EBE11UD8AJUA-8G-E [ELPIDA]

DDR DRAM Module, 128MX64, 0.4ns, CMOS, ROHS COMPLIANT, SODIMM-200;
EBE11UD8AJUA-8G-E
型号: EBE11UD8AJUA-8G-E
厂家: ELPIDA MEMORY    ELPIDA MEMORY
描述:

DDR DRAM Module, 128MX64, 0.4ns, CMOS, ROHS COMPLIANT, SODIMM-200

时钟 动态存储器 双倍数据速率 内存集成电路
文件: 总28页 (文件大小:259K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
1GB DDR2 SDRAM SO-DIMM  
EBE11UD8AJUA (128M words × 64 bits, 2 Ranks)  
Specifications  
Features  
Density: 1GB  
Double-data-rate architecture; two data transfers per  
clock cycle  
Organization  
The high-speed data transfer is realized by the 4 bits  
prefetch pipelined architecture  
128M words × 64 bits, 2 ranks  
Mounting 16 pieces of 512M bits DDR2 SDRAM  
sealed in FBGA  
Bi-directional differential data strobe (DQS and /DQS)  
is transmitted/received with data for capturing data at  
the receiver  
Package: 200-pin socket type small outline dual in  
line memory module (SO-DIMM)  
DQS is edge-aligned with data for READs; center-  
aligned with data for WRITEs  
PCB height: 30.0mm  
Lead pitch: 0.6mm  
Differential clock inputs (CK and /CK)  
Lead-free (RoHS compliant)  
Power supply: VDD = 1.8V ± 0.1V  
Data rate: 800Mbps/667Mbps (max.)  
DLL aligns DQ and DQS transitions with CK  
transitions  
Commands entered on each positive CK edge; data  
and data mask referenced to both edges of DQS  
Four internal banks for concurrent operation  
(components)  
Data mask (DM) for write data  
Interface: SSTL_18  
Posted CAS by programmable additive latency for  
better command and data bus efficiency  
Burst lengths (BL): 4, 8  
/CAS Latency (CL): 3, 4, 5, 6  
Off-Chip-Driver Impedance Adjustment and On-Die-  
Termination for better signal quality  
Precharge: auto precharge option for each burst  
/DQS can be disabled for single-ended Data Strobe  
access  
operation  
Refresh: auto-refresh, self-refresh  
Refresh cycles: 8192 cycles/64ms  
Average refresh period  
7.8µs at 0°C TC ≤ +85°C  
3.9µs at +85°C < TC ≤ +95°C  
Operating case temperature range  
TC = 0°C to +95°C  
Document No. E1083E20 (Ver. 2.0)  
Date Published April 2008 (K) Japan  
Printed in Japan  
URL: http://www.elpida.com  
Elpida Memory, Inc. 2007-2008  
EBE11UD8AJUA  
Ordering Information  
Component  
Data rate  
Mbps (max.)  
JEDEC speed bin  
(CL-tRCD-tRP)  
Contact  
pad  
Part number  
Package  
Mounted devices  
EBE11UD8AJUA-8E-E  
EBE11UD8AJUA-8G-E  
DDR2-800 (5-5-5)  
DDR2-800 (6-6-6)  
EDE5108AJBG-8E-E  
EDE5108AJBG-8E-E  
800  
200-pin SO-DIMM  
(lead-free)  
Gold  
EDE5108AJBG-8E-E  
EDE5108AJBG-6E-E  
EBE11UD8AJUA-6E-E 667  
DDR2-667 (5-5-5)  
Pin Configurations  
Front side  
39 pin 41 pin  
1 pin  
2 pin  
199 pin  
42 pin  
200 pin  
40 pin  
Back side  
Front side  
Back side  
Pin No.  
1
Pin name  
VREF  
VSS  
Pin No.  
51  
53  
55  
57  
59  
61  
63  
65  
67  
69  
71  
73  
75  
77  
79  
81  
83  
85  
87  
89  
91  
93  
95  
97  
99  
Pin name  
DQS2  
VSS  
DQ18  
DQ19  
VSS  
DQ24  
DQ25  
VSS  
DM3  
NC  
Pin No.  
2
Pin name  
VSS  
Pin No.  
52  
Pin name  
DM2  
VSS  
DQ22  
DQ23  
VSS  
DQ28  
DQ29  
VSS  
/DQS3  
DQS3  
VSS  
DQ30  
DQ31  
VSS  
CKE1  
VDD  
NC  
3
4
DQ4  
DQ5  
VSS  
54  
56  
58  
60  
62  
64  
66  
68  
70  
72  
74  
76  
78  
80  
82  
84  
86  
88  
90  
92  
94  
96  
98  
100  
5
DQ0  
6
7
DQ1  
8
9
VSS  
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
34  
36  
38  
40  
42  
44  
46  
48  
50  
DM0  
VSS  
11  
13  
15  
17  
19  
21  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
47  
49  
/DQS0  
DQS0  
VSS  
DQ6  
DQ7  
VSS  
DQ2  
DQ3  
DQ12  
DQ13  
VSS  
VSS  
VSS  
DQ26  
DQ27  
VSS  
CKE0  
VDD  
NC  
DQ8  
DQ9  
DM1  
VSS  
VSS  
/DQS1  
DQS1  
VSS  
CK0  
/CK0  
VSS  
DQ10  
DQ11  
VSS  
NC  
DQ14  
DQ15  
VSS  
NC  
VDD  
A12  
VDD  
A11  
VSS  
A9  
VSS  
A7  
DQ16  
DQ17  
VSS  
A8  
DQ20  
DQ21  
VSS  
A6  
VDD  
A5  
VDD  
A4  
/DQS2  
A3  
NC  
A2  
Data Sheet E1083E20 (Ver. 2.0)  
2
EBE11UD8AJUA  
Front side  
Pin No.  
Back side  
Pin No.  
Pin name  
A1  
Pin No.  
151  
153  
155  
157  
159  
161  
163  
165  
167  
169  
171  
173  
175  
177  
179  
181  
183  
185  
187  
189  
191  
193  
195  
197  
199  
Pin name  
DQ42  
DQ43  
VSS  
Pin name  
A0  
Pin No.  
Pin name  
DQ46  
DQ47  
VSS  
101  
103  
105  
107  
109  
111  
113  
115  
117  
119  
121  
123  
125  
127  
129  
131  
133  
135  
137  
139  
141  
143  
145  
147  
149  
102  
104  
106  
108  
110  
112  
114  
116  
118  
120  
122  
124  
126  
128  
130  
132  
134  
136  
138  
140  
142  
144  
146  
148  
150  
152  
154  
156  
158  
160  
162  
164  
166  
168  
170  
172  
174  
176  
178  
180  
182  
184  
186  
188  
190  
192  
194  
196  
198  
200  
VDD  
VDD  
BA1  
A10/AP  
BA0  
DQ48  
DQ49  
VSS  
/RAS  
/CS0  
VDD  
ODT0  
A13  
DQ52  
DQ53  
VSS  
/WE  
VDD  
/CAS  
/CS1  
VDD  
NC  
CK1  
VSS  
/CK1  
VSS  
/DQS6  
DQS6  
VSS  
VDD  
NC  
ODT1  
VSS  
DM6  
VSS  
VSS  
DQ32  
DQ33  
VSS  
DQ50  
DQ51  
VSS  
DQ36  
DQ37  
VSS  
DQ54  
DQ55  
VSS  
/DQS4  
DQS4  
VSS  
DQ56  
DQ57  
VSS  
DM4  
VSS  
DQ60  
DQ61  
VSS  
DQ38  
DQ39  
VSS  
DQ34  
DQ35  
VSS  
DM7  
/DQS7  
DQS7  
VSS  
VSS  
DQ58  
DQ59  
VSS  
DQ44  
DQ45  
VSS  
DQ40  
DQ41  
VSS  
DQ62  
DQ63  
VSS  
SDA  
/DQS5  
DQS5  
VSS  
DM5  
SCL  
SA0  
VSS  
VDDSPD  
SA1  
Data Sheet E1083E20 (Ver. 2.0)  
3
EBE11UD8AJUA  
Pin Description  
Pin name  
Function  
Address input  
Row address  
Column address  
A0 to A13  
A0 to A13  
A0 to A9  
A10 (AP)  
Auto precharge  
BA0, BA1  
Bank select address  
Data input/output  
DQ0 to DQ63  
/RAS  
Row address strobe command  
Column address strobe command  
Write enable  
/CAS  
/WE  
/CS0, /CS1  
Chip select  
CKE0, CKE1  
Clock enable  
CK0, CK1  
Clock input  
/CK0, /CK1  
Differential clock input  
Input and output data strobe  
Input mask  
DQS0 to DQS7, /DQS0 to /DQS7  
DM0 to DM7  
SCL  
Clock input for serial PD  
Data input/output for serial PD  
Serial address input  
Power for internal circuit  
Power for serial EEPROM  
Input reference voltage  
Ground  
SDA  
SA0, SA1  
VDD  
VDDSPD  
VREF  
VSS  
ODT0, ODT1  
NC  
ODT control  
No connection  
Data Sheet E1083E20 (Ver. 2.0)  
4
EBE11UD8AJUA  
Serial PD Matrix  
Hex  
Byte No. Function described  
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 value  
Comments  
128 bytes  
Number of bytes utilized by module  
0
1
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
80H  
08H  
manufacturer  
Total number of bytes in serial PD  
device  
256 bytes  
2
3
4
5
6
7
8
Memory type  
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0
1
0
0
0
0
1
0
1
1
0
0
0
0
0
0
0
1
0
0
1
08H  
0EH  
0AH  
61H  
40H  
00H  
05H  
DDR2 SDRAM  
Number of row address  
Number of column address  
Number of DIMM ranks  
Module data width  
14  
10  
2
64  
Module data width continuation  
0
Voltage interface level of this assembly 0  
SSTL 1.8V  
DDR SDRAM cycle time, CL = X  
-8E (CL = 5)  
9
0
0
1
0
0
1
0
1
25H  
2.5ns*1  
-8G (CL = 6)  
-6E (CL = 5)  
0
0
0
0
1
1
0
1
0
0
1
0
0
0
1
0
25H  
30H  
2.5ns*1  
3.0ns*1  
SDRAM access from clock (tAC)  
-8E, -8G  
10  
0
1
0
0
0
0
0
0
40H  
0.4ns*1  
-6E  
0
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
45H  
00H  
82H  
08H  
00H  
00H  
0.45ns*1  
None.  
7.8µs  
× 8  
11  
12  
13  
14  
15  
DIMM configuration type  
Refresh rate/type  
Primary SDRAM width  
Error checking SDRAM width  
Reserved  
None.  
0
SDRAM device attributes:  
Burst length supported  
16  
17  
0
0
0
0
0
0
0
0
1
0
1
1
0
0
0
0
0CH  
04H  
4,8  
4
SDRAM device attributes: Number of  
banks on SDRAM device  
SDRAM device attributes:  
/CAS latency  
18  
0
0
1
1
1
0
0
0
38H  
3, 4, 5  
-8E, -6E  
-8G  
0
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
70H  
01H  
04H  
00H  
4, 5, 6  
19  
20  
21  
DIMM Mechanical Characteristics  
DIMM type information  
SDRAM module attributes  
3.80mm max.  
SO-DIMM  
Normal  
Weak Driver  
50ODT Support  
22  
23  
SDRAM device attributes: General  
0
0
0
0
0
0
1
1
03H  
Minimum clock cycle time at  
CL = X 1  
-8E, -6E (CL = 4)  
0
0
0
0
0
0
0
0
1
1
1
0
1
1
0
0
0
1
1
1
1
0
1
1
1
0
0
0
0
1
1
0
0
1
0
1
0
0
0
0
0
0
1
0
0
1
0
1
3DH  
30H  
50H  
45H  
50H  
3DH  
3.75ns*1  
3.0ns*1  
0.5ns*1  
