFR0011-120-00  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
19.3 MOISTURE SENSITIVITY LEVEL  
The Moisture Sensitivity Level (MSL) is an indicator for the maximum allowable time period (floor lifetime) in which a moisture  
sensitive plastic device, once removed from the dry bag, can be exposed to an environment with a specified maximum  
temperature and a maximum relative humidity before the solder reflow process. The MSL classification is defined in Table 38.  
For detailed information on MSL levels refer to the IPC/JEDEC standard J-STD-020, which can be downloaded from http://  
www.jedec.org.  
The <PACKAGE_NAME> package is qualified for MSL <n>.  
Table 38: MSL Classification  
MSL Level  
Floor Lifetime  
Conditions  
MSL 4  
MSL 3  
MSL 2A  
MSL 2  
MSL 1  
72 hours  
168 hours  
4 weeks  
1 year  
30 °C / 60 % RH  
30 °C / 60 % RH  
30 °C / 60 % RH  
30 °C / 60 % RH  
30 °C / 60 % RH  
Unlimited  
19.4 STQFN HANDLING  
Be sure to handle STQFN package only in a clean, ESD-safe environment. Tweezers or vacuum pick-up tools are suitable for  
handling. Do not handle STQFN package with fingers as this can contaminate the package pins and interface with solder reflow.  
19.5 SOLDERING INFORMATION  
Refer to the IPC/JEDEC standard J-STD-020 for relevant soldering information. This document can be downloaded from http://  
www.jedec.org.  
20 Ordering Information  
The ordering number consists of the part number followed by a suffix indicating the packing method. For details and availability,  
please consult Dialog Semiconductor’s customer support portal or your local sales representative.  
Part Number  
SLG47502V  
Type  
12-pin STQFN  
SLG47502VTR  
SLG47503M  
SLG47503MTR  
12-pin STQFN - Tape and Reel (3k units)  
16-pin MSTQFN  
16-pin MSTQFN - Tape and Reel (3k units)  
20.1 TAPE AND REEL SPECIFICATIONS  
Max Units  
Leader (min)  
Length  
Trailer (min)  
Length  
Nominal  
# of  
Pins  
Reel &  
Hub Size  
(mm)  
Tape Part  
Width Pitch  
(mm) (mm)  
Package Type  
Package Size  
(mm)  
per Reel per Box  
Pockets  
Pockets  
(mm)  
(mm)  
STQFN 12L  
1.6 mm x 1.6 mm x  
0.55 mm, 0.4P FCA  
Green  
12  
1.6x1.6x0.55  
1.6x1.6x0.55  
3000  
3000  
3000  
3000  
178/60  
178/60  
100  
100  
400  
100  
100  
400  
8
8
4
4
MSTQFN 16L  
1.6 mm x 1.6 mm x  
0.55 mm, 0.4P FCA  
Green  
16  
400  
400  
Datasheet  
16-Jul-2021  
© 2021 Dialog Semiconductor  
Revision 2.0  
183 of 191  
CFR0011-120-00  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
20.2 CARRIER TAPE DRAWING AND DIMENSIONS  
Index Hole Index Hole  
PocketBTMPocketBTM Pocket IndexHole Pocket Index Hole  
Tape  
Width  
(mm)  
to Tape  
Edge  
(mm)  
to Pocket  
Center  
(mm)  
Length  
(mm)  
Width  
(mm)  
Depth  
(mm)  
Pitch  
(mm)  
Pitch Diameter  
Package Type  
(mm)  
P1  
(mm)  
D0  
A0  
B0  
K0  
P0  
E
F
W
STQFN 12L  
1.6 mm x 1.6 mm x  
1.80  
1.80  
0.70  
4
4
4
1.5  
1.5  
1.75  
3.5  
8
0.55 mm, 0.4P FCA ±0.05 mm ±0.05 mm ±0.05 mm  
Green  
MSTQFN 16L  
1.6 mm x 1.6 mm x  
1.80  
1.80  
0.70  
4
1.75  
3.5  
8
0.55 mm, 0.4P FCA ±0.05 mm ±0.05 mm ±0.05 mm  
Green  
Datasheet  
16-Jul-2021  
© 2021 Dialog Semiconductor  
Revision 2.0  
184 of 191  
CFR0011-120-00  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
21 Layout Guidelines  
21.1 STQFN 12L 1.6 MM X 1.6 MM X 0.55 MM 0.4P FC PACKAGE  
Units: µm  
Datasheet  
16-Jul-2021  
Revision 2.0  
185 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
21.2 MSTQFN 16L 1.6 MM X 1.6 MM X 0.55 MM 0.4P PACKAGE  
Unit: µm  
Datasheet  
16-Jul-2021  
Revision 2.0  
186 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Glossary  
A
ACK  
Acknowledge bit  
ACMP  
ACMPH  
ACMPL  
Analog Comparator  
Analog Comparator High Speed  
