EL5420CS-T13

更新时间:2024-09-18 02:11:23
品牌:ELANTEC
描述:12MHz Rail-to-Rail Input-Output Op Amps

EL5420CS-T13 概述

12MHz Rail-to-Rail Input-Output Op Amps 12MHz的轨至轨输入输出运算放大器 运算放大器

EL5420CS-T13 规格参数

生命周期:Transferred包装说明:SO-14
Reach Compliance Code:unknown风险等级:5.63
放大器类型:OPERATIONAL AMPLIFIER最大平均偏置电流 (IIB):0.05 µA
标称共模抑制比:70 dB最大输入失调电压:12000 µV
JESD-30 代码:R-PDSO-G14负供电电压上限:-9 V
标称负供电电压 (Vsup):-5 V功能数量:4
端子数量:14最高工作温度:85 °C
最低工作温度:-40 °C封装主体材料:PLASTIC/EPOXY
封装形状:RECTANGULAR封装形式:SMALL OUTLINE
认证状态:Not Qualified标称压摆率:10 V/us
供电电压上限:9 V标称供电电压 (Vsup):5 V
表面贴装:YES技术:CMOS
温度等级:INDUSTRIAL端子形式:GULL WING
端子位置:DUAL标称均一增益带宽:8000 kHz
Base Number Matches:1

EL5420CS-T13 数据手册

通过下载EL5420CS-T13数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
EL5220C, EL5420C  
12MHz Rail-to-Rail Input-Output Op Amps  
Features  
General Description  
• 12MHz -3dB bandwidth  
• Supply voltage = 4.5V to 16.5V  
• Low supply current (per amplifier)  
= 500µA  
• High slew rate = 10V/µs  
• Unity-gain stable  
• Beyond the rails input capability  
• Rail-to-rail output swing  
• Ultra-small package  
The EL5420C and EL5220C are low power, high voltage, rail-to-rail  
input-output amplifiers. The EL5220C contains two amplifiers in one  
package, and the EL5420C contains four amplifiers. Operating on sup-  
plies ranging from 5V to 15V, while consuming only 500µA per  
amplifier, the EL5420C and EL5220C have a bandwidth of 12MHz --  
(-3dB). They also provide common mode input ability beyond the sup-  
ply rails, as well as rail-to-rail output capability. This enables these  
amplifiers to offer maximum dynamic range at any supply voltage.  
The EL5420C and EL5220C also feature fast slewing and settling  
times, as well as a high output drive capability of 30mA (sink and  
source). These features make these amplifiers ideal for use as voltage  
reference buffers in Thin Film Transistor Liquid Crystal Displays  
(TFT-LCD). Other applications include battery power, portable  
devices, and anywhere low power consumption is important.  
Applications  
• TFT-LCD drive circuits  
• Electronics notebooks  
• Electronics games  
The EL5420C is available in a space-saving 14-pin TSSOP package,  
the industry-standard 14-pin SO package, as well as a 16-pin LPP  
package. The EL5220C is available in the 8-pin MSOP package. Both  
feature a standard operational amplifier pin out. These amplifiers are  
specified for operation over the full -40°C to +85°C temperature  
range.  
• Touch-screen displays  
• Personal communication devices  
• Personal digital assistants (PDA)  
• Portable instrumentation  
• Sampling ADC amplifiers  
• Wireless LANs  
• Office automation  
• Active filters  
Connection Diagrams  
• ADC/DAC buffer  
VOUTA  
VINA-  
VINA+  
VS+  
1
2
3
4
5
6
7
14 VOUTD  
13 VIND-  
12 VIND+  
11 VS-  
Ordering Information  
-
-
Tape &  
Part No.  
