EDJ5308BBBG-AE-F [ELPIDA]

DDR DRAM, 64MX8, 20ns, CMOS, PBGA78, ROHS COMPLIANT, FBGA-78;
EDJ5308BBBG-AE-F
型号: EDJ5308BBBG-AE-F
厂家: ELPIDA MEMORY    ELPIDA MEMORY
描述:

DDR DRAM, 64MX8, 20ns, CMOS, PBGA78, ROHS COMPLIANT, FBGA-78

时钟 动态存储器 双倍数据速率 内存集成电路
文件: 总131页 (文件大小:1676K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY DATA SHEET  
512M bits DDR3 SDRAM  
EDJ5308BBBG (64M words × 8 bits)  
EDJ5316BBBG (32M words × 16 bits)  
Features  
Specifications  
Density: 512M bits  
Organization  
Double-data-rate architecture; two data transfers per  
clock cycle  
The high-speed data transfer is realized by the 8 bits  
8M words × 8 bits × 8 banks (EDJ5308BBBG)  
4M words × 16 bits × 8 banks (EDJ5316BBBG)  
Package  
78-ball FBGA (EDJ5308BBBG)  
96-ball FBGA (EDJ5316BBBG)  
Lead-free (RoHS compliant) and Halogen-free  
Power supply: VDD, VDDQ = 1.5V ± 0.075V  
Data rate  
1333Mbps/1066Mbps (max.)  
1KB page size (EDJ5308BBBG)  
Row address: A0 to A12  
Column address: A0 to A9  
2KB page size (EDJ5316BBBG)  
Row address: A0 to A11  
Column address: A0 to A9  
Eight internal banks for concurrent operation  
Interface: SSTL_15  
Burst lengths (BL): 8 and 4 with Burst Chop (BC)  
Burst type (BT):  
Sequential (8, 4 with BC)  
Interleave (8, 4 with BC)  
/CAS Latency (CL): 5, 6, 7, 8, 9, 10  
/CAS Write Latency (CWL): 5, 6, 7  
prefetch pipelined architecture  
Bi-directional differential data strobe (DQS and /DQS)  
is transmitted/received with data for capturing data at  
the receiver  
DQS is edge-aligned with data for READs; center-  
aligned with data for WRITEs  
Differential clock inputs (CK and /CK)  
DLL aligns DQ and DQS transitions with CK  
transitions  
Commands entered on each positive CK edge; data  
and data mask referenced to both edges of DQS  
Data mask (DM) for write data  
Posted /CAS by programmable additive latency for  
better command and data bus efficiency  
On-Die Termination (ODT) for better signal quality  
Synchronous ODT  
Dynamic ODT  
Asynchronous ODT  
ZQ calibration for DQ drive and ODT  
Programmable Partial Array Self-Refresh (PASR)  
/RESET pin for Power-up sequence and reset  
function  
SRT range:  
Normal/extended  
Auto/manual self-refresh  
Programmable Output driver impedance control  
Precharge: auto precharge option for each burst  
access  
Driver strength: RZQ/7, RZQ/6 (RZQ = 240)  
Refresh: auto-refresh, self-refresh  
Refresh cycles  
Average refresh period  
7.8µs at 0°C TC ≤ +85°C  
3.9µs at +85°C < TC ≤ +95°C  
Operating case temperature range  
TC = 0°C to +95°C  
Document No. E1349E20 (Ver. 2.0)  
Date Published June 2008 (K) Japan  
Printed in Japan  
URL: http://www.elpida.com  
Elpida Memory, Inc. 2008  
EDJ5308BBBG, EDJ5316BBBG  
Ordering Information  
Mask  
version  
Organization  
(words × bits)  
Internal  
banks  
JEDEC speed bin  
(CL-tRCD-tRP)  
Part number  
Package  
EDJ5308BBBG-DG-F  
EDJ5308BBBG-DJ-F  
EDJ5308BBBG-AE-F  
EDJ5316BBBG-DG-F  
EDJ5316BBBG-DJ-F  
EDJ5316BBBG-AE-F  
DDR3-1333G (8-8-8)  
DDR3-1333H (9-9-9)  
DDR3-1066F (7-7-7)  
DDR3-1333G (8-8-8)  
DDR3-1333H (9-9-9)  
DDR3-1066F (7-7-7)  
B
64M × 8  
8
78-ball FBGA  
32M × 16  
96-ball FBGA  
Part Number  
Elpida Memory  
Environment code  
Type  
F: Lead Free (RoHS compliant)  
and Halogen Free  
D: Monolithic Device  
Product Family  
J: DDR3  
Speed  
DG: DDR3-1333G (8-8-8)  
DJ: DDR3-1333H (9-9-9)  
AE: DDR3-1066F (7-7-7)  
Density / Bank  
53: 512Mb / 8-bank  
Organization  
08: x8  
16: x16  
Package  
BG: FBGA  
Power Supply, Interface  
B: 1.5V, SSTL_15  
Die Rev.  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
2
EDJ5308BBBG, EDJ5316BBBG  
Pin Configurations (×8 configuration)  
/xxx indicates active low signal.  
78-ball FBGA (×8 configuration)  
1
2
3
7
8
9
A
B
VSS  
VDD  
NC  
NU/(/TDQS) VSS  
VDD  
VSS VSSQ DQ0  
VDDQ  
DM/TDQS VSSQ VDDQ  
C
D
DQ2 DQS  
DQ1  
VDD  
DQ7  
DQ3 VSSQ  
VSSQ  
VSSQ DQ6 /DQS  
VSS  
DQ5  
E
F
G
H
J
DQ4  
VREFDQ VDDQ  
VDDQ  
NC  
NC  
VSS /RAS  
CK  
/CK  
VSS  
ODT VDD /CAS  
VDD CKE  
A10(AP)  
NC  
/CS  
/WE  
ZQ  
NC  
VSS  
VDD  
VSS  
VDD  
VSS  
BA0  
A3  
BA2  
A0  
NC VREFCA VSS  
K
L
A12(/BC) BA1  
VDD  
VSS  
VDD  
VSS  
A5  
A2  
A1  
A11  
NC  
A4  
A6  
A8  
M
N
A7  
A9  
/RESET NC  
(Top view)  
Pin name  
Function  
Address inputs  
A10 (AP): Auto precharge  
A12(/BC): Burst chop  
Pin name  
/RESET*3  
Function  
A0 to A12*3  
Active low asynchronous reset  
BA0 to BA2*3  
DQ0 to DQ7  
DQS, /DQS  
TDQS, /TDQS  
/CS*3  
/RAS, /CAS, /WE*3  
CKE*3  
Bank select  
VDD  
Supply voltage for internal circuit  
Ground for internal circuit  
Supply voltage for DQ circuit  
Ground for DQ circuit  
Reference voltage for DQ  
Reference voltage  
Data input/output  
Differential data strobe  
Termination data strobe  
Chip select  
VSS  
VDDQ  
VSSQ  
VREFDQ  
VREFCA  
ZQ  
NC*1  
NU*2  
Command input  
Clock enable  
Reference pin for ZQ calibration  
No connection  
CK, /CK  
Differential clock input  
Write data mask  
ODT control  
DM  
ODT*3  
Not usable  
Notes: 1. Not internally connected with die.  
2. Don’t connect. Internally connected.  
3. Input only pins (address, command, CKE, ODT and /RESET) do not supply termination.  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
3
EDJ5308BBBG, EDJ5316BBBG  
Pin Configurations (×16 configuration)  
/xxx indicates active low signal.  
