EL5210C [ELANTEC]

30MHz Rail-to-Rail Input-Output Op Amps; 30MHz的轨至轨输入输出运算放大器
EL5210C
型号: EL5210C
厂家: ELANTEC SEMICONDUCTOR    ELANTEC SEMICONDUCTOR
描述:

30MHz Rail-to-Rail Input-Output Op Amps
30MHz的轨至轨输入输出运算放大器

运算放大器
文件: 总14页 (文件大小:313K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EL5210C/EL5410C  
30MHz Rail-to-Rail Input-Output Op Amps  
Features  
General Description  
30MHz -3dB bandwidth  
Supply voltage = 4.5V to 16.5V  
Low supply current (per amplifier)  
= 2.5mA  
High slew rate = 33V/µs  
Unity-gain stable  
Beyond the rails input capability  
Rail-to-rail output swing  
The EL5210C and EL5410C are low power, high voltage rail-to-rail  
input-output amplifiers. The EL5210C contains two amplifiers in one  
package and the EL5410C contains four amplifiers. Operating on sup-  
plies ranging from 5V to 15V, while consuming only 2.5mA per  
amplifier, the EL5410C and EL5210C have a bandwidth of 30MHz --  
(-3dB). They also provide common mode input ability beyond the sup-  
ply rails, as well as rail-to-rail output capability. This enables these  
amplifiers to offer maximum dynamic range at any supply voltage.  
The EL5410C and EL5210C also feature fast slewing and settling  
times, as well as a high output drive capability of 30mA (sink and  
source). These features make these amplifiers ideal for high speed fil-  
tering and signal conditioning application. Other applications include  
battery power, portable devices, and anywhere low power consump-  
tion is important.  
Available in both standard and  
space-saving fine pitch packages  
Applications  
Driver for A-to-D Converters  
Data Acquisition  
The EL5410C is available in a space-saving 14-Pin TSSOP package,  
as well as the industry-standard 14-Pin SOIC. The EL5210C is avail-  
able in the 8-Pin MSOP and 8-Pin SOIC packages. Both feature a  
standard operational amplifier pin out. These amplifiers operate over a  
temperature range of -40°C to +85°C.  
Video Processing  
Audio Processing  
Active Filters  
Test Equipment  
Battery Powered Applications  
Portable Equipment  
Connection Diagram  
Ordering Information  
Part No.  
Package  
8-Pin SOIC  
8-Pin SOIC  
8-Pin MSOP  
8-Pin MSOP  
8-Pin MSOP  
14-Pin SOIC  
14-Pin SOIC  
14-Pin TSSOP  
Tape & Reel  
Outline #  
MDP0027  
MDP0027  
MDP0043  
MDP0043  
MDP0043  
MDP0027  
MDP0027  
MDP0044  
MDP0044  
EL5210CS  
-
13”  
-
VOUTA  
VINA-  
VOUTD  
VIND-  
1
2
3
4
5
6
7
14  
13  
12  
EL5210CS-T13  
EL5210CY  
EL5210CY-T7  
EL5210CY-T13  
EL5410CS  
7”  
13”  
-
VOUTA  
VINA-  
VINA+  
VS-  
1
2
3
4
8
7
6
5
VS+  
-
-
VINA+  
VIND+  
+
+
-
VOUTB  
VINB-  
VINB+  
EL5410CS-T13  
EL5410CR  
13”  
-
+
VS+  
11 VS-  
-
EL5410CR-T13 14-Pin TSSOP  
13”  
+
VINB+  
VINC+  
10  
9
+
-
+
-
VINB-  
VINC-  
EL5210C (MSOP-8, SOIC-8)  
VOUTB  
VOUTC  
8
EL5410C (TSSOP-14, SOIC-14)  
Note: All information contained in this data sheet has been carefully checked and is believed to be accurate as of the date of publication; however, this data sheet cannot be a “controlled document”. Current revisions, if any, to these  
