E1922E20 [ELPIDA]

4G bits DDR3L SDRAM; 4G位DDR3L SDRAM
E1922E20
型号: E1922E20
厂家: ELPIDA MEMORY    ELPIDA MEMORY
描述:

4G bits DDR3L SDRAM
4G位DDR3L SDRAM

动态存储器 双倍数据速率
文件: 总29页 (文件大小:426K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
COVER  
DATA SHEET  
4G bits DDR3L SDRAM  
EDJ4204EFBG (1024M words × 4 bits)  
EDJ4208EFBG (512M words × 8 bits)  
EDJ4216EFBG (256M words × 16 bits)  
Specifications  
Features  
• Density: 4G bits  
• Organization  
• Double-data-rate architecture: two data transfers per  
clock cycle  
• The high-speed data transfer is realized by the 8 bits  
prefetch pipelined architecture  
• Bi-directional differential data strobe (DQS and /DQS)  
is transmitted/received with data for capturing data at  
the receiver  
— 128M words × 4 bits × 8 banks (EDJ4204EFBG)  
— 64M words × 8 bits × 8 banks (EDJ4208EFBG)  
— 32M words × 16 bits × 8 banks (EDJ4216EFBG)  
• Package  
— 78-ball FBGA (EDJ4204EFBG, EDJ4208EFBG)  
— 96-ball FBGA (EDJ4216EFBG)  
— Lead-free (RoHS compliant) and Halogen-free  
• Power supply: 1.35V (typ)  
• DQS is edge-aligned with data for READs; center-  
aligned with data for WRITEs  
• Differential clock inputs (CK and /CK)  
• DLL aligns DQ and DQS transitions with CK transitions  
— VDD = 1.283V to 1.45V  
— Backward compatible for VDD, VDDQ  
= 1.5V 0.075V  
• Commands entered on each positive CK edge; data  
and data mask referenced to both edges of DQS  
• Data mask (DM) for write data  
• Data rate  
— 1600Mbps/1333Mbps (max)  
• 1KB page size  
• Posted /CAS by programmable additive latency for  
better command and data bus efficiency  
• On-Die Termination (ODT) for better signal quality  
— Synchronous ODT  
— Row address: A0 to A15  
— Column address: A0 to A9, A11 (EDJ4204EFBG)  
A0 to A9 (EDJ4208EFBG)  
— Dynamic ODT  
— Asynchronous ODT  
• Multi Purpose Register (MPR) for pre-defined pattern  
read out  
• 2KB page size (EDJ4216EFBG)  
— Row address: A0 to A14  
• ZQ calibration for DQ drive and ODT  
• Programmable Partial Array Self-Refresh (PASR)  
• /RESET pin for Power-up sequence and reset function  
• SRT range:  
— Normal/extended  
• Programmable Output driver impedance control  
— Column address: A0 to A9  
• Eight internal banks for concurrent operation  
• Burst length (BL): 8 and 4 with Burst Chop (BC)  
• Burst type (BT):  
— Sequential (8, 4 with BC)  
— Interleave (8, 4 with BC)  
• /CAS Latency (CL): 5, 6, 7, 8, 9, 10, 11  
• /CAS Write Latency (CWL): 5, 6, 7, 8  
• Precharge: auto precharge option for each burst  
access  
• Driver strength: RZQ/7, RZQ/6 (RZQ = 240Ω)  
• Refresh: auto-refresh, self-refresh  
• Refresh cycles  
— Average refresh period  
7.8μs at 0°C TC +85°C  
3.9μs at +85°C < TC +95°C  
• Operating case temperature range  
— TC = 0°C to +95°C  
Document. No. E1922E20 (Ver. 2.0)  
Date Published May 2013 (K) Japan  
Printed in Japan  
URL: http://www.elpida.com  
Elpida Memory, Inc. 2012-2013  
EDJ4204EFBG, EDJ4208EFBG, EDJ4216EFBG  
Ordering Information  
Die  
revision  
Organization  
(words × bits)  
Internal  
banks  
JEDEC speed bin  
(CL-tRCD-tRP)  
Part number  
Package  
EDJ4204EFBG-GN-F  
EDJ4204EFBG-DJ-F  
DDR3L-1600K (11-11-11)  
DDR3L-1333H (9-9-9)  
78-ball FBGA  
F
F
F
1024M × 4  
512M × 8  
256M × 16  
8
8
8
EDJ4208EFBG-GN-F  
EDJ4208EFBG-DJ-F  
DDR3L-1600K (11-11-11)  
DDR3L-1333H (9-9-9)  
78-ball FBGA  
96-ball FBGA  
EDJ4216EFBG-GN-F  
EDJ4216EFBG-DJ-F  
DDR3L-1600K (11-11-11)  
DDR3L-1333H (9-9-9)  
Note: 1. Please refer to the EDJ4204BFBG, EDJ4208BFBG, EDJ4216BFBG datasheet (E1923E) when using this device at 1.5V  
operation, unless stated otherwise.  
Part Number  
E D J 42 04 E F BG - GN - F  
Environment code  
Elpida Memory  
F: Lead Free (RoHS compliant)  
and Halogen Free  
Type  
D: Packaged Device  
Product Family  
J: DDR3  
Speed  
GN: DDR3L-1600K (11-11-11)  
DJ: DDR3L-1333H (9-9-9)  
Density / Bank  
42: 4Gb / 8-bank  
Organization  
04: x4  
Package  
BG: FBGA  
08: x8  
16: x16  
Revision  
Power Supply  
E: 1.35V  
Detailed Information  
For detailed electrical specification and further information, please refer to the DDR3L SDRAM General Functionality  
and Electrical Condition data sheet (E1927E).  
Data Sheet E1922E20 (Ver. 2.0)  
2
EDJ4204EFBG, EDJ4208EFBG, EDJ4216EFBG  
Pin Configurations  
Pin Configurations (×4/×8 configuration)  
/xxx indicates active low signal.  
78-ball FBGA (×4 configuration)  
78-ball FBGA (×8 configuration)  
1
2
3
7
8
9
1
2
3
7
8
9
A
B
A
B
VSS  
VDD  
NC  
NC  
VSS  
VDD  
VSS  
VDD  
NC  
NU/(/TDQS) VSS  
VDD  
VSS VSSQ DQ0  
DM VSSQ VDDQ  
VSS VSSQ DQ0  
VDDQ  
DM/TDQS VSSQ VDDQ  
C
D
C
D
VDDQ  
VSSQ  
DQ2 DQS  
NC /DQS  
DQ1  
VDD  
NC  
DQ3 VSSQ  
VSSQ  
NC VDDQ  
NC  
VDD CKE  
DQ2 DQS  
DQ1  
VDD  
DQ7  
DQ3 VSSQ  
VSSQ  
VSS  
VSSQ DQ6 /DQS  
VSS  
DQ5  
E
F
G
H
J
E
F
G
H
J
DQ4  
VREFDQ VDDQ NC  
NC VSS /RAS  
ODT VDD /CAS  
VREFDQ VDDQ  
VDDQ  
NC  
CK  
/CK  
VSS  
NC  
VSS /RAS  
CK  
/CK  
VSS  
ODT VDD /CAS  
VDD CKE  
A10(AP)  
A10(AP)  
ZQ  
NC  
ZQ  
NC  
NC  
/CS  
BA0  
A3  
/WE  
BA2  
A0  
NC  
/CS  
/WE  
VSS  
VDD  
VSS  
VDD  
VSS  
VSS  
VDD  
BA0  
A3  
BA2  
A0  
A15 VREFCA VSS  
A15 VREFCA VSS  
K
L
K
L
A12(/BC) BA1  
VDD  
VSS  
VDD  
VSS  
A12(/BC) BA1  
VDD  
VSS  
VDD  
VSS  
A5  
A2  
A1  
A4  
A6  
A8  
VSS  
VDD  
VSS  
A5  
A7  
A2  
A9  
A1  
A4  
A6  
A8  
M
N
M
N
A7  
A9  
A11  
A14  
A11  
A14  
/RESET A13  
/RESET A13  
(Top view)  
(Top view)  
Pin name  
Function  
Pin name  
Function  
Address inputs  
A0 to A15*3  
A10(AP): Auto precharge  
A12(/BC): Burst chop  
/RESET*3  
Active low asynchronous reset  
BA0 to BA2*3  
DQ0 to DQ7  
DQS, /DQS  
TDQS, /TDQS  
/CS*3  
Bank select  
VDD  
Supply voltage for internal circuit  
Ground for internal circuit  
Supply voltage for DQ circuit  
Ground for DQ circuit  
Data input/output  
Differential data strobe  
Termination data strobe  
Chip select  
VSS  
VDDQ  
VSSQ  
VREFDQ  
VREFCA  
ZQ  
NC*1  
NU*2  
Reference voltage for DQ  
Reference voltage for CA  
Reference pin for ZQ calibration  
No connection  
/RAS, /CAS, /WE*3  
CKE*3  
Command input  
Clock enable  
CK, /CK  
Differential clock input  
Write data mask  
ODT control  
DM  
ODT*3  
Not usable  
Notes: 1. Not internally connected with die.  
2. Don't connect. Internally connected.  
3. Input only pins (address, command, CKE, ODT and /RESET) do not supply termination.  
Data Sheet E1922E20 (Ver. 2.0)  
3
EDJ4204EFBG, EDJ4208EFBG, EDJ4216EFBG  
Pin Configurations (× 16 configuration)  
/xxx indicates active low signal.  
96-ball FBGA  
3
1
2
7
8
9
A
B
C
D
E
VDDQ DQU5 DQU7  
VSSQ VDD VSS  
DQU4 VDDQ VSS  
/DQSU DQU6 VSSQ  
DQSU DQU2 VDDQ  
DQU0 VSSQ VDD  
VDDQ  
DQU3 DQU1  
VSSQ VDDQ DMU  
VSS VSSQ DQL0  
DML VSSQ VDDQ  
DQL1 DQL3 VSSQ  
F
G
H
J
VDDQ DQL2 DQSL  
VSSQ DQL6 /DQSL  
VREFDQ VDDQ DQL4  
VDD  
VSS VSSQ  
DQL7 DQL5 VDDQ  
NC  
VSS /RAS  
CK  
VSS  
VDD  
NC  
CKE  
NC  
K
L
/CK  
ODT VDD /CAS  
NC  
/CS  
/WE  
BA2  
A10(AP) ZQ  
M
N
P
R
T
VSS  
BA0  
NC VREFCA VSS  
VDD  
VSS  
VDD  
A3  
A5  
A7  
