ZXRD1033PQ16TC [DIODES]

Switching Controller, Voltage-mode, 300kHz Switching Freq-Max, PDSO16, QSOP-16;
ZXRD1033PQ16TC
型号: ZXRD1033PQ16TC
厂家: DIODES INCORPORATED    DIODES INCORPORATED
描述:

Switching Controller, Voltage-mode, 300kHz Switching Freq-Max, PDSO16, QSOP-16

开关 光电二极管
文件: 总28页 (文件大小:639K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ZXRD1000 SERIES  
HIGH EFFICIENCY SIMPLESYNC PWM DC-DC CONTROLLERS  
DESCRIPTION  
ZXRD1000 series can be used with an all N channel  
topology or a combination N & P channel topology.  
Additional functionality includes shutdown control, a  
user adjustable low battery flag and simple  
adjustment of the fixed PWM switching frequency.  
The controller is available with fixed outputs of 5V or  
3.3V and an adjustable (2.0 to 12V) output.  
The ZXRD1000 series provides complete control and  
protection functions for a high efficiency (> 95%) DC-DC  
convertersolution. ThechoiceofexternalMOSFETsallow  
the designer to size devices according to application. The  
ZXRD1000 series uses advanced DC-DC converter  
techniques to provide synchronous drive capability, using  
innovative circuits that allow easy and cost effective  
implementation of shoot through protection. The  
FEATURES  
Fixed 3.3, 5V and adjustable outputs  
Programmable soft start  
> 95% Efficiency  
Fixed frequency (adjustable) PWM  
APPLICATIONS  
Voltage mode to ensure excellent stability &  
transient response  
High efficiency 5 to 3.3V converters up to 4A  
Sub-notebook computers  
Embedded processor power supply  
Distributed power supply  
Portable instruments  
Low quiescent current in shutdown mode,15 A  
Low battery flag  
Output down to 2.0V  
Overload protection  
Demonstration boards available  
Synchronous or non-synchronous operation  
Cost effective solution  
Local on card conversion  
GPS systems  
N or P channel MOSFETs  
QSOP16 package  
Very high efficiency SimpleSyncTM converter.  
VCC  
4.5-10V  
D2  
BAT54  
IC1  
R1  
13  
100k  
ZXM64N02X  
N1  
VIN  
C10  
1µF  
9
2
1
7
L1  
15µH  
SHDN  
LBSET  
LBF  
VDRIVE  
Shut Down  
VOUT  
3.3V 4A  
RSENSE  
0.01R  
C11  
1µF  
C5  
Bootstrap  
RSENSE+  
1µF  
11  
Low input flag  
R6  
Cx2  
C6  
10k  
1µF  
0.01µF  
14  
10  
6
8
Delay  
Decoup  
VINT  
RSENSE -  
C9  
COUT  
16  
15  
VFB  
Comp  
PWR  
5
1µF  
CT  
Fx  
x2  
680µF  
C8  
RX  
CX1  
R2  
120µF  
2k7  
GND GND  
0.022µF  
D1  
680R  
2.2µF  
R5  
6k  
R4  
CIN  
68µF  
4
3
10k  
D3  
BAT54  
330pF  
C1  
C2  
1µF  
1µF  
C4  
ZHCS1000  
N2  
C7  
22µF  
1µF  
C3  
ZXM64N02X  
R3  
3k  
ISSUE 3 - MAY 2000  
1
ZXRD1000 SERIES  
ABSOLUTE MAXIMUM RATINGS  
Input without bootstrap (P suffix) 20V  
RSENSE+, RSENSE -  
VIN  
Input with bootstrap(N suffix)  
10V  
Power dissipation  
Operating temperature  
Storage temperature  
610mW (Note 4)  
-40 to +85°C  
-55 to +125°C  
Bootstrap voltage  
Shutdown pin  
LBSET pin  
20V  
VIN  
VIN  
ELECTRICAL CHARACTERISTICS  
TEST CONDITIONS (Unless otherwise stated) T  
=25°C  
amb  
Symbol  
Parameter  
Conditions  
No Output Device  
IN=5V,IFB=1mA  
Min  
Typ  
Max  
Unit  
VIN(min)  
Min. Operating Voltage  
Feedback Voltage  
4.5  
V
V
V
V
VFB  
(Note 1)  
V
1.215 1.24  
1.213 1.24  
1.215 1.24  
1.265  
1.267  
1.265  
4.5<VIN<18V  
50 A<IFB<1mA,VIN=5V  
TDRIVE  
Gate Output Drive Capability  
CG=2200pF(Note 2)  
CG=1000pF  
VIN=4.5V to maximim  
supply (Note 3)  
60  
35  
ns  
ns  
ICC  
Supply Current  
VIN=5V  
16  
15  
20  
mA  
A
Shutdown Current  
VSHDN = 0V;VIN=5V  
50  
fosc  
(Note 5)  
Operating frequency range  
Frequency with timing capacitor C3=1300pF  
C3=330pF  
50  
300  
kHz  
50  
200  
fosc(tol)  
DC MAX  
Oscillator Tol.  
%
25  
Max Duty Cycle  
N Channel  
P Channel  
15  
0
94  
100  
%
%
VRSENSE  
RSENSE voltage differential  
-40 to +85°C  
-40 to +85°C  
50  
mV  
V
VCMRSENSE Common mode range of VRSENSE  
2
VIN  
VIN  
0.4  
50  
LBFSET  
LBFOUT  
LBFHYST  
LBFSINK  
VSHDN  
Low Battery Flag set voltage  
Low Battery Flag output  
1.5  
0.2  
V
Active Low  
V
Low Battery Flag Hysteresis  
Low Battery Flag Sink Current  
Shutdown Threshold Voltage  
10  
20  
mV  
mA  
-40 to +85°C  
2
Low(off)  
High(on)  
0.25  
V
V
1.5  
ISHDN  
Shutdown Pin Source Current  
10  
A
Note 1. VFB has a different function between fixed and adjustable controller options.  
Note 2. 2200pF is the maximum recommended gate capacitance.  
Note 3. Maximum supply for P phase controllers is 18V,maximum supply for N phase controllers is 10V.  
Note 4. See VIN derating graph in Typical Characteristics.  
Note 5. The maximum frequency in this application is 300kHz. For higher frequency operation contact Zetex  
Applications Department.  
2
ISSUE 3 - MAY 2000  
ZXRD1000 SERIES  
TYPICAL CHARACTERISTICS  
202  
201  
200  
199  
198  
197  
C3=330pF  
VIN=5V  
210  
205  
C3=330pF  
200  
195  
190  
4
4
4
6
6
6
8
8
8
10  
12  
14  
14  
14  
16  
18  
20  
20  
20  
-40  
-20  
0
20  
40  
60  
80  
100  
100  
100  
VIN (V)  
Temperature (°C)  
FOSC v VIN  
FOSC v Temperature  
VOUT=3.3V  
1.244  
1.25  
VIN=5V  
VOUT=3.3V  
1.245  
1.242  
1.24  
1.24  
1.238  
1.235  
1.236  
1.23  
10  
12  
16  
18  
-40  
-20  
0
20  
40  
60  
80  
VIN (V)  
Temperature (°C)  
VFB v VIN  
VFB v Temperature  
1.02  
1.01  
1.00  
0.99  
VIN=5V  
1.005  
1.000  
0.995  
10  
12  
16  
18  
-40  
-20  
0
20  
40  
60  
80  
VIN (V)  
Temperature (°C)  
Normalised LBSET v VIN  
Normalised LBSET v Temperature  
ISSUE 3 - MAY 2000  
3
ZXRD1000 SERIES  
TYPICAL CHARACTERISTICS  
30  
25  
30  
25  
20  
15  
20  
15  
10  
10  
4
6
8
10  
12  
14  
16  
18  
20  
10nF  
100  
4
6
8
10  
12  
14  
16  
18  
20  
VIN (V)  
VIN (V)  
Supply Current v V  
P Phase Device  
IN  
Supply Current v VIN  
N Phase Device  
5
4
3
2
1
0
Vin=5V  
300  
200  
100  
0
VIN=5V  
VOUT=3.3V  
100pF  
1nF  
0
10  
20  
30  
40  
50  
Timing Capacitance  
RSENSE (m)  
FOSC v Capacitance  
Current Limit v RSENSE  
CG=2200pF  
20  
15  
10  
5
-40  
-20  
0
20  
40  
60  
80  
Temperature (°C)  
VIN Derating v Temperature  
4
ISSUE 3 - MAY 2000  
ZXRD1000 SERIES  
DETAILED DESCRIPTION  
The ZXRD1000 series can be configured to use either  
N or P channel MOSFETs to suit most applications.  
The most popular format, an all N channel  
synchronous solution gives the optimum efficiency. A  
feature of the ZXRD1000 series solution is the unique  
method of generating the synchronous drive, called  
SimpleSync . Most solutions use an additional  
output from the controller, inverted and delayed from  
the main switch drive. The ZXRD1000 series solution  
uses a simple overwinding on the main choke (wound  
on the same core at no real cost penalty) plus a small  
ferrite bead . This means that the synchronous FET is  
only enhanced when the main FET is turned off. This  
reduces the blanking periodrequired for shoot-  
through protection, increasing efficiency and allowing  
smaller catch diodes to be used, making the controller  
simpler and less costly by avoiding complex timing  
circuitry. Includedonchiparenumerous functions that  
allow flexibility to suit most applications. The nominal  
switching frequency (200kHz) can be adjusted by a  
simple timing capacitor, C3. A low battery detect circuit  
is also provided. Off the shelf components are available  