96-ball FBGA  
3
1
2
7
8
9
A
VDDQ DQU5 DQU7  
VSSQ VDD VSS  
DQU4 VDDQ VSS  
B
C
D
E
/DQSU DQU6 VSSQ  
DQSU DQU2 VDDQ  
DQU0 VSSQ VDD  
VDDQ  
DQU3 DQU1  
VSSQ VDDQ DMU  
VSS VSSQ DQL0  
DML VSSQ VDDQ  
DQL1 DQL3 VSSQ  
F
G
H
J
VDDQ DQL2 DQSL  
VSSQ DQL6 /DQSL  
VREFDQ VDDQ DQL4  
VDD  
VSS VSSQ  
DQL7 DQL5 VDDQ  
NC  
VSS /RAS  
CK  
VSS  
VDD  
NC  
CKE  
NC  
K
L
/CK  
ODT VDD /CAS  
NC  
/CS  
/WE  
BA2  
A10(AP) ZQ  
M
N
P
R
T
VSS  
BA0  
NC VREFCA VSS  
VDD  
VSS  
VDD  
A3  
A5  
A7  
A0  
A2  
A9  
A12(/BC) BA1  
VDD  
VSS  
VDD  
VSS  
A1  
A11  
NC  
A4  
A6  
A8  
VSS /RESET NC  
(Top view)  
Pin name  
Function  
Address inputs  
Pin name  
ODT*2  
Function  
A0 to A11*2  
ODT control  
A10(AP): Auto precharge  
Burst chop  
A12(/BC) *2  
BA0 to BA2  
/RESET*2  
VDD  
Active low asynchronous reset  
Supply voltage for internal circuit  
Bank select  
DQU0 to DQU7  
DQL0 to DQL7  
Data input/output  
VSS  
Ground for internal circuit  
DQSU, /DQSU  
DQSL, /DQSL  
Differential data strobe  
VDDQ  
Supply voltage for DQ circuit  
/CS*2  
Chip select  
VSSQ  
VREFDQ  
VREFCA  
ZQ  
Ground for DQ circuit  
Reference voltage for DQ  
Reference voltage  
/RAS, /CAS, /WE*2  
CKE*2  
Command input  
Clock enable  
CK, /CK  
Differential clock input  
Write data mask  
Reference pin for ZQ calibration  
No connection  
DMU, DML  
NC*  
Note: 1. Not internally connected with die.  
2. Input only pins (address, command, CKE, ODT and /RESET) do not supply termination.  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
4
EDJ5308BBBG, EDJ5316BBBG  
CONTENTS  
Specifications.................................................................................................................................................1  
Features.........................................................................................................................................................1  
Ordering Information......................................................................................................................................2  
Part Number ..................................................................................................................................................2  
Pin Configurations (×8 configuration)............................................................................................................3  
Pin Configurations (×16 configuration)..........................................................................................................4  
Electrical Conditions......................................................................................................................................7  
Absolute Maximum Ratings .......................................................................................................................... 7  
Operating Temperature Condition ................................................................................................................ 7  
Recommended DC Operating Conditions (TC = 0°C to +85°C, VDD, VDDQ = 1.5V ± 0.075V)................... 8  
AC and DC Input Measurement Levels (TC = 0°C to +85°C, VDD, VDDQ = 1.5V ± 0.075V)....................... 8  
Differential Input Logic Levels (TC = 0°C to +85°C, VDD, VDDQ = 1.5V ± 0.075V)..................................... 8  
AC and DC Output Measurement Levels (TC = 0°C to +85°C, VDD, VDDQ = 1.5V ± 0.075V).................. 11  
AC Overshoot/Undershoot Specification..................................................................................................... 13  
Output Driver Impedance............................................................................................................................ 14  
On-Die Termination (ODT) Levels and I-V Characteristics ......................................................................... 16  
ODT Timing Definitions............................................................................................................................... 18  
IDD Measurement Conditions (TC = 0°C to +85°C, VDD, VDDQ = 1.5V ± 0.075V)................................... 22  
Electrical Specifications...............................................................................................................................33  
DC Characteristics 1 (TC = 0°C to +85°C, VDD, VDDQ = 1.5V ± 0.075V) ................................................. 33  
DC Characteristics 2 (TC = 0°C to +85°C, VDD, VDDQ = 1.5V ± 0.075V) ................................................. 34  
Pin Capacitance (TC = 25°C, VDD, VDDQ = 1.5V ± 0.075V)..................................................................... 35  
Standard Speed Bins.................................................................................................................................. 36  
AC Characteristics (TC = 0°C to +85°C, VDD, VDDQ = 1.5V ± 0.075V, VSS, VSSQ = 0V)....................... 38  
Block Diagram .............................................................................................................................................51  
Pin Function.................................................................................................................................................52  
Command Operation ...................................................................................................................................54  
Command Truth Table................................................................................................................................ 54  
CKE Truth Table......................................................................................................................................... 58  
Simplified State Diagram.............................................................................................................................59  
RESET and Initialization Procedure............................................................................................................60  
Power-Up and Initialization Sequence........................................................................................................ 60  
Reset and Initialization with Stable Power .................................................................................................. 61  
Programming the Mode Register.................................................................................................................62  
Mode Register Set Command Cycle Time (tMRD) ..................................................................................... 62  
MRS Command to Non-MRS Command Delay (tMOD) ............................................................................. 62  
DDR3 SDRAM Mode Register 0 [MR0] ...................................................................................................... 63  
DDR3 SDRAM Mode Register 1 [MR1] ...................................................................................................... 64  
DDR3 SDRAM Mode Register 2 [MR2] ...................................................................................................... 65  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
5
EDJ5308BBBG, EDJ5316BBBG  
DDR3 SDRAM Mode Register 3 [MR3] ...................................................................................................... 66  
Burst Length (MR0) .................................................................................................................................... 67  
Burst Type (MR0) ....................................................................................................................................... 67  
DLL Enable (MR1)...................................................................................................................................... 68  
DLL Disable (MR1) ..................................................................................................................................... 68  
Additive Latency (MR1)............................................................................................................................... 71  
Write Leveling (MR1) .................................................................................................................................. 72  
TDQS, /TDQS function (MR1) .................................................................................................................... 75  
Extended Temperature Usage (MR2)......................................................................................................... 76  
Multi Purpose Register (MR3)..................................................................................................................... 77  
Operation of the DDR3 SDRAM..................................................................................................................85  
Read Timing Definition................................................................................................................................ 85  
Read Operation .......................................................................................................................................... 87  
Write Timing Definition................................................................................................................................ 93  
Write Operation........................................................................................................................................... 94  
Write Timing Violations ............................................................................................................................. 100  
Write Data Mask ....................................................................................................................................... 101  
Precharge ................................................................................................................................................. 102  
Auto Precharge Operation ........................................................................................................................ 103  
Auto-Refresh............................................................................................................................................. 104  
Self-Refresh.............................................................................................................................................. 105  
Power-Down Mode ................................................................................................................................... 106  
Input Clock Frequency Change during Precharge Power-Down............................................................... 113  
On-Die Termination (ODT)........................................................................................................................ 114  
ZQ Calibration........................................................................................................................................... 126  
Package Drawing ......................................................................................................................................127  
78-ball FBGA (TBD).................................................................................................................................. 127  
96-ball FBGA (TBD).................................................................................................................................. 128  
Recommended Soldering Conditions........................................................................................................129  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
6
EDJ5308BBBG, EDJ5316BBBG  
Electrical Conditions  
All voltages are referenced to VSS (GND)  
Execute power-up and Initialization sequence before proper device operation is achieved.  