specifications are maintained at the factory and are available upon your request. We recommend checking the revision level before finalization of your design documentation.  
© 2000 Elantec Semiconductor, Inc.  
EL5210C/EL5410C  
30MHz Rail-to-Rail Input-Output Op Amps  
Absolute Maximum Ratings (T = 25°C)  
A
Values beyond absolute maximum ratings can cause the device to be pre-  
maturely damaged. Absolute maximum ratings are stress ratings only and  
functional device operation is not implied.  
Maximum Die Temperature  
Storage Temperature  
Operating Temperature  
Power Dissipation  
+125°C  
-65°C to +150°C  
-40°C to +85°C  
See Curves  
Supply Voltage between VS+ and VS-  
Input Voltage  
+18V  
VS- - 0.5V, VS +0.5V  
30mA  
ESD Voltage  
2kV  
Maximum Continuous Output Current  
Important Note:  
All parameters having Min/Max specifications are guaranteed. Typ values are for information purposes only. Unless otherwise noted, all tests are at the  
specified temperature and are pulsed tests, therefore: TJ = TC = TA  
Electrical Characteristics  
VS+ = +5V, VS - = -5V, RL = 1kand CL = 12pF to 0V, TA = 25°C unless otherwise specified.  
Parameter  
Description  
Condition  
Min  
Typ  
Max  
15  
Unit  
Input Characteristics  
VOS  
Input Offset Voltage  
Average Offset Voltage Drift [1]  
VCM = 0V  
VCM = 0V  
3
7
2
1
2
mV  
µV/°C  
nA  
TCVOS  
IB  
Input Bias Current  
60  
RIN  
Input Impedance  
GΩ  
pF  
CIN  
Input Capacitance  
CMIR  
CMRR  
AVOL  
Common-Mode Input Range  
Common-Mode Rejection Ratio  
Open-Loop Gain  
-5.5  
50  
+5.5  
-4.8  
V
for VIN from -5.5V to 5.5V  
70  
80  
dB  
-4.5V VOUT 4.5V  
65  
dB  
Output Characteristics  
VOL  
VOH  
ISC  
Output Swing Low  
IL = -5mA  
IL = 5mA  
-4.9  
4.9  
120  
30  
V
V
Output Swing High  
Short Circuit Current  
Output Current  
4.8  
60  
mA  
mA  
IOUT  
Power Supply Performance  
PSRR  
IS  
Power Supply Rejection Ratio  
Supply Current (Per Amplifier)  
VS is moved from 2.25V to 7.75V  
No Load  
80  
dB  
2.5  
3.75  
mA  
Dynamic Performance  
SR  
Slew Rate [2]  
-4.0V VOUT 4.0V, 20% o 80%  
33  
140  
30  
V/µs  
ns  
tS  
Settling to +0.1% (AV = +1)  
-3dB Bandwidth  
(AV = +1), VO = 2V Step  
BW  
GBWP  
PM  
CS  
MHz  
MHz  
°
Gain-Bandwidth Product  
Phase Margin  
20  
50  
Channel Separation  
Differential Gain [3]  
Differential Phase[3]  
f = 5MHz  
110  
0.12  
0.17  
dB  
%
dG  
RF = RG = 1kand VOUT = 1.4V  
RF = RG = 1kand VOUT = 1.4V  
dP  
°
1. Measured over operating temperature range  
2. Slew rate is measured on rising and falling edges  
3. NTSC signal generator used  
2
EL5210C/EL5410C  
30MHz Rail-to-Rail Input-Output Op Amps  
Electrical Characteristics  
VS+ = 5V, VS- = 0V, RL = 1kand CL = 12pF to 2.5V, TA = 25°C unless otherwise specified.  
Parameter  
Description  
Condition  
Min  
Typ  
Max  
15  
Unit  
Input Characteristics  
VOS  
Input Offset Voltage  
Average Offset Voltage Drift [1]  
VCM = 2.5V  
VCM = 2.5V  
3
7
2
1
2
mV  
µV/°C  
nA  
TCVOS  
IB  
Input Bias Current  
60  
RIN  
Input Impedance  
GΩ  
pF  
CIN  
Input Capacitance  