from major manufacturers such as Sumida to provide  
either a single winding inductor for non-synchronous  
applications or a coil with an over-winding for  
synchronous applications. The combination of these  
switching characteristics, innovative circuit design and  
excellent user flexibility, make the ZXRD1000 series  
DC-DC solutions some of the smallest and most cost  
effective and electrically efficient currently available.  
Using Zetexs HDMOS low RDS(on) devices, ZXM64N02X  
for the main and synchronous switch, efficiency can  
peak at upto 95% and remains high over a wide range  
ofoperatingcurrents. Programmablesoftstartcanalsobe  
adjusted via the capacitor, C7, in the compensation loop.  
systems this can not only damage MOSFETs, but also  
the battery itself. To realise correct dead time’  
implementation takes complex circuitry and hence  
implies additional cost.  
The ZETEX Method  
Zetex has taken a different approach to solving these  
problems. By looking at the basic architecture of a  
synchronous converter, a novel approach using the  
main circuit inductor was developed. By taking the  
inverse waveform found at the input to the main  
inductor of a non-synchronous solution, a  
synchronous drive waveform can be generated that is  
always relative to the main drive waveform and  
inverted with a small delay. This waveform can be  
used to drive the synchronous switch which means no  
complex circuitry in the IC need be used to allow for  
shoot-through protection.  
Implementation  
Implementation was very easy and low cost. It simply  
meant peeling off a strand of the main inductor  
winding and isolating it to form a coupled secondary  
winding. These are available as standard items  
referred toin the applications circuitsparts list.The use  
of a small, surface mount, inexpensive square loop’  
ferrite bead provides an excellent method of  
eliminating shoot-through due to variation in gate  
thresholds. The bead essentially acts as a high  
impedance for the few nano seconds that  
shoot-through would normally occur. It saturates very  
quickly as the MOSFETs attain steady state operation,  
reducing the bead impedance to virtually zero.  
Benefits  
The net result is an innovative solution that gives  
additional benefits whilst lowering overall  
implementation costs. It is also a technique that can  
be simply omitted to make a non-synchronous  
controller, saving further cost, at the expense of a few  
efficiency points.  
TM  
What is SimpleSync  
?
Conventional Methods  
In the conventional approach to the synchronous  
DC-DC solution, much care has to be taken with the  
timing constraints betweenthemainandsynchronous  
switching devices. Not only is this dependent upon  
individual MOSFET gate thresholds (which vary from  
device to device within data sheet limits and over  
temperature), but it is also somewhat dependent upon  
magnetics, layout and other parasitics. This normally  
means that significant dead timehas to be factored  
in to the design between the main and synchronous  
devices being turned off and on respectively.  
Incorrect application of dead time constraints can  
potentially lead to catastrophic short circuit conditions  
between VIN and GND. For some battery operated  
ISSUE 3 - MAY 2000  
5
ZXRD1000 SERIES  
Functional Block Diagram  
PIN DESCRIPTIONS  
See relevant Applications Section  
Pin No.  
Name  
Description  
1
Bootstrap Bootstrap circuit for generating gate drive  
2
VDRIVE  
PWRGND  
GND  
Output to the gate drive circuit for main N/P channel switches  
Power ground  
3
4
Signal ground  
5
CT  
Timing Capacitor sets oscillator frequency. ‡  
Internal Bias Circuit. Decouple with 1 F ceramic capacitor  
Higher potential input to the current sense for current limit circuit  
Lower potential input to the current sense for current limit circuit  
Shutdown control. Active low.  
6
VINT  
7
RSENSE+  
RSENSE-  
SHDN  
Decoup  
LBF  
8
9
10  
11  
12  
Optional short circuit and overload decoupling capacitor for increased accuracy  
Low battery flag output. Active low, open collector output  
LBSET  
Low battery flag set. Can be connected to VIN if unused, or threshold set  
via potential divider. ‡  
13  
14  
15  
16  
VIN  
Input Voltage  
Delay  
Comp  
VFB  
External R and C to set the desired cycle time for hiccup circuit. ‡  
Compensation pin to allow for stability components and soft start. ‡  
Feedback Voltage. This pin has a different function between fixed and  
adjustable controller options. The appropriate controller must be used for  
the fixed or adjustable solution. Connect to VOUT for fixed output, or to  
potential divider for adjustable output. ‡  
6
ISSUE 3 - MAY 2000  
ZXRD1000 SERIES  
Input Capacitors  
Applications  
Note: Component names refer to designators shown  
in the application circuit diagrams.  
The input capacitor is chosen for its RMS current and  
voltage rating. The use of low ESR electrolytic or  
tantalum capacitors is recommended. Tantalum  
capacitors should have their voltage rating at 2VIN  
(max), electrolytic at 1.4VIN(max). IRMS can be  
approximated by:  
Output Capacitors  
Output capacitors are a critical choice in the overall  
performance of the solution. They are required to filter  
the output and supply load transient current. They are  
also affected by the switching frequency, ripple  
current, di/dt and magnitude of transient load current.  
ESR plays a key role in determining the value of  
capacitor to be used. Combination of both high  
frequency, low value ceramic capacitors and low ESR  
bulk storage capacitors optimised for switching  
applications provide the best response to load  
transients and ripple requirements. Electrolytic  
capacitors with low ESR are larger and more  
expensive so the ultimate choice is always a  
compromise between size, cost and performance.  
Care must also be taken to ensure that for large  
capacitors, the ESL of the leads does not become an  
issue. Excellent low ESR tantalum or electrolytic  
capacitors are available from Sanyo OS-CON, AVX,  
Sprague and Nichicon.  
VOUT VIN VOUT  
IRMS IOUT  
VIN  
Underspecification of this parameter can affect long  
term reliability. An additonal ceramic capacitor should  
be used to provide high frequency decoupling at VIN.  
Also note that the input capacitance ESR is effectively in  
series with the input and hence contributes to efficiency  
losses related to IRMS2 * ESR of the input capacitor.  
MOSFET Selection  
The ZXRD1000 family can be configured in circuits  
where either N or P channel MOSFETs are employed  
as the main switch. If an N channel device is used, the  
corresponding N phase controller must be chosen.  
Similarly, for P channel main switch a P phase  
controller must be used. The ordering information has  
a clear identifier to distinguish between N and P phase  
controllers.  
The output capacitor will also affect loop stability,  
transient performance. The capacitor ESR should  
preferably be of a similar value to the sense resistor.  
Parallel devices may be required.  
The MOSFET selection is subject to thermal and gate  
driveconsiderations. Carealso has to betakentoallow  
for transition losses at high input voltages as well as  