EL5220CY  
Package  
8-Pin MSOP  
8-Pin MSOP  
8-Pin MSOP  
16-Pin LPP  
16-Pin LPP  
16-Pin LPP  
14-Pin TSSOP  
14-Pin TSSOP  
14-Pin TSSOP  
14-Pin SO  
Reel  
Outline #  
MDP0043  
MDP0043  
MDP0043  
MDP0046  
MDP0046  
MDP0046  
MDP0044  
MDP0044  
MDP0044  
MDP0027  
MDP0027  
MDP0027  
+
+
-
EL5220CY-T7  
EL5220CY-T13  
EL5420CL  
7”  
13”  
-
VOUTA  
VINA-  
VINA+  
VS-  
1
2
3
4
8
7
6
5
VS+  
VINB+  
VINB-  
VOUTB  
10 VINC+  
-
VOUTB  
VINB-  
VINB+  
EL5420CL-T7  
EL5420CL-T13  
EL5420CR  
7”  
13”  
-
+
-
+
-
+
9
8
VINC-  
-
+
EL5420CR-T7  
EL5420CR-T13  
EL5420CS  
7”  
13”  
-
VOUTC  
EL5420C  
(14-Pin TSSOP & 14-Pin SO)  
EL5220C  
(8-Pin MSOP)  
EL5420CS-T7  
EL5420CS-T13  
14-Pin SO  
7”  
13”  
14-Pin SO  
Connection Diagrams are continued on page 4  
Note: All information contained in this data sheet has been carefully checked and is believed to be accurate as of the date of publication; however, this data sheet cannot be a “controlled document”. Current revisions, if any, to these  
specifications are maintained at the factory and are available upon your request. We recommend checking the revision level before finalization of your design documentation.  
© 2001 Elantec Semiconductor, Inc.  
EL5220C, EL5420C  
12MHz Rail-to-Rail Input-Output Op Amps  
Absolute Maximum Ratings (T = 25°C)  
A
Values beyond absolute maximum ratings can cause the device to be pre-  
maturely damaged. Absolute maximum ratings are stress ratings only  
and functional device operation is not implied  
Maximum Die Temperature  
Storage Temperature  
Operating Temperature  
Power Dissipation  
+125°C  
-65°C to +150°C  
-40°C to +85°C  
See Curves  
Supply Voltage between VS+ and VS-  
Input Voltage  
+18V  
VS- - 0.5V, VS +0.5V  
30mA  
ESD Voltage  
2kV  
Maximum Continuous Output Current  
Important Note:  
All parameters having Min/Max specifications are guaranteed. Typ values are for information purposes only. Unless otherwise noted, all tests are at the  
specified temperature and are pulsed tests, therefore: TJ = TC = TA  
Electrical Characteristics  
VS+= +5V, VS - = -5V, RL = 10kW and CL = 10pF to 0V, TA = 25°C unless otherwise specified.  
Parameter  
Description  
Condition  
Min  
Typ  
Max  
12  
Unit  
Input Characteristics  
VOS  
Input Offset Voltage  
VCM = 0V  
[1]  
2
5
mV  
µV/°C  
nA  
TCVOS  
IB  
Average Offset Voltage Drift  
Input Bias Current  
VCM = 0V  
2
50  
RIN  
Input Impedance  
1
GW  
pF  
CIN  
Input Capacitance  
1.35  
CMIR  
CMRR  
AVOL  
Common-Mode Input Range  
Common-Mode Rejection Ratio  
Open-Loop Gain  
-5.5  
50  
+5.5  
V
for VIN from -5.5V to +5.5V  
70  
95  
dB  
-4.5V £ VOUT £ +4.5V  
75  
dB  
Output Characteristics  
VOL  
VOH  
ISC  
Output Swing Low  
IL = -5mA  
IL = 5mA  
-4.92  
4.92  
±120  
±30  
-4.85  
V
V
Output Swing High  
Short Circuit Current  
Output Current  
4.85  
60  
mA  
mA  
IOUT  
Power Supply Performance  
PSRR  
IS  
Power Supply Rejection Ratio  
Supply Current (Per Amplifier)  
VS is moved from ±2.25V to ±7.75V  
No load  
80  
dB  
500  
750  
µA  
Dynamic Performance  
SR  
Slew Rate [2]  
-4.0V £ VOUT £ +4.0V, 20% to 80%  
(AV = +1), VO = 2V step  
RL = 10kW, CL = 10pF  
RL = 10kW, CL = 10pF  
RL = 10kW, CL = 10 pF  
f = 5MHz  
10  
500  
12  
8
V/µs  
ns  
tS  
Settling to +0.1% (AV = +1)  
-3dB Bandwidth  
BW  
GBWP  
PM  
CS  
MHz  
MHz  
°
Gain-Bandwidth Product  
Phase Margin  
50  
75  
Channel Separation  
dB  
1. Measured over operating temperature range  
2. Slew rate is measured on rising and falling edges  
2
EL5220C, EL5420C  
12MHz Rail-to-Rail Input-Output Op Amps  
Electrical Characteristics  
VS+ = 5V, VS-= 0V, RL = 10kW and CL = 10pF to 2.5V, TA = 25°C unless otherwise specified.  