0.45ns*1  
5.0ns*1  
3.75ns*1  
-8G (CL = 5)  
Maximum data access time (tAC) from  
clock at CL = X 1  
-8E, -6E (CL = 4)  
24  
25  
-8G (CL = 5)  
Minimum clock cycle time at  
CL = X 2  
-8E, -6E (CL = 3)  
-8G (CL = 4)  
Data Sheet E1083E20 (Ver. 2.0)  
5
EBE11UD8AJUA  
Hex  
Byte No. Function described  
Maximum data access time (tAC) from  
clock at CL = X 2  
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 value  
Comments  
0.6ns*1  
26  
0
1
1
0
0
0
0
0
60H  
-8E, -6E (CL = 3)  
-8G (CL = 4)  
0
0
0
0
1
0
0
0
0
1
1
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
0
0
0
50H  
32H  
3CH  
1EH  
0.5ns*1  
12.5ns  
15ns  
Minimum row precharge time (tRP)  
-8E  
27  
-8G, -6E  
Minimum row active to row active  
delay (tRRD)  
28  
29  
7.5ns  
Minimum /RAS to /CAS delay (tRCD)  
-8E  
0
0
0
1
0
0
0
0
1
1
1
0
1
1
0
0
0
1
1
0
0
1
1
0
1
0
0
0
0
0
1
0
32H  
3CH  
2DH  
80H  
12.5ns  
15ns  
-8G, -6E  
Minimum active to precharge time  
(tRAS)  
30  
31  
45ns  
Module rank density  
512M bytes  
Address and command setup time  
before clock (tIS)  
-8E, -8G  
32  
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
1
0
0
0
0
0
0
0
0
0
1
0
1
1
1
1
0
0
1
0
1
0
1
1
1
17H  
20H  
25H  
27H  
05H  
0.17ns*1  
0.20ns*1  
0.25ns*1  
0.27ns*1  
0.05ns*1  
-6E  
Address and command hold time after  
clock (tIH)  
-8E, -8G  
33  
-6E  
Data input setup time before clock  
(tDS)  
-8E, -8G  
34  
35  
-6E  
0
0
0
0
0
0
1
1
0
0
0
0
0
1
0
0
10H  
12H  
0.10ns*1  
0.12ns*1  
Data input hold time after clock (tDH)  
-8E, -8G  
-6E  
0
0
0
0
0
1
1
1
0
1
1
1
1
0
1
0
17H  
3CH  
0.17ns*1  
15ns*1  
36  
37  
Write recovery time (tWR)  
Internal write to read command delay  
(tWTR)  
0
0
0
0
1
1
1
1
0
1EH  
7.5ns*1  
Internal read to precharge command  
delay (tRTP)  
38  
39  
40  
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
1
1
1
0
0
0
0
1
0
1
0
1
1
0
0
1
1
1
1
0
0
0
1
1
1
0
0
1
1
1
0
0
0
0
1
0
0
1
0
1
1
0
0
0
0
0
0
0
0
0
1
0
0
0
0
1
0
1
0
0
0
0
1EH  
00H  
30H  
00H  
39H  
3CH  
69H  
80H  
14H  
18H  
1EH  
7.5ns*1  
TBD  
Memory analysis probe characteristics 0  
Extension of Byte 41 and 42  
-8E  
0
-8G, -6E  
0
0
0
0
1
0
0
0
Undefined  
57.5ns*1  
60ns*1  
Active command period (tRC)  
-8E  
41  
-8G, -6E  
Auto refresh to active/  
Auto refresh command cycle (tRFC)  
42  
43  
44  
105ns*1  
8ns*1  
SDRAM tCK cycle max. (tCK max.)  
Dout to DQS skew  
-8E, -8G  
0.20ns*1  
0.24ns*1  
0.30ns*1  
-6E  
Data hold skew (tQHS)  
-8E, -8G  
45  
46  
-6E  
0
0
0
0
1
0
0
0
0
0
0
0
1
0
0
0
22H  
00H  
0.34ns*1  
PLL relock time  
Undefined  
Data Sheet E1083E20 (Ver. 2.0)  
6
EBE11UD8AJUA  
Hex  
Byte No. Function described  
47 to 61  
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 value  
Comments  
Undefined  
Rev. 1.2  
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
00H  
12H  
62  
63  
SPD Revision  
Checksum for bytes 0 to 62  
-8E  
0
1
0
1
1
0
1
0
5AH  
-8G  
-6E  
0
0
0
1
1
1
1
1
1
0
1
1
1
0
0
0
3EH  
74H  
Continuation  
code  
64 to 65  
Manufacturer’s JEDEC ID code  
0
1
1
1
1
1
1
1
7FH  
66  
Manufacturer’s JEDEC ID code  
Manufacturer’s JEDEC ID code  
Manufacturing location  
Module part number  
Module part number  
Module part number  
Module part number  
Module part number  
Module part number  
Module part number  
Module part number  
Module part number  
Module part number  
Module part number  
Module part number  
Module part number  
1
0
×
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
×
1
1
1
0
0
1
1
0
1
1
1
1
0
1
0
×
0
0
0
1
1
0
0
1
0
0
0
0
1
1
0
×
0
0
0
1
1
1
0
1
0
0
1
0
0
1
0
×
0
0
0
0
0
0
0
1
0
1
0
0
1
1
0
×
1
0
1
0
0
1
1
0
0
0
1
0
1
1
0
×
0
1
0
0
0
0
0
0
0
1
0
0
0
0
0
×
1
0
1
1
1
1
0
0
1
0
1
1
1
FEH  
00H  
××  
Elpida Memory  
67 to 71  
72  
(ASCII-8bit code)  
73  
45H  
42H  
45H  
31H  
31H  
55H  
44H  
38H  
41H  
4AH  
55H  
41H  
2DH  
E
B
E
1
74  
75  
76  
77  
1
78  
U
D
8
79  
80  
81  
A
J
82  
83  
U
A
84  
85  
Module part number  
-8E, -8G  
86  
87  
0
0
0
0
0
1
1
1
0
1
1
0
1
0
0
0
1
1
0
1
0
0
0
1
38H  
36H  
45H  
8
6
E
-6E  
Module part number  
-8E, -6E  
-8G  
0
0
0
0
0
0
×
1
0
1
0
0
0
×
0
1
0
1
1
1
×
0
0
0
0
1
0
×
0
1
0
0
0
0
×
1
1
1
0
0
0
×
1
0
0
0
0
0
×
1
1
1
0
0
0
×
47H  
2DH  
45H  
20H  
30H  
20H  
××  
G
88  
89  
90  
91  
92  
93  
Module part number  
Module part number  
Module part number  
Revision code  
E
(Space)  
Initial  
Revision code  
(Space)  
Manufacturing date  
Year code (BCD)  
Week code  
(BCD)  
94  
Manufacturing date  
×
×
×
×
×
×
×
×
××  
95 to 98  
Module serial number  
99 to 127 Manufacture specific data  
Note: 1.These specifications are defined based on component specification, not module.  
Data Sheet E1083E20 (Ver. 2.0)  
7
EBE11UD8AJUA  
Block Diagram  
R
S2  
S2  
CKE1  
ODT1  
R
R
R
S2  
/CS1  
S2  
CKE0  
ODT0  
/CS0  
R
R
S2  
S2  
R
R
R
S1  
S1  
S1  
S1  
/DQS0  
DQS0  
DM0  
/DQS4  
DQS4  
DM4  
/DQS /CS ODT CKE  
/DQS /CS ODT CKE  
/DQS /CS ODT CKE  
/DQS /CS ODT CKE  
DQS  
S1  
R
R
DQS  
DM  
DQS  
DQS  
DM  
R
S1  
DM  
DM  
D0  
D8  
DQ0  
to DQ7  
D4  
D12  
8
R
S1  
R
S1  
R
S1  
R
S1  
8
R
S1  
DQ0  
to DQ7  
DQ0  
to DQ7  
DQ0  
to DQ7  
DQ0 to DQ7  
DQ32 to DQ39  
R
S1  
R
R
/DQS1  
S1  
/DQS /CS ODT CKE  
/DQS /CS ODT CKE  
/DQS5  
DQS5  
DM5  
/DQS /CS ODT CKE  
/DQS /CS ODT CKE  
R
R
S1  
S1  
DQS1  
DM1  
DQS  
DM  
DQS  
DM  
DQS  
DM  
DQS  
DM  
S1  
R
S1  
D1  
D9  
D5  
D13  
R
S1  
8
8
DQ0  
to DQ7  
DQ0  
to DQ7  
DQ0  
DQ0  
to DQ7  
DQ40 to DQ47  
DQ8 to DQ15  
to DQ7  
R
S1  
R
S1  
R
S1  
R
R
S1  
/DQS2  
/DQS6  
DQS6  
/DQS /CS ODT CKE  
/DQS /CS ODT CKE  
/DQS /CS ODT CKE  
DQS  
/DQS /CS ODT CKE  
DQS  
S1  
DQS  
DM  
DQS  
DM  
DQS2  
DM2  
R
S1  
DM6  
DM  
DM  
D2  
DQ0  
to DQ7  
D10  
D6  
D14  
8
R
S1  
8
DQ0  
to DQ7  
DQ0  
to DQ7  
DQ0  
DQ48 to DQ55  
DQ16 to DQ23  
to DQ7  
R
S1  
R
S1  
R
S1  
R
S1  
/DQS3  
/DQS /CS ODT CKE  
/DQS /CS ODT CKE  
/DQS /CS ODT CKE  
/DQS /CS ODT CKE  
/DQS7  
R
R
S1  
DQS  
DM  
DQS  
DM  
DQS3  
DM3  
DQS  
DM  
DQS  
DM  
DQS7  
DM7  
S1  
R
S1  
8
D3  
D11  
D7  
D15  
8
DQ0  
to DQ7  
DQ0  
to DQ7  
DQ0  
DQ0  
to DQ7  
DQ56 to DQ63  
DQ24 to DQ31  
to DQ7  
R
S3  
Serial PD  
BA0 to BA1  
A0 to A13  
BA0 to BA1: SDRAMs (D0 to D15)  
A0 to A13: SDRAMs (D0 to D15)  
R
S3  
SCL  
SCL  
SDA  
SDA  
R
S3  
R
S3  
R
S3  
/RAS  
/CAS  
/WE  
/RAS: SDRAMs (D0 to D15)  
/CAS: SDRAMs (D0 to D15)  
/WE: SDRAMs (D0 to D15)  
SA0  
SA1  
A0  
A1  
A2  
U0  
WP  
CK0  
8 loads  
8 loads  
6.0pF  
/CK0  
CK1  
Notes :  
1. DQ wiring may be changed within a byte.  
6.0pF  
2. DQ, DQS, /DQS, ODT, DM, CKE, /CS relationships  
must be meintained as shown.  
/CK1  
VDDSPD  
VREF  
SPD  
SDRAMs (D0 to D15)  
SDRAMs (D0 to D15, VDD and VDDQ)  
VDD  
VSS  
SDRAMs (D0 to D15, SPD)  
* D0 to D15 : 512M bits DDR2 SDRAM  
U0 : 2k bits EEPROM  
Rs1 : 22  
Rs2 : 3.0  
Rs3 : 10.0  
Data Sheet E1083E20 (Ver. 2.0)  
8
EBE11UD8AJUA  
Electrical Specifications  
All voltages are referenced to VSS (GND).  
Absolute Maximum Ratings  
Parameter  
Symbol  
Value  
Unit  
Notes  
1
Voltage on any pin relative to VSS  
Supply voltage relative to VSS  
Short circuit output current  
Power dissipation  
VT  
–0.5 to +2.3  
–0.5 to +2.3  
50  
V
VDD  
IOS  
PD  
V
mA  
W
°C  
°C  
1
8
Operating case temperature  
Storage temperature  
TC  
0 to +95  
–55 to +100  
1, 2  
1
Tstg  
Note: 1. DDR2 SDRAM component specification.  
2. Supporting 0°C to +85°C and being able to extend to +95°C with doubling auto-refresh commands in  
frequency to a 32ms period (tREFI = 3.9µs) and higher temperature self-refresh entry via the control of  
EMRS (2) bit A7 is required.  
Caution Exposing the device to stress above those listed in Absolute Maximum Ratings could cause  
permanent damage. The device is not meant to be operated under conditions outside the limits  
described in the operational section of this specification Exposure to Absolute Maximum Rating  
conditions for extended periods may affect device reliability.  
DC Operating Conditions (TC = 0°C to +85°C) (DDR2 SDRAM Component Specification)  
Parameter  
Symbol  
VDD, VDDQ  
VSS  
min.  
typ.  
1.8  
0
max.  
1.9  
0
Unit  
V
Notes  
4
Supply voltage  
1.7  
0
V
VDDSPD  
VREF  
1.7  
3.6  
V