CMIR  
CMRR  
AVOL  
Common-Mode Input Range  
Common-Mode Rejection Ratio  
Open-Loop Gain  
-0.5  
45  
+5.5  
200  
V
for VIN from -0.5V to 5.5V  
66  
80  
dB  
0.5V VOUT 4.5V  
65  
dB  
Output Characteristics  
VOL  
VOH  
ISC  
Output Swing Low  
IL = -5mA  
IL = 5mA  
100  
4.9  
120  
30  
mV  
V
Output Swing High  
Short Circuit Current  
Output Current  
4.8  
60  
mA  
mA  
IOUT  
Power Supply Performance  
PSRR  
IS  
Power Supply Rejection Ratio  
Supply Current (Per Amplifier)  
VS is moved from 4.5V to 15.5V  
80  
dB  
No Load  
2.5  
3.75  
mA  
Dynamic Performance  
SR  
Slew Rate [2]  
1V VOUT 4V, 20% o 80%  
33  
140  
30  
V/µs  
ns  
tS  
Settling to +0.1% (AV = +1)  
-3dB Bandwidth  
(AV = +1), VO = 2V Step  
BW  
GBWP  
PM  
CS  
MHz  
MHz  
°
Gain-Bandwidth Product  
Phase Margin  
20  
50  
Channel Separation  
Differential Gain [3]  
Differential Phase[3]  
f = 5MHz  
110  
0.30  
0.66  
dB  
%
dG  
RF = RG = 1kand VOUT = 1.4V  
RF = RG = 1kand VOUT = 1.4V  
dP  
°
1. Measured over operating temperature range  
2. Slew rate is measured on rising and falling edges  
3. NTSC signal generator used  
3
EL5210C/EL5410C  
30MHz Rail-to-Rail Input-Output Op Amps  
Electrical Characteristics  
VS+ = 15V, VS- = 0V, RL = 1kand CL = 12pF to 7.5V, TA = 25°C unless otherwise specified.  
Parameter  
Description  
Condition  
Min  
Typ  
Max  
15  
Unit  
Input Characteristics  
VOS  
Input Offset Voltage  
Average Offset Voltage Drift [1]  
VCM = 7.5V  
VCM = 7.5V  
3
7
2
1
2
mV  
µV/°C  
nA  
TCVOS  
IB  
Input Bias Current  
60  
RIN  
Input Impedance  
GΩ  
pF  
CIN  
Input Capacitance  
CMIR  
CMRR  
AVOL  
Common-Mode Input Range  
Common-Mode Rejection Ratio  
Open-Loop Gain  
-0.5  
53  
+15.5  
350  
V
for VIN from -0.5V to 15.5V  
72  
80  
dB  
0.5V VOUT 14.5V  
65  
dB  
Output Characteristics  
VOL  
VOH  
ISC  
Output Swing Low  
IL = -7.5mA  
IL = 7.5mA  
170  
14.83  
120  
mV  
V
Output Swing High  
Short Circuit Current  
Output Current  
14.65  
60  
mA  
mA  
IOUT  
30  
Power Supply Performance  
PSRR  
IS  
Power Supply Rejection Ratio  
Supply Current (Per Amplifier)  
V
S is moved from 4.5V to 15.5V  
80  
dB  
No Load  
2.5  
3.75  
mA  
Dynamic Performance  
SR  
Slew Rate [2]  
1V VOUT 14V, 20% o 80%  
33  
140  
30  
V/µs  
ns  
tS  
Settling to +0.1% (AV = +1)  
-3dB Bandwidth  
(AV = +1), VO = 2V Step  
BW  
GBWP  
PM  
CS  
MHz  
MHz  
°
Gain-Bandwidth Product  
Phase Margin  
20  
50  
Channel Separation  
Differential Gain [3]  
Differential Phase[3]  
f = 5MHz  
110  
0.10  
0.11  
dB  
%
dG  
RF = RG = 1kand VOUT = 1.4V  
RF = RG = 1kand VOUT = 1.4V  
dP  
°
1. Measured over operating temperature range  
2. Slew rate is measured on rising and falling edges  
3. NTSC signal generator used  
4
EL5210C/EL5410C  
30MHz Rail-to-Rail Input-Output Op Amps  
Typical Performance Curves  
EL5410C Input Offset Voltage Drift  
EL5410C Input Offset Voltage Distribution  
25  
500  
V =±5V  
S
Typical  
Production  
Distortion  
Typical  
Production  
Distortion  
V =±5V  
T =25°C  
A
S
20  
15  
10  
5
400  
