AP3435MPTR-G1 [DIODES]

Switching Regulator, Current-mode, 4.5A, 1000kHz Switching Freq-Max, PDSO8, SOP-8;
AP3435MPTR-G1
型号: AP3435MPTR-G1
厂家: DIODES INCORPORATED    DIODES INCORPORATED
描述:

Switching Regulator, Current-mode, 4.5A, 1000kHz Switching Freq-Max, PDSO8, SOP-8

CD 开关 光电二极管 输出元件
文件: 总17页 (文件大小:541K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Preliminary Datasheet  
1.0MHz, 3.5A, Synchronous Step Down DC-DC Converter AP3435  
Features  
General Description  
High Efficiency Buck Power Converter  
Output Current: 3.5A  
The AP3435 is a high efficiency step-down DC-DC  
voltage converter. The chip operation is optimized  
by peak-current mode architecture with built-in  
synchronous power MOS switchers. The oscillator  
and timing capacitors are all built-in providing an  
internal switching frequency of 1MHz that allows  
the use of small surface mount inductors and  
capacitors for portable product implementations.  
Low RDS(ON) Internal Switches:100m(VIN=5V)  
Adjustable Output Voltage from 0.8V to 0.9×VIN  
Wide Operating Voltage Range: 2.7V to 5.5V  
Built-in Power Switches for Synchronous  
Rectification with High Efficiency  
Feedback Voltage: 800mV  
1.0MHz Constant Frequency Operation  
Thermal Shutdown Protection  
Integrated Soft Start (SS), Under Voltage Lock Out  
(UVLO), Thermal Shutdown Detection (TSD) and  
Short Circuit Protection are designed to provide  
reliable product applications.  
Low Drop-out Operation at 100% Duty Cycle  
No Schottky Diode Required  
Input Over Voltage Protection  
The device is available in adjustable output voltage  
versions ranging from 0.8V to 0.9×VIN  
(2.7VVIN5.5V), and is able to deliver up to 3.5A.  
Applications  
LCD TV  
Set Top Box  
Post DC-DC Voltage Regulation  
PDA and Notebook Computer  
The AP3435 is available in PSOP-8 package.  
PSOP-8  
Figure 1. Package Type of AP3435  
Dec. 2012 Rev. 1. 0  
BCD Semiconductor Manufacturing Limited  
1
Preliminary Datasheet  
1.0MHz, 3.5A, Synchronous Step Down DC-DC Converter AP3435  
Pin Configuration  
MP Package  
(PSOP-8)  
8
1
2
3
4
7
6
5
Figure 2. Pin Configuration of AP3435 (Top View)  
Pin Description  
Pin Number  
Pin Name  
Function  
1
2
3
VCC  
NC  
Supply input for the analog circuit  
No connection  
GND  
Ground pin  
Feedback pin. Receive the feedback voltage from a  
resistive divider connected across the output  
4
5
FB  
EN  
Chip enable pin. Active high, internal pull-high with  
200kΩ resistor  
6
7
8
PGND  
SW  
Power switch ground pin  
Switch output pin  
VIN  
Power supply input for the MOSFET switch  
Dec. 2012 Rev. 1. 0  
BCD Semiconductor Manufacturing Limited  
2
Preliminary Datasheet  
1.0MHz, 3.5A, Synchronous Step Down DC-DC Converter  
AP3435  
Functional Block Diagram  
EN  
VIN  
VCC  
5
1
8
Saw-Tooth  
Generator  
Over-Current  
Comparator  
Oscillator  
Current  
Sensing  
Bias  
Generator  
+
Buffer &  
Dead Time  
Control  
Soft  
Start  
7
SW  
4
Control  
Logic  
_
+
_
Logic  
FB  
+
Modulator  
Error  
Amplifier  
_
+
_
Reverse Inductor  
Current Comparator  
+
Over Voltage  
Comparator  
Bandgap  
Reference  
3
6
GND  
PGND  
Figure 3. Functional Block Diagram of AP3435  
Ordering Information  
AP3435  
-
G1: Green  
TR: Tape & Reel  
Circuit Type  
Package  
MP: PSOP-8  
Temperature  
Package  
Range  
Part Number  
AP3435MPTR-G1  
Marking ID  
Packing Type  
PSOP-8  
-40 to 80°C  
3435MP-G1  
Tape & Reel  
BCD Semiconductor's Pb-free products, as designated with "G1" in the part number, are RoHS compliant and  