RDS(ON) losses for the main MOSFET. It is  
recommended that a device with a drain source  
breakdown of at least 1.2 times the maximum VIN  
should be used.  
0.29 VOUT VIN VOUT  
IRIPPLE RMS  
L f VIN  
where L= output filter inductance  
f= switching frequency  
For output voltage ripple it is necessary to know the  
peak ripple current which is given by:  
For optimum efficiency , two N channel low RDS(on)  
devices are required. MOSFETs should be selected  
with the lowest RDS(ON) consistent with the output  
current required. As a guide, for 3-4A output, <50m  
devices would be optimum, provided the devices are  
low gate threshold and low gate charge. Typically look  
for devices that will be fully enhanced with 2.7V VGS  
for 4-5A capability.  
VOUT VIN VOUT  
Ipk pk  
L f VIN  
Voltage ripple is then:-  
VRIPPLE Ipk  
ESR  
pk  
Zetex offersa range of low RDS(ON)logiclevelMOSFETs  
which are specifically designed with DC-DC power  
conversion in mind. Packaging includes SOT23,  
SOT23-6 and MSOP8 options. Ideal examples of  
optimum devices would be Zetex ZXM64N03X and  
ZXM64N02X(Nchannel). ContactyourlocalZetexoffice  
or Zetex web page for further information.  
ISSUE 3 - MAY 2000  
7
ZXRD1000 SERIES  
Applications (continued)  
Inductor Selection  
The inductor is one of the most critical components in  
the DC-DC circuit.There are numerous types of devices  
available from many suppliers. Zetex has opted to  
specify off the shelf encapsulated surface mount  
components, as these represent the best compromise  
in terms of cost, size, performance and shielding.  
conditions, when VIN is at its highest and VOUT is  
lowest (short circuit conditions for example). Under  
these conditions the device must handle peak current  
at close to 100% duty cycle.  
Frequency Adjustment  
The nominal running frequency of the controller is set  
to 200kHz in the applications shown. This can be  
adjusted over the range 50kHz to 300kHz by changing  
the value of capacitor on the CT pin. A low cost  
ceramic capacitor can be used.  
Frequency = 60000/C3 (pF)  
Frequency v temperature is given in the typical  
characteristics.  
The SimpleSyncTM technique uses a main inductor  
with an overwinding for the gate drive which is  
available as a standard part. However, for engineers  
who wish to design their own custom magnetics, this  
is a relatively simple and low cost construction  
technique. It is simply formed by terminating one of  
the multiple strands of litz type wire separately. It is  
still wound on the same core as the main winding and  
only has to handle enough current to charge the gate  
of the synchronous MOSFET. The major benefit is  
circuit simplification and hencelowercostofthecontrol  
IC. For non-synchronous operation, the overwinding is  
not required.  
Output Voltage Adjustment  
The ZXRD1000 is available as either a fixed 5V, 3.3V or  
adjustable output. On fixed output versions, the VFB pin  
shouldbeconnectedtotheoutput. Adjustableoperation  
requires a resistive divider connected as follows:  
The choice of core type also plays a key role. For  
optimum performance, a swinging chokeis often  
preferred. This is one which exhibits an increase in  
inductance as load current decreases. This has the net  
effect of reducing circulating current at lighter load  
improving efficiency. There is normally a cost  
premium for this added benefit. For this reason the  
chokes specified are the more usual constant  
inductance type.  
Peak current of the inductor should be rated to  
minimum 1.2IOUT (max) . To maximise efficiency, the  
winding resistance of the main inductor should be less  
than the main switch output on resistance.  
The value of the output voltage is determined by the  
equation  
Schottky Diode  
RA  
RB  
Selection depends on whether a synchronous or  
non-synchronous approach is taken. For the  
ZXRD1000, the unique approach to the synchronous  
drive means minimal dead time and hence a small  
SOT23 1A DC rated device will suffice, such as the  
ZHCS1000 from Zetex. The device is only designed to  
prevent the body diode of the synchronous MOSFET  
from conducting during the initial switching transient  
until the MOSFET takes over. The device should be  
connected as close as possible to the source terminals  
of the main MOSFET.  
VOUT VFB  
1
V
FB  
1.24V  
Note: The adjustable circuit is shown in the following  
transient optimisation section. It is also used in the  
evaluation PCB. In both these circuits RA is assigned  
the label R6 and RB the label R5.  
Values of resistor should be between 1k and 20k to  
guarantee operation. Output voltage can be adjusted in  
the range 2V to 12V for non-synchronous applications.  
Forsynchronous applications, the minimum VOUT is set  
by the VGS threshold required for the synchronous  
MOSFET, as the swing in the gate using the  
Fornon-synchronous applications , the Schottkydiode  
must be selected to allow for the worst case  
SimpleSyncTM technique is approximately VOUT  
.
8
ISSUE 3 - MAY 2000  
ZXRD1000 SERIES  
Applications (continued)  
Low Battery Flag  
The low battery flag threshold can be set by the user  
to trip at a level determined by the equation:  
Hiccup Time Constant  
The hiccup circuit (atthedelaypin)providesoverload  
protection for the solution. The threshold of the hiccup  
mode is determined by the value of RSENSE, When  
>50mV is developed across the sense resistor, the  
hiccup circuit is triggered, inhibiting the device.  
RC  
VLBSET 1.25 1  
RD  
RD is recommended to be 10k where RC and RD are  
connected as follows:  
It will stay in this state depending upon the time  
constant of the resistor and capacitor connected at the  
delaypin. In order to keep the dissipation down  
under overload conditions it is recommended the  
circuit be off for approximately 100ms. If for other  
application reasons this is too long an off period, this  
can be reduced at least by 10:1, care needs to be taken  
that any increased dissipation in the external MOSFET  
is still acceptable. The resistor capacitor combination  
R1,C1 recommended in the applications circuits  
provides a delay of 100ms.  
Soft Start & Loop Stability  
Soft start is determined by the time constant of the  
capacitor and resistor C7 and R3. Typically a good  
starting point is C7 = 22 F and R3 = 24k for fixed  
voltage variants. For fully adjustable variants see  
Optimising for Transient Response later in the  
applications section. This network also helps provide  
good loop stability.  
Hysteresis is typically 20mV at the LBSET pin.  
Current Limit  
A current limit is set by the low value resistor in the  
output path, RSENSE. Since the resistor is only used for  
overload current limit, it does not need to be accurate  
and can hence be a low cost device.  
Low Quiescent Shutdown  
Shutdown control is provided via the SHDN pin,  
putting the device in to a low quiescent sleep mode.  
In some circumstances where rapid sequencing of VCC  
can occur (when VCC is turned off and back on) and VCC  
has a very rapid rise time (100-200ms) timing conflicts  
can occur.  
The value of the current limit is set by using the  
equation:  
50 mV  
ILIM  
A
R
m
SENSE  
A graph of Current Limit v RSENSE is shown in the  