Input reference voltage  
Termination voltage  
DC input logic high  
DC input low  
0.49 × VDDQ  
VREF 0.04  
VREF + 0.125  
0.3  
0.50 × VDDQ 0.51 × VDDQ  
V
1, 2  
3
VTT  
VREF  
VREF + 0.04  
VDDQ + 0.3  
VREF – 0.125  
V
VIH (DC)  
VIL (DC)  
VIH (AC)  
VIL (AC)  
V
V
AC input logic high  
AC input low  
VREF + 0.200  
V
VREF 0.200  
V
Notes: 1. The value of VREF may be selected by the user to provide optimum noise margin in the system. Typically  
the value of VREF is expected to be about 0.5 × VDDQ of the transmitting device and VREF are expected  
to track variations in VDDQ.  
2. Peak to peak AC noise on VREF may not exceed ±2% VREF (DC).  
3. VTT of transmitting device must track VREF of receiving device.  
4. VDDQ must be equal to VDD.  
Data Sheet E1083E20 (Ver. 2.0)  
9
EBE11UD8AJUA  
AC Overshoot/Undershoot Specification (DDR2 SDRAM Component Specification)  
Parameter  
Pins  
Specification  
Unit  
V
Command, Address,  
CKE, ODT  
Maximum peak amplitude allowed for overshoot  
Maximum peak amplitude allowed for undershoot  
0.5  
0.5  
V
Maximum overshoot area above VDD  
DDR2-800  
0.66  
0.8  
V-ns  
V-ns  
V-ns  
DDR2-667  
Maximum undershoot area below VSS  
DDR2-800  
0.66  
DDR2-667  
0.8  
0.5  
0.5  
V-ns  
V
Maximum peak amplitude allowed for overshoot  
Maximum peak amplitude allowed for undershoot  
CK, /CK  
V
Maximum overshoot area above VDD  
DDR2-800, 667  
0.23  
V-ns  
Maximum undershoot area below VSS  
DDR2-800, 667  
0.23  
0.5  
V-ns  
V
Maximum peak amplitude allowed for overshoot  
DQ, DQS, /DQS,  
UDQS, /UDQS,  
LDQS, /LDQS,  
Maximum peak amplitude allowed for undershoot  
0.5  
V
Maximum overshoot area above VDDQ  
DDR2-800, 667  
RDQS, /RDQS,  
DM, UDM, LDM  
0.23  
0.23  
V-ns  
V-ns  
Maximum undershoot area below VSSQ  
DDR2-800, 667  
Maximum amplitude  
Overshoot area  
VDD, VDDQ  
Volts (V)  
VSS, VSSQ  
Undershoot area  
Time (ns)  
Overshoot/Undershoot Definition  
Data Sheet E1083E20 (Ver. 2.0)  
10  
EBE11UD8AJUA  
DC Characteristics 1 (TC = 0°C to +85°C, VDD = 1.8V ± 0.1V)  
Parameter  
Symbol Grade  
max.  
Unit  
Test condition  
Operating current  
(ACT-PRE)  
(Another rank is in IDD2P)  
-8E, -8G  
-6E  
520  
480  
one bank; tCK = tCK (IDD), tRC = tRC (IDD),  
tRAS = tRAS min.(IDD);  
CKE is H, /CS is H between valid commands;  
Address bus inputs are SWITCHING;  
Data bus inputs are SWITCHING  
IDD0  
IDD0  
mA  
Operating current  
(ACT-PRE)  
(Another rank is in IDD3N)  
-8E, -8G  
-6E  
760  
680  
mA  
mA  
one bank; IOUT = 0mA;  
BL = 4, CL = CL(IDD), AL = 0;  
Operating current  
-8E, -8G  
-6E  
600  
560  
IDD1  
IDD1  
(ACT-READ-PRE)  
(Another rank is in IDD2P)  
tCK = tCK (IDD), tRC = tRC (IDD),  
tRAS = tRAS min.(IDD); tRCD = tRCD (IDD);  
CKE is H, /CS is H between valid commands;  
Address bus inputs are SWITCHING;  
Data pattern is same as IDD4W  
Operating current  
-8E, -8G  
-6E  
840  
760  
mA  
mA  
(ACT-READ-PRE)  
(Another rank is in IDD3N)  
all banks idle;  
tCK = tCK (IDD);  
CKE is L;  
Other control and address bus inputs are STABLE;  
Data bus inputs are FLOATING  
Precharge power-down  
standby current  
IDD2P  
IDD2Q  
160  
240  
all banks idle;  
tCK = tCK (IDD);  
CKE is H, /CS is H;  
Other control and address bus inputs are STABLE;  
Data bus inputs are FLOATING  
Precharge quiet standby  
current  
mA  
mA  
all banks idle;  
tCK = tCK (IDD);  
CKE is H, /CS is H;  
Other control and address bus inputs are  
SWITCHING;  
Idle standby current  
IDD2N  
320  
Data bus inputs are SWITCHING  
all banks open;  
tCK = tCK (IDD);  
CKE is L;  
Other control and  
address bus inputs  
are STABLE;  
Fast PDN Exit  
MRS(12) = 0  
IDD3P-F  
IDD3P-S  
240  
192  
mA  
mA  
Active power-down  
standby current  
Slow PDN Exit  
MRS(12) = 1  
Data bus inputs are  
FLOATING  
all banks open;  
tCK = tCK (IDD), tRAS = tRAS max.(IDD),  
tRP = tRP (IDD);  
CKE is H, /CS is H between valid commands;  
Other control and address bus inputs are  
SWITCHING;  
-8E, -8G  
-6E  
640  
560  
Active standby current  
IDD3N  
mA  
Data bus inputs are SWITCHING  
all banks open, continuous burst reads, IOUT =  
0mA;  
BL = 4, CL = CL(IDD), AL = 0;  
tCK = tCK (IDD), tRAS = tRAS max.(IDD), tRP =  
tRP (IDD);  
CKE is H, /CS is H between valid commands;  
Address bus inputs are SWITCHING;  
Data pattern is same as IDD4W  
Operating current  
-8E, -8G  
-6E  
1080  
960  
IDD4R  
IDD4R  
mA  
mA  
(Burst read operating)  
(Another rank is in IDD2P)  
Operating current  
-8E, -8G  
-6E  
1320  
1160  
(Burst read operating)  
(Another rank is in IDD3N)  
all banks open, continuous burst writes;  
BL = 4, CL = CL(IDD), AL = 0;  
tCK = tCK (IDD), tRAS = tRAS max.(IDD),  
tRP = tRP (IDD);  
CKE is H, /CS is H between valid commands;  
Address bus inputs are SWITCHING;  
Data bus inputs are SWITCHING  
Operating current  
-8E, -8G  
-6E  
1040  
920  
IDD4W  
IDD4W  
mA  
mA  
(Burst write operating)  
(Another rank is in IDD2P)  
Operating current  
-8E, -8G  
-6E  
1280  
1120  
(Burst write operating)  
(Another rank is in IDD3N)  
Data Sheet E1083E20 (Ver. 2.0)  
11  
EBE11UD8AJUA  
Parameter  
Symbol Grade  
max.  
Unit  
mA  
Test condition  
tCK = tCK (IDD);  
Auto-refresh current  
(Another rank is in IDD2P)  
-8E, -8G  
-6E  
920  
880  
IDD5  
IDD5  
Refresh command at every tRFC (IDD) interval;  
CKE is H, /CS is H between valid commands;  
Other control and address bus inputs are SWITCHING;  
Data bus inputs are SWITCHING  
Auto-refresh current  
(Another rank is in IDD3N)  
-8E, -8G  
-6E  
1160  
1080  
mA  
mA  
Self Refresh Mode;  
CK and /CK at 0V;  
CKE 0.2V;  
Self-refresh current  
IDD6  
96  
Other control and address bus inputs are FLOATING;  
Data bus inputs are FLOATING  
all bank interleaving reads, IOUT = 0mA;  
BL = 4, CL = CL(IDD), AL = tRCD (IDD) 1 × tCK (IDD);  
tCK = tCK (IDD), tRC = tRC (IDD), tRRD = tRRD(IDD),  
tRCD = 1 × tCK (IDD);  
CKE is H, /CS is H between valid commands;  
Address bus inputs are STABLE during DESELECTs;  
Data pattern is same as IDD4W;  
Operating current  
-8E, -8G  
-6E  
1360  
1280  
IDD7  
IDD7  
mA  
mA  
(Bank interleaving)  
(Another rank is in IDD2P)  
Operating current  
-8E, -8G  
-6E  
1600  
1480  
(Bank interleaving)  
(Another rank is in IDD3N)  
Notes: 1. IDD specifications are tested after the device is properly initialized.  
2. Input slew rate is specified by AC Input Test Condition.  
3. IDD parameters are specified with ODT disabled.  
4. Data bus consists of DQ, DM, DQS, /DQS, RDQS and /RDQS. IDD values must be met with all  
combinations of EMRS bits 10 and 11.  
5. Definitions for IDD  
L is defined as VIN VIL (AC) (max.)  
H is defined as VIN VIH (AC) (min.)  
STABLE is defined as inputs stable at an H or L level  
FLOATING is defined as inputs at VREF = VDDQ/2  
SWITCHING is defined as:  
inputs changing between H and L every other clock cycle (once per two clocks) for address and control  
signals, and inputs changing between H and L every other data transfer (once per clock) for DQ signals  
not including masks or strobes.  
6. Refer to AC Timing for IDD Test Conditions.  
AC Timing for IDD Test Conditions  
For purposes of IDD testing, the following parameters are to be utilized.  
DDR2-800  
DDR2-800  
DDR2-667  
Parameter  
5-5-5  
5
6-6-6  
6
5-5-5  
5
Unit  
tCK  
ns  
CL (IDD)  
tRCD (IDD)  
tRC (IDD)  
12.5  
57.5  
7.5  
15  
15  
60  
60  
ns  
tRRD (IDD)  
tCK (IDD)  
7.5  
2.5  
45  
7.5  
3
ns  
2.5  
ns  
tRAS (min.)(IDD)  
tRAS (max.)(IDD)  
tRP (IDD)  
45  
45  
ns  
70000  
12.5  
105  
70000  
15  
70000  
15  
ns  
ns  
tRFC (IDD)  
105  
105  
ns  
Data Sheet E1083E20 (Ver. 2.0)  
12  
EBE11UD8AJUA  
DC Characteristics 2 (TC = 0°C to +85°C, VDD, VDDQ = 1.8V ± 0.1V)  
(DDR2 SDRAM Component Specification)  
Parameter  
Symbol  
ILI  
Value  
Unit  
µA  
Notes  
Input leakage current  
Output leakage current  
2
5
VDD VIN VSS  
VDDQ VOUT VSS  
ILO  
µA  
Minimum required output pull-up under AC  
test load  
VOH  
VOL  
VTT + 0.603  
V
V
5
5
Maximum required output pull-down under  
AC test load  
VTT 0.603  
Output timing measurement reference level VOTR  
0.5 × VDDQ  
+13.4  
V
1
Output minimum sink DC current  
Output minimum source DC current  
IOL  
mA  