300  
200  
100  
0
0
Input Offset Voltage Drift, TCV (µV/°C)  
OS  
Input Offset Voltage (mV)  
Input Offset Voltage vs Temperature  
Input Bias Current vs Temperature  
0.008  
0.004  
0
5
4
3
2
1
0
V =±5V  
S
-0.004  
-0.008  
-0.012  
-50  
-10  
30  
70  
110  
150  
-50  
-10  
30  
70  
110  
150  
Temperature (°C)  
Temperature (°C)  
Output Low Voltage vs Temperature  
Output High Voltage vs Temperature  
-4.85  
-4.87  
-4.89  
-4.91  
-4.93  
-4.95  
4.96  
4.95  
4.94  
4.93  
4.92  
4.91  
V =±5V  
S
=5mA  
OUT  
V =±5V  
S
I
I
=5mA  
OUT  
-50  
-10  
30  
70  
110  
150  
-50  
-10  
30  
70  
110  
150  
Temperature (°C)  
Temperature (°C)  
5
EL5210C/EL5410C  
30MHz Rail-to-Rail Input-Output Op Amps  
Typical Performance Curves  
Open-Loop Gain vs Temperature  
Slew Rate vs Temperature  
33.85  
33.80  
33.75  
33.70  
33.65  
33.60  
33.55  
90  
V =±5V  
S
V =±5V  
S
R =1kΩ  
L
85  
80  
75  
70  
-40  
0
40  
80  
120  
160  
150  
10  
-50  
-10  
30  
70  
110  
150  
Temperature (°C)  
Temperature (°C)  
EL5410C Supply Current per Amplifier vs Supply  
Voltage  
EL5410C Supply Current per Amplifier vs  
Temperature  
2.9  
2.7  
2.5  
2.3  
2.1  
1.9  
1.7  
1.5  
2.7  
2.65  
2.6  
T =25°C  
A
V =±5V  
S
2.55  
2.5  
2.45  
2.4  
4
8
12  
16  
20  
-50  
-10  
30  
70  
110  
Supply Voltage (V)  
Temperature (°C)  
Differential Gain and Phase  
Harmonic Distortion vs V  
OP-P  
0.25  
0.15  
0.05  
-0.05  
-30  
-40  
-50  
-60  
-70  
-80  
V =±5V  
S
A =2  
R =1kΩ  
V
V =±5V  
S
HD3  
L
A =1  
V
R =1k  
L
F
IN  
= 1MHz  
0
100  
200  
HD2  
0.20  
0.10  
0
-0.10  
0
100  
IRE  
200  
0
2
4
6
8
V
(V)  
OP-P  
6
EL5210C/EL5410C  
30MHz Rail-to-Rail Input-Output Op Amps  
Typical Performance Curves  
Open Loop Gain and Phase vs Frequency  
Frequency Response for Various R  
L
250  
150  
50  
140  
5
3
Phase  
10kΩ  
1kΩ  
100  
60  
1
0
560Ω  
-50  
20  
-1  
Gain  
V =±5V  
S
A =1  
V
T =25°C  
V =±5V  
C =12pF  
L
A
S
-150  
-250  
-20  
-3  
-5  
150Ω  
R =1kto GND  
L
C =12pF to GND  
L
-60  
10  
100  
1k  
10k  
100k  
1M  
10M 100M  
1M  
100M  
10M 30M  
10M 30M  
100k  
10M  
Frequency (Hz)  
Frequency (Hz)  
Frequency Response for Various C  
Closed Loop Output Impedance vs Frequency  
L
20  
10  
200  
160  
120  
80  
100pF  
47pF  
10pF  
A =1  
V
1000pF  
V =±5V  
S
T =25°C  
A
0
-10  
-20  
-30  
R =1kΩ  
L
A =1  
V
40  
V =±5V  
S
0
10k  
100k  
1M  
1M  
100M  
100k  
10M  
Frequency (Hz)  
Frequency (Hz)  
Maximum Output Swing vs Frequency  
CMRR vs Frequency  
80  
70  
60  
50  
40  
30  
10  
8
6
V =±5V  
S
T =25°C  
A
4
A =1  
V
V =±5V  
S
T =25°C  
A
R =1kΩ  
L
C =12pF  
L
2
Distortion <1%  
0
10k  
10  
100  
1k  
10k  
100k  
1M  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
7
EL5210C/EL5410C  
30MHz Rail-to-Rail Input-Output Op Amps  
Typical Performance Curves  
Input Voltage Noise Spectral Density vs  
Frequency  
PSRR vs Frequency  
80  
1000  
100  
10  
PSRR+  
PSRR-  
60  
40  
V =±5V  
S
20  
0
T =25°C  
A
1
1k  
10k  
100k  
100  
1k  
10k  
100k  
1M  
10M  
100M  