Absolute Maximum Ratings  
Parameter  
Symbol  
VDD  
Rating  
Unit  
V
Notes  
1, 3  
1, 3  
1
Power supply voltage  
Power supply voltage for output  
Input voltage  
0.4 to +1.975  
0.4 to +1.975  
0.4 to +1.975  
0.4 to +1.975  
0.4 to 0.6 × VDD  
0.4 to 0.6 × VDDQ  
55 to +100  
1.0  
VDDQ  
VIN  
V
V
Output voltage  
VOUT  
VREFCA  
VREFDQ  
Tstg  
V
1
Reference voltage  
Reference voltage for DQ  
Storage temperature  
Power dissipation  
V
3
V
3
°C  
W
mA  
1, 2  
1
PD  
Short circuit output current  
IOUT  
50  
1
Notes: 1. Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to  
the device. This is a stress rating only and functional operation of the device at these or any other  
conditions above those indicated in the operational sections of this specification is not implied. Exposure  
to absolute maximum rating conditions for extended periods may affect reliability.  
2. Storage temperature is the case surface temperature on the center/top side of the DRAM.  
3. VDD and VDDQ must be within 300mV of each other at all times; and VREF must be no greater than  
0.6 × VDDQ, When VDD and VDDQ are less than 500mV; VREF may be equal to or less than 300mV.  
Caution  
Exposing the device to stress above those listed in Absolute Maximum Ratings could cause  
permanent damage. The device is not meant to be operated under conditions outside the limits  
described in the operational section of this specification. Exposure to Absolute Maximum Rating  
conditions for extended periods may affect device reliability.  
Operating Temperature Condition  
Parameter  
Symbol  
TC  
Rating  
Unit  
Notes  
1, 2, 3  
Operating case temperature  
0 to +95  
°C  
Notes: 1. Operating temperature is the case surface temperature on the center/top side of the DRAM.  
2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be  
supported. During operation, the DRAM case temperature must be maintained between 0°C to +85°C  
under all operating conditions.  
3. Some applications require operation of the DRAM in the Extended Temperature Range between +85°C  
and +95°C case temperature. Full specifications are guaranteed in this range, but the following additional  
conditions apply:  
a)  
Refresh commands must be doubled in frequency, therefore reducing the refresh interval tREFI to  
3.9µs. (This double refresh requirement may not apply for some devices.)  
b)  
If Self-refresh operation is required in the Extended Temperature Range, then it is mandatory to  
either use the Manual Self-Refresh mode with Extended Temperature Range capability (MR2 bit  
[A6, A7] = [0, 1]) or enable the optional Auto Self-Refresh mode (MR2 bit [A6, A7] = [1, 0]).  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
7
EDJ5308BBBG, EDJ5316BBBG  
Recommended DC Operating Conditions (TC = 0°C to +85°C, VDD, VDDQ = 1.5V ± 0.075V)  
Parameter  
Symbol  
VDD  
min.  
typ.  
1.5  
1.5  
max.  
Unit  
V
Notes  
1, 2  
Supply voltage  
1.425  
1.425  
1.575  
1.575  
Supply voltage for DQ  
Input reference voltage  
VDDQ  
V
1, 2  
VREFCA (DC) 0.49 × VDDQ  
0.50 × VDDQ 0.51 × VDDQ  
0.50 × VDDQ 0.51 × VDDQ  
V
3, 4  
Input reference voltage for DQ VREFDQ (DC) 0.49 × VDDQ  
Termination voltage VTT VDDQ/2 – TBD  
V
3, 4  
TBD  
VDDQ/2 + TBD  
V
Notes: 1. Under all conditions VDDQ must be less than or equal to VDD.  
2. VDDQ tracks with VDD. AC parameters are measured with VDD and VDDQ tied together.  
3. The AC peak noise on VREF may not allow VREF to deviate from VREF(DC) by more than ±1% VDD (for  
reference: approx ±15 mV).  
4. For reference: approx. VDD/2 ± 15 mV.  
AC and DC Input Measurement Levels (TC = 0°C to +85°C, VDD, VDDQ = 1.5V ± 0.075V)  
Parameter  
Symbol  
VIH (DC)  
VIL (DC)  
VIH (AC)  
VIL (AC)  
VIHdiff  
min.  
typ.  
max.  
Unit  
V
Notes  
DC input logic high  
DC input logic low  
AC input logic high  
AC input logic low  
Differential input logic high  
Differential input logic low  
VREF + 0.1  
TBD  
TBD  
1
1
VREF – 0.1  
V
1, 2  
1, 2  
VREF + 0.175  
V
VREF – 0.175  
–0.200  
V
+0.200  
V
VILdiff  
V
Notes: 1 For DQ and DM: VREF = VREFDQ. For input only pins except /RESET; VREF = VREFCA  
2. See Overshoot and Undershoot Specifications section.  
Differential Input Logic Levels (TC = 0°C to +85°C, VDD, VDDQ = 1.5V ± 0.075V)  
Parameter  
Symbol  
min.  
TBD  
max.  
Unit  
V
Note  
1
AC differential input voltage  
Differential input cross point voltage  
relative to VDD/2  
VID (AC)  
VDDQ + 0.6  
VIX  
150  
150  
mV  
V
AC differential cross point voltage  
VOX (AC)  
TBD  
TBD  
Note: 1. To guarantee tight setup and hold times as well as output skew parameters with respect to clock and  
strobe, each cross point voltage of differential input signals (CK, /CK and DQS, /DQS) must meet the  
requirements in table above.  
The differential input cross point voltage VIX is measured from the actual cross point of true and  
complement signal to the midlevel between of VDD and VSS.  
VDD  
CK, DQS  
VIX  
VDD/2  
VIX  
VIX  
/CK, /DQS  
VSS  
VIX Definition  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
8
EDJ5308BBBG, EDJ5316BBBG  
Input Slew Rate Definitions  
Setup (tIS and tDS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of  
VREF and the first crossing of VIH (AC) min. Setup (tIS and tDS) nominal slew rate for a falling signal is defined as  
the slew rate between the last crossing of VREF and the first crossing of VIL (AC) max.  
Hold (tIH, tDH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VIL (DC)  
max and the first crossing of VREF. Hold (tIH and tDH) nominal slew rate for a falling signal is defined as the slew  
rate between the last crossing of VIH (DC) min and the first crossing of VREF.  
[Single-ended Input Slew Rate Definition]  
Measured  
Description  
From  
To  
Defined by  
VIH (AC) (min.) – VREF  
Applicable for  
Input slew rate for rising edge  
VREF  
VIH (AC) (min.)  
Setup (tIS, tDS)  
TRS  
VREF – VIL (AC) (max.)  
TFS  
Input slew rate for falling edge VREF  
Input slew rate for rising edge  
VIL (AC) (max.)  
VREF – VIL (DC) (max.)  
VIL (DC) (max.) VREF  
Hold (tIH, tDH)  
TRH  
VIH (DC) (min.) – VREF  
TFH  
Input slew rate for falling edge VIH (DC) (min.) VREF  
Note: This nominal slew rate applies for linear signal waveforms.  
Setup  
VDDQ  
VIH (AC) min.  
VIH (DC) min.  
VREF  
VIL (DC) max.  
VIL (AC) max.  
VREF  
VIL (AC) max.  
VSSQ  
Falling slew =  
Rising slew =  
TFS  
TFS  
TRS  
VIH (AC) min.  
VREF  
Hold  
TRS  
VDDQ  
VIH (AC) min.  
VIH (DC) min.  
VREF  
VIL (DC) max.  
VIL (AC) max.  
VIL (DC) max.  
VREF  
VSSQ  
Falling slew =  
Rising slew =  
TFH  
TFH  
TRH  
VREF  
VIL (DC) max.  
TRH  
Input Nominal Slew Rate Definition for Single-Ended Signals  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
9
EDJ5308BBBG, EDJ5316BBBG  
[Differential Input Slew Rate Definition]  
Measured  
Description  
From  
To  
Defined by  
Applicable for  
Note  
Differential input slew rate for  
rising edge  
(CK - /CK and DQS - /DQS)  
VIHdiff (min.) – VILdiff (max.)  
VILdiff (max.)  
VIHdiff (min.)  
TRdiff  
Differential input slew rate for  
VIHdiff (min.). – VILdiff max.  
falling edge  
VIHdiff (min.)  