A0  
A2  
A9  
A12(/BC) BA1  
VDD  
VSS  
VDD  
VSS  
A1  
A4  
A6  
A8  
A11  
A14  
VSS /RESET A13  
(Top view)  
Pin name  
Function  
Address inputs  
Pin name  
Function  
A0 to A14*2  
BA0 to BA2*2  
A10(AP): Auto precharge  
A12(/BC): Burst chop  
/RESET*2  
Active low asynchronous reset  
Bank select  
VDD  
VSS  
Supply voltage for internal circuit  
Ground for internal circuit  
DQU0 to DQU7  
DQL0 to DQL7  
Data input/output  
DQSU, /DQSU  
DQSL, /DQSL  
Differential data strobe  
VDDQ  
Supply voltage for DQ circuit  
/CS*2  
/RAS, /CAS, /WE*2  
CKE*2  
Chip select  
VSSQ  
VREFDQ  
VREFCA  
ZQ  
Ground for DQ circuit  
Command input  
Clock enable  
Reference voltage for DQ  
Reference voltage for CA  
Reference pin for ZQ calibration  
No connection  
CK, /CK  
Differential clock input  
Write data mask  
ODT control  
DMU, DML  
ODT*2  
NC*1  
Notes: 1. Not internally connected with die.  
2. Input only pins (address, command, CKE, ODT and /RESET) do not supply termination.  
Data Sheet E1922E20 (Ver. 2.0)  
4
EDJ4204EFBG, EDJ4208EFBG, EDJ4216EFBG  
CONTENTS  
Specifications ........................................................................................................................................ 1  
Features ................................................................................................................................................ 1  
Ordering Information ............................................................................................................................. 2  
Part Number .......................................................................................................................................... 2  
Detailed Information .............................................................................................................................. 2  
Pin Configurations ................................................................................................................................. 3  
1. Electrical Conditions ...................................................................................................................... 6  
1.1  
1.2  
1.3  
1.4  
Absolute Maximum Ratings ..............................................................................................................6  
Operating Temperature Condition ....................................................................................................6  
Recommended DC Operating Conditions ........................................................................................7  
IDD and IDDQ Measurement Conditions ..........................................................................................8  
2. Electrical Specifications ............................................................................................................... 19  
2.1  
2.2  
2.3  
DC Characteristics ..........................................................................................................................19  
Pin Capacitance ..............................................................................................................................20  
Standard Speed Bins ......................................................................................................................21  
3. Package Drawing ......................................................................................................................... 25  
3.1  
3.2  
78-ball FBGA ..................................................................................................................................25  
96-ball FBGA ..................................................................................................................................26  
4. Recommended Soldering Conditions .......................................................................................... 27  
Data Sheet E1922E20 (Ver. 2.0)  
5
EDJ4204EFBG, EDJ4208EFBG, EDJ4216EFBG  
1. Electrical Conditions  
• All voltages are referenced to VSS (GND)  
• Execute power-up and Initialization sequence before proper device operation is achieved.  
1.1 Absolute Maximum Ratings  
Table 1: Absolute Maximum Ratings  
Parameter  
Symbol  
VDD  
Rating  
Unit  
V
Notes  
Power supply voltage  
Power supply voltage for output  
Input voltage  
0.4 to +1.975  
0.4 to +1.975  
0.4 to +1.975  
0.4 to +1.975  
0.4 to 0.6 × VDD  
0.4 to 0.6 × VDDQ  
55 to +100  
1.0  
1, 3  
1, 3  
1
VDDQ  
VIN  
V
V
Output voltage  
VOUT  
VREFCA  
VREFDQ  
Tstg  
V
1
Reference voltage  
Reference voltage for DQ  
Storage temperature  
Power dissipation  
V
3
V
3
°C  
W
mA  
1, 2  
1
PD  
Short circuit output current  
IOUT  
50  
1
Notes: 1. Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This  
is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the  
operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended  
periods may affect reliability.  
2. Storage temperature is the case surface temperature on the center/top side of the DRAM.  
3. VDD and VDDQ must be within 300mV of each other at all times; and VREF must be no greater than 0.6 × VDDQ, When  
VDD and VDDQ are less than 500mV; VREF may be equal to or less than 300mV.  
Caution: Exposing the device to stress above those listed in Absolute Maximum Ratings could cause  
permanent damage. The device is not meant to be operated under conditions outside the limits  
described in the operational section of this specification. Exposure to Absolute Maximum Rating  
conditions for extended periods may affect device reliability.  
1.2 Operating Temperature Condition  
Table 2: Operating Temperature Condition  
Parameter  
Symbol  
Rating  
Unit  
Notes  
Operating case temperature  
TC  
0 to +95  
°C  
1, 2, 3  
Notes: 1. Operating temperature is the case surface temperature on the center/top side of the DRAM.  
2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported. During  
operation, the DRAM case temperature must be maintained between 0°C to +85°C under all operating conditions.  
3. Some applications require operation of the DRAM in the Extended Temperature Range between +85°C and +95°C case  
temperature. Full specifications are guaranteed in this range, but the following additional conditions apply:  
a) Refresh commands must be doubled in frequency, therefore reducing the refresh interval tREFI to 3.9μs. (This double  
refresh requirement may not apply for some devices.)  
b) If Self-refresh operation is required in the Extended Temperature Range, then it is mandatory to either use the Manual  
Self-Refresh mode with Extended Temperature Range capability (MR2 bit [A6, A7] = [0, 1]) or enable the optional Auto  
Self-Refresh mode (MR2 bit [A6, A7] = [1, 0]).  
Data Sheet E1922E20 (Ver. 2.0)  
6
EDJ4204EFBG, EDJ4208EFBG, EDJ4216EFBG  
1.3 Recommended DC Operating Conditions  
Table 3: Recommended DC Operating Conditions (TC = 0°C to +85°C), DDR3L Operation  
Parameter  
Symbol  
VDD  
min.  
typ.  
1.35  
1.35  
max.  
1.45  
1.45  
Unit  
V
Notes  