100  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
Total Harmonic Distortion + Noise vs Frequency  
Channel Separation vs Frequency Response  
-60  
-80  
0.010  
0.008  
0.006  
0.004  
0.002  
0
Dual measured Channel A to B  
Quad measured Channel A to D or B to C  
Other combinations yield improved rejection  
-100  
-120  
-140  
-160  
V =±5V  
S
V =±5V  
S
R =1kΩ  
L
R =1kΩ  
L
A =1  
V
A =1  
V
V =0.5V  
IN  
RMS  
V =110mV  
IN  
RMS  
1k  
10k  
100k  
1M  
10M 30M  
1k  
10k  
100k  
Frequency (Hz)  
Frequency (Hz)  
Small-Signal Overshoot vs Load Capacitance  
Settling Time vs Step Size  
5
100  
80  
60  
40  
20  
0
V =±5V  
S
V =±5V  
S
4
3
A =1  
V
A =1  
V
R =1k  
L
0.1%  
R =1kΩ  
L
C =12pF  
L
V =±50mV  
IN  
2
T =25°C  
A
T =25°C  
A
1
0
-1  
-2  
-3  
-4  
-5  
0.1%  
210  
70  
90  
110  
130  
150  
170  
190  
230  
10  
100  
1000  
Load Capacitance (pF)  
Settling Time (ns)  
8
EL5210C/EL5410C  
30MHz Rail-to-Rail Input-Output Op Amps  
Typical Performance Curves  
Large Signal Transient Response  
Small Signal Transient Response  
1V  
200ns  
50mV  
100nS  
V =±5V  
S
T =25°C  
A
A =1  
V
R =1kΩ  
L
L
V =±5V  
T =25°C  
A
S
C =12pF  
A =1  
V
R =1kΩ  
L
C =12pF  
L
9
EL5210C/EL5410C  
30MHz Rail-to-Rail Input-Output Op Amps  
Pin Descriptions  
EL5210C  
EL5410C  
Name  
Function  
Amplifier A Output  
Equivalent Circuit  
1
1
VOUTA  
V
S+  
V
S-  
GND  
Circuit 1  
2
2
VINA-  
Amplifier A Inverting Input  
V
S+  
V
S-  
Circuit 2  
3
8
5
6
7
3
4
VINA+  
VS+  
Amplifier A Non-Inverting Input  
Positive Power Supply  
(Reference Circuit 2)  
5
VINB+  
VINB-  
VOUTB  
VOUTC  
VINC-  
VINC+  
VS-  
Amplifier B Non-Inverting Input  
Amplifier B Inverting Input  
Amplifier B Output  
(Reference Circuit 2)  
(Reference Circuit 2)  
(Reference Circuit 1)  
(Reference Circuit 1)  
(Reference Circuit 2)  
(Reference Circuit 2)  
6
7
8
Amplifier C Output  
9
Amplifier C Inverting Input  
Amplifier C Non-Inverting Input  
Negative Power Supply  
10  
11  
12  
13  
14  
4
VIND+  
VIND-  
Amplifier D Non-Inverting Input  
Amplifier D Inverting Input  
(Reference Circuit 2)  
(Reference Circuit 2)  
(Reference Circuit 1)  
VOUTD Amplifier D Output  
10  
EL5210C/EL5410C  
30MHz Rail-to-Rail Input-Output Op Amps  
Applications Information  
connected to GND. The input is a 10Vp-p sinusoid. The  
Product Description  
output voltage is approximately 9.8VP-P  
.
The EL5210C and EL5410C voltage feedback amplifi-  
ers are fabricated using a high voltage CMOS process.  
They exhibit Rail-to-Rail input and output capability,  
are unity gain stable and have low power consumption  
(2.5mA per amplifier). These features make the  
EL5210C and EL5410C ideal for a wide range of gen-  
eral-purpose applications. Connected in voltage follower  
mode and driving a load of 1kand 12pF, the EL5210C  
and EL5410C have a -3dB bandwidth of 30MHz while  
maintaining a 33V/µS slew rate. The EL5210C is a dual  
amplifier while the EL5410C is a quad amplifier.  
5V  
10µS  
V =±5V  
S
T =25°C  
A
A =1  
V
V =10V  
IN  
P-P  
5V  
Operating Voltage, Input, and Output  