Parameter  
Description  
Condition  
Min  
Typ  
Max  
10  
Unit  
Input Characteristics  
VOS  
Input Offset Voltage  
VCM = 2.5V  
[1]  
2
5
mV  
µV/°C  
nA  
TCVOS  
IB  
Average Offset Voltage Drift  
Input Bias Current  
VCM = 2.5V  
2
50  
RIN  
Input Impedance  
1
GW  
pF  
CIN  
Input Capacitance  
1.35  
CMIR  
CMRR  
AVOL  
Common-Mode Input Range  
Common-Mode Rejection Ratio  
Open-Loop Gain  
-0.5  
45  
+5.5  
150  
V
for VIN from -0.5V to +5.5V  
66  
95  
dB  
0.5V £ VOUT £+ 4.5V  
75  
dB  
Output Characteristics  
VOL  
VOH  
ISC  
Output Swing Low  
IL = -5mA  
IL = +5mA  
80  
mV  
V
Output Swing High  
Short Circuit Current  
Output Current  
4.85  
60  
4.92  
±120  
±30  
mA  
mA  
IOUT  
Power Supply Performance  
PSRR  
IS  
Power Supply Rejection Ratio  
Supply Current (Per Amplifier)  
VS is moved from 4.5V to 15.5V  
No load  
80  
dB  
500  
750  
µA  
Dynamic Performance  
SR  
Slew Rate [2]  
1V £ VOUT £ 4V, 20% to 80%  
(AV = +1), VO = 2V step  
RL = 10kW, CL = 10pF  
RL = 10 kW, CL = 10pF  
RL = 10 kW, CL = 10 pF  
f = 5MHz  
10  
500  
12  
8
V/µs  
ns  
tS  
Settling to +0.1% (AV = +1)  
-3dB Bandwidth  
BW  
GBWP  
PM  
CS  
MHz  
MHz  
°
Gain-Bandwidth Product  
Phase Margin  
50  
75  
Channel Separation  
dB  
1. Measured over operating temperature range  
2. Slew rate is measured on rising and falling edges  
Electrical Characteristics  
VS+ = 15V, VS- = 0V, RL = 10kW and CL = 10pF to 7.5V, TA = 25°C unless otherwise specified.  
Parameter  
Description  
Condition  
Min  
Typ  
Max  
14  
Unit  
Input Characteristics  
VOS  
Input Offset Voltage  
VCM = 7.5V  
[1]  
2
5
mV  
µV/°C  
nA  
TCVOS  
IB  
Average Offset Voltage Drift  
Input Bias Current  
VCM = 7.5V  
2
50  
RIN  
Input Impedance  
1
GW  
pF  
CIN  
Input Capacitance  
1.35  
CMIR  
CMRR  
AVOL  
Common-Mode Input Range  
Common-Mode Rejection Ratio  
Open-Loop Gain  
-0.5  
53  
+15.5  
150  
V
for VIN from -0.5V to +15.5V  
72  
95  
dB  
0.5V £ VOUT £ 14.5V  
75  
dB  
Output Characteristics  
VOL  
VOH  
Output Swing Low  
Output Swing High  
IL = -5mA  
IL = +5mA  
80  
mV  
V
14.85  
14.92  
3
EL5220C, EL5420C  
12MHz Rail-to-Rail Input-Output Op Amps  
Electrical Characteristics (Continued)  
VS+ = 15V, VS- = 0V, RL = 10kW and CL = 10pF to 7.5V, TA = 25°C unless otherwise specified.  