Supply voltage  
Supply voltage for DQ  
1.283  
1.283  
1, 2, 3, 4  
1, 2, 3, 4  
VDDQ  
V
Notes: 1. Maximum DC value may not be greater than 1.425V. The DC value is the linear average of VDD/VDDQ(t) over a very  
long period of time (e.g. 1 sec).  
2. If maximum limit is exceeded, input levels shall be governed by DDR3 specifications.  
3. Under these supply voltages, the device operates to this DDR3L specifcation.  
4. Once initialized for DDR3L operation, DDR3 operation may only be used if the device is in reset while  
5. VDD and VDDQ are changed for DDR3 operation shown as following timing wave form.  
Table 4: Recommended DC Operating Conditions (TC = 0°C to +85°C), DDR3 Operation  
Parameter  
Symbol  
VDD  
min  
typ  
1.5  
1.5  
max  
Unit  
V
Notes  
1, 2, 3  
1, 2, 3  
Supply voltage  
Supply voltage for DQ  
1.425  
1.425  
1.575  
1.575  
VDDQ  
V
Notes: 1. If minimum limit is exceeded, input levels shall be governed by DDR3L specifications.  
2. Under 1.5V operation, this DDR3L device operates to the DDR3 specifcations under the same speedtimings as defined  
for this device.  
3. Once initialized for DDR3 operation, DDR3L operation may only be used if the device is in reset while VDD and VDDQ  
are changed for DDR3L operation shown as below.  
Ta  
Tb  
Tc  
Td  
Te  
Tf  
Tg  
Th  
Ti  
Tj  
Tk  
CK, /CK  
tCKSRX  
T(min) = 10ns  
VDD, VDDQ (DDR3)  
VDD, VDDQ (DDR3L)  
T(min) = 10ns  
T(min) = 200μs  
T = 500μs  
/RESET  
CKE  
tIS  
T(min) = 10ns  
Valid  
tDLLK  
ZQCL  
tXPR  
tMRD  
tMRD  
tMRD  
tMOD  
tZQinit  
*1  
tIS  
*1  
MRS  
MR2  
MRS  
MR3  
MRS  
MR1  
MRS  
MR0  
Valid  
Valid  
Command  
BA  
ODT  
RTT  
tIS  
tIS  
Valid  
Static low in case RTT_Nore is enabled at time Tg, otherwise static high or low  
: VIH or VIL  
Note: 1. From time point Td until Tk, NOP or DES commands must be applied between MRS and ZQCL commands.  
Figure 1: VDD/VDDQ Voltage Switch between DDR3L and DDR3  
Data Sheet E1922E20 (Ver. 2.0)  
7
EDJ4204EFBG, EDJ4208EFBG, EDJ4216EFBG  
1.4 IDD and IDDQ Measurement Conditions  
In this chapter, IDD and IDDQ measurement conditions such as test load and patterns are defined.  
The figure Measurement Setup and Test Load for IDD and IDDQ Measurements shows the setup and test load for IDD  
and IDDQ measurements.  
• IDD currents (such as IDD0, IDD1, IDD2N, IDD2NT, IDD2P0, IDD2P1, IDD2Q, IDD3N, IDD3P, IDD4R, IDD4W,  
IDD5B, IDD6, IDD6ET, IDD6TC and IDD7) are measured as time-averaged currents with all VDD balls of the DDR3  
SDRAM under test tied together. Any IDDQ current is not included in IDD currents.  
• IDDQ currents (such as IDDQ2NT and IDDQ4R) are measured as time-averaged currents with all VDDQ balls of  
the DDR3 SDRAM under test tied together. Any IDD current is not included in IDDQ currents.  
Note:IDDQ values cannot be directly used to calculate I/O power of the DDR3 SDRAM. They can be used to support  
correlation of simulated I/O power to actual I/O power as outlined in correlation from simulated channel I/O  
power to actual channel I/O power supported by IDDQ measurement.  
For IDD and IDDQ measurements, the following definitions apply:  
• L and 0: VIN VIL(AC)max  
• H and 1: VIN VIH(AC)min  
• MID-LEVEL: defined as inputs are VREF = VDDQ / 2  
• FLOATING: don't care or floating around VREF.  
• Timings used for IDD and IDDQ measurement-loop patterns are provided in Timings used for IDD and IDDQ  
Measurement-Loop Patterns table.  
• Basic IDD and IDDQ measurement conditions are described in Basic IDD and IDDQ Measurement Conditions  
table.  
Note:The IDD and IDDQ measurement-loop patterns need to be executed at least one time before actual IDD or  
IDDQ measurement is started.  
• Detailed IDD and IDDQ measurement-loop patterns are described in IDD0 Measurement-Loop Pattern table  
through IDD7 Measurement-Loop Pattern table.  
• IDD Measurements are done after properly initializing the DDR3 SDRAM. This includes but is not limited to setting.  
RON = RZQ/7 (34Ω in MR1);  
Qoff = 0B (Output Buffer enabled in MR1);  
RTT_Nom = RZQ/6 (40Ω in MR1);  
RTT_WR = RZQ/2 (120Ω in MR2);  
TDQS Feature disabled in MR1  
• Define D = {/CS, /RAS, /CAS, /WE} : = {H, L, L, L}  
• Define /D = {/CS, /RAS, /CAS, /WE} : = {H, H, H, H}  
Data Sheet E1922E20 (Ver. 2.0)  
8
EDJ4204EFBG, EDJ4208EFBG, EDJ4216EFBG  
IDD  
IDDQ  
VDD  
VDDQ  
/RESET  
CK, /CK  
DDR3  
SDRAM  
RTT = 25Ω  
DQS, /DQS,  
DQ, DM,  
CKE  
VDDQ/2  
/CS  
TDQS, /TDQS  
/RAS, /CAS, /WE  
Address, BA  
ODT  
ZQ  
VSSQ  
VSS  
Figure 2: Measurement Setup and Test Load for IDD and IDDQ Measurements  
Application specific  
memory channel  
environment  
IDDQ  
Test load  
Channel  
I/O power  
simulation  
IDDQ  
measurement  
IDDQ  
simulation  
Correlation  
Correction  
Channel I/O power  
number  
Figure 3: Correlation from Simulated Channel I/O Power to Actual Channel I/O Power  
Supported by IDDQ Measurement  
Data Sheet E1922E20 (Ver. 2.0)  
9
EDJ4204EFBG, EDJ4208EFBG, EDJ4216EFBG  
1.4.1  
Timings Used for IDD and IDDQ Measurement-Loop Patterns  
Table 5: Timings Used for IDD and IDDQ Measurement-Loop Patterns  
DDR3-800  
DDR3-1066  
DDR3-1333  
DDR3-1600  
Parameter  
CL  
6-6-6  
6
7-7-7  
7
9-9-9  
9
11-11-11  
11  
Unit  
nCK  
ns  
tCK(min)  
2.5  
6
1.875  
7
1.5  
9
1.25  
11  
nRCD(min)  
nRC(min)  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
21  
15  
6
27  
20  
7
33  
24  
9
39  
nRAS(min)  
nRP(min)  
28  
11  
nFAW (1KB)  
nFAW (2KB, 4KB)  
nRRD (1KB)  
nRRD (2KB, 4KB)  
nRFC (1Gb)  
nRFC (2Gb)  
nRFC (4Gb)  
16  
20  
4
20  
27  
4
20  
30  
4
24  
32  
5
4
6
5
6
44  
64  
104  
59  
86  
139  
74  
107  
174  
88  
128  
208  
Data Sheet E1922E20 (Ver. 2.0)  
10  
EDJ4204EFBG, EDJ4208EFBG, EDJ4216EFBG  
1.4.2  
Basic IDD and IDDQ Measurement Conditions  
Table 6: Basic IDD and IDDQ Measurement Conditions  
Parameter  
Symbol  
Description  
CKE: H; External clock: on; tCK, nRC, nRAS, CL: see Table 5; BL: 8*1; AL: 0; /CS: H  
between ACT and PRE; Command, address, bank address inputs: partially toggling  
according to Table 7; Data I/O: MID-LEVEL; DM: stable at 0;  
Bank activity: cycling with one bank active at a time: 0,0,1,1,2,2,... (see Table 7);  
Output buffer and RTT: enabled in MR*2; ODT signal: stable at 0; Pattern details: see  
Table 7  
Operating one bank  
active precharge  
current  
IDD0  
CKE: H; External clock: On; tCK, nRC, nRAS, nRCD, CL: see Table 5; BL: 8*1, *6; AL:  
0; /CS: H between ACT, RD and PRE; Command, address, bank address inputs, data  
I/O: partially toggling according to Table 8;  
Operating one bank  
active-read-precharge  
current  
IDD1  
DM: stable at 0; Bank activity: cycling with one bank active at a time: 0,0,1,1,2,2,...  
(see Table 8); Output buffer and RTT: enabled in MR*2; ODT Signal: stable at 0;  
Pattern details: see Table 8  
CKE: H; External clock: on; tCK, CL: see Table 5 BL: 8*1; AL: 0; /CS: stable at 1;  
Command, address, bank address Inputs: partially toggling according to Table 9;  