VILdiff (max.)  
TFdiff  
(CK - /CK and DQS - /DQS)  
Note: The differential signal (i.e. CK, /CK and DQS, /DQS) must be linear between these thresholds.  
VIHdiff(min.)  
0
VILdiff (max.)  
TRdiff  
TFdiff  
VIHdiff (min.)  
VILdiff (max.)  
VIHdiff (min.)  
VILdiff (max.)  
Falling slew =  
Rising slew =  
TFdiff  
TRdiff  
Differential Input Slew Rate Definition for DQS, /DQS and CK, /CK  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
10  
EDJ5308BBBG, EDJ5316BBBG  
AC and DC Output Measurement Levels (TC = 0°C to +85°C, VDD, VDDQ = 1.5V ± 0.075V)  
Parameter  
Symbol  
Specification  
Unit  
V
Notes  
DC output high measurement level  
(for IV curve linearity)  
VOH (DC)  
0.8 × VDDQ  
DC output middle measurement level  
V
V
VOM (DC)  
VOL (DC)  
VOH (AC)  
VOL (AC)  
VOHdiff  
0.5 × VDDQ  
(for IV curve linearity)  
DC output low measurement level  
(for IV curve linearity)  
AC output high measurement level  
(for output slew rate)  
AC output low measurement level  
(for output slew rate)  
AC differential output high measurement  
level (for output slew rate)  
0.2 × VDDQ  
VTT + 0.1 × VDDQ  
VTT 0.1 × VDDQ  
0.2 × VDDQ  
V
V
V
V
1
1
2
2
AC differential output low measurement  
level (for output slew rate)  
VOLdiff  
0.2 × VDDQ  
Notes: 1. The swing of ±0.1 × VDDQ is based on approximately 50% of the static single-ended output high or low  
swing with a driver impedance of 34and an effective test load of 25to VTT = VDDQ/2 at each of the  
differential outputs.  
2. The swing of ±0.2 × VDDQ is based on approximately 50% of the static single-ended output high or low  
swing with a driver impedance of 34and an effective test load of 25to VTT = VDDQ/2 at each of the  
differential outputs.  
Output Slew Rate Definitions  
[Single-Ended Output Slew Rate Definition]  
Measured  
Description  
From  
To  
Defined by  
VOH (AC) – VOL (AC)  
TRse  
Output slew rate for rising edge VOL (AC)  
Output slew rate for falling edge VOH (AC)  
VOH (AC)  
VOH (AC) – VOL (AC)  
VOL (AC)  
TFse  
VOH (AC)  
VTT  
VOL (AC)  
TRse  
TFse  
VOH (AC)  
VOL (AC)  
VOH (AC)  
VOL (AC)  
Falling slew =  
Rising slew =  
TFse  
TRse  
Input Slew Rate Definition for Single-Ended Signals  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
11  
EDJ5308BBBG, EDJ5316BBBG  
[Differential Output Slew Rate Definition]  
Measured  
Description  
From  
To  
Defined by  
VOHdiff(AC) – VOLdiff (AC)  
TRdiff  
Differential output slew rate for  
rising edge  
VOLdiff (AC)  
VOHdiff (AC)  
VOHdiff (AC) – VOLdiff (AC)  
Differential output slew rate for  
falling edge  
VOHdiff (AC)  
VOLdiff (AC)  
TFdiff  
VOHdiff (AC)  
0
VOLdiff (AC)  
TRdiff  
TFdiff  
VOHdiff (AC)  
VOLdiff (AC)  
VOHdiff (AC)  
VOLdiff (AC)  
Falling slew =  
Rising slew =  
TFdiff  
TRdiff  
Differential Input Slew Rate Definition for DQS, /DQS and CK, /CK  
Output Slew Rate (RON = RZQ/7 setting)  
Parameter  
Symbol  
SRQse  
Speed  
min.  
2.5  
max.  
5
Unit  
Notes  
Output slew rate  
(Single-ended)  
DDR3-1066  
DDR3-1333  
V/ns  
Output slew rate  
(Differential)  
DDR3-1066  
DDR3-1333  
SRQdiff  
5
10  
V/ns  
Remark: SR = slew rate. se = single-ended signals. diff = differential signals. Q = Query output  
Reference Load for AC Timing and Output Slew Rate  
Measurement point  
DQ  
VTT = 0.5 × VDDQ  
RT =25Ω  
Reference Output Load  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
12  
EDJ5308BBBG, EDJ5316BBBG  
AC Overshoot/Undershoot Specification  
Parameter  
Pins  
Specification  
Command, Address,  
CKE, ODT  
Maximum peak amplitude allowed for overshoot  
Maximum peak amplitude allowed for undershoot  
0.4V  
0.4V  
Maximum overshoot area above VDD  
DDR3-1333  
DDR3-1066  
Maximum undershoot area below VSS  
DDR3-1333  
0.4V-ns  
0.5V-ns  
0.4V-ns  
DDR3-1066  
0.5V-ns  
0.4V  
Maximum peak amplitude allowed for overshoot  
Maximum peak amplitude allowed for undershoot  
CK, /CK  
0.4V  
Maximum overshoot area above VDD  
DDR3-1333  
DDR3-1066  
Maximum undershoot area below VSS  
DDR3-1333  
0.15V-ns  
0.19 V-ns  
0.15V-ns  
DDR3-1066  
0.19 V-ns  
0.4V  
Maximum peak amplitude allowed for overshoot  
Maximum peak amplitude allowed for undershoot  
DQ, DQS, /DQS, DM  
0.4V  
Maximum overshoot area above VDDQ  
DDR3-1333  
DDR3-1066  
Maximum undershoot area below VSSQ  
DDR3-1333  
DDR3-1066  
0.15V-ns  
0.19 V-ns  
0.15V-ns  
0.19 V-ns  
Maximum amplitude  
Overshoot area  
VDD, VDDQ  
Volts (V)  
VSS, VSSQ  
Undershoot area  
Time (ns)  
Overshoot/Undershoot Definition  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
13  
EDJ5308BBBG, EDJ5316BBBG  
Output Driver Impedance  
Assuming RZQ will be 240(nom), DDR3 SDRAM data output driver impedance will be RON = RZQ/7 (nom.)  
RON will be achieved by the DDR3 SDRAM after proper I/O calibration. Tolerance and linearity requirements are  
referred to the Output Driver DC Electrical Characteristics table.  
A functional representation of the output buffer is shown in the figure Output Driver: Definition of Voltages and  
Currents.  
RON is defined by the value of the external reference resistor RZQ as follows:  
RON40 = RZQ / 6  
RON34 = RZQ / 7  
The individual pull-up and pull-down resistors (RONPu and RONPd) are defined as follows:  
Parameter  
Symbol  
RONPu  
Definition  
Conditions  
VDDQ VOUT  
Output driver pull-up impedance  
RONPd is turned off  
IOUT  
VOUT  
IOUT  
Output driver pull-down impedance  
RONPd  
RONPu is turned off  
Chip in Drive Mode  
Output Driver  
VDDQ  
IPu  
To  
other  
circuitry  
like  
RCV,  
...  
RONPu  
DQ  
IOut  
RONPd  
IPd  
VOut  
VSSQ  
Output Driver: Definition of Voltages and Currents  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
14  
EDJ5308BBBG, EDJ5316BBBG  
Output Driver DC Electrical Characteristics  
(RZQ = 240, entire operating temperature range; after proper ZQ calibration)  
RONnom Resistor  
VOUT  
min.  
nom.  
max.  