The EL5210C and EL5410C are specified with a single  
nominal supply voltage from 5V to 15V or a split supply  
with its total range from 5V to 15V. Correct operation is  
guaranteed for a supply range of 4.5V to 16.5V. Most  
EL5210C and EL5410C specifications are stable over  
both the full supply range and operating temperatures of  
-40 °C to +85 °C. Parameter variations with operating  
voltage and/or temperature are shown in the typical per-  
formance curves.  
Figure 1. Operation with Rail-to-Rail Input and  
Output  
Short Circuit Current Limit  
The EL5210C and EL5410C will limit the short circuit  
current to +/-120mA if the output is directly shorted to  
the positive or the negative supply. If an output is  
shorted indefinitely, the power dissipation could easily  
increase such that the device may be damaged. Maxi-  
mum reliability is maintained if the output continuous  
current never exceeds +/-30mA. This limit is set by the  
design of the internal metal interconnects.  
The input common-mode voltage range of the EL5210C  
and EL5410C extends 500mV beyond the supply rails.  
The output swings of the EL5210C and EL5410C typi-  
cally extend to within 100mV of positive and negative  
supply rails with load currents of 5mA. Decreasing load  
currents will extend the output voltage range even closer  
to the supply rails. Figure 1 shows the input and output  
waveforms for the device in the unity-gain configura-  
tion. Operation is from +/-5V supply with a 1kload  
Output Phase Reversal  
The EL5210C and EL5410C are immune to phase rever-  
sal as long as the input voltage is limited from VS- -  
0.5V to VS+ +0.5V. Figure 2 shows a photo of the out-  
put of the device with the input voltage driven beyond  
the supply rails. Although the device's output will not  
change phase, the input's overvoltage should be avoided.  
If an input voltage exceeds supply voltage by more than  
0.6V, electrostatic protection diodes placed in the input  
11  
EL5210C/EL5410C  
30MHz Rail-to-Rail Input-Output Op Amps  
stage of the device begin to conduct and overvoltage  
damage could occur.  
power supply voltage, plus the power in the IC due to the  
loads, or:  
P
= Σi[V × I  
+ (V + V  
i) × I  
i]  
LOAD  
DMAX  
S
SMAX  
S
OUT  
1V  
10µS  
when sourcing, and  
P
= Σi[V × I  
+ (V  
i V -) × I  
i ]  
LOAD  
DMAX  
S
SMAX  
OUT  
S
V =±2.5V  
S
when sinking.  
Where:  
T =25°C  
A
A =1  
V
V =6V  
IN  
P-P  
i = 1 to 2 for Dual and 1 to 4 for Quad  
VS = Total Supply Voltage  
1V  
I
SMAX = Maximum Supply Current Per Amplifier  
Figure 2. Operation with Beyond-the-Rails  
Input  
V
OUTi = Maximum Output Voltage of the  
Application  
Power Dissipation  
ILOADi = Load current  
With the high-output drive capability of the EL5210C  
and EL5410C amplifiers, it is possible to exceed the  
125°C 'absolute-maximum junction temperature' under  
certain load current conditions. Therefore, it is important  
to calculate the maximum junction temperature for the  
application to determine if load conditions need to be  