data I/O: MID-LEVEL; DM: stable at 0; bank activity: all banks closed; output buffer  
and RTT: enabled in mode registers*2; ODT signal: stable at 0; pattern details: see  
Table 9  
Precharge standby  
current  
IDD2N  
CKE: H; External clock: on; tCK, CL: see Table 5; BL: 8*1; AL: 0; /CS: stable at 1;  
Command, address, bank address Inputs: partially toggling according to Table 10;  
data I/O: MID-LEVEL; DM: stable at 0; bank activity: all banks closed; output buffer  
and RTT: enabled in MR*2; ODT signal: toggling according to Table 10; pattern  
details: see Table 10  
Precharge standby  
ODT current  
IDD2NT  
Precharge standby  
ODT IDDQ current  
Same definition like for IDD2NT, however measuring IDDQ current instead of IDD  
current  
CKE: L; External clock: on; tCK, CL: see Table 5; BL: 8*1; AL: 0; /CS: stable at 1;  
Command, address, bank address inputs: stable at 0; data I/O: MID-LEVEL; DM:  
stable at 0; bank activity: all banks closed; output buffer and RTT: EMR*2; ODT  
signal: stable at 0; precharge power down mode: slow exit*3  
IDDQ2NT  
IDD2P0  
Precharge power-down  
current slow exit  
CKE: L; External clock: on; tCK, CL: see Table 6; BL: 8*1; AL: 0; /CS: stable at 1;  
Command, address, bank address Inputs: stable at 0; data I/O: MID-LEVEL;  
DM:stable at 0; bank activity: all banks closed; output buffer and RTT: enabled in  
MR*2; ODT signal: stable at 0; precharge power down mode: fast exit*3  
CKE: H; External clock: On; tCK, CL: see Table 5; BL: 8*1; AL: 0; /CS: stable at 1;  
Command, address, bank address Inputs: stable at 0; data I/O: MID-LEVEL;  
DM: stable at 0;bank activity: all banks closed; output buffer and RTT: enabled in  
MR*2; ODT signal: stable at 0  
Precharge power-down  
current fast exit  
IDD2P1  
IDD2Q  
Precharge quiet  
standby current  
CKE: H; External clock: on; tCK, CL: see Table 5; BL: 8*1; AL: 0; /CS: stable at 1;  
Command, address, bank address Inputs: partially toggling according to Table 9;  
data I/O: MID-LEVEL; DM: stable at 0;  
bank activity: all banks open; output buffer and RTT: enabled in MR*2;  
ODT signal: stable at 0; pattern details: see Table 9  
CKE: L; External clock: on; tCK, CL: see Table 5; BL: 8*1; AL: 0; /CS: stable at 1;  
Command, address, bank address inputs: stable at 0; data I/O: MID-LEVEL;  
DM:stable at 0; bank activity: all banks open; output buffer and RTT:  
enabled in MR*2; ODT signal: stable at 0  
Active standby current  
IDD3N  
IDD3P  
Active power-down  
current  
CKE: H; External clock: on; tCK, CL: see Table 5; BL: 8*1, *6; AL: 0; /CS: H between  
RD; Command, address, bank address Inputs: partially toggling according to  
Table 11; data I/O: seamless read  
Operating burst read  
current  
data burst with different data between one burst and the next one according to  
Table 11; DM: stable at 0;  
IDD4R  
bank activity: all banks open, RD commands cycling through banks: 0,0,1,1,2,2,...  
(see Table 11); Output buffer and RTT: enabled in MR*2; ODT signal: stable at 0;  
pattern details: see Table 11  
Operating burst read  
IDDQ current  
Same definition like for IDD4R, however measuring IDDQ current instead of IDD  
current  
IDDQ4R  
Data Sheet E1922E20 (Ver. 2.0)  
11  
EDJ4204EFBG, EDJ4208EFBG, EDJ4216EFBG  
Table 6: Basic IDD and IDDQ Measurement Conditions (cont’d)  
Parameter  
Symbol  
Description  
CKE: H; External clock: on; tCK, CL: see Table 5; BL: 8*1; AL: 0; /CS: H between WR;  
command, address, bank address inputs: partially toggling according to Table 12;  
data I/O: seamless write data burst with different data between one burst and the next  
one according to IDD4W Measurement-Loop Pattern table; DM: stable at 0; bank  
activity: all banks open,  
Operating burst write current IDD4W  
WR commands cycling through banks: 0,0,1,1,2,2,.. (see Table 12); Output buffer  
and RTT: enabled in MR*2; ODT signal: stable  
at H; pattern details: see Table 12  
CKE: H; External clock: on; tCK, CL, nRFC: see Table 5; BL: 8*1; AL: 0; /CS: H  
between REF;  
Command, address, bank address Inputs: partially toggling according to Table 13;  
data I/O: MID-LEVEL; DM: stable at 0;  
Burst refresh current  
IDD5B  
IDD6  
bank activity: REF command every nRFC (Table 13); output buffer and RTT: enabled  
in MR*2; ODT signal: stable at 0; pattern  
details: see Table 13  
TC: 0 to 85°C; ASR: disabled*4; SRT:  
Normal*5; CKE: L; External clock: off; CK and /CK: L; CL: see Table 5; BL: 8*1;  
AL: 0; /CS, command, address, bank address, data I/O: MID-LEVEL; DM: stable  
at 0; bank activity: Self-refresh operation; output buffer and RTT: enabled in MR*2;  
ODT signal: MID-LEVEL  
Self-refresh current: normal  
temperature range  
TC: 0 to 95°C; ASR: Disabled*4; SRT: Extended*5; CKE: L; External clock: off; CK  
and /CK: L; CL: Table 5; BL: 8*1; AL: 0; /CS, command, address, bank address, data  
I/O: MID-LEVEL;  
Self-refresh current: extended  
temperature range  
IDD6ET  
IDD6TC  
DM: stable at 0; bank activity: Extended temperature self-refresh operation; output  
buffer and RTT: enabled in MR*2; ODT signal: MID-LEVEL  
TC: 0 to 95°C; ASR: Enabled*4; SRT: Normal*5; CKE: L; External clock: off;  
CK and /CK: L; CL: Table 5; BL: 8*1; AL: 0; /CS, command, address, bank address,  
data I/O: MID-LEVEL; DM: stable at 0; bank activity: Auto self-refresh operation;  
output buffer and RTT: enabled in MR*2; ODT signal: MID-LEVEL  
Auto self-refresh current  
(Optional)  
CKE: H; External clock: on; tCK, nRC, nRAS, nRCD, nRRD, nFAW, CL: see Table 5;  
BL: 8*1, *6; AL: CL-1; /CS: H between ACT and RDA; Command, address, bank  
address Inputs: partially toggling according to Table 14; data I/O: read data bursts  
with different data between one burst and the next one according to Table 14; DM:  
stable at 0; bank activity: two times interleaved cycling through banks (0, 1, …7) with  
different addressing, see Table 14; output buffer and RTT: enabled in MR*2; ODT  
signal: stable at 0; pattern details: see Table 14  
Operating bank interleave  
read current  
IDD7  
IDD8  
/RESET: low; External clock: off; CK and /CK: low; CKE: FLOATING; /CS, command,  
address, bank address, Data IO: FLOATING; ODT signal: FLOATING  
RESET low current reading is valid once power is stable and /RESET has been low  
for at least 1ms.  
RESET low current  
Notes: 1. Burst Length: BL8 fixed by MRS: MR0 bits [1,0] = [0,0].  
2. MR: Mode Register  
Output buffer enable: set MR1 bit A12 = 1 and MR1 bits [5, 1] = [0,1];  
RTT_Nom enable: set MR1 bits [9, 6, 2] = [0, 1, 1]; RTT_WR enable: set MR2 bits [10, 9] = [1,0].  
3. Precharge power down mode: set MR0 bit A12= 0 for Slow Exit or MR0 bit A12 = 1 for fast exit.  
4. Auto self-refresh (ASR): set MR2 bit A6 = 0 to disable or 1 to enable feature.  
5. Self-refresh temperature range (SRT): set MR0 bit A7= 0 for normal or 1 for extended temperature range.  
6. Read burst type: nibble sequential, set MR0 bit A3 = 0  
Data Sheet E1922E20 (Ver. 2.0)  
12  
EDJ4204EFBG, EDJ4208EFBG, EDJ4216EFBG  
Table 7: IDD0 Measurement-Loop Pattern  
CK,  
/CK  
Sub  