typical characteristics. This should assist in the  
selection of RSENSE appropriate to application.  
If desired, RSENSE can also be on the input supply side.  
When usedon the inputside RSENSE should be in series  
with the upper output device (i.e. in series with the  
drain or source in N and P channel solutions  
respectively).Typically in this configuration RSENSE will  
be 20m.  
ISSUE 3 - MAY 2000  
9
ZXRD1000 SERIES  
Optimising for Transient Response.  
Layout Issues  
Transient response is important in applications where  
the load current increases and decreases rapidly. To  
optimise the system for good transient response  
certain criteria have to be observed.  
Layout is critical for the circuit to function in the most  
efficient manner in terms of electrical efficiency,  
thermal considerations and noise. The following  
guidelines should be observed:  
The optimum solution using the ZXRD series uses the  
adjustable N phase controller in synchronous mode as  
represented in the diagram opposite. The external  
networks for this solution require the use of the  
adjustable controller option.  
A 2.2 F (C8) decoupling capacitor should be as close  
as possible to the drive MOSFETs and D1 anode. This  
capacitor is effectively connected across VIN and GND  
but should be as close as possible to the appropriate  
components in either N or P, synchronous or  
non-synchronous configurations. Furthermore the  
By using standard bulkcapacitors in parallel with a  
single OS-CON capacitor significant performance  
versus cost advantage can be given in this application.  
The low ESR of the OS-CON capacitor provides  
competitive output voltage ripple at low capacitance  
values. The bulkcapacitors aid transient response.  
However, the low ESR of the OS-CON capacitor can  
cause instability within the system. To maintain  
stability an RC network (RX, Cx1) has to be  
implemented. Furthermore, a capacitorin parallel with  
R6 (Cx2) is required to optimise transient response. To  
do this the appropriate adjustable ZXRD must be used  
because the input to the internal error amplifier (pin  
16) has to be accessed. The adjustable device differs  
from fixed controller versions in this respect. This  
combined with a frequency compensation adjustment  
gives an optimised solution for excellent transient  
response.  
G
ND connection of the synchronous MOSFET/D1 and  
output capacitors should be close together and use  
either a ground plane or at the very least a low  
inductance PCB track.  
For the standard application circuits, a Gerber file can  
be made available for the layout which uses the  
materials as listed in the bill of materials table for the  
reference designs.  
Reference Designs.  
In the following section reference circuits are shown for  
the ZXRD series in both synchronous and  
non-synchronous modes. These are shown for each of  
the N and P phase controllers. In each case efficiency  
graphs are shown for the appropriate configuration  
using 3.3V and 5V ZXRD devices. The BOM is then  
shown for the design. Additional and alternative  
components are shown with a *. These refer to  
modifications to the design to optimise for transient  
response. Optimisation is reached using the adjustable  
version of either N or P phase controller device.  
10  
ISSUE 3 - MAY 2000  
ZXRD1000 SERIES  
ISSUE 3 - MAY 2000  
11  
ZXRD1000 SERIES  
4.5V -10VInput, 3.3V/4A Output, N Phase, High Efficiency SimpleSync  
200kHz  
TM  
Converter  
VCC  
4.5-10V  
D2  
13  
VIN  
R1  
IC1  
9
N1  
C10  
2
1
7
SHDN  
LBSET  
LBF  
VDRIVE  
Shut Down  
L1  
VOUT  
3.3V 4A  
RSENSE  
C11  
Bootstrap  
RSENSE+  
C5  
11  
Low input flag  
C6  
14  
10  
6
8
Delay  
Decoup  
VINT  
RSENSE  
-
16  
15  
VF  
Comp  
B
5
CT  
C9  
Fx  
PWR  
R2  
D1  
C8  
GND  
4
GND  
N2  
CIN  
R4  
D3  
3
COUT  
C1  
C2 C3  
C4  
C7  
R3  
ZXRD1033NQ16  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
V
=7V  
IN  
V
=10V  
IN  
Efficiency v IOUT  
VOUT=5.0V.  
ZXRD1050NQ16  
50  
0.1  
1
OUT  
10  
I
(A)  
12  
ISSUE 3 - MAY 2000  
ZXRD1000 SERIES  
Ref  
IC1  
N1  
VIN>7V  
VIN<7V  
N2  
Value  
Part Number  
Manufacturer  
Zetex  
Comments  
ZXRD1033NQ16  
QSOP16 Controller IC  
MSOP8 Low RDS(ON)  
N MOSFET  
Zetex  
ZXM64N03X  
ZXM64N02X  
ZXM64N02X  
30V VDS  
20V VDS  
20V VDS  
D1  
1A 0.5V VF  
10mA 0.4V VF  
10mA 0.4V VF  
100k  
ZHCS1000  
Zetex  
SOT23 Schottky Diode 1A  
SOT23 Schottky Diode  
SOT23 Schottky Diode  
0805 Size  
D2  
BAT54  
Zetex  
D3  
BAT54  
Zetex  
R1  
WCR0805-100k  
WCR0805-680  
WCR0805-24k  
WCR0805-3k  
WCR0805-10k  
WCR0805-2.7k  
LR1206R010  
Welwyn/IRC  
Welwyn/IRC  
Welwyn/IRC  
Welwyn/IRC  
Welwyn/IRC  
Welwyn/IRC  
Welwyn/IRC  
R2  
680⍀  
0805 Size  
R3  
24k  
0805 Size  
*R3  
R4  
3k  
0805 Size  
10k  
0805 Size  
*Rx  
RSENSE  
2.7K  
0805 Size  
0.01⍀  
Current Limit Sense Resistor  
CIN  
OR  
OR  
68F  
68F  
68F  
TPSD68M016R0150 AVX  
68F 16V Elow ESR  
68F 20V PTH low ESR  
68F 20V SMT low ESR  
20SA68M  
20SV68M  
Sanyo OS-CON  
Sanyo OS-CON  
COUT  
OR  
470F  
*150F  
*120F  
TPSE477M010R0200 AVX  
470F 10V Elow ESR  
150F 6V PTH low ESR  
120f 6V SMT low ESR  
6SA150M  
6SV120M  
Sanyo OS-CON  
OR  
Sanyo OS-CON  
COUT  
C1  
680F x 2  
1F  
6CV680GX  
Sanyo  
680F 6V SMT Bulk Capacitor  
1 F,10V.X7R Dielectric  
1 F,4V.X7R Dielectric  
330pF,4V.X7R Dielectric  
1 F,10V.X7R Dielectric  
1 F,10V.X7R Dielectric  
1 F,4V.X7R Dielectric  
22 F,4V.X7R Dielectric  
2.2 F,10V.X7R Dielectric  
1 F,10V.X7R Dielectric  
1 F,10V.X7R Dielectric  
1 F,10V.X7R Dielectric  
0.022 F,4V.X7R Dielectric  
10nF,10V.X7R Dielectric  
Low Profile SMT  
Generic  
Generic  
Generic  
Generic  
Generic  
Generic  
Generic  
Generic  
Generic  
Generic  
Generic  
Generic  
Generic  
Sumida SMT  
FairRite  
C2  
1F  
C3  
330pF  
1F  
C4  
C5  
1F  
C6  
1F  
C7  
22F  
2.2F  
1F  
C8  
C9  
C10  
C11  
*Cx1  
*Cx2  
L1  
1F  
1F  
0.022F  
10nF  
15H  
CDRH127B-OWZ9  
2785044447  
Fx  
SMT Ferrite Bead  
* see Optimising for Transient Response Section  
ISSUE 3 - MAY 2000  
13  
ZXRD1000 SERIES  
4.5V -10VInput, 3.3V/4A Output, N Phase, High Efficiency Non-Synchronous Step  
Down Converter 200kHz  
VCC  
4.5-10.0V  
IC1  
13  
VIN  
C8  
R1  
D2  
N1  
C10  
9
2
1
7
SHDN  
LBSET  
LBF  
VDRIVE  
Shut Down  
VOUT  
3.3V 4A  
L1  
RSENSE  
C11  
Bootstrap  
RSENSE+  
C5  
11  
Low input flag  
C6  
14  
10  
6
8
B 16  
15  
Delay  
Decoup  
VINT  
RSENSE  
-
VF  
Comp  
5
CT  
C9  
PWR  
CIN  
GND  
4
GND  
R2  
D1  
3
COUT  
C1  
C4  
R4  
D3  
C7  
C2  
C3  
R3  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
V
=5V  
IN  
V
=10V  
IN  
Efficiency v IOUT  
VOUT=3.3V.  
ZXRD1033NQ16  
0.1  
1
10  
I
(A)  
OUT  
100  
V
=7V  
IN  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
V
=10V  
IN  
Efficiency v IOUT  
VOUT=5V.  
ZXRD1050NQ16  
0.1  
1
OUT  
10  
I
(A)  
ISSUE 3 - MAY 2000  
14  
ZXRD1000 SERIES  
Ref  
IC1  
N1  
VIN>7V  
VIN<7V  
Value  
Part Number  
Manufacturer  
Zetex  
Comments  
ZXRD1033NQ16  
QSOP16 Controller IC  
MSOP8 Low RDS(ON)  
N MOSFET  
Zetex  
ZXM64N03X  
ZXM64N02X  
30V VDS  
20V VDS  
D1  
5A 0.5V VF  
10mA 0.4V VF  
10mA 0.4V VF  
100k  
50WQ04FN  
BAT54  
Zetex  
Schottky Diode 5A  
SOT23 Schottky Diode  