Parameter  
ISC  
IOUT  
Power Supply Performance  
Description  
Short Circuit Current  
Output Current  
Condition  
Min  
Typ  
±120  
±30  
Max  
Unit  
mA  
mA  
PSRR  
IS  
Power Supply Rejection Ratio  
Supply Current (Per Amplifier)  
VS is moved from 4.5V to 15.5V  
No load  
60  
80  
dB  
500  
750  
µA  
Dynamic Performance  
SR  
Slew Rate [2]  
1V £ VOUT £ 14V, 20% to 80%  
(AV = +1), VO = 2V step  
RL = 10kW, CL = 10pF  
RL = 10kW, CL = 10pF  
RL = 10kW, CL = 10 pF  
f = 5MHz  
10  
500  
12  
8
V/µs  
ns  
tS  
Settling to +0.1% (AV = +1)  
-3dB Bandwidth  
BW  
GBWP  
PM  
CS  
MHz  
MHz  
°
Gain-Bandwidth Product  
Phase Margin  
50  
75  
Channel Separation  
dB  
1. Measured over operating temperature range  
2. Slew rate is measured on rising and falling edges  
Connection Diagrams (Continued)  
VINA-  
VINA+  
VS+  
1
2
3
4
12 VIND-  
11 VIND+  
10 VS-  
Thermal Pad  
9
VINC+  
VINB+  
EL5420C  
(16-Pin LPP)  
4
EL5220C, EL5420C  
12MHz Rail-to-Rail Input-Output Op Amps  
Typical Performance Curves  
EL5420C Input Offset Voltage Drift  
EL5420C Input Offset Voltage Distribution  
70  
1800  
Typical  
Production  
Distribution  
Typical  
Production  
Distribution  
V =±5V  
S
V =±5V  
T =25°C  
A
S
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
60  
50  
40  
30  
20  
10  
0
Input Offset Voltage Drift, TCV V/°C)  
OS  
Input Offset Voltage (mV)  
Input Offset Voltage vs Temperature  
Input Bias Current vs Temperature  
10  
5
2.0  
0.0  
V =±5V  
S
V =±5V  
S
0
-5  
-2.0  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Temperature (°C)  
Temperature (°C)  
Output High Voltage vs Temperature  
Output Low Voltage vs Temperature  
4.97  
4.96  
4.95  
4.94  
4.93  
-4.91  
-4.92  
-4.93  
-4.94  
-4.95  
-4.96  
-4.97  
V =±5V  
S
V =±5V  
S
I
=5mA  
OUT  
I
=-5mA  
OUT  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Temperature (°C)  
Temperature (°C)  
5
EL5220C, EL5420C  
12MHz Rail-to-Rail Input-Output Op Amps  
Typical Performance Curves  
Slew Rate vs Temperature  
Open-Loop Gain vs Temperature  
10.40  
10.35  
10.30  
10.25  
100  
V =±5V  
S
V =±5V  
S
R =10kW  
L
90  
80  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Temperature (°C)  
Temperature (°C)  
EL5420C Supply Current per Amplifier vs Supply Voltage  
EL5420C Supply Current per Amplifier vs Temperature  
700  
600  
500  
400  
300  
T =25°C  
A
0.55  
0.5  
V =±5V  
S
0.45  
-50  
0
50  
100  
150  
0
5
10  
15  
20  
Temperature (°C)  
Supply Voltage (V)  
Frequency Response for Various R  
Open Loop Gain and Phase vs Frequency  
L
5
0
200  
150  
100  
50  
20  
10kW  
1kW  
-30  
Phase  
-80  
560W  
150W  
C =10pF  
L
-5  
A =1  
V
V =±5V  
S
-130  
-180  
-230  
V =±5V, T =25°C  
S
A
R =10KW to GND  
-10  
L
0
C =12pF to GND  
L
Gain  
-15  
-50  
100k  
1M  
10M  
100M  
10  
100  
1k  
10k  
100k  
1M  
10M 100M  
Frequency (Hz)  
Frequency (Hz)  
6
EL5220C, EL5420C  
12MHz Rail-to-Rail Input-Output Op Amps  
Typical Performance Curves  
Frequency Response for Various C  
L
Closed Loop Output Impedance vs Frequency  
20  
200  
R =10kW  
L
A =1  
V
10  
0