Analog Comparator Low Power  
B
BG  
Bandgap  
C
CLK  
CMO  
CNT  
Clock  
Connection matrix output  
Counter  
D
DFF  
DLY  
D Flip-Flop  
Delay  
E
ESD  
EV  
Electrostatic discharge  
End Value  
F
FSM  
Finite State Machine  
G
GPI  
GPIO  
GPO  
General Purpose Input  
General Purpose Input/Output  
General Purpose Output  
I
IN  
IO  
Input  
Input/Output  
L
LPF  
LSB  
LUT  
Low Pass Filter  
Least Significant Bit  
Look Up Table  
Datasheet  
16-Jul-2021  
Revision 2.0  
187 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
LV  
Low Voltage  
M
MSB  
MUX  
Most Significant Bit  
Multiplexer  
N
NPR  
nRST  
NVM  
Non-Volatile Memory Read/Write/Erase Protection  
Reset  
Non-Volatile Memory  
O
OD  
Open-Drain  
OE  
Output Enable  
Oscillator  
OSC  
OTP  
OUT  
One Time Programmable  
Output  
P
PD  
Power-down  
PGen  
POR  
PP  
Pattern Generator  
Power-On Reset  
Push-Pull  
PWR  
P DLY  
Power  
Programmable Delay  
R
R/W  
Read/Write  
S
SCL  
SDA  
SLA  
SMT  
SV  
I2C Clock Input  
I2C Data Input/Output  
Slave Address  
With Schmitt Trigger  
nSET Value  
T
TS  
Temperature Sensor  
Datasheet  
16-Jul-2021  
Revision 2.0  
188 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
V
Vref  
Voltage Reference  
W
WOSMT  
WS  
Without Schmitt Trigger  
Wake and Sleep Controller  
Datasheet  
16-Jul-2021  
Revision 2.0  
189 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Revision History  
Revision  
Date  
Description  
2.0  
16-Jul-2021  
Preliminary version  
Datasheet  
16-Jul-2021  
Revision 2.0  
190 of 191  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG47502/03  
Preliminary  
Low Voltage GreenPAK Programmable  
Mixed-Signal Matrix  
Status Definitions  
Revision Datasheet Status  
Product Status  
Definition  
1.<n>  
Target  
Development  
This datasheet contains the design specifications for product development.  
Specifications may change in any manner without notice.  
2.<n>  
Preliminary  
Qualification  
Production  
This datasheet contains the specifications and preliminary characterization  
data for products in pre-production. Specifications may be changed at any  
time without notice in order to improve the design.  
3.<n>  
4.<n>  
Final  
This datasheet contains the final specifications for products in volume  
production. The specifications may be changed at any time in order to  
improve the design, manufacturing and supply. Major specification  
changes are communicated via Customer Product Notifications. Datasheet  
changes are communicated via www.dialog-semiconductor.com.  
Obsolete  
Archived  
This datasheet contains the specifications for discontinued products. The  
information is provided for reference only.  
Disclaimer  
Unless otherwise agreed in writing, the Dialog Semiconductor products (and any associated software) referred to in this document are not designed, authorized or warranted  
to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Dialog Semiconductor product (or  
associated software) can reasonably be expected to result in personal injury, death or severe property or environmental damage. Dialog Semiconductor and its suppliers  
accept no liability for inclusion and/or use of Dialog Semiconductor products (and any associated software) in such equipment or applications and therefore such inclusion  
and/or use is at the customer's own risk.  
Information in this document is believed to be accurate and reliable. However, Dialog Semiconductor does not give any representations or warranties, express or implied, as  
to the accuracy or completeness of such information. Dialog Semiconductor furthermore takes no responsibility whatsoever for the content in this document if provided by any  