modified for the amplifier to remain in the safe operating  
area.  
If we set the two PDMAX equations equal to each other,  
we can solve for RLOADi to avoid device overheat. Fig-  
ure 3 and Figure 4 provide a convenient way to see if the  
device will overheat. The maximum safe power dissipa-  
tion can be found graphically, based on the package type  
and the ambient temperature. By using the previous  
equation, it is a simple matter to see if PDMAX exceeds  
the device's power derating curves. To ensure proper  
operation, it is important to observe the recommended  
derating curves shown in Figure 3 and Figure 4.  
The maximum power dissipation allowed in a package is  
determined according to:  
T
T  
AMAX  
JMAX  
P
= --------------------------------------------  
DMAX  
Θ
JA  
Where:  
TJMAX = Maximum Junction Temperature  
AMAX= Maximum Ambient Temperature  
JA = Thermal Resistance of the Package  
T
Θ
PDMAX = Maximum Power Dissipation in the  
Package.  
The maximum power dissipation actually produced by  
an IC is the total quiescent supply current times the total  
12  
EL5210C/EL5410C  
30MHz Rail-to-Rail Input-Output Op Amps  
lower. The inverting input should be directly connected  
to the output and the non-inverting input tied to the  
ground plane.  
Packages Mounted on a JEDEC JESD51-7 High  
Effective Thermal Conductivity Test Board  
1200  
1000  
800  
600  
400  
200  
0
1.136W  
MAX T =125°C  
J
Driving Capacitive Loads  
1.0W  
909mW  
The EL5210C and EL5410C can drive a wide range of  
capacitive loads. As load capacitance increases, how-  
ever, the -3dB bandwidth of the device will decrease and  
the peaking increase. The amplifiers drive 10pF loads in  
parallel with 1kwith just 1.2dB of peaking, and 100pF  
with 6.5dB of peaking. If less peaking is desired in these  
applications, a small series resistor (usually between 5Ω  
and 50) can be placed in series with the output. How-  
ever, this will obviously reduce the gain slightly.  
Another method of reducing peaking is to add a "snub-  
ber" circuit at the output. A snubber is a shunt load  
consisting of a resistor in series with a capacitor. Values  
of 150and 10nF are typical. The advantage of a snub-  
ber is that it does not draw any DC load current or  
reduce the gain  
833mW  
SO14  
=88°C/W  
SO8  
=110°C/W  
θ
JA  
θ
JA  
TSSOP14  
=100°C/W  
MSOP8  
=115°C/W  
JA  
θ
JA  
θ
0
25  
50  
75 85 100  
125  
150  
Ambient Temperature (°C)  
Figure 3. Package Power Dissipation vs  
Ambient Temperature  
Packages Mounted on a JEDEC JESD51-3 Low  
Effective Thermal Conductivity Test Board  
Power Supply Bypassing and Printed Circuit  
Board Layout  
1200  
MAX T =125°C  
J
1000  
800  
600  
400  
200  
0
The EL5210C and EL5410C can provide gain at high  
frequency. As with any high-frequency device, good  
printed circuit board layout is necessary for optimum  
performance. Ground plane construction is highly rec-  
ommended, lead lengths should be as short as possible  
and the power supply pins must be well bypassed to  
reduce the risk of oscillation. For normal single supply  