A =1  
160  
120  
80  
40  
0
V
V =±5V  
S
V =±5V  
S
T =25°C  
A
12pF  
50pF  
-10  
-20  
-30  
100pF  
1000pF  
100k  
1M  
10M  
100M  
10k  
100  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
Maximum Output Swing vs Frequency  
CMRR vs Frequency  
80  
60  
40  
20  
0
12  
10  
8
6
V =±5V  
S
T =25°C  
A
4
A =1  
V
R =10kW  
L
V =±5V  
T =25°C  
A
S
2
C =12pF  
L
Distortion <1%  
0
10k  
1k  
10k  
100k  
100  
1M  
10M  
100  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
Input Voltage Noise Spectral Density vs Frequency  
PSRR vs Frequency  
PSRR+  
600  
100  
80  
60  
40  
20  
0
PSRR-  
10  
V =±5V  
T =25°C  
A
S
1
100  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
100  
10M  
Frequency (Hz)  
Frequency (Hz)  
7
EL5220C, EL5420C  
12MHz Rail-to-Rail Input-Output Op Amps  
Typical Performance Curves  
Total Harmonic Distortion + Noise vs Frequency  
Channel Separation vs Frequency Response  
0.010  
0.009  
0.008  
0.007  
0.006  
0.005  
0.004  
-60  
-80  
Dual measured Channel A to B  
Quad measured Channel A to D or B to C  
Other combinations yield improved rejection  
V =±5V  
S
R =10kW  
L
A =1  
V
V
IN  
=220mV  
RMS  
-100  
-120  
-140  
V =±5V  
S
R =10kW  
0.003  
0.002  
0.001  
L
A =1  
V
V
IN  
=1V  
RMS  
1k  
10k  
100k  
1k  
10k  
100k  
1M  
6M  
Frequency (Hz)  
Frequency (Hz)  
Settling Time vs Step Size  
Small-Signal Overshoot vs Load Capacitance  
V =±5V  
S
V =±5V  
S
90  
70  
50  
30  
10  
4
3
A =1  
A =1  
V
V
R =10kW  
R =10kW  
L
L
C =12pF  
V =±50mV  
IN  
L
0.1%  
2
T =25°C  
A
T =25°C  
A
1
0
-1  
-2  
-3  
-4  
0.1%  
600  
0
200  
400  
800  
10  
100  
1000  
Load Capacitance (pF)  
Settling Time (nS)  
Large Signal Transient Response  
Small Signal Transient Response  
1V  
1µS  
50mV  
200ns  
V =±5V  
S
T =25°C  
A
A =1  
V
R =10kW  
L
C =12pF  
L
V =±5V  
S
T =25°C  
A
A =1  
V
R =10kW  
L
C =12pF  
L
8
EL5220C, EL5420C  
12MHz Rail-to-Rail Input-Output Op Amps  
Pin Descriptions  
EL5420C  
EL5220C  
Pin Name  
Pin Function  
Amplifier A Output  
Equivalent Circuit  
1
1
VOUTA  
V
S+  
V
S-  
GND  
Circuit 1  
2
2
VINA-  
Amplifier A Inverting Input  
V
S+  
V
S-  
Circuit 2  
3
4
3
8
5
6
7
VINA+  
VS+  
Amplifier A Non-Inverting Input  
Positive Power Supply  
(Reference Circuit 2)  
5
VINB+  
VINB-  
VOUTB  
VOUTC  
VINC-  
VINC+  
VS-  
Amplifier B Non-Inverting Input  
Amplifier B Inverting Input  
Amplifier B Output  
(Reference Circuit 2)  
(Reference Circuit 2)  
(Reference Circuit 1)  
(Reference Circuit 1)  
(Reference Circuit 2)  
(Reference Circuit 2)  
6
7
8
Amplifier C Output  
9
Amplifier C Inverting Input  
Amplifier C Non-Inverting Input  
Negative Power Supply  
10  
11  
12  
13  
14  
4
VIND+  
VIND-  
VOUTD  
Amplifier D Non-Inverting Input  
Amplifier D Inverting Input  
Amplifier D Output  
(Reference Circuit 2)  
(Reference Circuit 2)  
(Reference Circuit 1)  
9
EL5220C, EL5420C  
12MHz Rail-to-Rail Input-Output Op Amps  
Applications Information  
Product Description  
The EL5220C and EL5420C voltage feedback amplifi-  
ers are fabricated using a high voltage CMOS process.  