mA  
3, 4, 5  
2, 4, 5  
IOH  
13.4  
Notes: 1. The VDDQ of the device under test is referenced.  
2. VDDQ = 1.7V; VOUT = 1.42V.  
3. VDDQ = 1.7V; VOUT = 0.28V.  
4. The DC value of VREF applied to the receiving device is expected to be set to VTT.  
5. After OCD calibration to 18at TC = 25°C, VDD = VDDQ = 1.8V.  
DC Characteristics 3 (TC = 0°C to +85°C, VDD, VDDQ = 1.8V ± 0.1V)  
(DDR2 SDRAM Component Specification)  
Parameter  
Symbol  
min.  
max.  
Unit  
V
Notes  
1, 2  
2
AC differential input voltage  
AC differential cross point voltage  
AC differential cross point voltage  
VID (AC)  
VIX (AC)  
VOX (AC)  
0.5  
VDDQ + 0.6  
0.5 × VDDQ 0.175  
0.5 × VDDQ 0.125  
0.5 × VDDQ + 0.175  
0.5 × VDDQ + 0.125  
V
V
3
Notes: 1. VID (AC) specifies the input differential voltage |VTR -VCP| required for switching, where VTR is the true  
input signal (such as CK, DQS, RDQS) and VCP is the complementary input signal (such as /CK, /DQS,  
/RDQS). The minimum value is equal to VIH (AC) VIL (AC).  
2. The typical value of VIX(AC) is expected to be about 0.5 × VDDQ of the transmitting device and VIX(AC)  
is expected to track variations in VDDQ . VIX(AC) indicates the voltage at which differential input signals  
must cross.  
3. The typical value of VOX(AC) is expected to be about 0.5 × VDDQ of the transmitting device and  
VOX(AC) is expected to track variations in VDDQ . VOX(AC) indicates the voltage at which differential  
output signals must cross.  
VDDQ  
VTR  
Crossing point  
VID  
VIX or VOX  
VCP  
VSSQ  
Differential Signal Levels*1, 2  
Data Sheet E1083E20 (Ver. 2.0)  
13  
EBE11UD8AJUA  
ODT DC Electrical Characteristics (TC = 0°C to +85°C, VDD, VDDQ = 1.8V ± 0.1V)  
(DDR2 SDRAM Component Specification)  
Parameter  
Symbol  
Rtt1(eff)  
Rtt2(eff)  
Rtt3(eff)  
VM  
min.  
60  
typ.  
75  
max.  
90  
Unit  
Note  
Rtt effective impedance value for EMRS (A6, A2) = 0, 1; 75 Ω  
Rtt effective impedance value for EMRS (A6, A2) = 1, 0; 150 Ω  
Rtt effective impedance value for EMRS (A6, A2) = 1, 1; 50 Ω  
Deviation of VM with respect to VDDQ/2  
1
1
1
1
120  
40  
150  
50  
180  
60  
6  
+6  
%
Note: 1. Test condition for Rtt measurements.  
Measurement Definition for Rtt (eff)  
Apply VIH (AC) and VIL (AC) to test pin separately, then measure current I(VIH (AC)) and I(VIL (AC)) respectively.  
VIH (AC), and VDDQ values defined in SSTL_18.  
VIH(AC)VIL(AC)  
Rtt(eff ) =  
I(VIH(AC))I(VIL(AC))  
Measurement Definition for VM  
Measure voltage (VM) at test pin (midpoint) with no load.  
2×VM  
VM =  
1 ×100  
VDDQ  
OCD Default Characteristics (TC = 0°C to +85°C, VDD, VDDQ = 1.8V ± 0.1V)  
(DDR2 SDRAM Component Specification)  
Parameter  
min.  
12.6  
0
typ.  
18  
max.  
23.4  
4
Unit  
Notes  
1, 5  
Output impedance  
Pull-up and pull-down mismatch  
Output slew rate  
1, 2  
1.5  
5
V/ns  
3, 4  
Notes: 1. Impedance measurement condition for output source DC current: VDDQ = 1.7V; VOUT = 1420mV;  
(VOUTVDDQ)/IOH must be less than 23.4for values of VOUT between VDDQ and VDDQ280mV.  
Impedance measurement condition for output sink DC current: VDDQ = 1.7V; VOUT = 280mV;  
VOUT/IOL must be less than 23.4for values of VOUT between 0V and 280mV.  
2. Mismatch is absolute value between pull up and pull down, both are measured at same temperature and  
voltage.  
3. Slew rate measured from VIL(AC) to VIH(AC).  
4. The absolute value of the slew rate as measured from DC to DC is equal to or greater than the slew rate  
as measured from AC to AC. This is guaranteed by design and characterization.  
5. DRAM I/O specifications for timing, voltage, and slew rate are no longer applicable if OCD is changed  
from default settings.  
Data Sheet E1083E20 (Ver. 2.0)  
14  
EBE11UD8AJUA  
Pin Capacitance (TA = 25°C, VDD = 1.8V ± 0.1V)  
(DDR2 SDRAM Component Specification)  
Parameter  
Symbol Pins  
min.  
1.0  
max.  
2.0  
Unit  
pF  
Notes  
1
CLK input pin capacitance  
CCK  
CK, /CK  
Input pin capacitance  
-8E, -8G  
/RAS, /CAS,  
/WE, /CS,  
CKE, ODT,  
Address  
1.0  
1.0  
1.75  
2.0  
pF  
pF  
1
1
CIN  
-6E  
DQ, DQS, /DQS,  
UDQS, /UDQS,  
LDQS, /LDQS,  
RDQS, /RDQS,  
DM, UDM, LDM  
Input/output pin capacitance  
CI/O  
2.5  
3.5  
pF  
2
Notes: 1. Matching within 0.25pF.  
2. Matching within 0.50pF.  
Data Sheet E1083E20 (Ver. 2.0)  
15  
EBE11UD8AJUA  
AC Characteristics (TC = 0°C to +85°C, VDD, VDDQ = 1.8V ± 0.1V, VSS, VSSQ = 0V)  
(DDR2 SDRAM Component Specification)  
New units tCK(avg) and nCK, are introduced in DDR2-800 and DDR2-667  
tCK(avg): actual tCK(avg) of the input clock under operation.  
nCK: one clock cycle of the input clock, counting the actual clock edges.  
-8E  
-8G  
-6E  
DDR2-667 (5-5-5)  
Speed bin  
Parameter  
DDR2-800 (5-5-5)  
DDR2-800 (6-6-6)  
Symbol min.  
max.  
min.  
15  
max.  
min.  
15  
max.  
Unit Notes  
Active to read or write command  
delay  
tRCD  
tRP  
12.5  
12.5  
57.5  
ns  
ns  
ns  
Precharge command period  
15  
15  
Active to active/auto-refresh  
command time  
tRC  
60  
60  
DQ output access time from CK,  
/CK  
tAC  
400  
+400  
+350  
0.52  
0.52  
400  
350  
0.48  
0.48  
+400  
+350  
0.52  
0.52  
450  
400  
0.48  
0.48  
+450  
+400  
0.52  
0.52  
ps  
ps  
10  
10  
13  
13  
DQS output access time from  
CK, /CK  
tDQSCK 350  
tCK  
(avg)  
CK high-level width  
CK low-level width  
tCH (avg) 0.48  
tCK  
(avg)  
tCL(avg) 0.48  
Min.  
Min.  
Min.  
CK half period  
tHP  
(tCL(abs),  
tCH(abs))  
(tCL(abs),  
tCH(abs))  
(tCL(abs),  
tCH(abs))  
ps  
ps  
6, 13  
13  
Clock cycle time  
(CL = 6)  
tCK (avg) 2500  
8000  
2500  
8000  
3000  
8000  
(CL = 5)  
(CL = 4)  
(CL = 3)  
tCK (avg) 2500  
tCK (avg) 3750  
tCK (avg) 5000  
8000  
8000  
8000  
3000  
3750  
5000  
8000  
8000  
8000  
3000  
3750  
5000  
8000  
8000  
8000  
ps  
ps  
ps  
13  
13  
13  
tDH  
(base)  
DQ and DM input hold time  
DQ and DM input setup time  
125  
125  
50  
175  
100  
0.6  
ps  
ps  
5
4
tDS  
(base)  
50  
Control and Address input pulse  
width for each input  
tCK  
(avg)  
tIPW  
tDIPW  
tHZ  
0.6  
0.6  
0.35  
DQ and DM input pulse width for  
each input  
tCK  
(avg)  
0.35  
0.35  
Data-out high-impedance time  
from CK,/CK  
tAC max.  
tAC max.  
tAC max. ps  
tAC max. ps  
tAC max. ps  
10  
10  
10  
DQS, /DQS low-impedance time tLZ  
tAC min.  
tAC max. tAC min.  
tAC max. tAC min.  
from CK,/CK  
(DQS)  
DQ low-impedance time from  
CK,/CK  
2 ×  
tAC min.  
2 ×  
tAC max.  
2 ×  
tAC max.  
tLZ (DQ)  
tAC min.  
tAC min.  
DQS-DQ skew for DQS and  
associated DQ signals  
tDQSQ  
tQHS  
tQH  
200  
300  
200  
300  
240  
340  
ps  
ps  
ps  
DQ hold skew factor  
7
8
DQ/DQS output hold time from  
DQS  
tHP –  
tQHS  
tHP –  
tQHS  
tHP –  
tQHS  
DQS latching rising transitions to  
associated clock edges  
tCK  
(avg)  
tDQSS  
0.25  
+0.25  
0.25  
0.35  
0.35  
0.2  
+0.25  
0.25  
0.35  
0.35  
0.2  
+0.25  
tCK  
(avg)  
DQS input high pulse width  
DQS input low pulse width  
tDQSH 0.35  
tCK  
(avg)  
tDQSL  
tDSS  
0.35  
0.2  
DQS falling edge to CK setup  
time  
tCK  
(avg)  
Data Sheet E1083E20 (Ver. 2.0)  
16  
EBE11UD8AJUA  
-8E  
-8G  
-6E  
DDR2-667 (5-5-5)  
Speed bin  
Parameter  
DDR2-800 (5-5-5)  
DDR2-800 (6-6-6)  
Symbol min.  
max.  
min.  
0.2  
max.  
min.  
0.2  
max.  
Unit Notes  
DQS falling edge hold time from  
CK  
tCK  
(avg)  
tDSH  
tMRD  
0.2  
2
Mode register set command  
cycle time  
2
2
nCK  
tCK  
(avg)  
Write postamble  
Write preamble  
tWPST 0.4  
tWPRE 0.35  
0.6  
0.4  
0.35  
250  
175  
0.9  
0.4  
0.6  
0.4  
0.35  
275  
200  
0.9  
0.4  
0.6  
tCK  
(avg)  
Address and control input hold  
time  
tIH  
(base)  
250  
ps  
ps  
5
Address and control input setup tIS  
time  
175  
0.9  
0.4  
4
(base)  
tCK  
(avg)  
Read preamble  
tRPRE  
tRPST  
1.1  
1.1  
1.1  
11  
12  
tCK  
(avg)  
Read postamble  
0.6  
0.6  
0.6  
Active to precharge command  
Active to auto-precharge delay  
tRAS  
tRAP  
45  
70000  
45  
70000  
45  
70000  
ns  
ns  
tRCD min.  
tRCD min.  
tRCD min.  
Active bank A to active bank B  
command period  
tRRD  
7.5  
7.5  
7.5  
ns  
/CAS to /CAS command delay  
Write recovery time  
tCCD  
tWR  
2
2
2
nCK  
ns  
15  
15  
15  
WR +  
RU (tRP/  