green.  
Dec. 2012 Rev. 1. 0  
BCD Semiconductor Manufacturing Limited  
3
Preliminary Datasheet  
1.0MHz, 3.5A, Synchronous Step Down DC-DC Converter  
AP3435  
Absolute Maximum Ratings (Note 1)  
Parameter  
Symbol  
VCC  
Value  
0 to 6.0  
0 to 6.0  
-0.3 to VIN+0.3  
-0.3 to VIN+0.3  
4.5  
Unit  
V
Supply Input for the Analog Circuit  
Power Supply Input for the MOSFET Switch  
SW Pin Switch Voltage  
VIN  
V
VSW  
V
Enable Input Voltage  
VEN  
V
SW Pin Switch Current  
ISW  
A
Power Dissipation (on PCB, TA=25°C)  
Thermal Resistance (Junction to Ambient, Simulation)  
Operating Junction Temperature  
Operating Temperature  
PD  
θJA  
2.47  
W
°C/W  
°C  
40.43  
TJ  
160  
TOP  
TSTG  
VHBM  
VMM  
°C  
-40 to 85  
-55 to 150  
2000  
Storage Temperature  
°C  
ESD (Human Body Model)  
ESD (Machine Model)  
V
V
200  
Note 1: Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to  
the device. These are stress ratings only, and functional operation of the device at these or any other conditions  
beyond those indicated under “Recommended Operating Conditions” is not implied. Exposure to “Absolute  
Maximum Ratings” for extended periods may affect device reliability.  
Recommended Operating Conditions  
Parameter  
Symbol  
VIN  
Min  
2.7  
Max  
5.5  
Unit  
V
Supply Input Voltage  
Junction Temperature Range  
Ambient Temperature Range  
TJ  
-40  
125  
80  
°C  
TA  
-40  
°C  
Dec. 2012 Rev. 1. 0  
BCD Semiconductor Manufacturing Limited  
4
Preliminary Datasheet  
1.0MHz, 3.5A, Synchronous Step Down DC-DC Converter AP3435  
Electrical Characteristics  
VIN=VCC=VEN=5V, VOUT=1.2V, VFB=0.8V, L=2.2μH, CIN=10μF, COUT=22μF, TA=25°C, unless otherwise  
specified.  
Parameter  
Symbol  
Conditions  
Min Typ Max Unit  
Input  
Range  
Voltage  
VIN  
2.7  
5.5  
1
V
Shutdown Current  
Active Current  
IOFF  
ION  
VEN=0  
μA  
μA  
VFB=0.95V  
310  
0.784 0.8 0.816  
Regulated Feedback  
Voltage  
Regulated Output  
Voltage Accuracy  
Peak Inductor  
Current  
For Adjustable Output Voltage  
VFB  
ΔVOUT/VOUT  
IPK  
V
%
VIN=2.7V to 5.5V,  
IOUT=0 to 3.5A  
-3  
3
4.5  
A
Oscillator  
Frequency  
fOSC  
VIN=2.7V to 5.5V  
1.0  
MHz  
PMOSFET RON  
NMOSFET RON  
RON(P)  
RON(N)  
VIN=5V  
VIN=5V  
100  
100  
mΩ  
mΩ  
EN High-level Input  
Voltage  
EN Low-level Input  
Voltage  
VEN_H  
VEN_L  
1.5  
V
V
0.4  
EN Input Current  
Soft Start Time  
IEN  
tSS  
1
μA  
μs  
400  
Maximum Duty  
Cycle  
DMAX  
100  
%
Rising  
2.4  
2.3  
0.1  
Under Voltage Lock  
Out Threshold  
VUVLO  
Falling  
V
Hysteresis  
Hysteresis=30°C  
Thermal Shutdown  
TSD  
150  
5.9  
0.4  
°C  
V
Rising  
5.8  
0.3  
6.0  
0.5  
Input Over Voltage  
Protection (IOVP)  
VIOVP  
Hysteresis  
V
Dec. 2012 Rev. 1. 0  
BCD Semiconductor Manufacturing Limited  
5
Preliminary Datasheet  
1.0MHz, 3.5A, Synchronous Step Down DC-DC Converter  
AP3435  
Typical Performance Characteristics  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN=5V, VOUT=1.2V  
VIN=5V, VOUT=3.3V  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
Output Current (A)  
Output Current (A)  
Figure 4. Efficiency vs. Output Current  
Figure 5. Efficiency vs. Output Current  
1.24  
3.40  
3.38  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
3.22  
3.20  
VIN=5V, VOUT=1.2V  
VIN=5V, VOUT=3.3V  
1.23  
1.22  
1.21  
1.20  
1.19  
1.18  
1.17  
1.16  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
Output Current (A)  
Output Current (A)  
Figure 6. Load Regulation  