operation, where the VS- pin is connected to ground, a  
0.1µF ceramic capacitor should be placed from VS+ to  
pin to VS- pin. A 4.7µF tantalum capacitor should then  
be connected in parallel, placed in the region of the  
amplifier. One 4.7µF capacitor may be used for multiple  
devices. This same capacitor combination should be  
placed at each supply pin to ground if split supplies are  
to be used.  
SO14  
=120°C/W  
JA  
θ
833mW  
606mW  
TSSOP14  
=165°C/W  
625mW  
θ
JA  
485mW  
SO8  
=160°C/W  
θ
JA  
MSOP8  
=206°C/W  
θ
JA  
0
25  
50  
75 85 100  
125  
150  
Ambient Temperature (°C)  
Figure 4. Package Power Dissipation vs  
Ambient Temperature  
Unused Amplifiers  
It is recommended that any unused amplifiers in a dual  
and a quad package be configured as a unity gain fol-  
13  
EL5210C/EL5410C  
30MHz Rail-to-Rail Input-Output Op Amps  
General Disclaimer  
Specifications contained in this data sheet are in effect as of the publication date shown. Elantec, Inc. reserves the right to make changes in the cir-  
cuitry or specifications contained herein at any time without notice. Elantec, Inc. assumes no responsibility for the use of any circuits described  
herein and makes no representations that they are free from patent infringement.  
WARNING - Life Support Policy  
Elantec, Inc. products are not authorized for and should not be used  
within Life Support Systems without the specific written consent of  
Elantec, Inc. Life Support systems are equipment intended to sup-  
port or sustain life and whose failure to perform when properly used  
in accordance with instructions provided can be reasonably  
expected to result in significant personal injury or death. Users con-  
templating application of Elantec, Inc. Products in Life Support  
Systems are requested to contact Elantec, Inc. factory headquarters  
to establish suitable terms & conditions for these applications. Elan-  
tec, Inc.s warranty is limited to replacement of defective  
Elantec Semiconductor, Inc.  
675 Trade Zone Blvd.  
Milpitas, CA 95035  
Telephone: (408) 945-1323  
(888) ELANTEC  
Fax:  
(408) 945-9305  
components and does not cover injury to persons or property or  
other consequential damages.  
European Office: +44-118-977-6080  
Japan Technical Center: +81-45-682-5820  
Printed in U.S.A.  
14  

相关型号:

EL5210CS

30MHz Rail-to-Rail Input-Output Op Amps
ELANTEC

EL5210CS

30MHz Rail-to-Rail Input-Output Op Amps
INTERSIL

EL5210CS-T13

30MHz Rail-to-Rail Input-Output Op Amps
ELANTEC

EL5210CS-T13

30MHz Rail-to-Rail Input-Output Op Amps
INTERSIL

EL5210CS-T7

30MHz Rail-to-Rail Input-Output Op Amps
INTERSIL

EL5210CSZ

30MHz Rail-to-Rail Input-Output Op Amps
INTERSIL

EL5210CSZ-T13

30MHz Rail-to-Rail Input-Output Op Amps
INTERSIL

EL5210CSZ-T7

30MHz Rail-to-Rail Input-Output Op Amps
INTERSIL

EL5210CY

30MHz Rail-to-Rail Input-Output Op Amps
ELANTEC

EL5210CY

30MHz Rail-to-Rail Input-Output Op Amps
INTERSIL

EL5210CY-T13

30MHz Rail-to-Rail Input-Output Op Amps
ELANTEC

EL5210CY-T13

30MHz Rail-to-Rail Input-Output Op Amps
INTERSIL