Cycle  
Com-  
A11  
A7  
A3  
A0  
CKE  
-Loop number mand /CS /RAS /CAS /WE ODT BA*3 -Am A10 -A9 -A6 -A2 Data*2  
0
ACT  
D, D  
/D, /D  
0
1
1
0
0
1
1
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1, 2  
3, 4  
Repeat pattern 1…4 until nRAS 1, truncate if necessary  
PRE  
Repeat pattern 1...4 until nRC 1, truncate if necessary  
nRAS  
0
0
1
0
0
0
0
0
0
0
0
1 × nRC  
+ 0  
ACT  
D, D  
/D, /D  
0
1
1
0
0
1
1
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
F
F
F
0
0
0
0
1 × nRC  
+1, 2  
1 × nRC  
+ 3, 4  
Toggling Static H  
Repeat pattern nRC + 1,...,4 until 1 × nRC + nRAS 1, truncate if necessary  
PRE  
Repeat nRC + 1,...,4 until 2 × nRC 1, truncate if necessary  
1 × nRC  
+ nRAS  
0
0
1
0
0
0
0
0
0
F
0
1
2
3
4
5
6
7
2 × nRC Repeat Sub-Loop 0, use BA= 1 instead  
4 × nRC Repeat Sub-Loop 0, use BA= 2 instead  
6 × nRC Repeat Sub-Loop 0, use BA= 3 instead  
8 × nRC Repeat Sub-Loop 0, use BA= 4 instead  
10 × nRC Repeat Sub-Loop 0, use BA= 5 instead  
12 × nRC Repeat Sub-Loop 0, use BA= 6 instead  
14 × nRC Repeat Sub-Loop 0, use BA= 7 instead  
Notes: 1. DM must be driven low all the time. DQS, /DQS are MID-LEVEL.  
2. DQ signals are MID-LEVEL.  
3. BA: BA0 to BA2.  
4. Am: m means Most Significant Bit (MSB) of Row address.  
Data Sheet E1922E20 (Ver. 2.0)  
13  
EDJ4204EFBG, EDJ4208EFBG, EDJ4216EFBG  
Table 8: IDD1 Measurement-Loop Pattern  
CK,  
/CK  
Sub  
Cycle  
Com-  
A11  
A7 A3 A0  
CKE  
-Loop number mand /CS /RAS /CAS /WE ODT BA*3 -Am A10 -A9 -A6 -A2 Data*2  
0
ACT  
D, D  
/D, /D  
0
1
1
0
0
1
1
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1, 2  
3, 4  
Repeat pattern 1...4 until nRCD 1, truncate if necessary  
RD  
Repeat pattern 1...4 until nRAS 1, truncate if necessary  
PRE  
Repeat pattern 1...4 until nRC 1, truncate if necessary  
nRCD  
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
00000000  
nRAS  
0
0
1
0
0
0
0
1 × nRC  
+ 0  
ACT  
D, D  
/D, /D  
0
1
1
0
0
1
1
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
F
F
F
0
0
0
0
1 × nRC  
+ 1, 2  
1 × nRC  
+ 3, 4  
Toggling Static H  
Repeat pattern nRC + 1,..., 4 until nRC + nRCD 1, truncate if necessary  
RD  
Repeat pattern nRC + 1,..., 4 until nRC +nRAS 1, truncate if necessary  
PRE  
Repeat pattern nRC + 1,..., 4 until 2 × nRC 1, truncate if necessary  
1 × nRC  
+ nRCD  
0
1
0
1
0
0
0
0
0
F
0
0
00110011  
1 × nRC  
+ nRAS  
0
0
1
0
0
0
0
0
0
F
1
2
3
4
5
6
7
2 × nRC Repeat Sub-Loop 0, use BA= 1 instead  
4 × nRC Repeat Sub-Loop 0, use BA= 2 instead  
6 × nRC Repeat Sub-Loop 0, use BA= 3 instead  
8 × nRC Repeat Sub-Loop 0, use BA= 4 instead  
10 × nRC Repeat Sub-Loop 0, use BA= 5 instead  
12 × nRC Repeat Sub-Loop 0, use BA= 6 instead  
14 × nRC Repeat Sub-Loop 0, use BA= 7 instead  
Notes: 1. DM must be driven low all the time. DQS, /DQS are used according to read commands, otherwise MID-LEVEL.  
2. Burst sequence driven on each DQ signal by read command. Outside burst operation, DQ signals are MID-LEVEL.  
3. BA: BA0 to BA2.  
4. Am: m means Most Significant Bit (MSB) of Row address.  
Data Sheet E1922E20 (Ver. 2.0)  
14  
EDJ4204EFBG, EDJ4208EFBG, EDJ4216EFBG  
Table 9: IDD2N and IDD3N Measurement-Loop Pattern  
CK,  
/CK  
Sub  
Cycle  
Com-  
A11  
A7  
A3  
A0  
CKE  
-Loop number mand /CS /RAS /CAS /WE ODT BA*3 -Am A10 -A9 -A6 -A2 Data*2  
0
D
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
F
F
0
0
0
0
1
D
0
1
2
/D  
/D  
3
4 to 7  
8 to 11  
Repeat Sub-Loop 0, use BA= 1 instead  
Repeat Sub-Loop 0, use BA= 2 instead  
Toggling Static H 2  
3
4
5
6
7
12 to 15 Repeat Sub-Loop 0, use BA= 3 instead  
16 to 19 Repeat Sub-Loop 0, use BA= 4 instead  
20 to 23 Repeat Sub-Loop 0, use BA= 5 instead  
24 to 27 Repeat Sub-Loop 0, use BA= 6 instead  
28 to 31 Repeat Sub-Loop 0, use BA= 7 instead  
Notes: 1. DM must be driven low all the time. DQS, /DQS are MID-LEVEL.  
2. DQ signals are MID-LEVEL.  
3. BA: BA0 to BA2.  
4. Am: m means Most Significant Bit (MSB) of Row address.  
Table 10: IDD2NT and IDDQ2NT Measurement-Loop Pattern  
CK,  
/CK  
Sub  
Cycle  
Com-  
A11  
A7  
A3  
A0  
CKE  
-Loop number mand /CS /RAS /CAS /WE ODT BA*3 -Am A10 -A9 -A6 -A2 Data*2  
0
D
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
F
F
0
0
0
0
1
D
0
2
/D  
/D  
3
1
4 to 7  
8 to 11  
Repeat Sub-Loop 0, but ODT = 0 and BA= 1  
Repeat Sub-Loop 0, but ODT = 1 and BA= 2  
Toggling Static H 2  
3
4
5
6
7
12 to 15 Repeat Sub-Loop 0, but ODT = 1 and BA= 3  
16 to 19 Repeat Sub-Loop 0, but ODT = 0 and BA= 4  
20 to 23 Repeat Sub-Loop 0, but ODT = 0 and BA= 5  
24 to 27 Repeat Sub-Loop 0, but ODT = 1 and BA= 6  
28 to 31 Repeat Sub-Loop 0, but ODT = 1 and BA= 7  
Notes: 1. DM must be driven low all the time. DQS, /DQS are MID-LEVEL.  
2. DQ signals are MID-LEVEL.  
3. BA: BA0 to BA2.  
4. Am: m means Most Significant Bit (MSB) of Row address.  
Data Sheet E1922E20 (Ver. 2.0)  
15  
EDJ4204EFBG, EDJ4208EFBG, EDJ4216EFBG  
Table 11: IDD4R and IDDQ4R Measurement-Loop Pattern  
CK,  
/CK  
Sub  
Cycle  
Com-  
A11  
A7 A3 A0  
CKE  
-Loop number mand /CS /RAS /CAS /WE ODT BA*3 -Am A10 -A9 -A6 -A2 Data*2  
0
RD  
D
0
1
1
0
1
1
1
0
1
1
0
1
0
0
1
0
0
1
1
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
F
F
F
0
0
0
0
0
0
00000000  
1
2,3  
/D, /D  
RD  
D
0
4
00110011  
5
6,7  
/D, /D  
Toggling Static H 1  
8 to 15  
Repeat Sub-Loop 0, but BA= 1  
2
3
4
5
6
7
16 to 23 Repeat Sub-Loop 0, but BA= 2  
24 to 31 Repeat Sub-Loop 0, but BA= 3  
32 to 39 Repeat Sub-Loop 0, but BA= 4  
40 to 47 Repeat Sub-Loop 0, but BA= 5  
48 to 55 Repeat Sub-Loop 0, but BA= 6  
56 to 63 Repeat Sub-Loop 0, but BA= 7  
Notes: 1. DM must be driven low all the time. DQS, /DQS are used according to read commands, otherwise MID-LEVEL.  
2. Burst sequence driven on each DQ signal by read command. Outside burst operation, DQ signals are MID-LEVEL.  
3. BA: BA0 to BA2.  
4. Am: m means Most Significant Bit (MSB) of Row address.  
Data Sheet E1922E20 (Ver. 2.0)  
16  
EDJ4204EFBG, EDJ4208EFBG, EDJ4216EFBG  
Table 12: IDD4W Measurement-Loop Pattern  
CK,  
/CK  
Sub  
Cycle  
Com-  
A11  
A7 A3 A0  
CKE  
-Loop number mand /CS /RAS /CAS /WE ODT BA*3 -Am A10 -A9 -A6 -A2 Data*2  
0
WR  
D
0
1
1
0
1
1
1
0
1
1
0
1
0
0
1
0
0
1
0
0
1
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
F
F
F
0
0
0
0
0
0
00000000  
1
2,3  
/D, /D  
WR  
D
0
4
00110011  
5
6,7  
/D, /D  
Toggling Static H 1  
8 to 15  
Repeat Sub-Loop 0, but BA= 1  
2
3
4
5
6
7
16 to 23 Repeat Sub-Loop 0, but BA= 2  
24 to 31 Repeat Sub-Loop 0, but BA= 3  
32 to 39 Repeat Sub-Loop 0, but BA= 4  
40 to 47 Repeat Sub-Loop 0, but BA= 5  
48 to 55 Repeat Sub-Loop 0, but BA= 6  
56 to 63 Repeat Sub-Loop 0, but BA= 7  
Notes: 1. DM must be driven low all the time. DQS, /DQS are used according to write commands, otherwise MID-LEVEL.  
2. Burst sequence driven on each DQ signal by write command. Outside burst operation, DQ signals are MID-LEVEL.  
3. BA: BA0 to BA2.  
4. Am: m means Most Significant Bit (MSB) of Row address.  
Table 13: IDD5B Measurement-Loop Pattern  
CK,  
/CK  
Sub  
Cycle  
Com-  
A11  