Figure 7. Load Regulation  
Dec. 2012 Rev. 1. 0  
BCD Semiconductor Manufacturing Limited  
6
Preliminary Datasheet  
1.0MHz, 3.5A, Synchronous Step Down DC-DC Converter  
Typical Performance Characteristics (Continued)  
AP3435  
3.40  
3.38  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
3.22  
3.20  
1.24  
1.23  
1.22  
1.21  
1.20  
1.19  
1.18  
1.17  
1.16  
IOUT= 0  
IOUT=0  
IOUT= 3.5A  
IOUT=3.5A  
OUT=3.3V  
V
OUT=1.2V  
V
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Input Voltage (V)  
Input Voltage (V)  
Figure 8. Line Regulation  
Figure 9. Line Regulation  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
VOUT= 1.2V  
VOUT= 3.3V  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
4.0  
4.5  
5.0  
5.5  
Input Voltage (V)  
Input Voltage (V)  
Figure 10. Frequency vs. Input Voltage  
Figure 11. Frequency vs. Input Voltage  
Dec. 2012 Rev. 1. 0  
BCD Semiconductor Manufacturing Limited  
7
Preliminary Datasheet  
1.0MHz, 3.5A, Synchronous Step Down DC-DC Converter  
Typical Performance Characteristics (Continued)  
AP3435  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
4.6  
4.4  
4.2  
4.0  
3.8  
3.6  
3.4  
3.2  
H Level  
L Level  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Input Voltage (V)  
Input Voltage (V)  
Figure 12. Enable Threshold Voltage vs. Input Voltage  
Figure 13. Current Limit vs. Input Voltage  
90  
VOUT= 1.2V  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
VEN  
2V/div  
VOUT  
1V/div  
ISW  
2A/div  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
Output Current (A)  
Time 400μs/div  
Figure 14. Case Temperature vs. Output Current  
Figure 15. Enable Waveform  
(VIN=5V, VEN=0V to 5V, VOUT=3.3V, IOUT=3.5A)  
Dec. 2012 Rev. 1. 0  
BCD Semiconductor Manufacturing Limited  
8
Preliminary Datasheet  
1.0MHz, 3.5A, Synchronous Step Down DC-DC Converter AP3435  
Typical Performance Characteristics (Continued)  
VIN  
2V/div  
VOUT  
1V/div  
VIN  
2V/div  
VOUT  
1V/div  
ISW  
2A/div  
ISW  
2A/div  
Time 400μs/div  
Time 20ms/div  
Figure 16. Power-On  
Figure 17. Power-Off  
(VIN=0V to 5V, VEN=VIN, VOUT=3.3V, IOUT=3.5A)  
(VIN=5V to 0V, VEN=VIN, VOUT=3.3V, IOUT=3.5A)  
VSW  
VSW  
2V/div  
5V/div  
VOUT  
1V/div  
VOUT_AC  
20mV/div  
IOUT  
2A/div  
ISW  
2A/div  
Time 400μs/div  
Time 400ns/div  
Figure 18. Short Circuit Protection  
Figure 19. VOUT Ripple  
(VIN=5V=VEN, VOUT=3.3V, IOUT=2A to short)  
(VIN=5V=VEN, VOUT=3.3V, IOUT=0A)  
Dec. 2012 Rev. 1. 0  
BCD Semiconductor Manufacturing Limited  
9
Preliminary Datasheet  
1.0MHz, 3.5A, Synchronous Step Down DC-DC Converter AP3435  
Typical Performance Characteristics (Continued)  
VSW  
5V/div  
VSW  
5V/div  
VOUT_AC  
20mV/div  
VOUT_AC  
20mV/div  
ISW  
ISW  
2A/div  
2A/div  
Time 400ns/div  
Time 400ns/div  
Figure 20. VOUT Ripple  
Figure 21. VOUT Ripple  
(VIN=5V=VEN, VOUT=3.3V, IOUT=1A)  
(VIN=5V=VEN, VOUT=3.3V, IOUT=3.5A)  
VOUT_AC  
200mV/div  
VOUT_AC  
200mV/div  
IOUT  
IOUT  
500mA/div  
500mA/div  
Time 100μs/div  
Time 100μs/div  
Figure 22. Load Transient of 1.2V Output  
(VIN=5V=VEN, VOUT=1.2V, IOUT=0.5A to 2A)  
Figure 23. Load Transient of 3.3V Output  
(VIN=5V=VEN, VOUT=3.3V, IOUT=0.5A to 2A)  
Dec. 2012 Rev. 1. 0  
BCD Semiconductor Manufacturing Limited  
10  
Preliminary Datasheet  
1.0MHz, 3.5A, Synchronous Step Down DC-DC Converter AP3435  
Typical Performance Characteristics (Continued)  
VIN  
1V/div  
VIN  
1V/div  
IOUT  
500mA/div  
VOUT  
1V/div  
IOUT  
500mA/div  
VOUT  
1V/div  
Time 100μs/div  