SOT23 Schottky Diode  
0805 Size  
D2  
Zetex  
D3  
BAT54  
Zetex  
R1  
WCR0805-100k  
WCR0805-680  
WCR0805-24k  
WCR0805-3k  
WCR0805-10k  
WCR0805-2.7k  
LR1206R010  
Welwyn/IRC  
Welwyn/IRC  
Welwyn/IRC  
Welwyn/IRC  
Welwyn/IRC  
Welwyn/IRC  
Welwyn/IRC  
R2  
680⍀  
0805 Size  
R3  
24k  
0805 Size  
*R3  
R4  
3k  
0805 Size  
10k  
0805 Size  
*Rx  
RSENSE  
2.7K  
0805 Size  
0.01⍀  
Current Limit Sense Resistor  
CIN  
OR  
OR  
68F  
68F  
68F  
TPSC68M02R0150  
20SA68M  
20SV68M  
AVX  
Sanyo OS-CON  
Sanyo OS-CON  
68F 25V Elow ESR  
68F 20V PTH low ESR  
68F 20V SMT low ESR  
COUT  
OR  
470F  
*150F  
*120F  
TPSE477M010R0200 AVX  
470F 10V Elow ESR  
150F 6V PTH low ESR  
120f 6V SMT low ESR  
6SA150M  
6SV120M  
Sanyo OS-CON  
OR  
Sanyo OS-CON  
COUT  
C1  
680F x 2  
1F  
6CV680GX  
Sanyo  
680F 6V SMT Bulk Capacitor  
1 F,10V.X7R Dielectric  
1 F,4V.X7R Dielectric  
330pF,4V.X7R Dielectric  
1 F,10V.X7R Dielectric  
1 F,10V.X7R Dielectric  
1 F,4V.X7R Dielectric  
22 F,4V.X7R Dielectric  
2.2 F,10V.X7R Dielectric  
1 F,10V.X7R Dielectric  
1 F,10V.X7R Dielectric  
1 F,10V.X7R Dielectric  
0.022 F,4V.X7R Dielectric  
10nF,10V.X7R Dielectric  
Generic  
Generic  
Generic  
Generic  
Generic  
Generic  
Generic  
Generic  
Generic  
Generic  
Generic  
Generic  
Generic  
C2  
1F  
C3  
330pF  
1F  
C4  
C5  
1F  
C6  
1F  
C7  
22F  
2.2F  
1F  
C8  
C9  
C10  
C11  
*Cx1  
*Cx2  
1F  
1F  
0.022F  
10nF  
L1  
OR  
15H  
15H  
CDRH127-150MC  
DP5022P-153  
Sumida  
Coilcraft  
Low Profile SMT  
Low Profile SMT  
* see Optimising for Transient Response Section  
ISSUE 3 - MAY 2000  
15  
ZXRD1000 SERIES  
5V -18V Input, 5V/3A Output, P Phase, High Efficiency SimpleSync Converter 200kHz  
TM  
VCC  
5V-18V  
IC1  
13  
VIN  
R1  
P1  
9
2
1
7
Shut Down  
SHDN  
LBSET  
LBF  
VDRIVE  
Bootstrap  
RSENSE+  
VOUT  
5.0V 3A  
L1  
RSENSE  
C5  
11  
Low input flag  
D1  
C6  
14  
10  
6
8
Delay  
Decoup  
VINT  
RSENSE  
-
Fx  
16  
15  
VF  
Comp  
B
5
CT  
C9  
N1  
C8  
PWR  
R2  
CIN  
GND  
4
GND  
3
COUT  
C1  
C2 C3 C4  
C7  
R3  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
V
=5V  
IN  
V
=12V  
IN  
Efficiency v IOUT  
VOUT=3.3V.  
ZXRD1033PQ16  
0.1  
1
10  
I
(A)  
OUT  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
V
=7V  
IN  
V
=12V  
IN  
Efficiency v IOUT  
VOUT=5V.  
ZXRD1050PQ16  
0.1  
1
OUT  
10  
I
(A)  
16  
ISSUE 3 - MAY 2000  
ZXRD1000 SERIES  
Ref  
IC1  
P1  
VIN>12V  
VIN<12V  
Value  
Part Number  
Manufacturer  
Zetex  
Comments  
ZXRD1050PQ16  
QSOP16 Controller IC  
MSOP8 Low RDS(ON)  
P MOSFET  
Zetex  
ZXM64P03X  
ZXM64P02X  
30V VDS  
20V VDS  
N1  
ZXM64NO3X  
ZHCS1000  
Zetex  
MSOP8 Low RDS(ON) MOSFET  
Schottky Diode 1A  
0805 Size  
D1  
1A 0.5V VF  
100k  
Zetex  
R1  
WCR0805-100k  
WCR0805-680  
WCR0805-24k  
WCR0805-3k  
WCR0805-2.7k  
LR1206R015  
Welwyn/IRC  
Welwyn/IRC  
Welwyn/IRC  
Welwyn/IRC  
Welwyn/IRC  
Welwyn/IRC  
R2  
680⍀  
24k  
0805 Size  
R3  
0805 Size  
*R3  
*Rx  
RSENSE  
3k  
0805 Size  
2.7K  
0805 Size  
0.015⍀  
Current Limit Sense Resistor  
CIN  
OR  
OR  
68F  
68F  
68F  
TPSV686M025R0150 AVX  
68F 25V Elow ESR  
68F 20V PTH low ESR  
68F 20V SMT low ESR  
20SA68M  
20SV68M  
Sanyo OS-CON  
Sanyo OS-CON  
COUT  
OR  
470F  
*150F  
*120F  
TPSE477M010R0200 AVX  
470F 10V Elow ESR  
150F 6V PTH low ESR  
120f 6V SMT low ESR  
6SA150M  
6SV120M  
Sanyo OS-CON  
OR  
Sanyo OS-CON  
COUT  
C1  
680F x 2  
1F  
6CV680GX  
Sanyo  
680F 6V SMT Bulk Capacitor  
1 F,20V.X7R Dielectric  
1 F,4V.X7R Dielectric  
330pF,4V.X7R Dielectric  
1 F,20V.X7R Dielectric  
1 F,20V.X7R Dielectric  
1 F,4V.X7R Dielectric  
22 F,4V.X7R Dielectric  
2.2 F,20V.X7R Dielectric  
1 F,20V.X7R Dielectric  
0.022 F,4V.X7R Dielectric  
10nF,20V.X7R Dielectric  
Low Profile SMT  
Generic  
Generic  
Generic  
Generic  
Generic  
Generic  
Generic  
Generic  
Generic  
Generic  
Generic  
Sumida  
FairRite  
C2  
1F  
C3  
330pF  
1F  
C4  
C5  
1F  
C6  
1F  
C7  
22F  
2.2F  
1F  
C8  
C9  
*Cx1  
*Cx2  
L1  
0.022F  
10nF  
15H  
CDRH127B-OWZ9  
2785044447  
Fx  
SMT Ferrite Bead  
* see Optimising for Transient Response Section  
ISSUE 3 - MAY 2000  
17  
ZXRD1000 SERIES  
5V -18V Input, 5V/3A Output, P Phase, High Efficiency Non-synchronous Step Down  
Converter 200kHz  
VCC  
5.0-18V  
IC1  
C8  
13  
VIN  
R1  
P1  
9
2
1
7
Shut Down  
SHDN  
LBSET  
LBF  
VDRIVE  
VOUT  
5.0V 3A  
L1  
RSENSE  
Bootstrap  
RSENSE+  
C5  
11  
Low input flag  
C6  
14  
10  
6
8
Delay  
Decoup  
VINT  
RSENSE  
-
16  
15  
VF  
Comp  
B
5
CT  
C9  
PWR  
R2  
CIN  
GND  
4
GND  
D1  
3
COUT  
C1  
C2 C3  
C4  
C7  
R3  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
V
=5V  
IN  
V
IN  
=12V  
Efficiency v IOUT  
VOUT=3.3V.  
ZXRD1033PQ16  
0.1  
1
OUT  
10  
I
(A)  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
V
=7V  
IN  
V
=12V  
IN  
Efficiency v IOUT  
VOUT=5V.  
ZXRD1050PQ16  
0.1  
1
OUT  
10  
I
(A)  
18  
ISSUE 3 - MAY 2000  
ZXRD1000 SERIES  
Ref  
IC1  
P1  
VIN>12V  
VIN<12V  
Value  
Part Number  
Manufacturer  
Zetex  
Comments  
ZXRD1050PQ16  
QSOP16 Controller IC  
MSOP8 Low RDS(ON)  
P MOSFET  
Zetex  
ZXM64P03X  
ZXM64P02X  
30V VDS  
20V VDS  
D1  
5A 0.5V VF  
100k  
50WQ04FN  
IR  
Schottky Diode 5A  
0805 Size  
R1  
WCR0805-100k  
WCR0805-680  
WCR0805-24k  
WCR0805-3k  
WCR0805-2.7k  
LR1206R015  
Welwyn/IRC  
Welwyn/IRC  
Welwyn/IRC  
Welwyn/IRC  
Welwyn/IRC  
Welwyn/IRC  
R2  
680⍀  
24k  
0805 Size  
R3  
0805 Size  
*R3  
*Rx  
RSENSE  
3k  
0805 Size  
2.7k  
0805 Size  
0.015⍀  
Current Limit Sense Resistor  
CIN  
OR  
OR  
68F  
68F  
68F  
TPSV686M025R0150 AVX  
68F 25V Elow ESR  
68F 20V PTH low ESR  
68F 20V SMT low ESR  
20SA68M  
20SV68M  
Sanyo OS-CON  
Sanyo OS-CON  
COUT  
OR  
470F  
*150F  
*120F  
TPSE477M010R0200 AVX  
470F 10V Elow ESR  
150F 6V PTH low ESR  
120f 6V SMT low ESR  
6SA150M  
6SV120M  
Sanyo OS-CON  
OR  
Sanyo OS-CON  
COUT  
C1  
680F x 2  
1F  
6CV680GX  
Sanyo  
680F 6V SMT Bulk Capacitor  
1 F,20V.X7R Dielectric  
1 F,4V.X7R Dielectric  
330pF,4V.X7R Dielectric  
1 F,20V.X7R Dielectric  
1 F,20V.X7R Dielectric  
1 F,4V.X7R Dielectric  
22 F,4V.X7R Dielectric  
2.2 F,20V.X7R Dielectric  
1 F,20V.X7R Dielectric  
0.022 F,4V.X7R Dielectric  
10nF,20V.X7R Dielectric  
Generic  
Generic  
Generic  
Generic  
Generic  
Generic  
Generic  
Generic  
Generic  
Generic  
Generic  
C2  
1F  
C3  
330pF  
1F  
C4  
C5  
1F  
C6  
1F  
C7  
22F  
2.2F  
1F  
C8  
C9  
*Cx1  
*Cx2  
L1  
0.022F  
10nF  
15H  
15H  
CDRH127-150MC  
D05022P-153  
Sumida SMT  
Coilcraft  
Low Profile SMT  
Low Profile SMT  
* see Optimising for Transient Response Section  
ISSUE 3 - MAY 2000  
19  
ZXRD1000 SERIES  
Designing with the ZXRD and Dynamic  
Performance  
Startup  
This section refers to the reference design for the 3.3V,  
4A output N channel synchronous converter. This is  
as shown previously in the Optimising for transient  
response section of the applications information(page  
10). This circuit is also representative of the ZXRD  
evaluation board (see ordering information).  
Startup is always important in DC-DC converter  
applications. Magnetics have large inrush current  
requirements. For higher current applications using  
largeinput and output capacitorsthestartup current can  