A7 A3 A0  
CKE  
-Loop number mand /CS /RAS /CAS /WE ODT BA*3 -Am A10 -A9 -A6 -A2 Data*2  
0
REF  
D
0
1
1
0
0
1
0
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
F
0
0
0
0
1, 2  
3,4  
/D, /D  
5 to 8  
9 to 12  
Repeat cycles 1...4, but BA= 1  
Repeat cycles 1...4, but BA= 2  
13 to 16 Repeat cycles 1...4, but BA= 3  
17 to 20 Repeat cycles 1...4, but BA= 4  
21 to 24 Repeat cycles 1...4, but BA= 5  
25 to 28 Repeat cycles 1...4, but BA= 6  
29 to 32 Repeat cycles 1...4, but BA= 7  
33 to  
Toggling Static H  
1
2
Repeat Sub-Loop 1, until nRFC 1. Truncate, if necessary.  
nRFC 1  
Notes: 1. DM must be driven low all the time. DQS, /DQS are MID-LEVEL.  
2. DQ signals are MID-LEVEL.  
3. BA: BA0 to BA2.  
4. Am: m means Most Significant Bit (MSB) of Row address.  
Data Sheet E1922E20 (Ver. 2.0)  
17  
EDJ4204EFBG, EDJ4208EFBG, EDJ4216EFBG  
Table 14: IDD7 Measurement-Loop Pattern  
CK,  
/CK  
Sub  
-Loop number  
Cycle  
Com-  
mand  
A11  
A7 A3 A0  
CKE  
/CS /RAS /CAS /WE ODT BA*3 -Am A10 -A9 -A6 -A2 Data*2  
0
ACT  
RDA  
D
0
0
1
0
1
0
1
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
1
00000000  
0
2
Repeat above D Command until nRRD 1  
nRRD  
ACT  
0
0
1
0
1
0
1
0
0
1
1
0
0
0
0
1
1
1
0
0
0
0
1
0
0
0
0
F
F
F
0
0
0
nRRD + 1 RDA  
00110011  
1
nRRD + 2  
D
Repeat above D Command until 2 × nRRD 1  
2
3
2 × nRRD Repeat Sub-Loop 0, but BA= 2  
3 × nRRD Repeat Sub-Loop 1, but BA= 3  
D
1
0
0
0
0
3
0
0
0
F
0
4
5
6
4 × nRRD  
Assert and repeat above D Command until nFAW 1, if necessary  
Repeat Sub-Loop 0, but BA= 4  
nFAW  
nFAW  
Repeat Sub-Loop 1, but BA= 5  
Repeat Sub-Loop 0, but BA= 6  
Repeat Sub-Loop 1, but BA= 7  
+ nRRD  
nFAW  
7
8
9
+ 2 × nRRD  
nFAW  
+ 3 × nRRD  
D
1
0
0
0
0
7
0
0
0
F
0
0
nFAW  
+ 4 × nRRD  
Assert and repeat above D Command until 2 × nFAW 1, if necessary  
2 × nFAW  
+ 0  
ACT  
0
0
1
1
0
0
0
0
0
F
2 × nFAW  
+ 1  
Toggling Static H  
RDA  
D
0
1
1
0
0
0
1
0
0
0
0
0
0
0
1
0
0
0
F
F
0
0
00110011  
10  
11  
2 × nFAW  
+ 2  
Repeat above D Command until 2 × nFAW + nRRD 1  
2 × nFAW  
+ nRRD  
ACT  
0
0
1
1
0
1
0
0
0
0
0
2 × nFAW  
+ nRRD + 1  
RDA  
D
0
1
1
0
0
0
1
0
0
0
1
1
0
0
1
0
0
0
0
0
0
0
00000000  
2 × nFAW  
+ nRRD + 2  
Repeat above D Command until 2 × nFAW + 2 × nRRD 1  
2 × nFAW  
+2 × nRRD  
2 × nFAW  
+ 3 × nRRD  
12  
13  
Repeat Sub-Loop 10, but BA= 2  
Repeat Sub-Loop 11, but BA= 3  
D
1
0
0
0
0
3
0
0
0
0
0
2 × nFAW  
+ 4 × nRRD  
14  
15  
16  
Assert and repeat above D Command until 3 × nFAW 1, if necessary  
3 × nFAW Repeat Sub-Loop 10, but BA= 4  
3 × nFAW  
Repeat Sub-Loop 11, but BA= 5  
+nRRD  
3 × nFAW  
17  
18  
19  
Repeat Sub-Loop 10, but BA= 6  
+ 2 × nRRD  
3 × nFAW  
Repeat Sub-Loop 11, but BA= 7  
+ 3 × nRRD  
D
1
0
0
0
0
7
0
0
0
0
0
3 × nFAW  
+ 4 × nRRD  
Assert and repeat above D Command until 4 × nFAW 1, if necessary  
Notes: 1. DM must be driven low all the time. DQS, /DQS are used according to read commands, otherwise MID-LEVEL.  
2. Burst sequence driven on each DQ signal by read command. Outside burst operation, DQ signals are MID-LEVEL.  
3. BA: BA0 to BA2.  
4. Am: m means Most Significant Bit (MSB) of Row address.  
Data Sheet E1922E20 (Ver. 2.0)  
18  
EDJ4204EFBG, EDJ4208EFBG, EDJ4216EFBG  
2. Electrical Specifications  
2.1 DC Characteristics  
Table 15: DC Characteristics 1 (TC = 0°C to +85°C, VDD, VDDQ = 1.283V to 1.45V)  
Data rate × 4  
× 8  
× 16  
Parameter  
Symbol  
(Mbps)  
max  
max  
max  
Unit  
Notes  
1333  
1600  
40  
45  
40  
45  
50  
55  
Operating current  
(ACT-PRE)  
IDD0  
mA  
1333  
1600  
55  
60  
55  
60  
70  
75  
Operating current  
(ACT-RD-PRE)  
IDD1  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
1333  
1600  
17  
18  
17  
18  
17  
18  
IDD2P1  
IDD2P0  
Fast PD Exit  
Slow PD Exit  
Precharge power-down  
standby current  
1333  
1600  
12  
12  
12  
12  
12  
12  
1333  
1600  
25  
25  
25  
25  
25  
25  
Precharge standby current IDD2N  
1333  
1600  
30  
30  
30  
30  
30  
30  
Precharge standby  
IDD2NT  
ODT current  
1333  
1600  
25  
25  
25  
25  
25  
25  
Precharge quiet standby  
IDD2Q  
current  
1333  
1600  
20  
20  
20  
20  
22  
22  
Active power-down current  
IDD3P  
(Always fast exit)  
1333  
1600  
30  
30  
30  
30  
30  
32  
Active standby current  
IDD3N  
IDD4R  
IDD4W  
IDD5B  
1333  
1600  
80  
90  
90  
120  
135  
Operating current  
(Burst read operating)  
100  
1333  
1600  
85  
95  
95  
135  
150  
Operating current  
(Burst write operating)  
105  
1333  
1600  
160  
160  
160  
160  
160  
160  
Burst refresh current  
1333  
1600  
145  
150  
145  
150  
175  
195  
All bank interleave read  
current  
IDD7  
IDD8  
mA  
mA  
RESET low current  
12  
12  
12  
Table 16: Self-Refresh Current (TC = 0°C to +85°C, VDD, VDDQ = 1.283V to 1.45V)  
Parameter  
Symbol  
max  
Unit  
Notes  
Self-refresh current  
normal temperature range  
IDD6  
12  
mA  
Self-refresh current  
extended temperature range  
IDD6ET  
IDD6TC  
17  
mA  
mA  
Auto self-refresh current  
(Optional)  
Data Sheet E1922E20 (Ver. 2.0)  
19  
EDJ4204EFBG, EDJ4208EFBG, EDJ4216EFBG  
2.2 Pin Capacitance  
Table 17: Pin Capacitance [DDR3-800 to 1600] (TC = 25°C, VDD, VDDQ = 1.283V to 1.45V)  
DDR3L-800  
DDR3L-1066  
DDR3L-1333  
DDR3L-1600  
Parameter  
Symbol  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Units Notes  
Input/outputcapacitance CIO  
1.4  
2.5  
1.4  
2.5  
1.4  
2.3  
1.4  
2.2  
pF  
pF  
pF  
1, 2  
2
Input capacitance,  
CCK  
0.8  
0
1.6  
0.8  
0
1.6  
0.8  
0
1.4  
0.8  
0
1.4  
CK and /CK  
Input capacitance delta,  
CK and /CK  
CDCK  
0.15  
0.15  
0.15  
0.15  
2, 3  
Input/outputcapacitance  
delta,  
DQS and /DQS  
CDDQS  
CI  
0
0.2  
1.3  
0
0.2  
1.3  
0
0.15  
1.3  
0
0.15  
1.2  
pF  
pF  
2, 4  
2, 5  
Input capacitance,  
(control, address,  
command, input-only  
pins)  
0.75  
0.75  
0.75  
0.75  
Input capacitance delta,  
(All control input-only  
pins)  
CDI_CTRL 0.5  
0.3  
0.5  
0.5  
0.5  
0.3  
0.5  
0.4  
0.4  
0.2  
0.4  
0.4  
0.4  
0.2  
0.4  
pF  
pF  
2, 6, 7  
2, 8, 9  
Input capacitance delta,  
(All addres/command  
input-only pins)  
CDI_ADD_  
0.5  
CMD  
Input/outputcapacitance  
delta, DQ,DM, DQS,  
/DQS, TDQS, /TDQS  
CDIO  
0.5  
0.3  
3
0.5  
0.3  
3
0.5  
0.3  
3
0.5  
0.3  
3
pF  
pF  
2, 10  
2, 11  
Input/outputcapacitance  
of ZQ pin  
CZQ  
Notes: 1. Although the DM, TDQS and /TDQS pins have different functions, the loading matches DQ and DQS.  
2. VDD, VDDQ, VSS, VSSQ applied and all other pins floating (except the pin under test, CKE, /RESET and ODT as  
necessary). VDD = VDDQ = 1.35V, VBIAS=VDD/2 and ondie termination off.  
3. Absolute value of CCK-C/CK.  
4. Absolute value of CIO(DQS)-CIO(/DQS).  
5. CI applies to ODT, /CS, CKE, A0-A15, BA0-BA2, /RAS, /CAS and /WE.  
6. CDI_CTRL applies to ODT, /CS and CKE.  
7. CDI_CTRL = CI(CTRL) 0.5 × (CI(CK)+CI(/CK)).  
8. CDI_ADD_CMD applies to A0-A15, BA0-BA2, /RAS, /CAS and /WE.  
9. CDI_ADD_CMD = CI(ADD_CMD) 0.5 × (CI(CK)+CI(/CK)).  
