EC3293A [E-CMOS]

3A, 18V, 500KHz, Synchronous Step Down DC/DC Converter;
EC3293A
型号: EC3293A
厂家: E-CMOS Corporation    E-CMOS Corporation
描述:

3A, 18V, 500KHz, Synchronous Step Down DC/DC Converter

文件: 总11页 (文件大小:625K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
3A, 18V, 500KHz,  
Synchronous Step Down DC/DC Converter  
EC3293A  
General Description  
The EC3293A is a high-frequency, synchronous, rectified, step-down, switch-mode converter with  
internal power MOSFETs. It offers a very compact solution to achieve a 3A continuous output current over  
a wide input supply range, with excellent load and line regulation.  
The EC3293A has synchronous-mode operation for higher efficiency over the output current-load range.  
Current-mode operation provides fast transient response and eases loop stabilization. Protection features  
include over-current protection and thermal shutdown.  
The EC3293A requires a minimal number of readily available, standard external components and is  
available in a space-saving TSOT23-6L package.  
Features  
4.7V to 18V input voltage  
Output adjustable from 0.8V to 15V  
Output current up to 3A  
Integrated 110mΩ/58mΩ power MOSFET switches  
Shutdown current 3μA typical  
Efficiency up to 95%  
Fixed frequency 500KHz  
Internal soft start  
Over current protection and Hiccup  
Over temperature protection  
RoHS Compliant and 100% Lead (Pb) Free  
Applications  
Distributed power systems  
Networking systems  
FPGA, DSP, ASIC power supplies  
Notebook computers  
Green electronics or appliance  
Pin Assignments  
E-CMOS Corp. (www.ecmos.com.tw)  
5G01N-Rev. F002  
1/11  
3A, 18V, 500KHz,  
Synchronous Step Down DC/DC Converter  
EC3293A  
Pin Description  
TSOT23-6L  
Symbol  
Description  
1
2
GND  
SW  
Ground.  
Power switching output.  
3
4
5
6
IN  
FB  
Power input.  
Feedback input.  
EN  
Enable input.  
BOOT  
High-side gate drive boost input.  
Application Information  
Note: R5 and C7 are optional.  
R3=40.2KΩ for T-type  
R3=0Ω for voltage division  
Ordering Information  
E-CMOS Corp. (www.ecmos.com.tw)  
5G01N-Rev. F002  
2/11  
3A, 18V, 500KHz,  
Synchronous Step Down DC/DC Converter  
EC3293A  
Functional Block Diagram  
Absolute Maximum Ratings  
Supply Voltage VIN ……………………–0.3V to +20V  
Switch Node VSW ……………… –0.3V to VIN+0.3V  
Boost VBOOT ………………… VSW0.3V to VSW+6V  
All Other Pins ………………………… –0.3V to +6V  
Junction Temperature ………………………+150°C  
Lead Temperature ………………………… +260°C  
Storage Temperature Range ……–65°C to +150°C  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent  
damage to the device. This is a stress only rating and operation of the device at these or any other conditions  
above those indicated in the operational sections of this specification is not implied.  
Recommended Operating Conditions  
Supply Voltage VIN ……...…………...…….…4.75V to 18V  
Output Voltage VOUT ……...…………... 0.923V to VIN3V  
Operating Temperature Range ……...…–40°C to +125°C  
Package Thermal Characteristics  
TSOT23-6L:  
Thermal Resistance, θJA ………………………100°C/W  
Thermal Resistance, θJC ………………………… 55°C/W  
E-CMOS Corp. (www.ecmos.com.tw)  
5G01N-Rev. F002  
3/11  
3A, 18V, 500KHz,  
Synchronous Step Down DC/DC Converter  
EC3293A  
Electrical Characteristics  
(TA = +25°C, VIN = +12V, unless otherwise noted.)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Symbol  
VIN  
4.7  
0.8  
18  
15  
6
V
V
Supply Voltage  
Output Voltage  
VOUT  
Shutdown Supply Current  
Supply Current  
3
µA  
mA  
V
VEN = 0V  
0.7  
VEN = 2.0V,VFB =1V  
0.776 0.8  
0.88  
0.824  
Feedback Voltage  
VFB  
4.75V VIN 18V  
Feedback Over-voltage Threshold  
Error Amplifier Voltage Gain *  
High-Side Switch-On Resistance *  
Low-side Switch-On Resistance *  
V
1000  
110  
58  
V/V  
mΩ  
mΩ  
AEA  
RDS(ON)1  
RDS(ON)2  
VEN = 0V, VSW = 0V,  
TA = +125°C  
High-Side Switch Leakage Current  
10  
µA  
Upper Switch Current Limit  