Time 100μs/div  
Figure 24. OVP Function (VIN=5V to 6V)  
Figure 25. Leave OVP Function (VIN=6V to 5V)  
Dec. 2012 Rev. 1. 0  
BCD Semiconductor Manufacturing Limited  
11  
Preliminary Datasheet  
1.0MHz, 3.5A, Synchronous Step Down DC-DC Converter  
AP3435  
Application Information  
The basic AP3435 application circuit is shown in Figure  
27, external components selection is determined by the  
load current and is critical with the selection of inductor  
and capacitor values.  
deviations do not much relieve. The selection of COUT  
is determined by the Effective Series Resistance  
(ESR) that is required to minimize output voltage  
ripple and load step transients, as well as the amount  
of bulk capacitor that is necessary to ensure that the  
control loop is stable. The output ripple, VOUT, is  
determined by:  
1. Inductor Selection  
For most applications, the value of inductor is chosen  
based on the required ripple current with the range of  
1μH to 6.8μH.  
1
ΔVOUT ≤ ΔIL[ESR +  
]
8× f ×COUT  
The output ripple is the highest at the maximum input  
voltage since IL increases with input voltage.  
1
VOUT  
VIN  
ΔIL =  
VOUT (1−  
)
f × L  
3. Load Transient  
The largest ripple current occurs at the highest input  
voltage. Having a small ripple current reduces the ESR  
loss in the output capacitor and improves the efficiency.  
The highest efficiency is realized at low operating  
frequency with small ripple current. However, larger  
value inductors will be required. A reasonable starting  
point for ripple current setting is IL=40%IMAX. For a  
maximum ripple current stays below a specified  
value, the inductor should be chosen according to the  
following equation:  
A switching regulator typically takes several cycles to  
respond to the load current step. When a load step  
occurs, VOUT immediately shifts by an amount equal  
to ILOAD×ESR, where ESR is the effective series  
resistance of output capacitor. ILOAD also begins to  
charge or discharge COUT generating a feedback error  
signal used by the regulator to return VOUT to its  
steady-state value. During the recovery time, VOUT  
can be monitored for overshoot or ringing that would  
indicate a stability problem.  
VOUT  
VOUT  
L = [  
][1−  
]
4. Output Voltage Setting  
The output voltage of AP3435 can be adjusted by a  
resistive divider according to the following formula:  
f ×ΔIL (MAX )  
VIN (MAX )  
The DC current rating of the inductor should be at  
least equal to the maximum output current plus half  
the highest ripple current to prevent inductor core  
saturation. For better efficiency,  
DC-resistance inductor should be selected.  
R
R1  
R2  
VOUT = VREF ×(1+ 1 ) = 0.8V × (1+  
)
R2  
a
lower  
The resistive divider senses the fraction of the output  
voltage as shown in Figure 26.  
2. Capacitor Selection  
The input capacitance, CIN, is needed to filter the  
trapezoidal current at the source of the top MOSFET.  
To prevent large ripple voltage, a low ESR input  
capacitor sized for the maximum RMS current must  
be used. The maximum RMS capacitor current is  
given by:  
VOUT  
R1  
FB  
R2  
AP3435  
1
[VOUT (VIN VOUT )]2  
GND  
IRMS = IOMAX  
×
VIN  
It indicates a maximum value at VIN=2VOUT, where  
RMS=IOUT/2. This simple worse-case condition is  
Figure 26. Setting the Output Voltage  
I
commonly used for design because even significant  
Dec. 2012 Rev. 1. 0  
BCD Semiconductor Manufacturing Limited  
12  
Preliminary Datasheet  