Unit  
Notes  
1, 2, 3  
VOL (DC)  
VOM (DC)  
VOH (DC)  
VOL (DC)  
VOM (DC)  
VOH (DC)  
VOL (DC)  
VOM (DC)  
VOH (DC)  
VOL (DC)  
VOM (DC)  
VOH (DC)  
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.1  
1.1  
1.4  
1.4  
1.1  
1.1  
1.1  
1.1  
1.4  
1.4  
1.1  
1.1  
40Ω  
RON40Pd  
RON40Pu  
RON34Pd  
RON34Pu  
RZQ/6  
RZQ/6  
RZQ/7  
1, 2, 3  
1, 2, 3  
34Ω  
RZQ/7  
%
1, 2, 3  
1, 2, 4  
Mismatch between pull-up and pull down, MMPuPd  
VOM (DC)  
10  
10  
Notes: 1. The tolerance limits are specified after calibration with stable voltage and temperature.  
For the behavior of the tolerance limits if temperature or voltage changes after calibration, see following  
section on voltage and temperature sensitivity.  
2. The tolerance limits are specified under the condition that VDDQ = VDD and that VSSQ = VSS.  
3. Pull-down and pull-up output driver impedances are recommended to be calibrated at 0.5 × VDDQ. Other  
calibration schemes may be used to achieve the linearity spec shown above, e.g. calibration at 0.2 ×  
VDDQ and 0.8 × VDDQ.  
4. Measurement definition for mismatch between pull-up and pull-down, MMPuPd:  
Measure RONPu and RONPd, both at 0.5 × VDDQ:  
RONPu -RONPd  
MMPuPd =  
× 100  
RONnom  
Output Driver Temperature and Voltage Sensitivity  
If temperature and/or voltage change after calibration, the tolerance limits widen according to the table Output Driver  
Sensitivity Definition and Output Driver Voltage and Temperature Sensitivity.  
T = T T (@calibration); V= VDDQ VDDQ (@calibration); VDD = VDDQ  
Note: dRONdT and dRONdV are not subject to production test but are verified by design and characterization.  
[Output Driver Sensitivity Definition]  
min  
max  
unit  
RONPu@VOH (DC) 0.6 dRONdTH × |T| dRONdVH × |V|  
1.1 + dRONdTH × |T| + dRONdVH × |V|  
1.1 + dRONdTM × |T| + dRONdVM × |V|  
1.1 + dRONdTL × |T| + dRONdVL × |V|  
RZQ/7  
RZQ/7  
RZQ/7  
RON@ VOM (DC)  
RONPd@VOL (DC)  
0.9 dRONdTM × |T| dRONdVM × |V|  
0.6 dRONdTL × |T| dRONdVL × |V|  
[Output Driver Voltage and Temperature Sensitivity]  
min.  
0
max.  
Unit  
dRONdTM  
dRONdVM  
dRONdTL  
dRONdVL  
dRONdTH  
dRONdVH  
1.5  
%/°C  
%/mV  
%/°C  
%/mV  
%/°C  
%/mV  
0
0.15  
1.5  
0
0
TBD  
1.5  
0
0
TBD  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
15  
EDJ5308BBBG, EDJ5316BBBG  
On-Die Termination (ODT) Levels and I-V Characteristics  
On-Die Termination effective resistance RTT is defined by bits A9, A6 and A2 of the MR1 Register.  
ODT is applied to the DQ, DM, DQS, /DQS and TDQS, /TDQS (×8 devices only) pins.  
A functional representation of the on-die termination is shown in the figure On-Die Termination: Definition of Voltages  
and Currents.  
The individual pull-up and pull-down resistors (RTTPu and RTTPd) are defined as follows:  
Parameter  
Symbol  
RTTPu  
Definition  
Conditions  
VDDQ VOUT  
ODT pull-up resistance  
RTTPd is turned off  
IOUT  
VOUT  
IOUT  
ODT pull-down resistance RTTPd  
RTTPu is turned off  
Chip in Termination Mode  
ODT  
VDDQ  
IPu  
IOut = IPd - IPu  
To  
RTTPu  
other  
circuitry  
like  
RCV,  
...  
DQ  
IOut  
RTTPd  
IPd  
VOut  
VSSQ  
On-Die Termination: Definition of Voltages and Currents  
Assuming RZQ will be 240(nom), the value of the termination resistor can be set via MRS command to RTT60 =  
RZQ/4 (nom) or RTT120 = RZQ/2 (nom).  
RTT60 or RTT120 will be achieved by the DDR3 SDRAM after proper IO calibration has been performed.  
Tolerances requirements are referred to the ODT DC Electrical Characteristics table.  
Measurement Definition for RTT  
Apply VIH (AC) to pin under test and measure current I(VIH(AC)), then apply VIL(AC) to pin under test and measure  
current I(VIL(AC)) respectively.  
VIH(AC) VIL(AC)  
RTT =  
I(VIH(AC)) I(VIL(AC))  
Measurement Definition for VM  
Measure voltage (VM) at test pin (midpoint) with no load.  
2× VM  
VM =   
-1×100  
VDDQ  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
16  
EDJ5308BBBG, EDJ5316BBBG  
ODT DC Electrical Characteristics  
(RZQ = 240, entire operating temperature range; after proper ZQ calibration)  
MR1  
[A9, A6, A2] RTT  
Resistor  
VOUT  
min.  
nom.  
max.  
Unit  
Notes  
VOL (DC)  
VOM (DC)  
VOH (DC)  
0.6  
0.9  
0.9  
1.0  
1.0  
1.0  
1.1  
1.1  
1.4  
[0, 1, 0]  
120RTT120Pd240  
RZQ  
1, 2, 3, 4  
VOL (DC)  
VOM (DC)  
VOH (DC)  
0.9  
0.9  
0.6  
1.0  
1.0  
1.0  
1.4  
1.1  
1.1  
RTT120Pu240  
RTT120  
RZQ  
1, 2, 3, 4  
VIL (AC) to VIH (AC)  
0.9  
1.0  
1.6  
RZQ/2 1, 2, 5  
VOL (DC)  
VOM (DC)  
VOH (DC)  
VOL (DC)  
VOM (DC)  
VOH (DC)  
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.1  
1.1  
1.4  
1.4  
1.1  
1.1  
[0, 0, 1]  
[0, 1.1]  
[1, 0, 1]  
[1, 0, 0]  
60Ω  
40Ω  
30Ω  
20Ω  
RTT60Pd120  
RZQ/2 1, 2, 3, 4  
RTT60Pu120  
RTT60  
RZQ/2 1, 2, 3, 4  
RZQ/4 1, 2, 5  
VIL (AC) to VIH (AC)  
0.9  
1.0  
1.6  
VOL (DC)  
VOM (DC)  
VOH (DC)  
VOL (DC)  
VOM (DC)  
VOH (DC)  
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.1  
1.1  
1.4  
1.4  
1.1  
1.1  
RTT40Pd80  
RZQ/3 1, 2, 3, 4  
RTT40Pu80  
RTT40  
RZQ/3 1, 2, 3, 4  
RZQ/6 1, 2, 5  
VIL (AC) to VIH (AC)  
0.9  
1.0  
1.6  
VOL (DC)  
VOM (DC)  
VOH (DC)  
VOL (DC)  
VOM (DC)  
VOH (DC)  
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.1  
1.1  
1.4  
1.4  
1.1  
1.1  
RTT30Pd60  
RZQ/4 1, 2, 3, 4  
RTT30Pu60  
RTT30  
RZQ/4 1, 2, 3, 4  
RZQ/8 1, 2, 5  
VIL (AC) to VIH (AC)  
0.9  
1.0  
1.6  
VOL (DC)  
VOM (DC)  
VOH (DC)  
VOL (DC)  
VOM (DC)  
VOH (DC)  
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.1  
1.1  
1.4  
1.4  
1.1  
1.1  
RTT20Pd40  
RZQ/6 1, 2, 3, 4  
RTT20Pu40  
RTT20  
RZQ/6 1, 2, 3, 4  
RZQ/12 1, 2, 5  
VIL (AC) to VIH (AC)  
0.9  
1.0  
1.6  
Deviation of VM w.r.t. VDDQ/2, VM  
5  
5
%
1, 2, 5, 6  
Notes: 1. The tolerance limits are specified after calibration with stable voltage and temperature.  