Lower Switch Current Limit  
Minimum Duty Cycle  
From Drain to Source  
3.7  
4.3  
0
A
A
400  
100  
500  
125  
90  
600  
150  
KHz  
KHz  
%
Oscillation Frequency  
FOSC1  
FOSC2  
DMAX  
Short Circuit Oscillation Frequency  
Maximum Duty Cycle  
VFB = 0V  
VFB = 0.5V  
Minimum On Time *  
120  
1.22  
1.32  
3.75  
ns  
V
EN Falling Threshold Voltage  
EN Rising Threshold Voltage  
Input Under Voltage Lockout Threshold  
VEN Falling  
VEN Rising  
VIN Rising  
V
V
Input Under Voltage Lockout Threshold  
Hysteresis  
200  
mV  
Soft-Start Period  
1
ms  
°C  
Thermal Shutdown *  
150  
* Guaranteed by design, not tested.  
E-CMOS Corp. (www.ecmos.com.tw)  
5G01N-Rev. F002  
4/11  
3A, 18V, 500KHz,  
Synchronous Step Down DC/DC Converter  
EC3293A  
Typical Characteristics  
VIN = 12V, VO = 3.3V, L1 = 4.7μH, C1 = 10μF, C2 = 22μF x 2, TA = +25°C, unless otherwise noted.  
Start UP & Inrush Current 12V→3.3V (Load 1A)  
Output Ripple (12V => 3.3V, Load=2A)  
Output Ripple (12V => 3.3V, Load=0A)  
Shut Down (Iout 1A→Shut down)  
Output Ripple (12V => 3.3V, Load=1A)  
Dynamic Load (Iload=0.2A_1.2A;Vout=3.3V)  
E-CMOS Corp. (www.ecmos.com.tw)  
5G01N-Rev. F002  
5/11  
3A, 18V, 500KHz,  
Synchronous Step Down DC/DC Converter  
EC3293A  
Short Circuit Protection  
Efficiency  
Efficiency  
E-CMOS Corp. (www.ecmos.com.tw)  
5G01N-Rev. F002  
6/11  
3A, 18V, 500KHz,  
Synchronous Step Down DC/DC Converter  
EC3293A  
Application Information  
Overview  
The EC3293A is a synchronous rectified, current-mode, step-down regulator. It regulates input voltages from  
4.7V to 18V down to an output voltage as low as 0.8V, and supplies up to 3A of load current.  
The EC3293A uses current-mode control to regulate the output voltage. The output voltage is measured  
at FB through a resistive voltage divider and amplified through the internal trans-conductance error  
amplifier.  
The converter uses internal N-Channel MOSFET switches to step-down the input voltage to the regulated output  
voltage. Since the high side MOSFET requires a gate voltage greater than the input voltage, a boost  
capacitor connected between SW and BOOT is needed to drive the high side gate. The boost capacitor is  
charged from the internal 5V rail when SW is low.  
When the EC3293A FB pin exceeds 10% of the nominal regulation voltage of 0.8V, the over  
voltage comparator is tripped forcing the high-side switch off.  
Pins Description  
BOOT: High-Side Gate Drive Boost Input. BOOT supplies the drive for the high-side N-Channel MOSFET  
switch. Connect a 0.1μF or greater capacitor from SW to BOOT to power the high side switch.  
IN: Power Input. IN supplies the power to the IC, as well as the step-down converter switches. Drive IN with  
a 4.7V to 18V power source. Bypass IN to GND with a suitably large capacitor to eliminate noise on the  
input to the IC.  
SW: Power Switching Output. SW is the switching node that supplies power to the output. Connect the output  
LC filter from SW to the output load. Note that a capacitor is required from SW to BOOT to  
power the high-side switch.  
GND: Ground.  
FB: Feedback Input. FB senses the output voltage to regulate that voltage. Drive FB with a resistive  
voltage divider from the output voltage. The feedback threshold is 0.8V.  
EN: Enable Input. EN is a digital input that turns the regulator on or off. Drive EN high to turn  
on the regulator, drive it low to turn it off. Pull up with 100kΩ resistor for automatic startup.  
Setting the Output Voltage  
The external resistor divider sets output voltage. The feedback resistor R1 also sets the feedback loop  
bandwidth through the internal compensation capacitor.  
(see the typical application circuit). Choose the R1 around 10KΩ,and R2 by R2=R1/(Vout/0.8V-1)  
Use T-type network for when Vout is low.  
Figure 1T-type network  
E-CMOS Corp. (www.ecmos.com.tw)  
5G01N-Rev. F002  
7/11  
3A, 18V, 500KHz,  