1.0MHz, 3.5A, Synchronous Step Down DC-DC Converter  
AP3435  
Application Information (Continued)  
the VIN and this effect will be more serious at higher  
input voltages.  
5. Short Circuit Protection  
When the AP3435 output node is shorted to GND, as  
VFB drops under 0.4V, the chip will enter soft-start  
mode to protect itself, when short circuit is removed,  
and VFB rises over 0.4V, the AP3435 recovers back to  
normal operation again. If the AP3435 reaches OCP  
threshold while short circuit, the AP3435 will enter  
soft-start cycle until the current under OCP threshold.  
6.2 I2R losses are calculated from internal switch  
resistance, RSW and external inductor resistance RL.  
In continuous mode, the average output current  
flowing through the inductor is chopped between  
power PMOSFET switch and NMOSFET switch.  
Then, the series resistance looking into the SW pin is  
a function of both PMOSFET RDS(ON) and NMOSFET  
6. Efficiency Considerations  
RDS(ON) resistance and the duty cycle (D):  
The efficiency of switching regulator is equal to the  
output power divided by the input power times 100%.  
It is usually useful to analyze the individual losses to  
determine what is limiting efficiency and which  
change could produce the largest improvement.  
Efficiency can be expressed as:  
RSW = RDS P × D + RDS  
×
(
1D  
)
(
ON  
)
(
ON N  
)
Therefore, to obtain the I2R losses, simply add RSW to  
RL and multiply the result by the square of the  
average output current.  
Efficiency=100%-L1-L2-…..  
Other losses including CIN and COUT ESR dissipative  
losses and inductor core losses generally account for  
less than 2 % of total additional loss.  
Where L1, L2, etc. are the individual losses as a  
percentage of input power.  
7. Thermal Characteristics  
Although all dissipative elements in the regulator  
produce losses, two major sources usually account for  
most of the power losses: VIN quiescent current and  
I2R losses. The VIN quiescent current loss dominates  
the efficiency loss at very light load currents and the  
I2R loss dominates the efficiency loss at medium to  
heavy load currents.  
In most applications, the part does not dissipate much  
heat due to its high efficiency. However, in some  
conditions when the part is operating in high ambient  
temperature with high RDS(ON) resistance and high  
duty cycles, such as in LDO mode, the heat  
dissipated may exceed the maximum junction  
temperature. To avoid the part from exceeding  
maximum junction temperature, the user should do  
some thermal analysis. The maximum power  
dissipation depends on the layout of PCB, the thermal  
resistance of IC package, the rate of surrounding  
airflow and the temperature difference between  
junction and ambient.  
6.1 The VIN quiescent current loss comprises two  
parts: the DC bias current as given in the electrical  
characteristics and the internal MOSFET switch gate  
charge currents. The gate charge current results from  
switching the gate capacitance of the internal power  
MOSFET switches. Each cycle the gate is switched  
from high to low, then to high again, and the packet  
of charge, dQ moves from VIN to ground. The  
resulting dQ/dt is the current out of VIN that is  
typically larger than the internal DC bias current. In  
continuous mode,  
8. Input Over Voltage Protection  
When input voltage of AP3435 is near 6V, the IC  
will enter Input-Over-Voltage-Protection. It would be  
shut down and there will be no output voltage in this  