For the behavior of the tolerance limits if temperature or voltage changes after calibration, see following  
section on voltage and temperature sensitivity.  
2. The tolerance limits are specified under the condition that VDDQ = VDD and that VSSQ = VSS.  
3. Pull-down and pull-up output resistors are recommended to be calibrated at 0.5 × VDDQ. Other calibration  
schemes may be used to achieve the linearity spec shown above, e.g. calibration at 0.2 × VDDQ and 0.8  
× VDDQ.  
4. Not a specification requirement, but a design guide line.  
5. Measurement Definition for RTT:  
Apply VIH (AC) to pin under test and measure current I(VIH(AC)), then apply VIL(AC) to pin under test  
and measure current I(VIL(AC)) respectively.  
VIH(AC) VIL(AC)  
RTT =  
I(VIH(AC)) I(VIL(AC))  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
17  
EDJ5308BBBG, EDJ5316BBBG  
6. Measurement Definition for VM and VM:  
Measure voltage (VM) at test pin (midpoint) with no load:  
2× VM  
VM =   
-1×100  
VDDQ  
ODT Temperature and Voltage Sensitivity  
If temperature and/or voltage change after calibration, the tolerance limits widen according to the table ODT  
Sensitivity Definition and ODT Voltage and Temperature Sensitivity.  
T = T T (@calibration); V= VDDQ VDDQ (@calibration); VDD = VDDQ  
Note: dRTTdT and dRTTdV are not subject to production test but are verified by design and characterization.  
[ODT Sensitivity Definition]  
min.  
max.  
Unit  
RTT  
0.9 dRTTdT × |T| - dRTTdV × |V|  
1.6 + dRTTdT×|T| + dRTTdV × |V|  
RZQ/2, 4, 6, 8, 12  
[ODT Voltage and Temperature Sensitivity]  
min.  
max.  
1.5  
Unit  
dRTTdT  
dRTTdV  
0
0
%/°C  
%/mV  
0.15  
ODT Timing Definitions  
Test Load for ODT Timings  
Different than for timing measurements, the reference load for ODT timings are defined in ODT Timing Reference  
Load.  
VDDQ  
DUT  
DQ, DM  
CK, /CK  
VTT =  
VSSQ  
DQS, /DQS  
TDQS, /TDQS  
RTT  
= 25 Ω  
VSSQ  
Timing Reference Points  
ODT Timing Reference Load  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
18  
EDJ5308BBBG, EDJ5316BBBG  
ODT Measurement Definitions  
Definitions for tAON, tAONPD, tAOF, tAOFPD and tADC are provided in the following table and subsequent figures.  
Symbol  
Begin Point Definition  
End Point Definition  
Figure  
Rising edge of CK - /CK defined by the end  
point of ODTLon  
tAON  
Extrapolated point at VSSQ  
Figure a)  
Rising edge of CK - /CK with ODT being first  
registered high  
Rising edge of CK - /CK defined by the end  
point of ODTLoff  
tAONPD  
tAOF  
Extrapolated point at VSSQ  
Figure b)  
End point: Extrapolated point at VRTT_Nom Figure c)  
Rising edge of CK - /CK with ODT being first  
registered low  
Rising edge of CK - /CK defined by the end  
point of ODTLcnw, ODTLcwn4 or ODTLcwn8  
tAOFPD  
tADC  
End point: Extrapolated point at VRTT_Nom Figure d)  
End point: Extrapolated point at VRTT_WR  
Figure e)  
and VRTT_Nom respectively  
Reference Settings for ODT Timing Measurements  
Measurement reference settings are provided in the following Table.  
Measured Parameter RTT_Nom Setting  
RTT_WR Setting  
VSW1 [V]  
VSW2 [V]  
0.10  
Note  
tAON  
RZQ/4  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
RZQ/2  
0.05  
RZQ/12  
RZQ/4  
0.10  
0.20  
tAONPD  
tAOF  
0.05  
0.10  
RZQ/12  
RZQ/4  
0.10  
0.20  
0.05  
0.10  
RZQ/12  
RZQ/4  
0.10  
0.20  
tAOFPD  
tADC  
0.05  
0.10  
RZQ/12  
RZQ/12  
0.10  
0.20  
0.20  
0.30  
Begin point: Rising edge of CK - /CK  
defined by the end point of ODTLon  
CK  
VTT  
/CK  
tAON  
tSW2  
tSW1  
DQ, DM  
DQS, /DQS  
VSW2  
TDQS, /TDQS  
VSW1  
VSSQ  
VSSQ  
End point: Extrapolated point at VSSQ  
a) Definition of tAON  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
19  
EDJ5308BBBG, EDJ5316BBBG  
Begin point: Rising edge of CK - /CK with  
ODT being first registered high  
CK  
VTT  
/CK  
tAONPD  
tSW2  
tSW1  
DQ, DM  
DQS, /DQS  
VSW2  
TDQS, /TDQS  
VSW1  
VSSQ  
VSSQ  
End point: Extrapolated point at VSSQ  
b) Definition of tAONPD  
Begin point: Rising edge of CK - /CK  
defined by the end point of ODTLoff  
CK  
VTT  
/CK  
tAOF  
End point: Extrapolated point at VRTT_Nom  
VRTT_Nom  
VSW2  
tSW2  
tSW1  
DQ, DM  
DQS, /DQS  
TDQS, /TDQS  
VSW1  
VSSQ  
c) Definition of tAOF  
Begin point: Rising edge of CK - /CK with  
ODT being first registered low  
CK  
VTT  
/CK  
tAOFPD  
End point: Extrapolated point at VRTT_Nom  
VRTT_Nom  
VSW2  
tSW2  
tSW1  
DQ, DM  
DQS, /DQS  
TDQS, /TDQS  
VSW1  
VSSQ  
d) Definition of tAOFPD  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
20  
EDJ5308BBBG, EDJ5316BBBG  
Begin point: Rising edge of CK - /CK  
defined by the end point of ODTLcnw  
Begin point: Rising edge of CK - /CK defined by  
the end point of ODTLcwn4 or ODTLcwn8  
CK  
VTT  
/CK  
tADC  
tADC  
VRTT_Nom  
TSW21  
VRTT_Nom  
End point:  
Extrapolated  
point at VRTT_Nom  
DQ, DM  
DQS, /DQS  
TDQS, /TDQS  
TSW22  
VSW2  
TSW11  
VSW1  
TSW12  
VRTT_Wr  
End point: Extrapolated point at VRTT_Wr  
VSSQ  
e) Definition of tADC  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
21  
EDJ5308BBBG, EDJ5316BBBG  
IDD Measurement Conditions (TC = 0°C to +85°C, VDD, VDDQ = 1.5V ± 0.075V)  
Within the tables about IDD measurement conditions, the following definitions are used:  
L: VIN VIL (AC)(max.)  
H: VIN VIH (AC)(min.);  
STABLE: inputs are stable at H or L level  
FLOATING: inputs are VREF = VDDQ / 2  
SWITCHING: Described in the following Definition of SWITCHING table.  
N/A: not available  
[Definition of SWITCHING]  
Signals  
Definitions  
If not otherwise mentioned the inputs are stable at H or L during 4 clocks and change then to the  
opposite value  
Address (row, column)  
(e.g. Ax Ax Ax Ax /Ax /Ax /Ax /Ax Ax Ax Ax Ax .....  
Please see each IDDx definition for details  
If not otherwise mentioned the bank addresses should be switched like the row/column  
addresses - please see each IDDx definition for details  
Bank address  
Define D = {/CS, /RAS, /CAS, /WE } := {H, L, L, L}  
Define /D = {/CS, /RAS, /CAS, /WE } := {H, H, H, H}  
Command  
(/CS, /RAS, /CAS, /WE)  
Define Command Background Pattern = D D /D /D D D /D /D D D /D /D ...  
If other commands are necessary (e.g. ACT for IDD0 or Read for IDD4R) the Background Pattern  
Command is substituted by the respective /CS, /RAS, /CAS, /WE levels of the necessary command.  
See each IDDx definition for details and figures of Example of IDD1, IDD2N/IDD3N, IDD4R.  
Data DQ is changing between H and L every other data transfer (once per clock) for DQ signals,  
which means that data DQ is stable during one clock;  
see each IDDx definition for exceptions from this rule and for further details.  
See figures of Example of IDD1, IDD2N/IDD3N, IDD4R.  
Data (DQ)  
Data Masking (DM)  
NO Switching; DM must be driven L all the time  
AC Timing for IDD Test Conditions  
For purposes of IDD testing, the following parameters are to be utilized.  
DDR3-1333  
DDR3-1066  
7-7-7  
7
Parameter  
8-8-8  
8
9-9-9  
9
Unit  
tCK  
ns  
CL (IDD)  
tCK min.(IDD)  
tRCD min. (IDD)  
tRC min. (IDD)  
tRAS min.(IDD)  
tRP min. (IDD)  
tFAW (IDD)-×8  
tFAW (IDD)-×16  
tRRD (IDD)-×8  
tRRD (IDD)-×16  
tRFC (IDD)  
1.5  
12  
1.5  
13.5  
49.5  
36  
1.875  
13.13  
50.63  
37.5  
13.13  
37.5  
50  
ns  
48  
ns  
36  
ns  
12  
13.5  
30  
ns  
30  
ns  
45  
45  
ns  
6.0  
7.5  
90  
6.0  
7.5  
90  
7.5  
ns  
10  
ns  
90  
ns  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
22  
EDJ5308BBBG, EDJ5316BBBG  
The following conditions apply:  
IDD specifications are tested after the device is properly initialized.  
Input slew rate is specified by AC Parametric test conditions.  
IDD parameters are specified with ODT and output buffer disabled (MR1 bit A12 = 1).  
IDD Measurement Conditions for IDD0 and IDD1  
Symbol  
Name  
IDD0  
IDD1  
Operating Current 1  
-> One Bank Activate  
-> Read  
Operating Current 0  
-> One Bank Activate  
-> Precharge  
-> Precharge  
Measurement Condition  
Timing Diagram Example  
Figure IDD1 Example  
CKE  
H
H
External Clock  
tCK  
on  
on  
tCK min (IDD)  
tRC min (IDD)  
tRAS min (IDD)  
N/A  
tCK min (IDD)  
tRC min (IDD)  
tRAS min (IDD)  
tRCD min (IDD)  
N/A  
tRC  
tRAS  
tRCD  
tRRD  
CL  
N/A  
N/A  
CL(IDD)  
AL  
N/A  
0
/CS  
H between. Activate and Precharge Commands H between Activate, Read and Precharge  
SWITCHING (see Definition of SWITCHING  
table); only exceptions are Activate and  
SWITCHING (see Definition of SWITCHING  
table); only exceptions are Activate, Read and  
Precharge commands; example of IDD0 pattern: Precharge commands; example of IDD1 pattern:  
A0 D /D /D D D /D /D D D /D/D D D /D P0  
A0 D /D /D D R0 /D /D D D /D/D D D /D P0  
Command inputs  
(/CS, /RAS, /CAS, /WE)  
(DDR3-800: tRAS = 37.5ns between (A)ctivate (DDR3-800 -555: tRCD = 12.5ns between  
and (P)recharge to bank 0;  
(A)ctivate and (R)ead to bank 0;  
Definition of D and /D: see Definition of  
SWITCHING table  
Definition of D and /D: see Definition of  
SWITCHING table  
Row addresses SWITCHING (see Definition of Row addresses SWITCHING (see Definition of  
Row, column addresses  
Bank addresses  
SWITCHING table); A10 must be L all the time! SWITCHING table);A10 must be L all the time!  
Bank address is fixed (bank 0)  
Bank address is fixed (bank 0)  
Read Data: output data switches every clock,  
which means that Read data is stable during one  
clock cycle.  
To achieve IOUT = 0mA the output buffer should  
be switched off by MR1 bit A12 set to “1”.  
When there is no read data burst from DRAM the  
DQ I/O should be FLOATING.  
SWITCHING (see Definition of SWITCHING  
table)  
Data I/O  
Output Buffer DQ, DQS  
/ MR1 bit A12  
ODT  
/ MR1 bits [A6, A2]  
off / 1  
off / 1  
disabled  
/ [0,0]  
disabled  
/ [0,0]  
Burst length  
Active banks  
Idle banks  
N/A  
one  
ACT-PRE loop  
all other  
8 fixed / MR0 bits [A1, A0] = {0,0}  
one  
ACT-READ-PRE loop  
all other  
Precharge Power-down  
Mode / MR0 bit A12  
N/A  
N/A  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
23  
EDJ5308BBBG, EDJ5316BBBG  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10 T11 T12  
T13  
T14 T15 T16  
T17  
T18  
CK  
/CK  
BA 0 to 2  
0
Address  
3FF  
000  
000  
3FF  
0 0 0  
3FF  
11  
(A0 to A9)  
Address  
(A10)  
L
Address  
(A11 to A12)  
11  
00  
00  
00  
0 0  
/CS  
/RAS  
/CAS  
/WE  
Command  
DQ  
ACT  
D
/D  
/D  
D
READ  
/D  
/D  
D
D
/D  
0
/D  
1
D
0
D
/D  
PRE  
D
D
/D  
/D  
0
1
0
1
1
IDD1 measurement loop  
DM  
IDD1 Example* (DDR3-800-555, 512Mb ×8)  
Note: Data DQ is shown but the output buffer should be switched off (per MR1 bit A12 = 1) to achieve IOUT = 0mA.  
Address inputs are split into 3 parts.  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
24  
EDJ5308BBBG, EDJ5316BBBG  
IDD Measurement Conditions for IDD2N, IDD2P (1), IDD2P (0) and IDD2Q  
Symbol  
IDD2N  
IDD2P (1)*1  
IDD2P (0)*1  
IDD2Q  
Precharge power-down Precharge power-down  
current  
current  
Precharge standby  
current  
Precharge quiet  
standby current  
Name  
(fast exit  
(slow exit  
MR0 bit A12= 0)  
MR0 bit A12= 1)  
Measurement Condition  
Timing Diagram Example  
Figure IDD2N/IDD3N  
Example  
CKE  
H
L
L
H
External Clock  
tCK  
on  
on  
on  
on  
tCK min (IDD)  
tCK min (IDD)  
N/A  
tCK min (IDD)  
N/A  
tCK min (IDD)  
tRC  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
H
tRAS  
tRCD  
tRRD  
CL  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
AL  
N/A  
N/A  
/CS  
H
STABLE  
STABLE  
Bank address,  
row address and command  
inputs  
SWITCHING (see  
Definition of SWITCHING STABLE  
table)  
STABLE  
STABLE  
Data inputs  
Output buffer DQ, DQS  
/ MR1 bit A12  
SWITCHING  
FLOATING  
FLOATING  
off / 1  
FLOATING  
off / 1  
off / 1  
off / 1  
disabled  
/ [0,0]  
disabled  
/ [0,0]  
disabled  
/ [0,0]  
disabled  
/ [0,0]  
ODT  
/ MR1 bits [A6, A2]  
Burst length  
Active banks  
Idle banks  
N/A  
none  
all  
N/A  
none  
all  
N/A  
none  
all  
N/A  
none  
all  
Slow exit / 0  
Fast exit / 1  
Slow exit  
Precharge Power-down  
Mode / MR0 bit A12  
N/A  
N/A  
(any valid command  
(READ and ODT  
commands must satisfy  
tXPDLL-AL)  
after tXP*2)  
Notes: 1. In DDR3 the MR0 bit A12 defines DLL-on/off behaviors only for precharge power-down. There are two  
different precharge power-down states possible: one with DLL-on (fast exit, bit A12 = 1) and one with  
DLL-off (slow exit, bit A12 = 0).  