Synchronous Step Down DC/DC Converter  
EC3293A  
Table 1 lists the recommended T-type resistors value for common output voltages.  
R1 (KΩ) R2 (KΩ) Rt (KΩ)  
VOUT (V)  
1.05  
1.2  
LOUT (μH)  
2.2  
COUT (μF)  
10  
32.4  
41.2  
32.4  
19.1  
13  
150  
120  
75  
44  
44  
44  
44  
44  
44  
20.5  
40.2  
40.2  
40.2  
40.2  
2.2  
1.8  
3.3  
2.5  
59  
4.7  
3.3  
40.2  
24.9  
6.8  
5
7.68  
6.8  
Table 1: Resistor selection for common output voltages.  
Inductor  
The inductor is required to supply constant current to the output load while being driven by the  
Switched input voltage. A larger value inductor will result in less ripple current that will result in lower  
output ripple voltage. However, the larger value inductor will have a larger physical size, higher series  
resistance, and/or lower saturation current. A good rule for determining the inductance to use is to allow the  
peak-to-peak ripple current in the inductor to be approximately 30% of the maximum switch current limit. Also,  
make sure that the peak inductor current is below the maximum switch current limit.  
The inductance value can be calculated by:  
L = [ VOUT / (fS × ΔIL) ] × (1 − VOUT/VIN)  
Where VOUT is the output voltage, VIN is the input voltage, fS is the switching frequency, and ΔIL is the peak-to-  
peak inductor ripple current. Choose an inductor that will not saturate under the maximum inductor peak  
current. The peak inductor current can be calculated by:  
ILP = ILOAD + [ VOUT / (2 × fS × L) ] × (1 − VOUT/VIN)  
Where ILOAD is the load current.  
The choice of which style inductor to use mainly depends on the price vs. size requirements and any  
EMI requirements.  
Optional Schottky Diode  
During the transition between high-side switch and low-side switch, the body diode of the low-side  
power MOSFET conducts the inductor current. The forward voltage of this body diode is high. An optional  
Schottky diode may be paralleled between the SW pin and GND pin to improve overall efficiency. Table 2  
lists example Schottky diodes and their Manufacturers.  
Part  
Number  
Voltage and  
Current Rating  
Vendor  
B130  
SK13  
30V, 1A  
30V, 1A  
30V, 1A  
Diodes Inc.  
Diodes Inc.  
MBRS130  
International Rectifier  
Table 2: Diode selection guide.  
E-CMOS Corp. (www.ecmos.com.tw)  
5G01N-Rev. F002  
8/11  
3A, 18V, 500KHz,  
Synchronous Step Down DC/DC Converter  
EC3293A  
Input Capacitor  
The input current to the step-down converter is discontinuous, therefore a capacitor is required to  
supply the AC current to the step-down converter while maintaining the DC input voltage. Use low ESR  
capacitors for the best performance. Ceramic capacitors are preferred, but tantalum or low-ESR electrolytic  
capacitors may also suffice. Choose X5R or X7R dielectrics when using ceramic capacitors.  
Since the input capacitor (C1) absorbs the input switching current it requires an adequate ripple current  
rating. The RMS current in the input capacitor can be estimated by:  
IC1 = ILOAD × [ (VOUT/VIN) × (1 − VOUT/VIN) ]1/2  
The worst-case condition occurs at VIN = 2VOUT, where IC1= ILOAD/2. For simplification, choose the input  
capacitor whose RMS current rating greater than half of the maximum load current.  
The input capacitor can be electrolytic, tantalum or ceramic. When using electrolytic or tantalum  
capacitors, a small, high quality ceramic capacitor, i.e. 0.1μF, should be placed as close to the IC as  
possible. When using ceramic capacitors, make sure that they have enough capacitance to provide  
sufficient charge to prevent excessive voltage ripple at input. The input voltage ripple for low ESR  
capacitors can be estimated by:  
ΔVIN = [ ILOAD/(C1 × fS) ] × (VOUT/VIN) × (1 − VOUT/VIN)  
Where C1 is the input capacitance value.  
Output Capacitor  
The output capacitor is required to maintain the DC output voltage. Ceramic, tantalum, or low ESR  