They exhibit rail-to-rail input and output capability, they  
are unity gain stable, and have low power consumption  
(500µA per amplifier). These features make the  
EL5220C and EL5420C ideal for a wide range of gen-  
eral-purpose applications. Connected in voltage follower  
mode and driving a load of 10kW and 12pF, the  
EL5220C and EL5420C have a -3dB bandwidth of  
12MHz while maintaining a 10V/µs slew rate. The  
EL5220C is a dual amplifier while the EL5420C is a  
quad amplifier.  
V =±5V  
S
T =25°C  
A
A =1  
V
V =10V  
IN  
P-P  
Figure 1. Operation with Rail-to-Rail Input and  
Output  
Operating Voltage, Input, and Output  
Short Circuit Current Limit  
The EL5220C and EL5420C are specified with a single  
nominal supply voltage from 5V to 15V or a split supply  
with its total range from 5V to 15V. Correct operation is  
guaranteed for a supply range of 4.5V to 16.5V. Most  
EL5220C and EL5420C specifications are stable over  
both the full supply range and operating temperatures of  
-40 °C to +85 °C. Parameter variations with operating  
voltage and/or temperature are shown in the typical per-  
formance curves.  
The EL5220C and EL5420C will limit the short circuit  
current to ±120mA if the output is directly shorted to the  
positive or the negative supply. If an output is shorted  
indefinitely, the power dissipation could easily increase  
such that the device may be damaged. Maximum reli-  
ability is maintained if the output continuous current  
never exceeds ±30 mA. This limit is set by the design of  
the internal metal interconnects.  
Output Phase Reversal  
The input common-mode voltage range of the EL5220C  
and EL5420C extends 500mV beyond the supply rails.  
The output swings of the EL5220C and EL5420C typi-  
cally extend to within 80mV of positive and negative  
supply rails with load currents of 5mA. Decreasing load  
currents will extend the output voltage range even closer  
to the supply rails. Figure 1 shows the input and output  
waveforms for the device in the unity-gain configura-  
tion. Operation is from ±5V supply with a 10kW load  
connected to GND. The input is a 10VP-P sinusoid. The  
The EL5220C and EL5420C are immune to phase rever-  
sal as long as the input voltage is limited from (VS-) ----  
-0.5V to (VS+) +0.5V. Figure 2 shows a photo of the  
output of the device with the input voltage driven  
beyond the supply rails. Although the device's output  
will not change phase, the input's overvoltage should be  
avoided. If an input voltage exceeds supply voltage by  
more than 0.6V, electrostatic protection diodes placed in  
the input stage of the device begin to conduct and over-  
voltage damage could occur.  
output voltage is approximately 9.985VP-P  
.
10  
EL5220C, EL5420C  
12MHz Rail-to-Rail Input-Output Op Amps  
when sourcing, and:  
1V  
100µs  
P
= Si ´ [V ´ I  
+ (V  
i – V -) ´ I  
i]  
LOAD  
DMAX  
S
SMAX  
OUT  
S
when sinking.  
where  
V =±2.5V  
S
i = 1 to 2 for Dual and 1 to 4 for Quad  
VS = Total Supply Voltage  
T =25°C  
A
A =1  
V
V
IN  
=6V  
P-P  
1V  
ISMAX = Maximum Supply Current Per Amplifier  
VOUTi = Maximum Output Voltage of the Application  
ILOADi = Load Current  
Figure 2. Operation with Beyond-the-Rails  
Input  
If we set the two PDMAX equations equal to each other,  
we can solve for RLOADi to avoid device overheat. Fig-  
ures 3, 4, and 5 provide a convenient way to see if the  
device will overheat. The maximum safe power dissipa-  
tion can be found graphically, based on the package type  
and the ambient temperature. By using the previous  
equation, it is a simple matter to see if PDMAX exceeds  
the device's power derating curves. To ensure proper  
operation, it is important to observe the recommended  
derating curves in Figures 3, 4, and 5.  
Power Dissipation  
With the high-output drive capability of the EL5220C  
and EL5420C amplifiers, it is possible to exceed the  
125°C “absolute-maximum junction temperature” under  
certain load current conditions. Therefore, it is important  
to calculate the maximum junction temperature for the  
application to determine if load conditions need to be  
modified for the amplifier to remain in the safe operating  
area.  
JEDEC JESD51-7 High Effective Thermal Conductivity (4-  
Layer) Test Board  
LPP exposed diepad soldered to PCB per JESD51-5  
1200  
The maximum power dissipation allowed in a package is  
determined according to:  
T
– T  
MAX T =125°C  
J
JMAX  
AMAX  
1.136W  
1.0W  
------------------------------------------------  
P
=
1000  
DMAX  
Q
TSSOP14  
=100°C/W  
JA  
q
JA  
800 870mW  
where:  
SO14  
q
=88°C/W  
JA  
600  
400  
200  
TJMAX = Maximum Junction Temperature  
TAMAX= Maximum Ambient Temperature  
qJA = Thermal Resistance of the Package  
MSOP8  
=115°C/W  
q
JA  
PDMAX = Maximum Power Dissipation in the Package  
0
0
25  
50  
75 85 100  
125  
150  
The maximum power dissipation actually produced by  
an IC is the total quiescent supply current times the total  
power supply voltage, plus the power in the IC due to the  
loads, or:  
Ambient Temperature (°C)  
Figure 3. Package Power Dissipation vs  
Ambient Temperature  
P
= Si ´ [V ´ I  
+ (V + – V  
i) ´ I  
i]  
LOAD  
DMAX  
S
SMAX  
S
OUT  
11  
EL5220C, EL5420C  
12MHz Rail-to-Rail Input-Output Op Amps  
the peaking increase. The amplifiers drive 10pF loads in  
parallel with 10kW with just 1.5dB of peaking, and  
100pF with 6.4dB of peaking. If less peaking is desired  
in these applications, a small series resistor (usually  
between 5W and 50W) can be placed in series with the  
output. However, this will obviously reduce the gain  
slightly. Another method of reducing peaking is to add a  
“snubber” circuit at the output. A snubber is a shunt load  
consisting of a resistor in series with a capacitor. Values  
of 150W and 10nF are typical. The advantage of a snub-  
ber is that it does not draw any DC load current or  
reduce the gain  
JEDEC JESD51-3 and SEMI G42-88 (Single Layer) Test  
Board  
1200  
MAX T =125°C  
J
1000  
800  
600  
400  
200  
0
SO14  
=120°C/W  
833mW  
667mW  
q
JA  
LPP16  
=150°C/W  
q
JA  
606mW  
485mW  
TSSOP14  
=165°C/W  
q
JA  
MSOP8  
=206°C/W  
q
JA  
0
25  
50  
75 85 100  
125  
150  
Power Supply Bypassing and Printed Circuit  
Board Layout  
Ambient Temperature (°C)  
Figure 4. Package Power Dissipation vs  
Ambient Temperature  
The EL5220C and EL5420C can provide gain at high  
frequency. As with any high-frequency device, good  
printed circuit board layout is necessary for optimum  
performance. Ground plane construction is highly rec-  
ommended, lead lengths should be as short as possible  
and the power supply pins must be well bypassed to  
reduce the risk of oscillation. For normal single supply  
operation, where the VS- pin is connected to ground, a  
0.1µF ceramic capacitor should be placed from VS+ to  
pin to VS- pin. A 4.7µF tantalum capacitor should then  
be connected in parallel, placed in the region of the  
amplifier. One 4.7µF capacitor may be used for multiple  
devices. This same capacitor combination should be  
placed at each supply pin to ground if split supplies are  
to be used.  
JEDEC JESD51-7 High Effective Thermal Conductivity (4-  
Layer) Test Board  
(LPP exposed diepad soldered to PCB per JESD51-5)  
3
2.500W  
2.5  
2
1.5  
1
0.5  
0
0
25  
50  
75 85 100  
125  
150  
Ambient Temperature (°C)  
Figure 5. Package Power Dissipation vs  
Ambient Temperature  
Unused Amplifiers  
It is recommended that any unused amplifiers in a dual  
and a quad package be configured as a unity gain fol-  
lower. The inverting input should be directly connected  
to the output and the non-inverting input tied to the  
ground plane.  
Driving Capacitive Loads  
The EL5220C and EL5420C can drive a wide range of  
capacitive loads. As load capacitance increases, how-  
ever, the -3dB bandwidth of the device will decrease and  
12  
EL5220C, EL5420C  
12MHz Rail-to-Rail Input-Output Op Amps  
General Disclaimer  
Specifications contained in this data sheet are in effect as of the publication date shown. Elantec, Inc. reserves the right to make changes in the cir-  
cuitry or specifications contained herein at any time without notice. Elantec, Inc. assumes no responsibility for the use of any circuits described  
herein and makes no representations that they are free from patent infringement.  
WARNING - Life Support Policy  
Elantec, Inc. products are not authorized for and should not be used  
within Life Support Systems without the specific written consent of  
Elantec, Inc. Life Support systems are equipment intended to sup-  
port or sustain life and whose failure to perform when properly used  
in accordance with instructions provided can be reasonably  
Elantec Semiconductor, Inc.  
675 Trade Zone Blvd.  
Milpitas, CA 95035  
Telephone: (408) 945-1323  
(888) ELANTEC  
expected to result in significant personal injury or death. Users con-  
templating application of Elantec, Inc. Products in Life Support  
Systems are requested to contact Elantec, Inc. factory headquarters  
to establish suitable terms & conditions for these applications. Elan-  
tec, Inc.’s warranty is limited to replacement of defective  
components and does not cover injury to persons or property or  
other consequential damages.  
Fax:  
(408) 945-9305  
European Office: +44-118-977-6020  
Japan Technical Center: +81-45-682-5820  
Printed in U.S.A.  
13  

EL5420CS-T13 相关器件

型号 制造商 描述 价格 文档
EL5420CS-T7 ELANTEC 12MHz Rail-to-Rail Input-Output Op Amps 获取价格
EL5420CS-T7 INTERSIL 12MHz Rail-to-Rail Input-Output Op Amps 获取价格
EL5420CSZ INTERSIL 12MHz Rail-to-Rail Input-Output Op Amps 获取价格
EL5420CSZ-T13 INTERSIL 12MHz Rail-to-Rail Input-Output Op Amps 获取价格
EL5420CSZ-T7 INTERSIL 12MHz Rail-to-Rail Input-Output Op Amps 获取价格
EL5420T INTERSIL 12MHz Rail-to-Rail Input-Output Operational Amplifier 获取价格
EL5420T RENESAS 12MHz Rail-to-Rail Input-Output Operational Amplifier 获取价格
EL5420TILZ INTERSIL 12MHz Rail-to-Rail Input-Output Operational Amplifier 获取价格
EL5420TILZ RENESAS 12MHz Rail-to-Rail Input-Output Operational Amplifier; QFN16, SOIC14, TSSOP14; Temp Range: -40&amp;deg; to 85&amp;deg;C 获取价格
EL5420TILZ-T13 RENESAS 12MHz Rail-to-Rail Input-Output Operational Amplifier; QFN16, SOIC14, TSSOP14; Temp Range: -40&amp;deg; to 85&amp;deg;C 获取价格

EL5420CS-T13 相关文章

  • Bourns 密封通孔金属陶瓷微调电位计产品选型手册(英文版)
    2024-09-20
    6
  • Bourns 精密环境传感器产品选型手册(英文版)
    2024-09-20
    9
  • Bourns POWrTher 负温度系数(NTC)热敏电阻手册 (英文版)
    2024-09-20
    8
  • Bourns GMOV 混合过压保护组件产品选型手册(英文版)
    2024-09-20
    6