tCK (avg))  
WR +  
RU (tRP/  
tCK (avg))  
WR +  
RU (tRP/  
tCK (avg))  
Auto precharge write recovery +  
precharge time  
tDAL  
nCK 1, 9  
Internal write to read command  
delay  
tWTR  
tRTP  
7.5  
7.5  
7.5  
ns  
14  
Internal read to precharge  
command delay  
7.5  
7.5  
7.5  
ns  
Exit self-refresh to a non-read  
command  
tXSNR  
tXSRD  
tXP  
tRFC + 10  
tRFC + 10  
tRFC + 10  
ns  
Exit self-refresh to a read  
command  
200  
2
200  
2
200  
2
nCK  
nCK  
nCK  
Exit precharge power down to  
any non-read command  
Exit active power down to read  
command  
tXARD  
2
2
2
3
Exit active power down to read  
command  
tXARDS 8 AL  
8 AL  
7 AL  
nCK 2, 3  
(slow exit/low power mode)  
CKE minimum pulse width  
(high and low pulse width)  
tCKE  
tOIT  
3
3
3
nCK  
ns  
Output impedance test driver  
delay  
0
12  
12  
0
12  
12  
0
12  
12  
MRS command to ODT update  
delay  
tMOD  
tRFC  
0
0
0
ns  
Auto-refresh to active/auto-  
refresh command time  
105  
105  
105  
ns  
Average periodic refresh interval  
(0°C TC +85°C)  
tREFI  
tREFI  
7.8  
3.9  
7.8  
3.9  
7.8  
3.9  
µs  
µs  
(+85°C < TC +95°C)  
Minimum time clocks remains  
ON after CKE asynchronously  
drops low  
tIS +  
tIS +  
tCK(avg) +  
tIH  
tIS +  
tCK(avg) +  
tIH  
tDELAY tCK(avg) +  
ns  
tIH  
Data Sheet E1083E20 (Ver. 2.0)  
17  
EBE11UD8AJUA  
Notes: 1. For each of the terms above, if not already an integer, round to the next higher integer.  
2. AL: Additive Latency.  
3. MRS A12 bit defines which active power down exit timing to be applied.  
4. The figures of Input Waveform Timing 1 and 2 are referenced from the input signal crossing at the  
VIH(AC) level for a rising signal and VIL(AC) for a falling signal applied to the device under test.  
5. The figures of Input Waveform Timing 1 and 2 are referenced from the input signal crossing at the  
VIL(DC) level for a rising signal and VIH(DC) for a falling signal applied to the device under test.  
CK  
DQS  
/CK  
/DQS  
tIS  
tIH  
tIS  
tIH  
tDS tDH  
tDS tDH  
VDDQ  
VDDQ  
VIH (AC)(min.)  
VIH (DC)(min.)  
VREF  
VIH (AC)(min.)  
VIH (DC)(min.)  
VREF  
VIL (DC)(max.)  
VIL (AC)(max.)  
VSS  
VIL (DC)(max.)  
VIL (AC)(max.)  
VSS  
Input Waveform Timing 1 (tDS, tDH)  
Input Waveform Timing 2 (tIS, tIH)  
6.tHP is the minimum of the absolute half period of the actual input clock. tHP is an input parameter but not  
an input specification parameter. It is used in conjunction with tQHS to derive the DRAM output timing  
tQH.  
The value to be used for tQH calculation is determined by the following equation;  
tHP = min ( tCH(abs), tCL(abs) ),  
where,  
tCH(abs) is the minimum of the actual instantaneous clock high time;  
tCL(abs) is the minimum of the actual instantaneous clock low time;  
7. tQHS accounts for:  
a. The pulse duration distortion of on-chip clock circuits, which represents how well the actual tHP at the  
input is transferred to the output; and  
b. The worst case push-out of DQS on one transition followed by the worst case pull-in of DQ on the  
next transition, both of which are independent of each other, due to data pin skew, output pattern effects,  
and p-channel to n-channel variation of the output drivers.  
8. tQH = tHP – tQHS, where:  
tHP is the minimum of the absolute half period of the actual input clock; and tQHS is the specification  
value under the max column.  
{The less half-pulse width distortion present, the larger the tQH value is; and the larger the valid data eye  
will be.}  
Examples:  
a. If the system provides tHP of 1315ps into a DDR2-667 SDRAM, the DRAM provides tQH of 975ps  
(min.)  
b. If the system provides tHP of 1420ps into a DDR2-667 SDRAM, the DRAM provides tQH of 1080ps  
(min.)  
9. RU stands for round up. WR refers to the tWR parameter stored in the MRS.  
10. When the device is operated with input clock jitter, this parameter needs to be derated by the actual  
tERR(6-10per) of the input clock. (output deratings are relative to the SDRAM input clock.)  
For example, if the measured jitter into a DDR2-667 SDRAM has tERR(6-10per) min. = 272ps and  
tERR(6-10per) max. = +293ps, then tDQSCK min.(derated) = tDQSCK min. tERR(6-10per) max. =  
400ps 293ps = 693ps and tDQSCK max.(derated) = tDQSCK max. tERR(6-10per) min. = 400ps +  
272ps = +672ps. Similarly, tLZ(DQ) for DDR2-667 derates to tLZ(DQ) min.(derated) = 900ps 293ps =  
1193ps and tLZ(DQ) max.(derated)= 450ps + 272ps = +722ps.  
Data Sheet E1083E20 (Ver. 2.0)  
18  
EBE11UD8AJUA  
11. When the device is operated with input clock jitter, this parameter needs to be derated by the actual  
tJIT(per) of the input clock. (output deratings are relative to the SDRAM input clock.)  
For example, if the measured jitter into a DDR2-667 SDRAM has tJIT(per) min. = 72ps and  
tJIT(per) max. = +93ps, then tRPRE min.(derated) = tRPRE min. + tJIT(per) min. = 0.9 × tCK(avg) 72ps  
= +2178ps and tRPRE max.(derated) = tRPRE max. + tJIT(per) max. = 1.1 × tCK(avg) + 93ps = +2843ps.  
12. When the device is operated with input clock jitter, this parameter needs to be derated by the actual  
tJIT(duty) of the input clock. (output deratings are relative to the SDRAM input clock.)  
For example, if the measured jitter into a DDR2-667 SDRAM has tJIT(duty) min. = 72ps and  
tJIT(duty) max. = +93ps, then tRPST min.(derated) = tRPST min. + tJIT(duty) min. = 0.4 × tCK(avg) −  
72ps = +928ps and tRPST max.(derated) = tRPST max. + tJIT(duty) max. = 0.6 × tCK(avg) + 93ps =  
+1592ps.  
13. Refer to the Clock Jitter table.  
14. tWTR is at least two clocks (2 × tCK or 2 × nCK) independent of operation frequency.  
Data Sheet E1083E20 (Ver. 2.0)  
19  
EBE11UD8AJUA  
ODT AC Electrical Characteristics (DDR2 SDRAM Component Specification)  
Parameter  
Symbol  
tAOND  
tAON  
min.  
max.  
Unit  
tCK  
ps  
Notes  
1, 3  
ODT turn-on delay  
2
2
ODT turn-on  
tAC(min)  
tAC(max) + 700  
ODT turn-on (power down mode)  
ODT turn-off delay  
tAONPD  
tAOFD  
tAOF  
tAC(min) + 2000  
2tCK + tAC(max) + 1000  
ps  
2.5  
2.5  
tCK  
ps  
5
ODT turn-off  
tAC(min)  
tAC(max) + 600  
2, 4, 5  
ODT turn-off (power down mode)  
ODT to power down entry latency  
ODT power down exit latency  
tAOFPD  
tANPD  
tAXPD  
tAC(min) + 2000  
2.5tCK + tAC(max) + 1000  
ps  
3
8
3
8
tCK  
tCK  
Notes: 1. ODT turn on time min is when the device leaves high impedance and ODT resistance begins to turn on.  
ODT turn on time max is when the ODT resistance is fully on. Both are measured from tAOND.  
2. ODT turn off time min is when the device starts to turn off ODT resistance.  
ODT turn off time max is when the bus is in high impedance. Both are measured from tAOFD.  
3. When the device is operated with input clock jitter, this parameter needs to be derated by the actual  
tERR(6-10per) of the input clock. (output deratings are relative to the SDRAM input clock.)  
4. When the device is operated with input clock jitter, this parameter needs to be derated by  
{tJIT(duty) max. tERR(6-10per) max. } and { tJIT(duty) min. tERR(6-10per) min. } of the actual input  
clock.(output deratings are relative to the SDRAM input clock.)  
For example, if the measured jitter into a DDR2-667 SDRAM has tERR(6-10per) min. = 272ps,  
tERR(6-10per) max. = +293ps, tJIT(duty) min. = 106ps and tJIT(duty) max. = +94ps, then  
tAOF min.(derated) = tAOF min. + { tJIT(duty) max. tERR(6-10per) max. } = 450ps + { 94ps 293ps}  
= 837ps and tAOF max.(derated) = tAOF max. + { tJIT(duty) min. tERR(6-10per) min. } = 1050ps +  
{ 106ps + 272ps} = +1428ps.  
5. For tAOFD of DDR2-667/800, the 1/2 clock of nCK in the 2.5 × nCK assumes a tCH(avg), average input  
clock high pulse width of 0.5 relative to tCK(avg). tAOF min. and tAOF max. should each be derated by  
the same amount as the actual amount of tCH(avg) offset present at the DRAM input with respect to 0.5.  
For example, if an input clock has a worst case tCH(avg) of 0.48, the tAOF min. should be derated by  
subtracting 0.02 × tCK(avg) from it, whereas if an input clock has a worst case tCH(avg) of 0.52,  
the tAOF max. should be derated by adding 0.02 × tCK(avg) to it. Therefore, we have;  
tAOF min.(derated) = tAC min. [0.5 Min.(0.5, tCH(avg) min.)] × tCK(avg)  