10. CDIO=CIO(DQ,DM) 0.5 × (CIO(DQS)+CIO(/DQS)).  
11. Maximum external load capacitance on ZQ pin: 5pF.  
Data Sheet E1922E20 (Ver. 2.0)  
20  
EDJ4204EFBG, EDJ4208EFBG, EDJ4216EFBG  
2.3 Standard Speed Bins  
Table 18: DDR3-800 Speed Bins  
Speed Bin  
DDR3-800E  
6-6-6  
CL-tRCD-tRP  
Symbol  
/CAS write latency  
min  
15  
max  
20  
Unit  
ns  
Notes  
tAA  
9
tRCD  
15  
ns  
9
tRP  
15  
ns  
9
tRC  
52.5  
37.5  
3.0  
2.5  
ns  
9
tRAS  
9 × tREFI  
3.3  
ns  
8
tCK(avg) @CL=5  
tCK(avg) @CL=6  
Supported CL settings  
Supported CWL settings  
CWL = 5  
CWL = 5  
ns  
1, 2, 3, 10  
1, 2, 3, 10  
3.3  
ns  
5, 6  
nCK  
nCK  
5
Table 19: DDR3-1066 Speed Bins  
Speed Bin  
DDR3-1066F  
7-7-7  
CL-tRCD-tRP  
Symbol  
/CAS write latency  
min  
max  
Unit  
ns  
Notes  
tAA  
13.125  
13.125  
13.125  
50.625  
37.5  
20  
9
tRCD  
ns  
9
tRP  
ns  
9
tRC  
ns  
9
tRAS  
9 × tREFI  
3.3  
ns  
8
tCK(avg) @CL=5  
CWL = 5  
CWL = 6  
CWL = 5  
CWL = 6  
CWL = 5  
CWL = 6  
CWL = 5  
CWL = 6  
3.0  
ns  
1, 2, 3, 4, 5, 10  
Reserved  
2.5  
Reserved  
3.3  
ns  
4
tCK(avg) @CL=6  
tCK(avg) @CL=7  
tCK(avg) @CL=8  
ns  
1, 2, 3, 5  
Reserved  
Reserved  
1.875  
Reserved  
Reserved  
< 2.5  
ns  
4
ns  
4
ns  
1, 2, 3, 4  
4
Reserved  
1.875  
Reserved  
< 2.5  
ns  
ns  
1, 2, 3  
Supported CL settings  
Supported CWL settings  
5, 6, 7, 8  
5, 6  
nCK  
nCK  
Data Sheet E1922E20 (Ver. 2.0)  
21  
EDJ4204EFBG, EDJ4208EFBG, EDJ4216EFBG  
Table 20: DDR3-1333 Speed Bins  
Speed Bin  
DDR3-1333H  
9-9-9  
CL-tRCD-tRP  
Symbol  
/CAS write latency  
min  
max  
Unit  
Notes  
13.5  
tAA  
20  
ns  
9
(13.125)  
13.5  
tRCD  
tRP  
ns  
ns  
ns  
9
9
9
(13.125)  
13.5  
(13.125)  
49.5  
tRC  
(49.125)  
tRAS  
36  
9 × tREFI  
3.3  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
nCK  
nCK  
8
tCK(avg) @CL=5  
CWL = 5  
CWL = 6, 7  
CWL = 5  
CWL = 6  
CWL = 7  
CWL = 5  
CWL = 6  
CWL = 7  
CWL = 5  
CWL = 6  
CWL = 7  
CWL = 5, 6  
CWL= 7  
3.0  
1, 2, 3, 4, 6, 10  
Reserved  
2.5  
Reserved  
3.3  
4
tCK(avg) @CL=6  
tCK(avg) @CL=7  
tCK(avg) @CL=8  
1, 2, 3, 6  
Reserved  
Reserved  
Reserved  
1.875  
Reserved  
Reserved  
Reserved  
< 2.5  
4
4
4
1, 2, 3, 4, 6  
Reserved  
Reserved  
1.875  
Reserved  
Reserved  
< 2.5  
4
4
1, 2, 3, 6  
Reserved  
Reserved  
1.5  
Reserved  
Reserved  
< 1.875  
Reserved  
< 1.875  
4
tCK(avg) @CL=9  
tCK(avg) @CL=10  
4
1, 2, 3, 4  
4
CWL = 5, 6  
CWL= 7  
Reserved  
1.5  
1, 2, 3  
Supported CL settings  
Supported CWL settings  
5, 6, 7, 8, 9, 10  
5, 6, 7  
Data Sheet E1922E20 (Ver. 2.0)  
22  
EDJ4204EFBG, EDJ4208EFBG, EDJ4216EFBG  
Table 21: DDR3-1600 Speed Bins  
Speed Bin  
DDR3-1600K  
11-11-11  
CL-tRCD-tRP  
Symbol  
/CAS write latency  
min  
max  
Unit  
Notes  
13.75  
tAA  
20  
ns  
9
(13.125)  
13.75  
tRCD  
tRP  
ns  
ns  
ns  
9
9
9
(13.125)  
13.75  
(13.125)  
48.75  
tRC  
(48.125)  
tRAS  
35  
9 × tREFI  
3.3  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
nCK  
nCK  
8
tCK(avg) @CL=5  
CWL = 5  
CWL = 6, 7, 8  
CWL = 5  
CWL = 6  
CWL = 7, 8  
CWL = 5  
CWL = 6  
CWL = 7  
CWL = 8  
CWL = 5  
CWL = 6  
CWL = 7  
CWL = 8  
CWL = 5, 6  
CWL= 7  
3.0  
1, 2, 3, 4, 7, 10  
Reserved  
2.5  
Reserved  
3.3  
4
tCK(avg) @CL=6  
tCK(avg) @CL=7  
1, 2, 3, 7  
Reserved  
Reserved  
Reserved  
1.875  
Reserved  
Reserved  
Reserved  
< 2.5  
4
4
4
1, 2, 3, 4, 7  
Reserved  
Reserved  
Reserved  
1.875  
Reserved  
Reserved  
Reserved  
< 2.5  
4
4
tCK(avg) @CL=8  
4
1, 2, 3, 7  
Reserved  
Reserved  
Reserved  
1.5  
Reserved  
Reserved  
Reserved  
< 1.875  
4
4
tCK(avg) @CL=9  
tCK(avg) @CL=10  
tCK(avg) @CL=11  
4
1, 2, 3, 4, 7  
CWL= 8  
Reserved  
Reserved  
1.5  
Reserved  
Reserved  
< 1.875  
4
CWL = 5, 6  
CWL= 7  
4
1, 2, 3, 7  
CWL= 8  
Reserved  
Reserved  
1.25  
Reserved  
Reserved  
< 1.5  
4
CWL = 5, 6, 7  
CWL= 8  
4
1, 2, 3  
Supported CL settings  
Supported CWL settings  
5, 6, 7, 8, 9, 10, 11  
5, 6, 7, 8  
Data Sheet E1922E20 (Ver. 2.0)  
23  
EDJ4204EFBG, EDJ4208EFBG, EDJ4216EFBG  
Notes: 1. The CL setting and CWL setting result in tCK(avg)min and tCK(avg)max requirements. When making a selection of  
tCK(avg), both need to be fulfilled: Requirements from CL setting as well as requirements from CWL setting.  
2. tCK(avg)min limits: Since /CAS latency is not purely analog - data and strobe output are synchronized by the DLL - all  
possible intermediate frequencies may not be guaranteed. An application should use the next smaller JEDEC standard  
tCK(avg) value (3.0, 2.5, 1.875, 1.5, or 1.25ns) when calculating CL(nCK) = tAA(ns) / tCK(avg)(ns), rounding up to the  
next ‘Supported CL’.  
3. tCK(avg)max limits: Calculate tCK(avg) + tAA(max)/CL selected and round the resulting tCK(avg) down to the next valid  
speed bin (i.e. 3.3ns or 2.5ns or 1.875ns or 1.25ns). This result is tCK(avg)max corresponding to CL selected.  
4. Reserved’ settings are not allowed. User must program a different value.  
5. Any DDR3-1066 speed bin also supports functional operation at lower frequencies as shown in the table DDR3-1066  
Speed Bins which are not subject to production tests but verified by design/characterization.  
6. Any DDR3-1333 speed bin also supports functional operation at lower frequencies as shown in the table DDR3-1333  
Speed Bins which is not subject to production tests but verified by design/characterization.  
7. Any DDR3-1600 speed bin also supports functional operation at lower frequencies as shown in the table DDR3-1600  
Speed Bins which is not subject to production tests but verified by design/characterization.  
8. tREFI depends on operating case temperature (TC).  
9. For devices supporting optional down binning to CL = 7 and CL = 9, tAA/tRCD/tRP(min) must be 13.125 ns or lower. SPD  
settings must be programmed to match.  
10. DDR3-800 AC timing apply if DRAM operates at lower than 800 MT/s data rate.  
Data Sheet E1922E20 (Ver. 2.0)  
24  
EDJ4204EFBG, EDJ4208EFBG, EDJ4216EFBG  
3. Package Drawing  
3.1 78-ball FBGA  
Solder ball: Lead free (Sn-Ag-Cu)  
Unit: mm  
9.0 0.1  
0.20 S B  
INDEX MARK  
0.20 S A  
0.20 S  
1.20 max.  
S
0.35 0.05  
0.10 S  
M S A B  
0.15  
B
78-0.45 0.05  
A
INDEX MARK  
1.6 0.8  
6.4  
ECA-TS2-0421-01  
Data Sheet E1922E20 (Ver. 2.0)  
25  
EDJ4204EFBG, EDJ4208EFBG, EDJ4216EFBG  
3.2 96-ball FBGA  
Solder ball: Lead free (Sn-Ag-Cu)  
Unit: mm  
9.0 0.1  
0.20 S B  
INDEX MARK  
0.20 S A  
0.20 S  
1.20 max.  
S
0.35 0.05  
0.10 S  
B
M S A B  
0.15  
96-0.45 0.05  
A
INDEX MARK  
1.6 0.8  
6.4  
ECA-TS2-0422-01  
Data Sheet E1922E20 (Ver. 2.0)  
26  
EDJ4204EFBG, EDJ4208EFBG, EDJ4216EFBG  
4. Recommended Soldering Conditions  
Please consult with our sales offices for soldering conditions of the 4G bits DDR3 SDRAM.  
Type of Surface Mount Device  
EDJ4204EFBG, EDJ4208EFBG: 78-ball FBGA < Lead free (Sn-Ag-Cu) >  
EDJ4216EFBG: 96-ball FBGA < Lead free (Sn-Ag-Cu) >  
Data Sheet E1922E20 (Ver. 2.0)  
27  
EDJ4204EFBG, EDJ4208EFBG, EDJ4216EFBG  
NOTES FOR CMOS DEVICES  
1
PRECAUTION AGAINST ESD FOR MOS DEVICES  