state. As the input voltage goes down below 5.5V, it  
will leave input OVP and recover the output voltage.  
IGATE = f × (QP + QN )  
Where QP and QN are the gate charge of power  
PMOSFET and NMOSFET switches. Both the DC  
bias current and gate charge losses are proportional to  
Dec. 2012 Rev. 1. 0  
BCD Semiconductor Manufacturing Limited  
13  
Preliminary Datasheet  
1.0MHz, 3.5A, Synchronous Step Down DC-DC Converter  
AP3435  
Application Information (Continued)  
2) Put the input capacitor as close as possible to the  
VIN and GND pins.  
9. PCB Layout Considerations  
When laying out the printed circuit board, the  
following checklist should be used to optimize the  
performance of AP3435.  
3) The FB pin should be connected directly to the  
feedback resistor divider.  
1) The power traces, including the GND trace, the SW  
trace and the VIN trace should be kept direct, short  
and wide.  
4) Keep the switching node, SW, away from the  
sensitive FB pin and the node should be kept small  
area.  
Dec. 2012 Rev. 1. 0  
BCD Semiconductor Manufacturing Limited  
14  
Preliminary Datasheet  
1.0MHz, 3.5A, Synchronous Step Down DC-DC Converter AP3435  
Typical Application  
R
Note 2: VOUT = VREF × (1+ 1 ) .  
R2  
Figure 27. Typical Application Circuit of AP3435  
VOUT(V)  
3.3  
R1 (kΩ)  
31.25  
21.5  
12.5  
5
R2 (kΩ)  
10  
L (μH)  
2.2  
2.5  
10  
2.2  
1.8  
10  
2.2  
1.2  
10  
2.2  
1.0  
3
10  
2.2  
Table 1. Component Guide  
Dec. 2012 Rev. 1. 0  
BCD Semiconductor Manufacturing Limited  
15  
Preliminary Datasheet  
1.0MHz, 3.5A, Synchronous Step Down DC-DC Converter  
AP3435  
Mechanical Dimensions  
PSOP-8  
Unit:mm(inch)  
Dec. 2012 Rev. 1. 0  
BCD Semiconductor Manufacturing Limited  
16  
BCD Semiconductor Manufacturing Limited  
http://www.bcdsemi.com  
- Headquarters  
- Wafer Fab  
BCD Semiconductor Manufacturing Limited  
Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd.  
No. 1600, Zi Xing Road, Shanghai ZiZhu Science-based Industrial Park, 200241, China  
800 Yi Shan Road, Shanghai 200233, China  
Tel: +86-21-24162266, Fax: +86-21-24162277  
Tel: +86-21-6485 1491, Fax: +86-21-5450 0008  
REGIONAL SALES OFFICE  
Shenzhen Office  
Taiwan Office  
USA Office  
Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd., Shenzhen Office  
BCD Semiconductor (Taiwan) Company Limited  
BCD Semiconductor Corp.  
Unit A Room 1203, Skyworth Bldg., Gaoxin Ave.1.S., Nanshan District, Shenzhen,  
4F, 298-1, Rui Guang Road, Nei-Hu District, Taipei,  
30920 Huntwood Ave. Hayward,  
China  
Taiwan  
Tel: +886-2-2656 2808  
CA 94544, USA  
Tel: +86-755-8826 7951  
Tel : +1-510-324-2988  
Fax: +86-755-8826 7865  
Fax: +886-2-2656 2806  
Fax: +1-510-324-2788  

相关型号:

AP3436

3A, 1.25MHz High Performance Synchronous Buck Converter
BCDSEMI

AP3436A

3A, 1.25MHz High Performance Synchronous Buck Converter
BCDSEMI

AP3436ADNTR-G1

3A, 1.25MHz High Performance Synchronous Buck Converter
BCDSEMI

AP3436DNTR-G1

3A, 1.25MHz High Performance Synchronous Buck Converter
BCDSEMI

AP3441

STEP-DOWN DC-DC BUCK CONVERTER
DIODES

AP3441LSHE-7B

STEP-DOWN DC-DC BUCK CONVERTER
DIODES

AP3441SHE-7B

STEP-DOWN DC-DC BUCK CONVERTER
DIODES

AP3445

STEP-DOWN DC-DC BUCK CONVERTER
DIODES

AP3445LW6-7

STEP-DOWN DC-DC BUCK CONVERTER
DIODES

AP3445W6-7

STEP-DOWN DC-DC BUCK CONVERTER
DIODES

AP348

Analog IC
ETC

AP34M60B

Power Field-Effect Transistor, 34A I(D), 600V, 0.21ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-247AB, ROHS COMPLIANT, 3 PIN
MICROSEMI