tAOF max.(derated) = tAC max. + 0.6 + [Max.(0.5, tCH(avg) max.) 0.5] × tCK(avg)  
or  
tAOF min.(derated) = Min.(tAC min., tAC min. [0.5 tCH(avg) min.] × tCK(avg))  
tAOF max.(derated) = 0.6 + Max.(tAC max., tAC max. + [tCH(avg) max. 0.5] × tCK(avg))  
where tCH(avg) min. and tCH(avg) max. are the minimum and maximum of tCH(avg) actually measured  
at the DRAM input balls.  
Data Sheet E1083E20 (Ver. 2.0)  
20  
EBE11UD8AJUA  
AC Input Test Conditions (DDR2 SDRAM Component Specification)  
Parameter  
Symbol  
Value  
0.5 × VDDQ  
1.0  
Unit  
V
Notes  
1
Input reference voltage  
VREF  
Input signal maximum peak to peak swing  
Input signal minimum slew rate  
VSWING(max.)  
SLEW  
V
1
1.0  
V/ns  
2, 3  
Notes: 1. Input waveform timing is referenced to the input signal crossing through the VIH/IL (AC) level applied to  
the device under test.  
2. The input signal minimum slew rate is to be maintained over the range from VREF to VIH(AC) (min.) for  
rising edges and the range from VREF to VIL(AC) (max.) for falling edges as shown in the below figure.  
3. AC timings are referenced with input waveforms switching from VIL(AC) to VIH(AC) on the positive  
transitions and VIH(AC) to VIL(AC) on the negative transitions.  
VDDQ  
VIH (AC)(min.)  
VIH (DC)(min.)  
VSWING(max.)  
VREF  
VIL (DC)(max.)  
VIL (AC)(max.)  
VSS  
TF  
VREF  
TR  
VIL (AC)(max.)  
VIH (AC) min.  
VREF  
Falling slew =  
Rising slew =  
TF  
TR  
AC Input Test Signal Wave forms  
Measurement point  
DQ  
VTT  
RT =25 Ω  
Output Load  
Data Sheet E1083E20 (Ver. 2.0)  
21  
EBE11UD8AJUA  
Clock Jitter [DDR2-800, 667]  
-8E, -8G  
800  
-6E  
Frequency (Mbps)  
Parameter  
667  
Symbol  
min.  
max.  
8000  
100  
min.  
3000  
125  
max.  
8000  
125  
Unit  
ps  
Notes  
Average clock period  
Clock period jitter  
tCK (avg)  
tJIT (per)  
2500  
100  
1
5
ps  
Clock period jitter during  
DLL locking period  
tJIT  
(per, lck)  
80  
80  
100  
100  
250  
200  
ps  
ps  
ps  
5
6
6
Cycle to cycle period jitter  
tJIT (cc)  
200  
160  
Cycle to cycle clock period jitter  
during DLL locking period  
tJIT (cc, lck)  
Cumulative error across 2 cycles  
Cumulative error across 3 cycles  
Cumulative error across 4 cycles  
Cumulative error across 5 cycles  
tERR (2per) 150  
tERR (3per) 175  
tERR (4per) 200  
tERR (5per) 200  
150  
175  
200  
200  
175  
225  
250  
250  
175  
225  
250  
250  
ps  
ps  
ps  
ps  
7
7
7
7
Cumulative error across  
n=6,7,8,9,10 cycles  
tERR  
(6-10per)  
300  
300  
450  
350  
450  
350  
450  
ps  
ps  
7
7
Cumulative error across  
n=11, 12,…49,50 cycles  
tERR  
(11-50per)  
450  
Average high pulse width  
Average low pulse width  
Duty cycle jitter  
tCH (avg)  
tCL (avg)  
tJIT (duty)  
0.48  
0.48  
100  
0.52  
0.52  
100  
0.48  
0.48  
125  
0.52  
0.52  
125  
tCK (avg)  
tCK (avg)  
ps  
2
3
4
Notes: 1. tCK (avg) is calculated as the average clock period across any consecutive 200cycle window.  
N  
tCK(avg) =  
tCKj  
N
j =1  
N = 200  
2. tCH (avg) is defined as the average high pulse width, as calculated across any consecutive 200 high  
pulses.  
N  
tCH(avg) =  
tCHj (N ×tCK(avg))  
j =1  
N = 200  
3. tCL (avg) is defined as the average low pulse width, as calculated across any consecutive 200 low pulses.  
N  
tCL(avg) =  
tCLj (N × tCK(avg))  
j =1  
N = 200  
4. tJIT (duty) is defined as the cumulative set of tCH jitter and tCL jitter. tCH jitter is the largest deviation of  
any single tCH from tCH (avg). tCL jitter is the largest deviation of any single tCL from tCL (avg).  
tJIT (duty) is not subject to production test.  
tJIT (duty) = Min./Max. of {tJIT (CH), tJIT (CL)}, where:  
tJIT (CH) = {tCHj- tCH (avg) where j = 1 to 200}  
tJIT (CL) = {tCLj tCL (avg) where j = 1 to 200}  
5. tJIT (per) is defined as the largest deviation of any single tCK from tCK (avg).  
tJIT (per) = Min./Max. of { tCKj tCK (avg) where j = 1 to 200}  
tJIT (per) defines the single period jitter when the DLL is already locked. tJIT (per, lck) uses the same  
definition for single period jitter, during the DLL locking period only. tJIT (per) and tJIT (per, lck) are not  
subject to production test.  
Data Sheet E1083E20 (Ver. 2.0)  
22  
EBE11UD8AJUA  
6. tJIT (cc) is defined as the absolute difference in clock period between two consecutive clock cycles:  
tJIT (cc) = Max. of |tCKj+1 tCKj|  
tJIT (cc) is defines the cycle to cycle jitter when the DLL is already locked. tJIT (cc, lck) uses the same  
definition for cycle to cycle jitter, during the DLL locking period only. tJIT (cc) and tJIT (cc, lck) are not  
subject to production test.  
7. tERR (nper) is defined as the cumulative error across multiple consecutive cycles from tCK (avg).  
tERR (nper) is not subject to production test.  
n
tERR(nper) =  
tCKj n×tCK(avg))  
j =1  
2 n 50 for tERR (nper)  
8. These parameters are specified per their average values, however it is understood that the following  
relationship between the average timing and the absolute instantaneous timing hold at all times.  
(minimum and maximum of spec values are to be used for calculations in the table below.)  
Parameter  
Symbol  
min.  
max.  
Unit  
Absolute clock period  
tCK (abs) tCK (avg) min. + tJIT (per) min. tCK (avg) max. + tJIT (per) max. ps  
Absolute clock high pulse  
width  
tCH (avg) min. × tCK (avg) min. tCH (avg) max. × tCK (avg) max.  
tCH (abs)  
tCL (abs)  
ps  
ps  
+ tJIT (duty) min.  
tCL (avg) min. × tCK (avg) min. tCL (avg) max. × tCK (avg) max.  
+ tJIT (duty) min. + tJIT (duty) max.  
+ tJIT (duty) max.  
Absolute clock low pulse  
width  
Example: For DDR2-667, tCH(abs) min. = ( 0.48 × 3000 ps ) - 125ps = 1315ps  
Data Sheet E1083E20 (Ver. 2.0)  
23  
EBE11UD8AJUA  
Pin Functions  
CK, /CK (input pin)  
The CK and the /CK are the master clock inputs. All inputs except DMs, DQSs and DQs are referred to the cross  
point of the CK rising edge and the VREF level. When a read operation, DQSs and DQs are referred to the cross  
point of the CK and the /CK. When a write operation, DMs and DQs are referred to the cross point of the DQS and  
the VREF level. DQSs for write operation are referred to the cross point of the CK and the /CK.  
/CS (input pin)  
When /CS is low, commands and data can be input. When /CS is high, all inputs are ignored. However, internal  
operations (bank active, burst operations, etc.) are held.  
/RAS, /CAS, and /WE (input pins)  
These pins define operating commands (read, write, etc.) depending on the combinations of their voltage levels.  
See "Command operation".  
A0 to A12 (input pins)  
Row address (AX0 to AX12) is determined by the A0 to the A12 level at the cross point of the CK rising edge and the  
VREF level in a bank active command cycle. Column address (AY0 to AY9) is loaded via the A0 to the A9 at the  
cross point of the CK rising edge and the VREF level in a read or a write command cycle. This column address  
becomes the starting address of a burst operation.  
A10 (AP) (input pin)  
A10 defines the precharge mode when a precharge command, a read command or a write command is issued. If  
A10 = high when a precharge command is issued, all banks are precharged. If A10 = low when a precharge  
command is issued, only the bank that is selected by BA1, BA0 is precharged. If A10 = high when read or write  
command, auto-precharge function is enabled. While A10 = low, auto-precharge function is disabled.  
BA0 and BA1 (input pins)  
BA0, BA1 are bank select signals (BA). The memory array is divided into bank 0, bank 1, bank 2 and bank 3. (See  
Bank Select Signal Table)  
[Bank Select Signal Table]  
BA0  
L
BA1  
L
Bank 0  
Bank 1  
H
L
Bank 2  
L
H
Bank 3  
H
H
Remark: H: VIH. L: VIL.  
CKE (input pin)  
CKE controls power down and self-refresh. The power down and the self-refresh commands are entered when the  
CKE is driven low and exited when it resumes to high.  
The CKE level must be kept for 1 CK cycle at least, that is, if CKE changes at the cross point of the CK rising edge  
and the VREF level with proper setup time tIS, at the next CK rising edge CKE level must be kept with proper hold  
time tIH.  
DQ (input and output pins)  
Data are input to and output from these pins.  
DQS and /DQS (input and output pin)  
DQS and /DQS provide the read data strobes (as output) and the write data strobes (as input).  
Data Sheet E1083E20 (Ver. 2.0)  
24  
EBE11UD8AJUA  
DM (input pins)  
DM is the reference signal of the data input mask function. DMs are sampled at the cross point of DQS and /DQS.  
VDD (power supply pins)  
1.8V is applied. (VDD is for the internal circuit.)  
VDDSPD (power supply pin)  
1.8V is applied (For serial EEPROM).  
VSS (power supply pin)  
Ground is connected.  
Detailed Operation Part and Timing Waveforms  
Refer to the EDE5108AJBG, EDE5116AJBG datasheet (E1044E).  
Data Sheet E1083E20 (Ver. 2.0)  
25  
EBE11UD8AJUA  
Physical Outline  
Unit: mm  
3.80 Max  
Front side  
2.00 Min  
11.55  
17.55  
(DATUM -A-)  
4x Full R  
Component area  
(Front)  
A
B
D
11.40  
2.15  
47.40  
2.45  
2.15  
1.00 ± 0.10  
67.60  
Back side  
2.45  
63.60  
C
Component area  
(Back)  
(DATUM -A-)  
Detail A  
Detail B  
FULL R  
0.60  
2.70  
4.20  
1.00 ± 0.10  
0.45 ± 0.03  
Detail C  
Detail D  
Contact pad  
4.20  
2.40  
ECA-TS2-0209-01  
Data Sheet E1083E20 (Ver. 2.0)  
26  
EBE11UD8AJUA  
CAUTION FOR HANDLING MEMORY MODULES  
When handling or inserting memory modules, be sure not to touch any components on the modules, such as  
the memory ICs, chip capacitors and chip resistors. It is necessary to avoid undue mechanical stress on  
these components to prevent damaging them.  
In particular, do not push module cover or drop the modules in order to protect from mechanical defects,  
which would be electrical defects.  
When re-packing memory modules, be sure the modules are not touching each other.  
Modules in contact with other modules may cause excessive mechanical stress, which may damage the  
modules.  
MDE0202  
NOTES FOR CMOS DEVICES  
PRECAUTION AGAINST ESD FOR MOS DEVICES  
1
Exposing the MOS devices to a strong electric field can cause destruction of the gate  
oxide and ultimately degrade the MOS devices operation. Steps must be taken to stop  
generation of static electricity as much as possible, and quickly dissipate it, when once  
it has occurred. Environmental control must be adequate. When it is dry, humidifier  
should be used. It is recommended to avoid using insulators that easily build static  
electricity. MOS devices must be stored and transported in an anti-static container,  
static shielding bag or conductive material. All test and measurement tools including  
work bench and floor should be grounded. The operator should be grounded using  
wrist strap. MOS devices must not be touched with bare hands. Similar precautions  
need to be taken for PW boards with semiconductor MOS devices on it.  
2
HANDLING OF UNUSED INPUT PINS FOR CMOS DEVICES  
No connection for CMOS devices input pins can be a cause of malfunction. If no  
connection is provided to the input pins, it is possible that an internal input level may be  
generated due to noise, etc., hence causing malfunction. CMOS devices behave  
differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed  
high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected  
to VDD or GND with a resistor, if it is considered to have a possibility of being an output  
pin. The unused pins must be handled in accordance with the related specifications.  
3
STATUS BEFORE INITIALIZATION OF MOS DEVICES  
Power-on does not necessarily define initial status of MOS devices. Production process  
of MOS does not define the initial operation status of the device. Immediately after the  
power source is turned ON, the MOS devices with reset function have not yet been  
initialized. Hence, power-on does not guarantee output pin levels, I/O settings or  
contents of registers. MOS devices are not initialized until the reset signal is received.  
Reset operation must be executed immediately after power-on for MOS devices having  
reset function.  
CME0107  
Data Sheet E1083E20 (Ver. 2.0)  
27  
EBE11UD8AJUA  
The information in this document is subject to change without notice. Before using this document, confirm that this is the latest version.  
No part of this document may be copied or reproduced in any form or by any means without the prior  
written consent of Elpida Memory, Inc.  
Elpida Memory, Inc. does not assume any liability for infringement of any intellectual property rights  
(including but not limited to patents, copyrights, and circuit layout licenses) of Elpida Memory, Inc. or  
third parties by or arising from the use of the products or information listed in this document. No license,  
express, implied or otherwise, is granted under any patents, copyrights or other intellectual property  
rights of Elpida Memory, Inc. or others.  
Descriptions of circuits, software and other related information in this document are provided for  
illustrative purposes in semiconductor product operation and application examples. The incorporation of  
these circuits, software and information in the design of the customer's equipment shall be done under  
the full responsibility of the customer. Elpida Memory, Inc. assumes no responsibility for any losses  
incurred by customers or third parties arising from the use of these circuits, software and information.  
[Product applications]  
Be aware that this product is for use in typical electronic equipment for general-purpose applications.  
Elpida Memory, Inc. makes every attempt to ensure that its products are of high quality and reliability.  
However, users are instructed to contact Elpida Memory's sales office before using the product in  
aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment,  
medical equipment for life support, or other such application in which especially high quality and  
reliability is demanded or where its failure or malfunction may directly threaten human life or cause risk  
of bodily injury.  
[Product usage]  
Design your application so that the product is used within the ranges and conditions guaranteed by  
Elpida Memory, Inc., including the maximum ratings, operating supply voltage range, heat radiation  
characteristics, installation conditions and other related characteristics. Elpida Memory, Inc. bears no  
responsibility for failure or damage when the product is used beyond the guaranteed ranges and  
conditions. Even within the guaranteed ranges and conditions, consider normally foreseeable failure  
rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so  
that the equipment incorporating Elpida Memory, Inc. products does not cause bodily injury, fire or other  
consequential damage due to the operation of the Elpida Memory, Inc. product.  
[Usage environment]  
Usage in environments with special characteristics as listed below was not considered in the design.  
Accordingly, our company assumes no responsibility for loss of a customer or a third party when used in  
environments with the special characteristics listed below.  
Example:  
1) Usage in liquids, including water, oils, chemicals and organic solvents.  
2) Usage in exposure to direct sunlight or the outdoors, or in dusty places.  
3) Usage involving exposure to significant amounts of corrosive gas, including sea air, CL2, H2S, NH3,  
SO2, and NO .  
x
4) Usage in environments with static electricity, or strong electromagnetic waves or radiation.  
5) Usage in places where dew forms.  
6) Usage in environments with mechanical vibration, impact, or stress.  
7) Usage near heating elements, igniters, or flammable items.  
If you export the products or technology described in this document that are controlled by the Foreign  
Exchange and Foreign Trade Law of Japan, you must follow the necessary procedures in accordance  
with the relevant laws and regulations of Japan. Also, if you export products/technology controlled by  
U.S. export control regulations, or another country's export control laws or regulations, you must follow  
the necessary procedures in accordance with such laws or regulations.  
If these products/technology are sold, leased, or transferred to a third party, or a third party is granted  
license to use these products, that third party must be made aware that they are responsible for  
compliance with the relevant laws and regulations.  
M01E0706  
Data Sheet E1083E20 (Ver. 2.0)  
28  

相关型号:

EBE11UD8AJWA

1GB Unbuffered DDR2 SDRAM DIMM
ELPIDA

EBE11UD8AJWA-6E-E

1GB Unbuffered DDR2 SDRAM DIMM
ELPIDA

EBE11UD8AJWA-8E-E

1GB Unbuffered DDR2 SDRAM DIMM
ELPIDA

EBE11UD8AJWA-8G-E

1GB Unbuffered DDR2 SDRAM DIMM
ELPIDA

EBE11UE6ACSA

1GB DDR2 SDRAM SO-DIMM
ELPIDA

EBE11UE6ACSA-6E-E

1GB DDR2 SDRAM SO-DIMM
ELPIDA

EBE11UE6ACSA-8E-E

1GB DDR2 SDRAM SO-DIMM
ELPIDA

EBE11UE6ACSA-8G-E

1GB DDR2 SDRAM SO-DIMM
ELPIDA

EBE11UE6ACUA

1GB DDR2 SDRAM SO-DIMM
ELPIDA

EBE11UE6ACUA-6E-E

1GB DDR2 SDRAM SO-DIMM
ELPIDA

EBE11UE6ACUA-8E-E

1GB DDR2 SDRAM SO-DIMM
ELPIDA

EBE11UE6ACUA-8G-E

1GB DDR2 SDRAM SO-DIMM
ELPIDA