be quite significant. This can cause several problems.  
In many applications the power supply to the DC-DC  
converter can be affected. Particularly in battery  
powered applications, trying to take large steps in  
load current out of the supply can result in either  
current limitation (by the internal impedance of the  
battery), or it can actually damage the battery.  
The ZXRD series has been designed to give the best  
in terms of all round flexibility allowing engineers to  
either use the reference design as is, or to tailor the  
design to the individual requirements. This section  
demonstrates the performance features of the ZXRD  
series and its associated components.  
For the converter itself, large changes in load current  
can result in false triggering of the RSENSE circuit. This  
could result in device hiccup (see applications section).  
Efficiency  
Efficiency is often quoted as one of the key parameters  
of a DC-DC converter. Not only does it give an  
instantaneous ideaofheatdissipation, butalsoanidea  
as to the extent battery life can be extended in say  
portable applications. Fig.1 shows the efficiency of the  
standard application circuit. Efficiency vs Output  
current is shown for the 5 to 3.3V configuration.  
The ZXRD programmable soft start function  
eliminates both these problems. This is very clear to  
see in operation if the main switching waveforms are  
examined.  
The soft start is programmed by the combination of  
resistor and capacitor R3 and C7. As a recommendation,  
R3 and C7 are set to 3k and 22 F respectively, which limits  
the peak startup current appropriately in the reference  
circuit. Fig.2 shows the startup waveforms. VIN and VOUT  
are plotted against time  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
V
=5V  
IN  
Efficiency v IOUT  
VOUT=3.3V.  
50  
0.1  
1
OUT  
10  
I
(A)  
Fig.1. 5-3.3V Efficiency to 4A  
20  
ISSUE 3 - MAY 2000  
ZXRD1000 SERIES  
Output Voltage Ripple  
Output voltage ripple is shown in Fig.4 and Fig. 5  
for load currents of 0.5A and 4A respectively.  
Output voltage ripple will be dependant, to a very  
large extent, on the output capacitor ESR. (see  
Applications Section for ripple calculation).  
Fig.2. Startup Waveform for 3.3V output .  
TM  
SimpleSync  
and Shoot-Through  
Steady state operation under constant load gives  
an excellent indication of the ZXRD series  
performance and also demonstrates how well  
SimpleSyncTM works. The SimpleSyncTM  
technique drives the synchronous MOSFET gate  
using the overwinding on the main inductor. It  
also uses the high speed suppression characteristics  
of the ferrite bead to prevent shoot through  
currents. Fig.3 shows the gate waveforms for the  
main and synchronous MOSFET devices (Zetex  
ZXM64N02X).  
Fig.4 0.5A Main & VOUT Waveforms  
Fig.5 4A Main & VOUT Waveforms  
Fig3. Main & Synchronous gate waveforms  
ISSUE 3 - MAY 2000  
21  
ZXRD1000 SERIES  
Line regulation  
Transient Response  
Variation in input voltage for both these conditions  
(0.5A and 4A output) shows the excellent line  
regulation the ZXRD. Fig.6 shows that with 0.5A and  
4A output currents, applying an increase in input  
voltage from 5V to 10V , results in only small changes  
in output regulation.  
Transient response to changes in load is becoming an  
increasingly critical feature of many converter circuits.  
Many high speed processors make very large step  
changes in their load requirements, at the same time  
as having more stringent specifications in terms of  
overshoot and undershoot. Fig.7 demonstrates the  
excellent load transient performance of the ZXRD  
series. A step change using an electronic load from 1A  
to 3A is shown with corresponding output transient  
performance.  
Fig.6a Line Regulation 0.5A load  
Fig.6b Line Regulation 4A load  
Fig.7 Output Transient Response  
Non-synchronous Applications  
One of the key features of the ZXRD series, when  
combined with the SimpleSyncTM technique, is the  
flexibility in allowing engineers to choose either a  
synchronous or non-synchronous architecture.  
Making the design non-synchronous by removing  
MOSFET N2 (the synchronous device), replacing the  
ZHCS1000 with a high current diode (50WQ04FN)  
and using a 2 terminal inductor, such as the Sumida  
CDRH127-150MC, decreases cost slightly at the  
expense of a few efficiency points. Fig.8 shows the  
effect on the efficiency of the 5 to 3.3V 4A application  
when the design is made non-synchronous.  
22  
ISSUE 3 - MAY 2000  
ZXRD1000 SERIES  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
V
=5V  
IN  
Efficiency v IOUT  
VOUT=3.3V.  
0.1  
1
OUT  
10  
I
(A)  
Fig.8 Efficiency for non-synchronous 5-3.3V conversion  
Using PChannel Devices (No Bootstrap)  
All the preceeding examples utilise N channel  
MOSFET devices and a bootstrap circuit to provide full  
enhancement to the high side device. These circuits  
have a maximum input voltage of 10V. For  
applications requiring a higher input voltage, using P  
channel devices for the main MOSFET will allow up to  
18V operation. Typically this may be in a 12V to 5V  
converter circuit.  
If the same package size MOSFET devices are used, it  
is likely a higher on resistance will be encountered,  
with the result that efficiency will decline slightly.  
Fig 9 shows the efficiency plot for a P phase  
synchronous 5V converter based on the  
ZXRD1050PQ16. The figure charts efficiency v output  
current at 12V input and 7V input.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
V
=7V  
IN  
V
=12V  
IN  
Efficiency v IOUT  
VOUT=5V.  
50  
0.1  
1
OUT  
10  
I
(A)  
Fig.9 PChannel Device Efficiency (synchronous)  
ISSUE 3 - MAY 2000  
23  
ZXRD1000 SERIES  
ZXCM6 Series  
Low voltage MOSFETs  
Unique structure gives optimum performance for switching applications.  
N channel devices offer high efficiency  
performance for switching applications.  
This family of MOSFETs from Zetex offers a  
combination of low on-resistance and low gate charge,  
providing optimum performance and high efficiency  
for switching applications such as DC - DC conversion.  
P channel MOSFETs excel in load  
switching applications.  
The P-channel MOSFETs offer highly efficient  
performance for low voltage load switching  
applications. This helps increase battery life in portable  
equipment.  
Minimum threshold voltage is low, only 0.7V or 1V,  
enabling the MOSFETs to provide optimum  
performance from a low voltage source. To ensure the  
device suitability for low voltage applications, drain to  
source voltage is specified at 20V or 30V.  
On resistance is low across the family, from only 40m  
(max) for the ZXM64N02X part up to 180m (max) for  
the ZXM61N02F. This means that on-state losses are  
minimised, improving efficiency in low frequency drive  
applications. Threshold voltages of 0.7V and 1V  
minimum allow the MOSFETs to be driven from low  
voltage sources.  
To minimise on-state losses, and improve efficiency in  
in low frequency drive applications, the on-resistance  
(RDS(ON)) is low across the range. For example, the  
ZXM64P03X has an RDS(ON) of only 100m at a gate to  
source voltage of 4.5V.  
To minimise switching losses, and hence increase the  