information source outside of Dialog Semiconductor.  
Dialog Semiconductor reserves the right to change without notice the information published in this document, including, without limitation, the specification and the design of  
the related semiconductor products, software and applications. Notwithstanding the foregoing, for any automotive grade version of the device, Dialog Semiconductor  
reserves the right to change the information published in this document, including, without limitation, the specification and the design of the related semiconductor products,  
software and applications, in accordance with its standard automotive change notification process.  
Applications, software, and semiconductor products described in this document are for illustrative purposes only. Dialog Semiconductor makes no representation or warranty  
that such applications, software and semiconductor products will be suitable for the specified use without further testing or modification. Unless otherwise agreed in writing,  
such testing or modification is the sole responsibility of the customer and Dialog Semiconductor excludes all liability in this respect.  
Nothing in this document may be construed as a license for customer to use the Dialog Semiconductor products, software and applications referred to in this document. Such  
license must be separately sought by customer with Dialog Semiconductor.  
All use of Dialog Semiconductor products, software and applications referred to in this document are subject to Dialog Semiconductor's Standard Terms and Conditions  
of Sale, available on the company website (www.dialog-semiconductor.com) unless otherwise stated.  
Dialog, Dialog Semiconductor and the Dialog logo are trademarks of Dialog Semiconductor Plc or its subsidiaries. All other product or service names and marks are  
the property of their respective owners.  
© 2021 Dialog Semiconductor. All rights reserved.  
RoHS Compliance  
Dialog Semiconductor's suppliers certify that its products are in compliance with the requirements of Directive 2011/65/EU of the European Parliament on the restriction  
of the use of certain hazardous substances in electrical and electronic equipment. RoHS certificates from our suppliers are available on request.  
Contacting Dialog Semiconductor  
United Kingdom (Headquarters)  
Dialog Semiconductor (UK) LTD  
Phone: +44 1793 757700  
North America  
Dialog Semiconductor Inc.  
Phone: +1 408 845 8500  
Hong Kong  
Dialog Semiconductor Hong Kong  
Phone: +852 2607 4271  
China (Shenzhen)  
Dialog Semiconductor China  
Phone: +86 755 2981 3669  
Germany  
Japan  
Korea  
China (Shanghai)  
Dialog Semiconductor GmbH  
Phone: +49 7021 805-0  
Dialog Semiconductor K. K.  
Phone: +81 3 5769 5100  
Dialog Semiconductor Korea  
Phone: +82 2 3469 8200  
Dialog Semiconductor China  
Phone: +86 21 5424 9058  
The Netherlands  
Taiwan  
191  
Dialog Semiconductor B.V.  
Phone: +31 73 640 8822  
Dialog Semiconductor Taiwan  
Phone: +886 281 786 222  
Email:  
Web site:  
enquiry@diasemi.com  
www.dialog-semiconductor.com  
Datasheet  
16-Jul-2021  
© 2021 Dialog Semiconductor  
Revision 2.0  
191 of 191  
CFR0011-120-00  

相关型号:

UL1042

UL1042 - Uk砤d zr體nowa縪nego mieszacza iloczynowego

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV201

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14

IC-SM-VIDEO AMP

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TA

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TC

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV302N16

IC-SM-4:1 MUX SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV4089

VIDEO AMPLIFIER WITH DC RESTORATION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX