EBE51FD8AHFT-6E-E [ELPIDA]

512MB Fully Buffered DIMM; 512MB全缓冲DIMM
EBE51FD8AHFT-6E-E
型号: EBE51FD8AHFT-6E-E
厂家: ELPIDA MEMORY    ELPIDA MEMORY
描述:

512MB Fully Buffered DIMM
512MB全缓冲DIMM

存储 内存集成电路 动态存储器
文件: 总22页 (文件大小:187K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY DATA SHEET  
512MB Fully Buffered DIMM  
EBE51FD8AHFT  
EBE51FD8AHFE  
EBE51FD8AHFL  
Specifications  
Features  
Density: 512MB  
Organization  
JEDEC standard Raw Card A Design  
Industry Standard Advanced Memory Buffer (AMB)  
64M words × 72 bits, 1 rank  
High-speed differential point-to-point link interface at  
1.5V (JEDEC draft spec)  
Mounting 9 pieces of 512M bits DDR2 SDRAM  
sealed in FBGA  
14 north-bound (NB) high speed serial lanes  
10 south-bound (SB) high speed serial lanes  
Various features/modes:  
Package  
240-pin fully buffered, socket type dual in line  
memory module (FB-DIMM)  
MemBIST and IBIST test functions  
PCB height: 30.35mm  
Transparent mode and direct access mode for  
DRAM testing  
Lead pitch: 1.00mm  
Advanced Memory Buffer (AMB): 655-ball FCBGA  
Lead-free (RoHS compliant)  
Interface for a thermal sensor and status indicator  
Channel error detection and reporting  
Power supply  
Automatic DDR2 SDRAM bus and channel  
calibration  
DDR2 SDRAM: VDD = 1.8V ± 0.1V  
AMB: VCC = 1.5V + 0.075V/0.045  
Data rate: 667Mbps/533Mbps (max.)  
SPD (serial presence detect) with 1piece of 256 byte  
serial EEPROM  
Four internal banks for concurrent operation  
(components)  
Note: Warranty void if removed DIMM heat  
spreader.  
Interface: SSTL_18  
Burst lengths (BL): 4, 8  
/CAS Latency (CL): 3, 4, 5  
Precharge: auto precharge option for each burst  
access  
Refresh: auto-refresh, self-refresh  
Refresh cycles: 8192 cycles/64ms  
Average refresh period  
7.8µs at 0°C TC ≤ +85°C  
3.9µs at +85°C < TC ≤ +95°C  
Operating case temperature range  
TC = 0°C to +95°C  
Performance  
FB-DIMM  
DDR2 SDRAM  
System clock  
frequency  
Peak channel  
throughput  
Speed grade  
PC2-5300F  
PC2-4200F  
FB-DIMM link data rate  
4.0Gbps  
Speed Grade  
DDR data rate  
667Mbps  
167MHz  
133MHz  
8.0GByte/s  
6.4GByte/s  
DDR2-667 (5-5-5)  
DDR2-533 (4-4-4)  
3.2Gbps  
533Mbps  
Document No. E1002E30 (Ver. 3.0)  
Date Published February 2007 (K) Japan  
Printed in Japan  
URL: http://www.elpida.com  
Elpida Memory, Inc. 2006-2007  
EBE51FD8AHFT, EBE51FD8AHFE, EBE51FD8AHFL  
Ordering Information  
DIMM speed  
grade  
Component JEDEC  
speed bin (CL-tRCD-tRP)  
Part number  
Mounted devices*1  
Mounted AMB*2  
IDT Rev. C1  
EBE51FD8AHFT-6E-E  
PC2-5300F  
DDR2-667 (5-5-5)  
DDR2-533 (4-4-4)  
DDR2-667 (5-5-5)  
DDR2-533 (4-4-4)  
DDR2-667 (5-5-5)  
DDR2-533 (4-4-4)  
EDE5108AHSE-6E-E  
EDE5108AHSE-6E-E  
EDE5108AHSE-5C-E  
EBE51FD8AHFT-5C-E  
EBE51FD8AHFE-6E-E  
EBE51FD8AHFE-5C-E  
EBE51FD8AHFL-6E-E  
EBE51FD8AHFL-5C-E  
PC2-4200F  
PC2-5300F  
PC2-4200F  
PC2-5300F  
PC2-4200F  
EDE5108AHSE-6E-E  
NECEL Rev. B5+  
INTEL Rev. D1  
EDE5108AHSE-6E-E  
EDE5108AHSE-5C-E  
EDE5108AHSE-6E-E  
EDE5108AHSE-6E-E  
EDE5108AHSE-5C-E  
Notes: 1. Please refer to the EDE5108AHSE, EDE5116AHSE datasheet (E0908E) for detailed operation part and  
timing waveforms.  
2. Please refer to the following documents for detailed operation part and timing waveforms.  
Advanced Memory Buffer (AMB) specification  
FB-DIMM Architecture and Protocol specification  
Part Number  
E B E 51 F D 8 A H F T - 6E - E  
Environment code  
Elpida Memory  
Type  
E: Lead Free  
(RoHS compliant)  
DRAM Speed Grade  
6E: DDR2-667 (5-5-5)  
5C: DDR2-533 (4-4-4)  
B: Module  
Product Family  
E: DDR2  
Density / Rank  
51: 512MB/1-rank  
AMB Device Information  
T: IDT, Rev.C1  
E: NECEL, Rev.B5+  
L: Intel, Rev.D1  
Module Type  
F: Fully Buffered  
Module Outline  
Mono Density  
D: 512Mbit  
F: 240-pin DIMM  
Die Rev. (Mono)  
Mono Organization  
8: x8  
Power Supply, Interface  
A: 1.8V, SSTL_1.8  
Preliminary Data Sheet E1002E30 (Ver. 3.0)  
2
EBE51FD8AHFT, EBE51FD8AHFE, EBE51FD8AHFL  
Advanced Memory Buffer Overview  
The Advanced Memory Buffer (AMB) reference design complies with the FB-DIMM Architecture and Protocol  
Specification. It supports DDR2 SDRAM main memory. The AMB allows buffering of memory traffic to support large  
memory capacities. All memory control for the DRAM resides in the host, including memory request initiation, timing,  
refresh, scrubbing, sparing, configuration access, and power management. The AMB interface is responsible for  
handling FB-DIMM channel and memory requests to and from the local DIMM and for forwarding requests to other  
DIMMs on the FB-DIMM channel.  
The FB-DIMM provides a high memory bandwidth, large capacity channel solution that has a narrow host interface.  
FB-DIMMs use commodity DRAMs isolated from the channel behind a buffer on the DIMM. The memory capacity is  
288 devices per channel and total memory capacity scales with DRAM bit density.  
The AMB is the buffer that isolates the DRAMs from the channel.  
Advanced Memory Buffer Functionality  
The AMB will perform the following FB-DIMM channel functions.  
Supports channel initialization procedures as defined in the initialization chapter of the FB-DIMM Architecture and  
Protocol Specification to align the clocks and the frame boundaries, verify channel connectivity, and identify AMB  
DIMM position.  
Supports the forwarding of southbound and northbound frames, servicing requests directed to a specific AMB or  
DIMM, as defined in the protocol chapter, and merging the return data into the northbound frames.  
If the AMB resides on the last DIMM in the channel, the AMB initializes northbound frames.  
Detects errors on the channel and reports them to the host memory controller.  
Support the FB-DIMM configuration register set as defined in the register chapters.  
Acts as DRAM memory buffer for all read, write, and configuration accesses addressed to the DIMM.  
Provides a read buffer FIFO and a write buffer FIFO.  
Supports an SMBus protocol interface for access to the AMB configuration registers.  
Provides logic to support MemBIST and IBIST design for test functions.  
Provides a register interface for the thermal sensor and status indicator.  
Functions as a repeater to extend the maximum length of FB-DIMM links.  
Preliminary Data Sheet E1002E30 (Ver. 3.0)  
3
EBE51FD8AHFT, EBE51FD8AHFE, EBE51FD8AHFL  
Advanced Memory Buffer Block Diagram  
Southbound  
Data in  
Southbound  
10×2  
Data out  
10×2  
Reference  
clock  
Data merge  
PLL  
RE-time  
Re-synch  
1×2  
Demux  
PISO  
/RESET  
Reset  
control  
10×12  
10×12  
Link init SM  
and control  
and CSRs  
Init  
patterns  
Thermal  
sensor  
Mux  
4
4
IBIST-RX  
LAI logic  
DRAM Command  
IBIST-TX  
DRAM clock  
DRAM clock  
failover  
Command  
decoder &  
CRC check  
Command  
out  
29  
29  
DRAM  
address and  
command copy1  
Mux  
Mux  
DRAM  
interface  
DDR state controller  
and CSRs  
DRAM  
address and  
command copy2  
Core  
controller  
and CSRs  
Write data  
FIFO  
Data out  
Data in  
72+18×2  
DRAM  
data and strobes  
External MemBIST  
DDR calibration  
Sync & idle  
pattern  
generator  
Data CRC  
generator and  
Read FIFO  
NB LAI Buffer  
IBIST-TX IBIST-RX  
LAI  
controller  
Link init SM  
and control  
and CSRs  
Mux  
SMBus  
failover  
SMBus  
14×6×2  
14×12  
controller  
PISO  
Demux  
Re-synch  
RE-time  
Data merge  
Northbound  
Data Out  
Northbound  
14×2  
14×2  
Data In  
Note: This figure is a conceptual block diagram of the AMB’s data flow and clock domains.  
Preliminary Data Sheet E1002E30 (Ver. 3.0)  
4
EBE51FD8AHFT, EBE51FD8AHFE, EBE51FD8AHFL  
Interfaces  
Figure Block Diagram AMB Interfaces shows the AMB and all of its interfaces. They consist of two FB-DIMM links,  
one DDR2 channel and an SMBus interface. Each FB-DIMM link connects the AMB to a host memory controller or  
an adjacent FB-DIMM. The DDR2 channel supports direct connection to the DDR2 SDRAMs on a FB-DIMM.  
Memory Interface  
NB FBD  
NB FBD  
in Link  
out Link  
SB FBD  
in Link  
SB FBD  
out Link  
AMB  
SMB  
Block Diagram AMB Interfaces  
Interface Topology  
The FB-DIMM channel uses a daisy-chain topology to provide expansion from a single DIMM per channel to up to 8  
DIMMs per channel. The host sends data on the southbound link to the first DIMM where it is received and redriven  
to the second DIMM. On the southbound data path each DIMM receives the data and again re-drives the data to the  
next DIMM until the last DIMM receives the data. The last DIMM in the chain initiates the transmission of data in the  
direction on the host (a.k.a. northbound). On the northbound data path each DIMM receives the data and re-drives  
the data to the next DIMM until the host is reached.  
Host  
Nourthbound  
Southbound  
AMB  
AMB  
AMB  
AMB  
n/c  
n/c  
Block Diagram FB-DIMM Channel Southbound and Northbound Paths  
Preliminary Data Sheet E1002E30 (Ver. 3.0)  
5
EBE51FD8AHFT, EBE51FD8AHFE, EBE51FD8AHFL  
High-Speed Differential Point-to-Point Link (at 1.5 V) Interfaces  
The AMB supports one FB-DIMM channel consisting of two bidirectional link interfaces using high-speed differential  
point-to-point electrical signaling. The southbound input link is 10 lanes wide and carries commands and write data  
from the host memory controller or the adjacent DIMM in the host direction. The southbound output link forwards  
this same data to the next FB-DIMM. The northbound input link is 14 lanes wide and carries read return data or  
status information from the next FB-DIMM in the chain back towards the host. The northbound output link forwards  
this information back towards the host and multiplexes in any read return data or status information that is generated  
internally. Data and commands sent to the DRAMs travel southbound on 10 primary differential signal line pairs.  
Data received from the DRAMs and status information travel northbound on 14 primary differential pairs. Data and  
commands sent to the adjacent DIMM upstream are repeated and travel further southbound on 10 secondary  
differential pairs. Data and status information received from the adjacent DIMM upstream travel further northbound  
on 14 secondary differential pairs.  
DDR2 Channel  
The DDR2 channel on the AMB supports direct connection to DDR2 SDRAMs. The DDR2 channel supports two  
ranks of eight banks with 16 row/column request, 64 data, and eight check-bit signals. There are two copies of  
address and command signals to support DIMM routing and electrical requirements. Four transfer bursts are driven  
on the data and check-bit lines at 800MHz. Propagation delays between read data/check-bit strobe lanes on a given  
channel can differ. Each strobe can be calibrated by hardware state machines using write/read trial and error.  
Hardware aligns the read data and check-bits to a single core clock. The AMB provides four copies of the command  
clock phase references (CLK [3:0]) and write data/check-bit strobes (DQSs) for each DRAM nibble.  
SMBus Slave interface  
The AMB supports an SMBus interface to allow system access to configuration register independent of the FB-DIMM  
link. The AMB will never be a master on the SMBus, only a slave. Serial SMBus data transfer is supported at  
100kHz. SMBus access to the AMB may be a requirement to boot and to set link strength, frequency and other  
parameters needed to insure robust configurations. It is also required for diagnostic support when the link is down.  
The SMBus address straps located on the DIMM connector are used by the unique ID.  
Preliminary Data Sheet E1002E30 (Ver. 3.0)  
6
EBE51FD8AHFT, EBE51FD8AHFE, EBE51FD8AHFL  
Block Diagram  
/CS0  
/DQS4  
DQS4  
/DQS0  
DQS0  
NU/  
/RDQS  
/CS DQS /DQS  
NU/  
/RDQS  
/CS DQS /DQS  
DM/  
DM/  
DQS13  
RDQS  
DQS9  
D4  
RDQS  
D0  
8
8
DQ0  
to DQ7  
DQ0  
to DQ7  
DQ32 to DQ39  
DQ0 to DQ7  
/DQS5  
DQS5  
/DQS1  
DQS1  
NU/  
/CS DQS /DQS  
NU/  
/CS DQS /DQS  
/RDQS  
/RDQS  
DM/  
RDQS  
DM/  
RDQS  
DQS14  
D5  
DQS10  
D1  
8
8
DQ0  
to DQ7  
DQ0  
to DQ7  
DQ40 to DQ47  
DQ8 to DQ15  
/DQS6  
DQS6  
/DQS2  
DQS2  
NU/  
/RDQS  
/CS DQS /DQS  
NU/  
/RDQS  
/CS DQS /DQS  
DM/  
DM/  
DQS15  
RDQS  
DQS11  
D6  
RDQS  
D2  
8
8
DQ0  
to DQ7  
DQ0  
to DQ7  
DQ48 to DQ55  
DQ16 to DQ23  
/DQS7  
DQS7  
/DQS3  
DQS3  
NU/  
/CS DQS /DQS  
NU/  
/CS DQS /DQS  
/RDQS  
/RDQS  
DM/  
RDQS  
DM/  
RDQS  
DQS16  
D7  
DQS12  
D3  
8
8
DQ0  
to DQ7  
DQ0  
to DQ7  
DQ56 to DQ63  
DQ24 to DQ31  
/DQS8  
DQS8  
PN0 to PN13  
/PN0 to /PN13  
PS0 to PS9  
SN0 to SN13  
/SN0 to /SN13  
SS0 to SS9  
NU/  
/RDQS  
/PS0 to /PS9  
/CS DQS /DQS  
/SS0 to /SS9  
DM/  
DQ0 to DQ63  
CB0 to CB7  
DQS0 to DQS17  
/DQS0 to /DQS8  
/CS0 -> /CS (all SDRAMs)  
CKE0 -> CKE (all SDRAMs)  
DQS17  
RDQS  
D8  
8
A
M
B
DQ0  
to DQ7  
CB0 to CB7  
ODT -> ODT (all SDRAMs)  
BA0, BA1 (all SDRAMs)  
SCL  
SDA  
Serial PD  
SA0 to SA2  
A0 to A13 (all SDRAMs)  
/RAS (all SDRAMs)  
/CAS (all SDRAMs)  
/WE (all SDRAMs)  
CK/ /CK  
SCL  
SDA  
Teminators  
AMB  
VTT  
/RESET  
U0  
VCC  
VDDSPD  
VDD  
SDA  
SCK/ /SCK  
WP A0 A1 A2  
SPD, AMB  
D0 to D8, AMB  
All address/command/control/clock  
VTT  
SA0 SA1 SA2  
D0 to D8  
VREF  
VSS  
* D0 to D8 : 512M bits DDR2 SDRAM  
U0 : 256 bytes EEPROM  
Notes:  
D0 to D8, SPD, AMB  
1. DQ wiring may be changed within a byte.  
2. There are two physical copies of each address/command/control/clock  
Preliminary Data Sheet E1002E30 (Ver. 3.0)  
7
EBE51FD8AHFT, EBE51FD8AHFE, EBE51FD8AHFL  
Pin Configurations  
Front side  
1 pin  
68 pin69 pin  
120 pin  
240 pin  
121 pin  
188 pin 189 pin  
Back side  
Front side  
Back side  
No. Name No. Name No.  
Name No.  
Name  
No.  
Name No.  
Name No.  
Name No.  
Name  
NC  
1
VDD  
VDD  
VDD  
VSS  
VDD  
VDD  
VDD  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VTT  
VID1  
36 VSS  
37 PN5  
38 /PN5  
39 VSS  
71  
72  
73  
74  
/PS0  
VSS  
PS1  
/PS1  
VSS  
PS2  
/PS2  
VSS  
PS3  
/PS3  
VSS  
PS4  
/PS4  
VSS  
VSS  
NC  
106 NC  
107 VSS  
121 VDD  
122 VDD  
123 VDD  
124 VSS  
125 VDD  
126 VDD  
127 VDD  
128 VSS  
129 VCC  
130 VCC  
131 VSS  
132 VCC  
133 VCC  
134 VSS  
135 VTT  
136 VID0  
156 VSS  
157 SN5  
158 /SN5  
159 VSS  
160 SN13  
191 /SS0 226  
2
192 VSS  
193 SS1  
227  
228  
VSS  
SCK  
/SCK  
VSS  
VDD  
VDD  
VDD  
VSS  
VDD  
VDD  
VTT  
3
108 VDD  
109 VDD  
110 VSS  
111 VDD  
112 VDD  
113 VDD  
114 VSS  
115 VDD  
116 VDD  
117 VTT  
118 SA2  
119 SDA  
120 SCL  
4
194 /SS1 229  
5
40 PN13 75  
41 /PN13 76  
195 VSS  
230  
231  
6
161 /SN13 196 SS2  
7
42 VSS  
43 VSS  
44 NC  
45 NC  
46 VSS  
47 VSS  
77  
78  
79  
80  
81  
82  
162 VSS  
163 VSS  
164 NC  
197 /SS2 232  
8
198 VSS  
199 SS3  
233  
234  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
165 NC  
200 /SS3 235  
166 VSS  
167 VSS  
168 SN12  
201 VSS  
202 SS4  
236  
237  
48 PN12 83  
49 /PN12 84  
203 /SS4 238  
VDDSPD  
SA0  
169 /SN12 204 VSS  
239  
240  
50 VSS  
51 PN6  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
170 VSS  
171 SN6  
205 VSS  
206 NC  
SA1  
/RESET 52 /PN6  
NC  
137 M_TEST 172 /SN6  
207 NC  
VSS  
NC  
53 VSS  
54 PN7  
55 /PN7  
56 VSS  
57 PN8  
58 /PN8  
59 VSS  
60 PN9  
61 /PN9  
62 VSS  
VSS  
VSS  
PS9  
/PS9  
VSS  
PS5  
/PS5  
VSS  
PS6  
/PS6  
VSS  
PS7  
138 VSS  
139 NC  
173 VSS  
174 SN7  
175 /SN7  
176 VSS  
177 SN8  
178 /SN8  
179 VSS  
180 SN9  
181 /SN9  
182 VSS  
183 SN10  
208 VSS  
209 VSS  
210 SS9  
211 /SS9  
212 VSS  
213 SS5  
214 /SS5  
215 VSS  
216 SS6  
217 /SS6  
218 VSS  
NC  
140 NC  
VSS  
PN0  
/PN0  
VSS  
PN1  
/PN1  
VSS  
PN2  
/PN2  
VSS  
PN3  
/PN3  
VSS  
PN4  
/PN4  
141 VSS  
142 SN0  
143 /SN0  
144 VSS  
145 SN1  
146 /SN1  
147 VSS  
148 SN2  
149 /SN2  
150 VSS  
151 SN3  
152 /SN3  
153 VSS  
154 SN4  
155 /SN4  
63 PN10 98  
64 /PN10 99  
184 /SN10 219 SS7  
65 VSS  
100 /PS7  
185 VSS  
186 SN11  
220 /SS7  
221 VSS  
66 PN11 101 VSS  
67 /PN11 102 PS8  
187 /SN11 222 SS8  
68 VSS  
69 VSS  
70 PS0  
103 /PS8  
104 VSS  
105 NC  
188 VSS  
189 VSS  
190 SS0  
223 /SS8  
224 VSS  
225 NC  
Preliminary Data Sheet E1002E30 (Ver. 3.0)  
8
EBE51FD8AHFT, EBE51FD8AHFE, EBE51FD8AHFL  
Pin Description  
Pin name  
Pin Type  
Input  
Function  
SCK, /SCK  
System clock input  
PN0 to PN13, /PN0 to /PN13  
Output  
Input  
Primary northbound data  
PS0 to PS9, /PS0 to /PS9  
Primary southbound data  
Secondary northbound data  
Secondary southbound data  
Serial presence detect (SPD) clock input  
SPD data and AMB SMBus address/data  
SPD address inputs  
SN0 to SN13, /SN0 to /SN13  
Input  
SS0 to SS9, /SS0 to /SS9  
Output  
Input  
SCL  
SDA  
Input / Output  
Input  
SA0 to SA2*1  
VID0 to VID1*2  
/RESET  
M_TEST*3  
NC  
Input  
Voltage ID  
Input  
AMB reset signal  
Input  
VREF margin test input  
No connection  
VCC  
Power supply  
Power supply  
Power supply  
Power supply  
AMB core power and AMB channel interface power (1.5V)  
DRAM power and AMB DRAM I/O power (1.8V)  
DRAM address, Command and clock termination voltage (VDD/2)  
SPD power (3.3V)  
VDD  
VTT  
VDDSPD  
VSS  
Ground  
Notes: 1. They are also used to select the DIMM number in the AMB.  
2. These pins must be unconnected.  
3. Don’t connect in a system.  
Preliminary Data Sheet E1002E30 (Ver. 3.0)  
9
EBE51FD8AHFT, EBE51FD8AHFE, EBE51FD8AHFL  
Electrical Specifications  
All voltages are referenced to VSS (GND).  
Absolute Maximum Ratings  
Parameter  
Symbol  
VIN/VOUT  
VCC  
Value  
Unit  
V
Note  
Voltage on any pin relative to VSS  
AMB core power voltage relative to VSS  
–0.3 to +1.75  
–0.3 to +1.75  
–0.5 to +2.30  
–0.5 to +2.30  
–55 to +100  
V
DRAM interface power voltage relative to VSS VDD  
V
Termination voltage relative to VSS  
Storage temperature  
VTT  
Tstg  
V
°C  
Caution  
Exposing the device to stress above those listed in Absolute Maximum Ratings could cause  
permanent damage. The device is not meant to be operated under conditions outside the limits  
described in the operational section of this specification. Exposure to Absolute Maximum Rating  
conditions for extended periods may affect device reliability.  
Operating Temperature Conditions  
Parameter  
Symbol  
Value  
0 to +95  
110  
Unit  
°C  
Note  
1
SDRAM component case temperature  
AMB component case temperature  
TC_DRAM  
TC_AMB  
°C  
Note: 1. Supporting 0°C to +85°C and being able to extend to +95°C with doubling auto-refresh commands in  
frequency to a 32ms period (tREFI = 3.9µs) and higher temperature self-refresh entry via the control of  
EMRS (2) bit A7 is required.  
DC Operating Conditions  
Parameter  
Symbol  
VCC  
min.  
1.455  
1.7  
typ.  
1.50  
1.8  
max.  
Unit  
V
Note  
AMB supply voltage  
1.575  
DDR2 SDRAM supply voltage VDD  
1.9  
V
Input termination voltage  
EEPROM supply voltage  
SPD input high voltage  
SPD input low voltage  
RESET input high voltage  
RESET input low voltage  
Leakage current (RESET)  
Leakage current (link)  
VTT  
0.48 × VDD 0.50 × VDD  
0.52 × VDD  
V
VDDSPD  
VIH (DC)  
VIL (DC)  
VIH (DC)  
VIL (DC)  
IL  
3.0  
2.1  
3.3  
3.6  
V
VDDSPD  
V
1
1
2
2
2
3
0.8  
0.5  
90  
5
V
1.0  
V
V
–90  
–5  
µA  
µA  
IL  
Notes: 1. Applies for SMB and SPD bus signals.  
2. Applies for AMB CMOS signal /RESET.  
3. For all other AMB related DC parameters, please refer to the high-speed differential link interface  
specification.  
Preliminary Data Sheet E1002E30 (Ver. 3.0)  
10  
EBE51FD8AHFT, EBE51FD8AHFE, EBE51FD8AHFL  
AMB Component Timing  
For purposes of IDD testing, the following parameters are to be utilized.  
Parameter  
Symbol  
min.  
typ.  
max.  
4
Units  
clks  
Note  
tEI  
propagate  
EI Assertion pass-thru timing  
EI deassertion pass-thru timing  
EI assertion duration  
Resample pass-thru time  
Resynch pass-thru Time  
Bit lock Interval  
tEID  
tEI  
bit lock  
clks  
100  
clks  
TBD  
TBD  
ns  
ns  
tBitLock  
119  
154  
frames  
frames  
Frame lock Interval  
tFrameLock  
Note: 1. The EI stands for Electrical Idle.  
Power Specification Parameter and Test Conditions  
-6E  
667  
-5C  
533  
Frequency (Mbps)  
Parameter  
Power  
Supply  
Symbol  
max.  
2.60  
max.  
2.20  
Unit  
A
Conditions  
Note  
L0 state, idle (0 BW)  
@1.5V  
@1.8V  
Total  
Primary channel enabled,  
Secondary channel disabled  
Idle Current,  
single or last  
DIMM  
Idd_Idle_0  
0.97  
5.28  
3.40  
0.98  
6.57  
3.90  
2.35  
9.95  
3.70  
0.91  
4.53  
3.00  
0.91  
5.79  
3.40  
2.38  
9.22  
3.20  
A
CKE high. Command and address lines stable.  
DRAM clock active.  
W
A
@1.5V  
@1.8V  
Total  
L0 state, idle (0 BW)  
Primary and secondary channels enabled  
CKE high. Command and address lines stable.  
DRAM clock active.  
Idle Current, first  
DIMM  
Idd_Idle_1  
A
W
A
@1.5V  
@1.8V  
Total  
L0 state  
50% DRAM BW, 67% read, 33% write.  
Primary and secondary channels enabled.  
DRAM clock active, CKE high.  
Active Power  
Idd_Active_1  
A
W
A
L0 state  
@1.5V  
50% DRAM BW to downstream DIMM,  
67% read, 33% write.  
Active Power,  
data pass through  
@1.8V  
Total  
0.97  
7.00  
0.90  
6.09  
A
Idd_Active_2  
Primary and secondary channels enabled.  
CKE high. Command and address lines stable.  
DRAM clock active.  
W
Primary and secondary channels enabled.  
100% toggle on all channel lanes  
DRAMs idle. 0 BW.  
@1.5V  
@1.8V  
Total  
4.00  
0.94  
7.43  
3.50  
0.89  
6.54  
A
Idd_Training  
(for AMB spec.  
Not in SPD)  
Training  
A
CKE high, Command and address lines stable.  
DRAM clock active.  
W
Preliminary Data Sheet E1002E30 (Ver. 3.0)  
11  
EBE51FD8AHFT, EBE51FD8AHFE, EBE51FD8AHFL  
Reference Clock Input Specifications*1  
Parameter  
Symbol  
min.  
max.  
Units  
MHz  
Notes  
2, 3, 4  
Reference clock frequency@ 3.2Gb/s  
(nominal 133.33MHz)  
fRefclk-3.2  
126.67  
133.40  
Reference clock frequency@ 4.0 Gb/s  
(nominal 166.67MHz)  
fRefclk-4.0  
158.33  
166.75  
1.15  
MHz  
2, 3, 4  
Single-ended maximum voltage  
Single-ended minimum voltage  
Differential voltage high  
Differential voltage low  
Absolute crossing point  
VCross variation  
Vmax  
V
5, 7  
5, 8  
6
Vmin  
0.3  
V
VRefclk-diff-ih  
VRefclk-diff-il  
VCross  
150  
mV  
mV  
mV  
mV  
mV  
150  
550  
140  
225  
6
250  
0.6  
5, 9, 10  
5, 9, 11  
12  
VCross-delta  
VSCK-cm-acp-p  
AC common mode  
ERRefclk-diff-Rise,  
ERRefclk-diff-Fall  
Rising and falling edge rates  
4.0  
20  
V/ns  
%
6, 13  
6, 14  
% Mismatch between rise and fall edge  
rates  
ERRefclk-Match  
Duty cycle of reference clock  
Ringback voltage threshold  
Allowed time before ringback  
Clock leakage current  
TRefclk-Dutycycle  
VRB-diff  
40  
60  
%
6
100  
100  
mV  
ps  
6, 15  
6, 15  
16, 17  
17  
TStable  
500  
10  
0.5  
II_CK  
10  
µA  
pF  
Clock input capacitance  
CI_CK  
2.0  
Difference between  
RefClk and RefClk#  
input capacitance  
Clock input capacitance delta  
Transport delay  
CI_CK ()  
0.25  
0.25  
5
pF  
ns  
TD  
18, 19  
NSAMPLE  
TREF-JITTER-RMS  
1012  
periods 20  
Reference clock jitter (rms), filtered  
3.0  
30  
ps  
ps  
21, 22  
Reference clock jitter (peak-to-peak) due  
to spectrum clocking effects  
TREF-SSCp-p  
Reference clock jitter difference between TREF-JITTER-  
adjacent AMB DELTA  
TBD  
ps  
Notes: 1. For details, refer to the JEDEC specification “FB-DIMM High Speed Differential PTP Link at 1.5V”.  
2. The nominal reference clock frequency is determined by the data frequency of the link divided by 2 times  
the fixed PLL multiplication factor for the FB-DIMM channel (6:1). fdata = 2000MHz for a 4.0Gbps FB-  
DIMM channel and so on.  
3. Measured with SSC disabled. Enabling SSC will reduce the reference clock frequency.  
4. Not all FB-DIMM agents will support all frequencies; compliance to the frequency specifications is only  
required for those data rates that are supported by the device under test.  
5. Measurement taken from single-ended waveform.  
6. Measurement taken from differential waveform.  
7. Defined as the maximum instantaneous voltage including overshoot.  
8. Defined as the minimum instantaneous voltage including undershoot.  
9. Measured at the crossing point where the instantaneous voltage value of the rising edge of REFCLK+  
equals the falling edge of REFCLK-.  
10. Refers to the total variation from the lowest crossing point to the highest, regardless of which edge is  
crossing. Refers to all crossing points for this measurement.  
11. Defined as the total variation of all crossing voltages of rising REFCLK+ and falling REFCLK-. This is the  
maximum allowed variance in for any particular system.  
12. The majority of the reference clock AC common mode occurs at high frequency (i.e., the reference clock  
frequency).  
Preliminary Data Sheet E1002E30 (Ver. 3.0)  
12  
EBE51FD8AHFT, EBE51FD8AHFE, EBE51FD8AHFL  
13. Measured from 150mV to + 150mV on the differential waveform. The signal must be monotonic through  
the measurement region for rise and fall time. The 300mV measurement window is centered on the  
differential 0V crossing.  
14. Edge rate matching applies to rising edge rate for REFCLK+ and falling edge rate for REFCLK-. It is  
measured using a ± 75mV window centered on the median cross point where REFCLK+ rising meets  
REFCLK- falling. The median crosspoint is used to calculate the voltage thresholds the oscilloscope uses  
for the edge rate calculations. The rising edge rate of REFCLK+ should be compared to the falling edge  
rate of REFCLK-. The maximum allowed difference should not exceed 20% of the slowest edge  
15. Tstable is the time the differential clock must maintain a minimum ±150mV differential voltage after rising  
/falling edges before it is allowed to droop back into the ±100mV differential range.  
16.Measured with a single-ended input voltage of 1V.  
17. Applies to RefClk and RefClk#.  
18. This parameter is not a direct clock output parameter but it indirectly determines the clock output  
parameter TREF-JITTER.  
19. The net transport delay is the difference in time of flight between associated data and clock paths. The  
data path is defined from the reference clock source, through the TX, to data arrival at the data sampling  
point in the RX. The clock path is defined from the reference clock source to clock arrival at the same  
sampling point. The path delays are caused by copper trace routes, on-chip routing, on-chip buffering,  
etc. They include the time-of-flight of interpolators or other clock adjustment mechanisms. They do not  
include the phase delays caused by finite PLL loop bandwidth because these delays are modeled by the  
PLL transfer functions.  
20. Direct measurement of phase jitter records over NSAMPLE periods may be impractical. It is expected that  
the jitter will be measured over a smaller, yet statistically significant, sample size and the total jitter at  
NSAMPLE samples extrapolated from an estimate of the sigma of the random jitter components.  
21. Measured with SSC enabled on reference clock generator.  
22. As “measured” after the phase jitter filter. This number is separate from the receiver jitter budget that is  
defined by the TRX-Total-MIN parameters.  
Preliminary Data Sheet E1002E30 (Ver. 3.0)  
13  
EBE51FD8AHFT, EBE51FD8AHFE, EBE51FD8AHFL  
Differential Transmitter Output Specifications*1  
Parameter  
Symbol  
min.  
max.  
1300  
Unit  
mV  
Comments  
Differential peak-to-peak  
output voltage for large  
voltage swing  
VTX-DIFFp-p = 2 × | VTX-D+ VTX-D- |  
Measured as note 2  
VTX-DIFFp-p_L  
900  
Differential peak-to-peak  
output voltage for regular  
voltage swing  
VTX-DIFFp-p = 2 × | VTX-D+ VTX-D- |  
VTX-DIFFp-p_R  
VTX-DIFFp-p_S  
800  
520  
mV  
mV  
Measured as note 2  
Differential peak-to-peak  
output voltage for small  
voltage swing  
VTX-DIFFp-p = 2 × | VTX-D+ VTX-D- |  
Measured as note 2  
Defined as:  
VTX-CM = DC (avg) of |VTX-D+  
+ VTX-D-|/2  
DC common code  
output voltage for large  
voltage swing  
VTX-CM_L  
375  
280  
mV  
Measured as note 2  
Defined as:  
VTX-CM = DC (avg) of |VTX-D+ + VTX-D-|/2  
Measured as note 2. See also note 3  
DC common code  
output voltage for small  
voltage swing  
VTX-CM_S  
135  
mV  
dB  
dB  
De-emphasized differential  
output voltage ratio for  
-3.5dB de-emphasis  
VTX-DE-3.5-Ratio  
VTX-DE-6.0-Ratio  
2, 4, 5  
2, 4, 5  
3.0  
5.0  
4.0  
7.0  
De-emphasized differential  
output voltage ratio for  
-6dB de-emphasis  
VTX-CM-AC =  
AC peak-to-peak common  
mode output voltage for large VTX-CM-ACp-p L  
swing  
Max |VTX-D+ + VTX-D-|/2 – Min |VTX-D+  
+ VTX-D-|/2  
90  
80  
70  
mV  
mV  
mV  
Measured as note 2. See also note 6  
VTX-CM-AC =  
AC peak-to-peak common  
mode output voltage for  
regular swing  
Max |VTX-D+ + VTX-D-|/2 – Min |VTX-D+  
+ VTX-D-|/2  
VTX-CM-ACp-p R  
Measured as note 2. See also note 6  
VTX-CM-AC =  
AC peak-to-peak common  
mode output voltage for small VTX-CM-ACp-p S  
swing  
Max |VTX-D+ + VTX-D-|/2 – Min |VTX-D+  
+ VTX-D-|/2  
Measured as note 2. See also note 6  
Maximum single-ended  
voltage in EI condition,  
DC + AC  
VTX-IDLE-SE  
50  
20  
mV  
mV  
mV  
7, 8  
7, 8, 9  
8
Maximum single-ended  
voltage in EI condition,  
DC only  
VTX-IDLE-SE-DC  
VTX-IDLE-DIFFp-p  
Maximum peak-to-peak  
differential voltage in EI  
condition  
40  
Single-ended voltage  
(w.r.t.VSS) on D+/D-  
VTX-SE  
75  
750  
mV  
UI  
2, 10  
Minimum TX eye width  
TTX-Eye-MIN  
TTX-DJ-DD  
TTX-PULSE  
0.7  
2, 11, 12  
2, 11, 12, 13  
14  
Maximum TX deterministic  
jitter  
0.2  
UI  
Instantaneous pulse width  
0.85  
30  
UI  
Differential TX output rise/fall TTX-RISE,  
time  
Given by 20%-80% voltage levels.  
Measured as note 2  
90  
20  
ps  
TTX-FALL  
Mismatch between rise and  
fall times  
TTX-RF-MISMATCH  
ps  
Measured over 0.1GHz to 2.4GHz.  
See also note 15  
Differential return loss  
RLTX-DIFF  
RLTX-CM  
8
6
dB  
dB  
Measured over 0.1GHz to 2.4GHz.  
See also note 15  
Common mode return loss  
Preliminary Data Sheet E1002E30 (Ver. 3.0)  
14  
EBE51FD8AHFT, EBE51FD8AHFE, EBE51FD8AHFL  
Parameter  
Symbol  
RTX  
min.  
41  
max.  
55  
Unit  
Comments  
16  
Transmitter termination  
resistance  
RTX-Match-DC =  
2×|RTX-D+ RTX-D-| / (RTX-D+  
+ RTX-D-)  
D+/D- TX resistance  
difference  
RTX-Match-DC  
4
%
Bounds are applied separately to high  
and low output voltage states  
Lane-to-lane skew at TX  
Lane-to-lane skew at TX  
LTX-SKEW 1  
LTX-SKEW 2  
100 + 3UI ps  
100 + 2UI ps  
17, 19  
18, 19  
Maximum TX Drift  
(resync mode)  
TTX-DRIFT-RESYNC  
240  
ps  
ps  
20  
Maximum TX Drift  
(resample mode only)  
TTX-DRIFT-  
RESAMPLE  
120  
20  
21  
Bit Error Ratio  
BER  
10-12  
Notes: 1. For details, refer to the JEDEC specification “FB-DIMM High Speed Differential PTP Link at 1.5V”.  
2. Specified at the package pins into a timing and voltage compliance test load. Common-mode  
measurements to be performed using a 101010 pattern.  
3. The transmitter designer should not artificially elevate the common mode in order to meet this  
specification.  
4. This is the ratio of the VTX-DIFFp-p of the second and following bits after a transition divided by  
the VTX-DIFFp-p of the first bit after a transition.  
5. De-emphasis shall be disabled in the calibration state.  
6. Includes all sources of AC common mode noise.  
7. Single-ended voltages below that value that are simultaneously detected on D+ and D- are interpreted as  
the Electrical Idle condition.  
8. Specified at the package pins into a voltage compliance test load. Transmitters must meet both single-  
ended and differential output EI specifications.  
9. This specification, considered with VRX-IDLE-SE-DC, implies a maximum 15mV single-ended DC offset  
between TX and RX pins during the electrical idle condition. This in turn allows a ground offset between  
adjacent FB-DIMM agents of 26mV when worst case termination resistance matching is considered.  
10. The maximum value is specified to be at least (VTX-DIFFp-p L / 4) + VTX-CM L + (VTX-CM-ACp-p / 2)  
11. This number does not include the effects of SSC or reference clock jitter.  
12. These timing specifications apply to resync mode only.  
13. Defined as the dual-dirac deterministic jitter.  
14. Pulse width measured at 0 V differential.  
15. One of the components that contribute to the deterioration of the return loss is the ESD structure which  
needs to be carefully designed.  
16. The termination small signal resistance; tolerance across voltages from 100mV to 400mV shall not  
exceed ± 5Ω. with regard to the average of the values measured at 100mV and at 400mV for that pin.  
17. Lane to Lane skew at the Transmitter pins for an end component.  
18. Lane to Lane skew at the Transmitter pins for an intermediate component (assuming zero Lane to Lane  
skew at the Receiver pins of the incoming PORT).  
19. This is a static skew. An FB-DIMM component is not allowed to change its lane to lane phase relationship  
after initialization.  
20. Measured from the reference clock edge to the center of the output eye. This specification must be met  
across specified voltage and temperature ranges for a single component. Drift rate of change is  
significantly below the tracking capability of the receiver.  
21. BER per differential lane.  
Preliminary Data Sheet E1002E30 (Ver. 3.0)  
15  
EBE51FD8AHFT, EBE51FD8AHFE, EBE51FD8AHFL  
Differential Receiver Input Specifications*1  
Parameter  
Symbol  
min.  
170  
max.  
1300  
Unit  
mV  
Comments  
Differential peak-to-peak input  
voltage  
VRX-DIFFp-p = 2×|VRX-D+ -VRX-D-|  
Measured as note 2  
VRX-DIFFp-p  
Maximum single-ended voltage  
for EI condition (AC + DC)  
VRX-IDLE-SE  
65  
mV  
mV  
mV  
mV  
mV  
3, 4, 5, 6  
3, 4, 5, 6, 7  
4, 5, 6  
5
Maximum single-ended voltage  
for EI condition (DC only)  
VRX-IDLE-SE-DC  
VRX-IDLE-DIFFp-p  
VRX-SE  
35  
Maximum peak-to-peak differential  
voltage for EI condition  
65  
Single-ended voltage (w.r.t. VSS)  
on D+/D-  
300  
900  
Single-pulse peak differential input  
voltage  
VRX-DIFF-PULSE  
85  
5, 8  
Amplitude ratio between adjacent  
symbols,  
1100mV < VRX-DIFFp-p<= 1300mV  
VRX-DIFF-ADJ  
RATIO- HI  
3.0  
4.0  
5, 9  
5, 9  
Amplitude ratio between adjacent  
symbols,  
VRX-DIFFp-p <= 1100mV  
VRX-DIFF-ADJ  
RATIO  
Maximum RX inherent timing error TRX-TJ-MAX  
0.4  
0.3  
UI  
UI  
5, 10, 11  
Maximum RX inherent  
TRX-DJ-DD  
5, 10, 11, 12  
deterministic timing error  
Single-pulse width at zero-voltage  
TRX-PW-ZC  
0.55  
0.2  
50  
UI  
UI  
ps  
5, 8  
crossing  
Single-pulse width at minimum-  
TRX-PW-ML  
5, 8  
level crossing  
TRX-RISE,  
Differential RX input rise/fall time  
TRX-FALL  
Given by 20%-80% voltage levels.  
Defined as:  
VRX-CM = DC (avg) of |VRX-D+  
+ VRX-D-|/2  
Measured as note 2.  
See also note 13  
Common mode of the input voltage VRX-CM  
120  
400  
mV  
mV  
VRX-CM-AC =  
Max |VRX-D+ + VRX-D-|/2 –  
Min |VRX-D+ + VRX-D-|/2  
Measured as note 2  
AC peak-to-peak common mode of  
VRX-CM-ACp-p  
270  
45  
input voltage  
Ratio of VRX-CM-ACp-p to  
VRX-CM-EH-Ratio  
%
14  
minimum VRX-DIFFp-p  
Measured over 0.1GHz to 2.4GHz.  
See also note 15  
Differential return loss  
RLRX-DIFF  
9
dB  
Measured over 0.1GHz to 2.4GHz.  
See also note 15  
Common mode return loss  
RX termination resistance  
RLRX-CM  
RRX  
6
dB  
41  
55  
4
16  
RRX-Match-DC =  
2×|RRX-D+ RRX-D-| / (RRX-D+  
+ RRX-D-)  
D+/D- RX resistance difference  
RRX-Match-DC  
LRX-PCB-SKEW  
%
Lane-to-lane PCB skew at the  
receiver that must be tolerated.  
See also note 17  
Lane-to-lane PCB skew at Rx  
Minimum RX Drift Tolerance  
6
UI  
TRX-DRIFT  
FTRK  
400  
0.2  
ps  
18  
Minimum data tracking 3dB  
bandwidth  
MHz  
19  
TEI-ENTRY -  
DETECT  
Electrical idle entry detect time  
60  
ns  
ns  
20  
21  
Electrical idle exit detect time  
Bit Error Ratio  
TEI-EXIT -DETECT  
BER  
30  
10-12  
Preliminary Data Sheet E1002E30 (Ver. 3.0)  
16  
EBE51FD8AHFT, EBE51FD8AHFE, EBE51FD8AHFL  
Notes: 1. For details, refer to the JEDEC specification “FB-DIMM High Speed Differential PTP Link at 1.5V”.  
2. Specified at the package pins into a timing and voltage compliant test setup. Note that signal levels at the  
pad will be lower than at the pin.  
3. Single-ended voltages below that value that are simultaneously detected on D+ and D- are interpreted as  
the Electrical Idle condition. Worst-case margins are determined by comparing EI levels with common  
mode levels during normal operation for the case with transmitter using small voltage swing.  
4. Multiple lanes need to detect the EI condition before the device can act upon the EI detection.  
5. Specified at the package pins into a timing and voltage compliance test setup.  
6. Receiver designers may implement either single-ended or differential EI detection. Receivers must meet  
the specification that corresponds to the implemented detection circuit.  
7. This specification, considered with VTX-IDLE-SE-DC, implies a maximum 15mV single-ended DC offset  
between TX and RX pins during the electrical idle condition. This in turn allows a ground offset between  
adjacent FB-DIMM agents of 26mV when worst case termination resistance matching is considered.  
8. The single-pulse mask provides sufficient symbol energy for reliable RX reception. Each symbol must  
comply with both the single-pulse mask and the cumulative eye mask.  
9. The relative amplitude ratio limit between adjacent symbols prevents excessive inter-symbol interference  
in the Rx. Each symbol must comply with the peak amplitude ratio with regard to both the preceding and  
subsequent symbols.  
10. This number does not include the effects of SSC or reference clock jitter.  
11. This number includes setup and hold of the RX sampling flop.  
12. Defined as the dual-dirac deterministic timing error.  
13. Allows for 15mV DC offset between transmit and receive devices.  
14. The received differential signal must satisfy both this ratio as well as the absolute maximum AC peak-to-  
peak common mode specification. For example, if VRX-DIFFp-p is 200mV, the maximum AC peak-to-  
peak common mode is the lesser of (200mV × 0.45 = 90mV) and VRX-CM-ACp-p.  
15. One of the components that contribute to the deterioration of the return loss is the ESD structure which  
needs to be carefully designed.  
16. The termination small signal resistance; tolerance across voltages from 100mV to 400mV shall not  
exceed ± 5Ω. with regard to the average of the values measured at 100mV and at 400mV for that pin.  
17. This number represents the lane-to-lane skew between TX and RX pins and does not include the  
transmitter output skew from the component driving the signal to the receiver. This is one component of  
the end-to-end channel skew in the AMB specification.  
18. Measured from the reference clock edge to the center of the input eye. This specification must be met  
across specified voltage and temperature ranges for a single component. Drift rate of change is  
significantly below the tracking capability of the receiver.  
19. This bandwidth number assumes the specified minimum data transition density. Maximum jitter at 0.2MHz  
is 0.05UI.  
20. The specified time includes the time required to forward the EI entry condition.  
21. BER per differential lane.  
Preliminary Data Sheet E1002E30 (Ver. 3.0)  
17  
EBE51FD8AHFT, EBE51FD8AHFE, EBE51FD8AHFL  
Serial PD Matrix for FB-DIMM  
Byte No. Function described  
Byte value  
116  
Hex value  
92H  
0
1
2
3
4
5
6
7
8
9
10  
Number of serial PD bytes written / SPD device size / CRC coverage  
SPD revision  
Revision 1.1  
11H  
Key byte / DRAM device type  
Voltage levels of this assembly  
SDRAM addressing  
DDR2 SDRAM FB-DIMM 09H  
VDD = 1.8V, VCC = 1.5V 12H  
14-row, 10-column  
8.2mm  
44H  
24H  
07H  
09H  
00H  
01H  
04H  
Module physical attributes  
Module Type / Thickness  
Module organization  
FB-DIMM  
1 rank / 8bits  
Fine timebase (FTB) dividend / divisor  
Medium timebase dividend  
Medium timebase divisor  
1
4
SDRAM minimum cycle time (tCK (min.))  
-6E  
11  
3.00ns  
0CH  
-5C  
3.75ns  
8ns  
0FH  
20H  
33H  
12  
13  
SDRAM maximum cycle time (tCK (max.))  
SDRAM /CAS latencies supported  
-6E  
CL = 3, 4, 5  
-5C  
CL = 3, 4  
15ns  
23H  
3CH  
42H  
14  
15  
SDRAM minimum /CAS latencies time (tCAS)  
SDRAM write recovery times supported  
-6E  
WR = 2 to 5  
-5C  
WR = 2 to 4  
15ns  
32H  
3CH  
42H  
16  
17  
SDRAM write recovery time (tWR)  
SDRAM write latencies supported  
WL = 2 to 5  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
SDRAM additive latencies supported  
AL = 0 to 3  
15ns  
40H  
3CH  
1EH  
3CH  
00H  
B4H  
F0H  
A4H  
01H  
1EH  
1EH  
03H  
07H  
01H  
SDRAM minimum /RAS to /CAS delay (tRCD)  
SDRAM minimum row active to row active delay (tRRD)  
SDRAM minimum row precharge time (tRP)  
SDRAM upper nibbles for tRAS and tRC  
7.5ns  
15ns  
SDRAM minimum active to precharge time (tRAS)  
SDRAM minimum auto-refresh to active /auto-refresh time (tRC)  
SDRAM minimum refresh recovery time delay (tRFC), LSB  
SDRAM minimum refresh recovery time delay (tRFC), MSB  
SDRAM Internal write to read command delay (tWTR)  
SDRAM Internal read to precharge command delay (tRTP)  
SDRAM burst lengths supported  
45ns  
60ns  
105ns  
105ns  
7.5ns  
7.5ns  
BL = 4, 8  
ODT = 50, 75, 150Ω  
Supported  
SDRAM terminations supported  
SDRAM drivers supported  
SDRAM average refresh interval (tREFI) / double refresh mode bit /  
high temperature self-refresh rate support indication  
32  
7.8µs Double/HT refresh C2H  
33  
34  
Tcasemax (TC (max.)) delta / DT4R4W delta  
Psi T-A SDRAM at still air  
95°C/ 0.40°C  
51H  
3
*
××  
Preliminary Data Sheet E1002E30 (Ver. 3.0)  
18  
EBE51FD8AHFT, EBE51FD8AHFE, EBE51FD8AHFL  
Byte No. Function described  
Byte value  
Hex value  
××  
3
*
35  
SDRAM DT0  
3
*
36  
SDRAM DT2Q  
××  
3
*
37  
SDRAM DT2P  
××  
3
*
38  
SDRAM DT3N  
××  
3
*
39  
SDRAM DT4R / mode bit  
SDRAM DT5B  
××  
3
*
40  
××  
3
*
41  
SDRAM DT7  
××  
42 to 78  
79  
Reserved  
00H  
01H  
00H  
××  
FB-DIMM ODT values  
Reserved  
75Ω  
80  
81 to 93  
94 to 97  
98  
AMB personality bytes  
Reserved  
00H  
××  
AMB case temperature maximum (Tcase (max.))  
Category byte  
99  
Planar/FDHS  
0AH  
00H  
××  
100  
Reserved  
101 to 116 AMB personality bytes  
117  
118  
119  
120  
121  
Module ID: manufacturer’s JEDEC ID code  
Elpida Memory  
Elpida Memory  
02H  
FEH  
××  
Module ID: manufacturer’s JEDEC ID code  
Module ID: manufacturing location  
Module ID: manufacturing date  
Year code (BCD)  
Date code (BCD)  
××  
Module ID: manufacturing date  
××  
122 to 125 Module ID: module serial number  
126 to 127 Cyclical redundancy code  
128 to 145 Module part number  
××  
××  
EBE51FD8AHFT/E/L  
Initial  
××  
146  
147  
148  
149  
150  
151  
Module revision code  
30H  
20H  
02H  
FEH  
××  
Module revision code  
(Space)  
SDRAM manufacturer’s JEDEC ID code  
SDRAM manufacturer’s JEDEC ID code  
Informal AMB content revision tag (MSB)  
Informal AMB content revision tag (LSB)  
Elpida Memory  
Elpida Memory  
××  
152 to 175 Manufacturer's specific data  
176 to 255 Open for customer use  
00H  
00H  
Remark IDD: DRAM current, ICC: AMB current  
Notes: 1. Based on DDR2 SDRAM component specification.  
2. Refer to JESD51-3 “Low effective thermal conductivity Test board for leaded surface mount packages”  
under JESD51-2 standard.  
3. DT parameter is derived as following: DTx = IDDx × VDD × Psi T-A, where IDDx definition is based on  
JEDEC DDR2 SDRAM component specification and at VDD=1.9V, it is the datasheet (worst case) value,  
and Psi T-A is the programmed value of Psi T-A (value in SPD Byte 33).  
Preliminary Data Sheet E1002E30 (Ver. 3.0)  
19  
EBE51FD8AHFT, EBE51FD8AHFE, EBE51FD8AHFL  
Physical Outline  
Unit: mm  
8.20 max.  
Front side  
Full DIMM heat spreader  
5.20 max.  
74.675  
(DATUM -A-)  
3.00 max.  
AMB  
D0  
D2  
D4  
D6  
1
120  
1.27 ± 0.10  
1.25  
R0.75  
B
A
67.00  
51.00  
5.175  
133.35  
Back side  
120  
121  
240  
D1  
D3  
D8  
D5  
D7  
FULL R  
2.50  
Detail A  
Detail B  
(DATUM -A-)  
FULL R  
1.00  
2.50  
0.40 min.  
5.00  
0.80 ± 0.05  
1.50 ± 0.10  
Tie bar keep out zone  
ECA-TS2-0170-01  
Preliminary Data Sheet E1002E30 (Ver. 3.0)  
20  
EBE51FD8AHFT, EBE51FD8AHFE, EBE51FD8AHFL  
CAUTION FOR HANDLING MEMORY MODULES  
When handling or inserting memory modules, be sure not to touch any components on the modules, such as  
the memory ICs, chip capacitors and chip resistors. It is necessary to avoid undue mechanical stress on  
these components to prevent damaging them.  
In particular, do not push module cover or drop the modules in order to protect from mechanical defects,  
which would be electrical defects.  
When re-packing memory modules, be sure the modules are not touching each other.  
Modules in contact with other modules may cause excessive mechanical stress, which may damage the  
modules.  
MDE0202  
NOTES FOR CMOS DEVICES  
PRECAUTION AGAINST ESD FOR MOS DEVICES  
1
Exposing the MOS devices to a strong electric field can cause destruction of the gate  
oxide and ultimately degrade the MOS devices operation. Steps must be taken to stop  
generation of static electricity as much as possible, and quickly dissipate it, when once  
it has occurred. Environmental control must be adequate. When it is dry, humidifier  
should be used. It is recommended to avoid using insulators that easily build static  
electricity. MOS devices must be stored and transported in an anti-static container,  
static shielding bag or conductive material. All test and measurement tools including  
work bench and floor should be grounded. The operator should be grounded using  
wrist strap. MOS devices must not be touched with bare hands. Similar precautions  
need to be taken for PW boards with semiconductor MOS devices on it.  
2
HANDLING OF UNUSED INPUT PINS FOR CMOS DEVICES  
No connection for CMOS devices input pins can be a cause of malfunction. If no  
connection is provided to the input pins, it is possible that an internal input level may be  
generated due to noise, etc., hence causing malfunction. CMOS devices behave  
differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed  
high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected  
to VDD or GND with a resistor, if it is considered to have a possibility of being an output  
pin. The unused pins must be handled in accordance with the related specifications.  
3
STATUS BEFORE INITIALIZATION OF MOS DEVICES  
Power-on does not necessarily define initial status of MOS devices. Production process  
of MOS does not define the initial operation status of the device. Immediately after the  
power source is turned ON, the MOS devices with reset function have not yet been  
initialized. Hence, power-on does not guarantee output pin levels, I/O settings or  
contents of registers. MOS devices are not initialized until the reset signal is received.  
Reset operation must be executed immediately after power-on for MOS devices having  
reset function.  
CME0107  
Preliminary Data Sheet E1002E30 (Ver. 3.0)  
21  
EBE51FD8AHFT, EBE51FD8AHFE, EBE51FD8AHFL  
The information in this document is subject to change without notice. Before using this document, confirm that this is the latest version.  
No part of this document may be copied or reproduced in any form or by any means without the prior  
written consent of Elpida Memory, Inc.  
Elpida Memory, Inc. does not assume any liability for infringement of any intellectual property rights  
(including but not limited to patents, copyrights, and circuit layout licenses) of Elpida Memory, Inc. or  
third parties by or arising from the use of the products or information listed in this document. No license,  
express, implied or otherwise, is granted under any patents, copyrights or other intellectual property  
rights of Elpida Memory, Inc. or others.  
Descriptions of circuits, software and other related information in this document are provided for  
illustrative purposes in semiconductor product operation and application examples. The incorporation of  
these circuits, software and information in the design of the customer's equipment shall be done under  
the full responsibility of the customer. Elpida Memory, Inc. assumes no responsibility for any losses  
incurred by customers or third parties arising from the use of these circuits, software and information.  
[Product applications]  
Elpida Memory, Inc. makes every attempt to ensure that its products are of high quality and reliability.  
However, users are instructed to contact Elpida Memory's sales office before using the product in  
aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment,  
medical equipment for life support, or other such application in which especially high quality and  
reliability is demanded or where its failure or malfunction may directly threaten human life or cause risk  
of bodily injury.  
[Product usage]  
Design your application so that the product is used within the ranges and conditions guaranteed by  
Elpida Memory, Inc., including the maximum ratings, operating supply voltage range, heat radiation  
characteristics, installation conditions and other related characteristics. Elpida Memory, Inc. bears no  
responsibility for failure or damage when the product is used beyond the guaranteed ranges and  
conditions. Even within the guaranteed ranges and conditions, consider normally foreseeable failure  
rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so  
that the equipment incorporating Elpida Memory, Inc. products does not cause bodily injury, fire or other  
consequential damage due to the operation of the Elpida Memory, Inc. product.  
[Usage environment]  
This product is not designed to be resistant to electromagnetic waves or radiation. This product must be  
used in a non-condensing environment.  
If you export the products or technology described in this document that are controlled by the Foreign  
Exchange and Foreign Trade Law of Japan, you must follow the necessary procedures in accordance  
with the relevant laws and regulations of Japan. Also, if you export products/technology controlled by  
U.S. export control regulations, or another country's export control laws or regulations, you must follow  
the necessary procedures in accordance with such laws or regulations.  
If these products/technology are sold, leased, or transferred to a third party, or a third party is granted  
license to use these products, that third party must be made aware that they are responsible for  
compliance with the relevant laws and regulations.  
M01E0107  
Preliminary Data Sheet E1002E30 (Ver. 3.0)  
22  

相关型号:

EBE51FD8AJFT-6E-E

DDR DRAM Module, 64MX72, CMOS, ROHS COMPLIANT, FBDIMM-240
ELPIDA

EBE51RC4AAFA

512MB Registered DDR2 SDRAM DIMM
ELPIDA

EBE51RC4AAFA-4A-E

512MB Registered DDR2 SDRAM DIMM
ELPIDA

EBE51RC4AAFA-4C-E

512MB Registered DDR2 SDRAM DIMM
ELPIDA

EBE51RC4AAFA-5C-E

512MB Registered DDR2 SDRAM DIMM
ELPIDA

EBE51RD8ABFA

512MB Registered DDR2 SDRAM DIMM (64M words x 72 bits, 1 Rank)
ELPIDA

EBE51RD8ABFA-4A

DDR DRAM Module, 64MX72, 0.6ns, CMOS, DIMM-240
ELPIDA

EBE51RD8ABFA-4A-E

512MB Registered DDR2 SDRAM DIMM (64M words x 72 bits, 1 Rank)
ELPIDA

EBE51RD8ABFA-4C

DDR DRAM Module, 64MX72, 0.6ns, CMOS, DIMM-240
ELPIDA

EBE51RD8ABFA-5C

DDR DRAM Module, 64MX72, 0.5ns, CMOS, DIMM-240
ELPIDA

EBE51RD8ABFA-5C-E

512MB Registered DDR2 SDRAM DIMM (64M words x 72 bits, 1 Rank)
ELPIDA

EBE51RD8AEFA

512MB Registered DDR2 SDRAM DIMM (64M words x 72 bits, 1 Rank)
ELPIDA