efficiencyofhigh frequencyoperation, gatecharge(Qg)  
is small. The maximum Qg varies from 3.4nC to 16nC  
depending on which device is chosen. Crss (Miller  
capacitance) is also low, e.g. typically 30pF for the  
ZXM6203E6 device. This results in better efficiency in  
high frequency applications.  
Gate source charge is also low, easingrequirementsfor  
the gate driver. Maximum values range from0.62nC for  
the ZXM61P03F, up to 9nC for the ZXM64P03X.  
Small outline surface mount packaging  
The products have been designed to optimise the  
performance of a range of packages. The parts are  
offered in SOT23, SOT23-6 and MSOP8 packages. The  
MSOP8 enables single or dual devices to be offered.  
The MSOP8 is also half the size of competitive SO8  
devices and 20% smaller than TSSOP8 alternatives.  
Product performance  
The following performance characteristics show the  
capabilities of the ZXM64N02X. This device is  
recommended for use with certain configurations of  
the ZXRD DCDC controller circuit.  
24  
ISSUE 3 - MAY 2000  
ZXRD1000 SERIES  
Performance Characterisation of ZXM64N02X  
ELECTRICAL CHARACTERISTICS (at T  
= 25°C unless otherwise stated).  
amb  
PARAMETER  
SYMBOL MIN.  
TYP.  
MAX. UNIT CONDITIONS.  
STATIC  
Drain-Source Breakdown Voltage  
Zero Gate Voltage Drain Current  
Gate-Body Leakage  
V(BR)DSS 20  
IDSS  
V
ID=250 A, VGS=0V  
VDS=20V, VGS=0V  
1
A
IGSS  
100  
nA  
VGS  
= 12V,  
VDS=0V  
Gate-Source Threshold Voltage  
VGS(th)  
RDS(on)  
gfs  
0.7  
6.1  
V
ID=250 A, VDS  
VGS  
=
Static Drain-Source On-State  
Resistance (1)  
0.040  
0.050  
VGS=4.5V, ID=3.8A  
VGS=2.7V, ID=1.9A  
Forward Transconductance (3)  
DYNAMIC (3)  
S
VDS=10V,ID=1.9A  
Input Capacitance  
Output Capacitance  
Reverse Transfer Capacitance  
SWITCHING(2) (3)  
Turn-On Delay Time  
Rise Time  
Ciss  
Coss  
Crss  
1100  
350  
pF  
pF  
pF  
VDS=15 V,  
VGS=0V, f=1MHz  
100  
td(on)  
tr  
td(off)  
tf  
5.7  
ns  
ns  
ns  
ns  
nC  
nC  
nC  
9.6  
VDD =10V, ID=3.8A  
RG=6.2 , RD=2.6  
(Refer to test  
circuit)  
Turn-Off Delay Time  
Fall Time  
28.3  
11.6  
Total Gate Charge  
Gate-Source Charge  
Gate Drain Charge  
Qg  
16  
VDS=16V,VGS=4.5V  
, ID=3.8A  
(Refer to test  
circuit)  
Qgs  
Qgd  
3.5  
5.4  
SOURCE-DRAIN DIODE  
Diode Forward Voltage (1)  
VSD  
0.95  
V
Tj=25°C, IS=3.8A,  
VGS=0V  
Reverse Recovery Time (3)  
Reverse Recovery Charge(3)  
trr  
23.7  
13.3  
ns  
Tj=25°C, IF=3.8A,  
di/dt= 100A/ s  
Qrr  
nC  
(1) Measured under pulsed conditions. Width=300 s. Duty cycle 2% .  
(2) Switching characteristics are independent of operating junction temperature.  
(3) For design aid only, not subject to production testing.  
ISSUE 3 - MAY 2000  
25  
ZXRD1000 SERIES  
GERMANY  
ASIA  
USA  
UK  
Zetex GmbH  
Munich  
Zetex Asia  
Hong Kong  
Zetex Inc  
Long Island NY  
Zetex PLC  
Chadderton,  
Oldham  
Zetex  
(49) 894549490  
(852) 2610 0611  
(1) 631 543 7100  
(44) 161 622 4444  
http://www.zetex.com  
Sumida Electric  
Sumida Electric  
USA (CHICAGO  
Head Office)  
Ole Wolf  
Electronics Ltd.  
Sumida  
HK  
(852) 2880 6688  
Taiwan Sumida  
Electric  
(886) 2762 2177  
(1) 847 956-0666  
(44) 1525 290755  
http://www.japanlink.com/sumida/  
Schaffner  
Electronik GmbH  
(49) 72156910  
Fair Rite Asia Pte FairRite Products Schaffner EMC Ltd  
FairRite  
Ltd Singapore  
(65) 281 1969  
Japan/Korea  
(81) 332255055  
Corp  
(44) 118 977 0070  
(1) 914 895 2055  
AVX Asia  
Singapore  
(65) 258 2833  
AVX USA  
(1) 843 448 9411  
AVX UK  
(44) 1252 770000  
AVX  
http://www.avxcorp.com  
Welwyn  
TTC Group plc  
IRC Inc  
Welwyn  
Welwyn, IRC  
Coilcraft  
Electronics GmbH Singapore  
Components Ltd  
(44) 1670 822181  
(49)871 973760  
(65) 536 51667  
(1) 512 992 7900  
http://welwyn-tt.co.uk  
Coilcraft Inc  
(1) 847 639 6400  
Coilcraft Europe  
(44) 1236 730595  
http://www.coilcraft.com  
Sanyo Europe  
Munich  
SANYO  
Electronics Ltd.  
SANYO  
Semicon UK Ltd  
(44) 1279 422224  
Sanyo Electronic  
Comp. (OS-CON)  
Electronics Ltd.  
Forrest City, AR  
870 633 5030  
San Diego, CA  
619 661 6835  
Rochelle Pk, NJ  
201 843 8100  
(49) 89 457693 16 Hong Kong  
(852) 21936888  
Singapore  
(65) 281 3226  
Japan  
(81) 720 70 6306  
http://www.sanyovideo.com  
26  
ISSUE 3 - MAY 2000  
ZXRD1000 SERIES  
Connection Diagram  
Note:  
1
Bootstrap  
V
FB  
16  
Connection diagram is the same for N and P Phase, adjustable and  
fixed controllers. The VFB pin has a different function between  
adjustable and fixed versions.  
V
2
15  
14  
13  
Comp  
Delay  
DRIVE  
PWRG  
3
4
5
6
ND  
G
V
IN  
ND  
C
T
12  
11  
LB  
SET  
V
INT  
LBF  
R
7
8
10  
9
Decoup  
SHDN  
SENSE +  
SENSE -  
R
Package Dimensions  
A
IDENTIFICATION  
RECESS  
FOR PIN 1  
C
B
D
PIN No.1  
K
DIM  
Millimetres  
MIN  
Inches  
MAX  
4.98  
MIN  
MAX  
0.196  
A
B
C
D
E
F
4.80  
0.189  
0.025 NOM  
0.007  
0.008  
0.15  
0.635  
0.177  
0.20  
0.267  
0.30  
3.99  
1.75  
0.25  
6.20  
8°  
0.011  
0.012  
0.157  
0.069  
0.01  
3.81  
1.35  
0.053  
0.004  
0.228  
0°  
G
J
0.10  
5.79  
0.244  
8°  
K
0°  
ISSUE 3 - MAY 2000  
27  
ZXRD1000 SERIES  
Ordering Information  
Device  
Description  
T&R Suffix  
Partmarking  
ZXRD1033NQ16 3.3V Fixed controller N main switch  
ZXRD1050NQ16 5.0V Fixed controller N main switch  
ZXRD100ANQ16 Adjustable controller N main switch  
TA, TC  
ZXRD1033N  
TA, TC  
TA, TC  
TA, TC  
TA, TC  
TA, TC  
ZXRD1050N  
ZXRD100AN  
ZXRD1033P  
ZXRD1050P  
ZXRD100AP  
ZXRD1033PQ16  
ZXRD1050PQ16  
3.3V Fixed controller P main switch  
5.0V Fixed controller P main switch  
ZXRD100APQ16 Adjustable controller P main switch  
N main switchindicates controller for use with N channel main switch element.  
P main switchindicates controller for use with P channel main switch element.  
TA= Tape and Reel quantity of 500  
TC= Tape and Reel quantity of 2500  
Demonstration Boards  
These can be requested through your local Zetex office or representative. These boards can be tailored to your  
specific needs. If you would like to obtain a demo board then a request form is available to help determine your  
exact requirement.  
Zetex plc.  
Fields New Road, C hadderton, Oldham, OL9-8NP, United Kingdom.  
T elephone: (44)161 622 4422 (S ales), (44)161 622 4444 (General E nquiries)  
F ax: (44)161 622 4420  
Zetex GmbH  
Zetex Inc.  
Zetex (Asia) Ltd.  
3510 Metroplaza, T ower 2  
Hing F ong Road,  
Kwai F ong, Hong Kong  
T elephone:(852) 26100 611  
F ax: (852) 24250 494  
T hese are supported by  
agents and distributors in  
major countries world-wide  
Zetex plc 2000  
S treitfeldstraße 19  
D-81673 München  
Germany  
T elefon: (49) 89 45 49 49 0  
F ax: (49) 89 45 49 49 49  
47 Mall Drive, Unit 4  
C ommack NY 11725  
US A  
T elephone: (631) 543-7100  
F ax: (631) 864-7630  
Internet:http://www.zetex.com  
T his publication is issued to provide outline information only which (unless agreed by the C ompany in writing) may not be used, applied or reproduced for any  
purpose or form part of any order or contract or be regarded as a representation relating to the products or services concerned. T he C ompany reserves the  
right to alter without notice the specification, design, price or conditions of supply of any product or service.  
28  
ISSUE 3 - MAY 2000  