electrolytic capacitors are recommended. Low ESR capacitors are preferred to keep the output  
voltage ripple low. The output voltage ripple can be estimated  
by:  
ΔVOUT = [ VOUT/(fS × L) ] × (1 − VOUT/VIN)× [ RESR + 1 / (8 × fS × C2) ]  
Where C2 is the output capacitance value and RESR is the equivalent series resistance (ESR) value of the  
output capacitor.  
In the case of ceramic capacitors, the impedance at the switching frequency is dominated by the capacitance.  
The output voltage ripple is mainly caused by the capacitance. For simplification, the output voltage  
ripple can be estimated by:  
ΔVOUT = [ VOUT/(8xfS2 xLxC2)] × (1 − VOUT/VIN)  
In the case of tantalum or electrolytic capacitors, the ESR dominates the impedance at the switching  
frequency. For simplification, the output ripple can be approximated to:  
ΔVOUT = [ VOUT/(fS × L) ] × (1 − VOUT/VIN) × RESR  
The characteristics of the output capacitor also affect the stability of the regulation system. The EC3293A  
can be optimized for a wide range of capacitance and ESR values.  
External Bootstrap Diode  
An external bootstrap diode may enhance the efficiency of the regulator, the applicable conditions of  
external  
BOOT diode are:  
VOUT = 5V or 3.3V; and  
Duty cycle is high: D = VOUT/VIN > 65%  
Figure 2: Add optional external bootstrap diode to enhance efficiency.  
E-CMOS Corp. (www.ecmos.com.tw)  
5G01N-Rev. F002  
9/11  
3A, 18V, 500KHz,  
Synchronous Step Down DC/DC Converter  
EC3293A  
In these cases, an external BOOT diode is recommended from the output of the voltage regulator to BOOT pin,  
as shown in Figure 2.  
The recommended external BOOT diode is IN4148, and the BOOT capacitor is 0.1 ~ 1μF.  
When VIN ≤ 6V, for the purpose of promote the Efficiency ,it can add an  
externalSchottky diode  
between IN and BOOT pins, as shown in Figure 3.  
Figure 3: Add a Schottky diode to promote efficiency when VIN ≤ 6V.  
PCB Layout Guide  
PCB layout is very important to achieve stable operation.  
Please follow the guidelines below.  
1) Keep the path of switching current short and minimize the loop area formed by Input capacitor,  
high-side MOSFET and low-side MOSFET.  
2) Bypass ceramic capacitors are suggested to be put close to the VIN Pin.  
3) Ensure all feedback connections are short and direct.  
Place the feedback resistors and compensation components as close to the chip as possible.  
4) Rout SW away from sensitive analog areas such as FB.  
5) Connect IN, SW, and especially GND respectively to a  
large copper area to cool the chip to improve thermal performance and long-term reliability.  
BOM of EC3293A  
Please refer to the Typical Application Circuit.  
Item  
1
Reference  
Part  
10μF  
100nF  
0.1μF  
100K  
C1  
C5  
C7  
R4  
2
3
4
Table 3: BOM selection table I.  
E-CMOS Corp. (www.ecmos.com.tw)  
5G01N-Rev. F002  
10/11  
3A, 18V, 500KHz,  
Synchronous Step Down DC/DC Converter  
EC3293A  
Package Information  
TSOT23-6L  
Dimensions in mm  
Min  
Dimensions in Inch  
Min  
Symbol  
Max  
Max  
0.035  
0.004  
0.067  
0.020  
0.116  
0.119  
A
A1  
B
0.700  
0.900  
0.100  
1.700  
0.500  
2.950  
3.020  
0.028  
0.000  
0.000  
1.600  
0.063  
b
0.350  
0.014  
C
D
e
2.650  
0.104  
2.820  
0.111  
0.950 BSC  
0.080  
0.037 BSC  
0.003  
H
L
0.200  
0.600  
0.008  
0.024  
0.300  
0.012  
E-CMOS Corp. (www.ecmos.com.tw)  
5G01N-Rev. F002  
11/11  

相关型号:

EC3293ANT3R

3A, 18V, 500KHz, Synchronous Step Down DC/DC Converter
E-CMOS

EC3293B

3A, 18V, 500KHz, Synchronous Step Down DC/DC Converter
E-CMOS

EC3293BNT3R

3A, 18V, 500KHz, Synchronous Step Down DC/DC Converter
E-CMOS

EC3293NNMHR

3A, 18V, Synchronous Step-down DC/DC Converter
E-CMOS

EC33

OSCILLATOR
ECLIPTEK

EC3300SJ-FREQ

CRYSTAL OSCILLATOR, CLOCK, 1.544 MHz - 50 MHz, HCMOS OUTPUT
ECLIPTEK
ECLIPTEK
ECLIPTEK
ECLIPTEK
ECLIPTEK

EC3300SJETTS-FREQ

CRYSTAL OSCILLATOR, CLOCK, 1.544 MHz - 30 MHz, HCMOS OUTPUT
ECLIPTEK
ECLIPTEK