Exposing the MOS devices to a strong electric field can cause destruction of the gate  
oxide and ultimately degrade the MOS devices operation. Steps must be taken to stop  
generation of static electricity as much as possible, and quickly dissipate it, when once  
it has occurred. Environmental control must be adequate. When it is dry, humidifier  
should be used. It is recommended to avoid using insulators that easily build static  
electricity. MOS devices must be stored and transported in an anti-static container,  
static shielding bag or conductive material. All test and measurement tools including  
work bench and floor should be grounded. The operator should be grounded using  
wrist strap. MOS devices must not be touched with bare hands. Similar precautions  
need to be taken for PW boards with semiconductor MOS devices on it.  
2
HANDLING OF UNUSED INPUT PINS FOR CMOS DEVICES  
No connection for CMOS devices input pins can be a cause of malfunction. If no  
connection is provided to the input pins, it is possible that an internal input level may be  
generated due to noise, etc., hence causing malfunction. CMOS devices behave  
differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed  
high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected  
to VDD or GND with a resistor, if it is considered to have a possibility of being an output  
pin. The unused pins must be handled in accordance with the related specifications.  
3
STATUS BEFORE INITIALIZATION OF MOS DEVICES  
Power-on does not necessarily define initial status of MOS devices. Production process  
of MOS does not define the initial operation status of the device. Immediately after the  
power source is turned ON, the MOS devices with reset function have not yet been  
initialized. Hence, power-on does not guarantee output pin levels, I/O settings or  
contents of registers. MOS devices are not initialized until the reset signal is received.  
Reset operation must be executed immediately after power-on for MOS devices having  
reset function.  
CME0107  
Data Sheet E1922E20 (Ver. 2.0)  
28  
EDJ4204EFBG, EDJ4208EFBG, EDJ4216EFBG  
The information in this document is subject to change without notice. Before using this document, confirm that this is the latest version.  
No part of this document may be copied or reproduced in any form or by any means without the prior  
written consent of Elpida Memory, Inc.  
Elpida Memory, Inc. does not assume any liability for infringement of any intellectual property rights  
(including but not limited to patents, copyrights, and circuit layout licenses) of Elpida Memory, Inc. or  
third parties by or arising from the use of the products or information listed in this document. No license,  
express, implied or otherwise, is granted under any patents, copyrights or other intellectual property  
rights of Elpida Memory, Inc. or others.  
Descriptions of circuits, software and other related information in this document are provided for  
illustrative purposes in semiconductor product operation and application examples. The incorporation of  
these circuits, software and information in the design of the customer's equipment shall be done under  
the full responsibility of the customer. Elpida Memory, Inc. assumes no responsibility for any losses  
incurred by customers or third parties arising from the use of these circuits, software and information.  
[Product applications]  
Be aware that this product is for use in typical electronic equipment for general-purpose applications.  
Elpida Memory, Inc. makes every attempt to ensure that its products are of high quality and reliability.  
However, this product is not intended for use in the product in aerospace, aeronautics, nuclear power,  
combustion control, transportation, traffic, safety equipment, medical equipment for life support, or other  
such application in which especially high quality and reliability is demanded or where its failure or  
malfunction may directly threaten human life or cause risk of bodily injury. Customers are instructed to  
contact Elpida Memory's sales office before using this product for such applications.  
[Product usage]  
Design your application so that the product is used within the ranges and conditions guaranteed by  
Elpida Memory, Inc., including the maximum ratings, operating supply voltage range, heat radiation  
characteristics, installation conditions and other related characteristics. Elpida Memory, Inc. bears no  
responsibility for failure or damage when the product is used beyond the guaranteed ranges and  
conditions. Even within the guaranteed ranges and conditions, consider normally foreseeable failure  
rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so  
that the equipment incorporating Elpida Memory, Inc. products does not cause bodily injury, fire or other  
consequential damage due to the operation of the Elpida Memory, Inc. product.  
[Usage environment]  
Usage in environments with special characteristics as listed below was not considered in the design.  
Accordingly, our company assumes no responsibility for loss of a customer or a third party when used in  
environments with the special characteristics listed below.  
Example:  
1) Usage in liquids, including water, oils, chemicals and organic solvents.  
2) Usage in exposure to direct sunlight or the outdoors, or in dusty places.  
3) Usage involving exposure to significant amounts of corrosive gas, including sea air, CL2, H2S, NH3,  
SO2, and NO .  
x
4) Usage in environments with static electricity, or strong electromagnetic waves or radiation.  
5) Usage in places where dew forms.  
6) Usage in environments with mechanical vibration, impact, or stress.  
7) Usage near heating elements, igniters, or flammable items.  
If you export the products or technology described in this document that are controlled by the Foreign  
Exchange and Foreign Trade Law of Japan, you must follow the necessary procedures in accordance  
with the relevant laws and regulations of Japan. Also, if you export products/technology controlled by  
U.S. export control regulations, or another country's export control laws or regulations, you must follow  
the necessary procedures in accordance with such laws or regulations.  
If these products/technology are sold, leased, or transferred to a third party, or a third party is granted  
license to use these products, that third party must be made aware that they are responsible for  
compliance with the relevant laws and regulations.  
M01E1007  
Data Sheet E1922E20 (Ver. 2.0)  
29  

相关型号:

E193

Optoelectronic
ETC

E194

Engineering Catalog 169
GILWAY

E195

Engineering Catalog 169
GILWAY

E196

Engineering Catalog 169
GILWAY

E1962B

cdma2000/IS-95/AMPS Mobile Test Application
AGILENT

E197

Engineering Catalog 169
GILWAY

E198

Engineering Catalog 169
GILWAY

E199

Engineering Catalog 169
GILWAY

E19S1000

SMPS Controller
ETC

E19S1000K

SMPS Controller
ETC

E19S1000K2

SMPS Controller
ETC

E19S1000M

SMPS Controller
ETC