相关型号:

ZXRD1050NQ16

HIGH EFFICIENCY SIMPLESYNC PWM DC-DC CONTROLLERS
ZETEX

ZXRD1050NQ16

Switching Controller, Voltage-mode, 300kHz Switching Freq-Max, PDSO16, QSOP-16
DIODES

ZXRD1050NQ16TA

Switching Controller, Voltage-mode, 300kHz Switching Freq-Max, PDSO16, QSOP-16
ZETEX

ZXRD1050NQ16TC

Switching Controller, Voltage-mode, 300kHz Switching Freq-Max, PDSO16, QSOP-16
ZETEX

ZXRD1050NQ16TC

Switching Controller, Voltage-mode, 300kHz Switching Freq-Max, PDSO16, QSOP-16
DIODES

ZXRD1050PQ16

HIGH EFFICIENCY SIMPLESYNC PWM DC-DC CONTROLLERS
ZETEX

ZXRD1050PQ16

Switching Controller, Voltage-mode, 300kHz Switching Freq-Max, PDSO16, QSOP-16
DIODES

ZXRD1050PQ16TA

Switching Controller, Voltage-mode, 300kHz Switching Freq-Max, PDSO16, QSOP-16
DIODES

ZXRD1050PQ16TC

Switching Controller, Voltage-mode, 300kHz Switching Freq-Max, PDSO16, QSOP-16
DIODES

ZXRE060

0.6V ADJUSTABLE PRECISION SHUNT REGULATOR
DIODES

ZXRE060AET5TA

0.6V ADJUSTABLE PRECISION SHUNT REGULATOR
DIODES

ZXRE060AFT4-7

Three Terminal Voltage Reference, 1 Output, 0.6V, Trim/Adjustable, PDSO6, 1.50 X 2 MM, GREEN, DFN-6
DIODES