2. Because it is an exit after precharge power-down the valid commands are: bank activate (ACT), auto-  
refresh (REF), mode register set (MRS), self-refresh (SELF).  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
25  
EDJ5308BBBG, EDJ5316BBBG  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
CK  
/CK  
BA  
0 to 2  
7
0
0
Address  
(A0 to A12)  
1FFF  
0 0 0 0  
0000  
H
/CS  
/RAS  
/CAS  
/WE  
Command  
/D  
/D  
D
D
/D  
/D  
D
D
/D  
/D  
D
DQ  
FF 00 00 FF FF 00 00 FF FF 00 00 FF FF 00 00 FF FF 00 00 FF FF 00 0
0 to 7  
IDD2N/ IDD3N measurement loop  
DM  
IDD2N/IDD3N Example (DDR3-800-555, 512Mb ×8)  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
26  
EDJ5308BBBG, EDJ5316BBBG  
IDD Measurement Conditions for IDD3N, IDD3P (fast exit)  
Symbol  
IDD3N  
IDD3P (1)  
Active power-down current*  
(always fast exit)  
Name  
Active standby current  
Measurement Condition  
Timing Diagram Example  
Figure IDD2N/IDD3N Example  
CKE  
H
L
External Clock  
tCK  
on  
on  
tCK min (IDD)  
tCK min (IDD)  
N/A  
tRC  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
H
tRAS  
tRCD  
tRRD  
CL  
N/A  
N/A  
N/A  
N/A  
AL  
N/A  
/CS  
STABLE  
SWITCHIN  
Address and command inputs  
STABLE  
FLOATING  
off / 1  
(see Definition of SWITCHING table)  
SWITCHING  
(see Definition of SWITCHING table)  
Data inputs  
Output buffer DQ, DQS  
/ MR1 bit A12  
off / 1  
disabled  
/ [0,0]  
disabled  
/ [0,0]  
ODT  
/ MR1 bits [A6, A2]  
Burst length  
Active banks  
Idle banks  
N/A  
none  
all  
N/A  
none  
all  
Precharge Power-down  
Mode / MR0 bit A12  
N/A (Active Power-down  
Mode is always “Fast Exit” with DLL-on)  
N/A  
Note: DDR3 will offer only one active power-down mode with DLL-on (-> fast exit). MR0 bit A12 will not be used for  
active power-down. Instead bit A12 will be used to switch between two different precharge power-down  
modes.  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
27  
EDJ5308BBBG, EDJ5316BBBG  
IDD Measurement Conditions for IDD4R, IDD4W and IDD7  
Symbol  
IDD4R  
IDD4W  
IDD7  
Operating current  
(Burst read operating)  
Operating current  
(Burst write operating)  
Name  
All bank interleave read current  
Measurement Condition  
Timing Diagram Example  
IDD4R Example  
CKE  
H
H
H
External Clock  
tCK  
on  
on  
on  
tCK min (IDD)  
tCK min (IDD)  
tCK min (IDD)  
tRC min. (IDD)  
tRAS min. (IDD)  
tRCD min. (IDD)  
tRRD min. (IDD)  
CL (IDD)  
tRC  
N/A  
N/A  
tRAS  
tRCD  
tRRD  
CL  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
CL (IDD)  
CL (IDD)  
AL  
0
0
tRCD min. 1tCK  
H between valid commands  
/CS  
H between valid commands  
H between valid commands  
SWITCHING (see Definition of  
SWITCHING table);  
SWITCHING (see Definition of  
SWITCHING table);  
only exceptions are read  
commands -> IDD4R pattern:  
only exceptions are write  
commands -> IDD4W pattern:  
Command inputs  
(/CS, /RAS, /CAS, /WE)  
For patterns see pattern in IDD7  
Timing Patterns section  
R0 D /D /D R1 D /D /D R2 D /D W0 D /D /D W1 D /D /D W2 D /D  
/D R3 D /D /D R4 .....  
/D W3 D /D /D W4...  
Rx = Read from bank x;  
Definition of D and /D: see  
Wx = Write to bank x;  
Definition of D and /D: see  
Definition of SWITCHING table Definition of SWITCHING table  
Column addresses SWITCHING Column addresses SWITCHING  
(see Definition of SWITCHING  
table);  
A10 must be L all the time!  
(see Definition of SWITCHING  
table);  
A10 must be L all the time!  
Row, column addresses  
Bank addresses  
STABLE during DESELECTs  
bank address cycling  
(0 -> 1 -> 2 -> 3 ...), see pattern  
in IDD7 Timing Patterns section  
bank address cycling  
(0 -> 1 -> 2 -> 3 ...)  
bank address cycling  
(0 -> 1 -> 2 -> 3 ...)  
Seamless read data burst (BL8):  
output data switches every  
clock, which means that Read  
data is stable during one clock  
cycle.  
Read data (BL8): output data  
Seamless write data burst (BL8): switches every clock, which  
input data switches every clock, means that Read data is stable  
which means that write data is  
stable during one clock cycle.  
during one clock cycle.  
Data I/O  
To achieve IOUT = 0mA the  
output buffer should be switched  
off by MR1 bit A12 set to “1”.  
To achieve IOUT = 0mA the  
output buffer should be switched  
off by MR1 bit A12 set to “1”.  
DM is low all the time  
Output Buffer DQ, DQS  
/ MR1 bit A12  
ODT  
/ MR1 bits [A6, A2]  
off / 1  
off / 1  
off / 1  
disabled  
/ [0,0]  
disabled  
/ [0,0]  
disabled  
/ [0,0]  
8 fixed / MR0 bits [A1, A0] =  
{0,0}  
8 fixed / MR0 bits [A1, A0] =  
{0,0}  
Burst length  
8 fixed / MR0 [A1, A0] = {0,0}  
Active banks  
Idle banks  
all  
all  
all, rotational  
none  
none  
none  
Precharge Power-down  
Mode / MR0 bit A12  
N/A  
N/A  
N/A  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
28  
EDJ5308BBBG, EDJ5316BBBG  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10 T11 T12  
CK  
/CK  
BA  
1
2
3
0
0 to 2  
Address  
(A0 to A9)  
3FF  
000  
3FF  
0 0 0  
Address  
(A10)  
L
Address  
(A11 to A12)  
11  
00  
11  
0 0  
/CS  
/RAS  
/CAS  
/WE  
Command  
0 to 2  
READ  
D
/D  
/D  
READ  
D
/D  
/D  
READ  
D
/D  
/D  
READ  
D
DQ  
00 00 FF FF 00 00 FF FF 00 00 FF FF 00 00 FF FF  
0 to 7  
Start of measurement loop  
DM  
IDD4R Example* (DDR3-800-555, 512Mb ×8)  
Note: Data DQ is shown but the output buffer should be switched off (per MR1 bit A12 = 1) to achieve IOUT = 0mA.  
Address inputs are split into 3 parts.  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
29  
EDJ5308BBBG, EDJ5316BBBG  
IDD7 Timing Patterns  
The detailed timings are shown in the IDD7 Timing Patterns for 8 Banks tables.  
tFAW tFAW tRRD tRRD  
Speed bins  
Bin  
Organization (ns)  
(tCK) (ns)  
(tCK) Timing Patterns  
A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D  
DDR3-1066  
all  
×8  
37.5  
50  
20  
27  
20  
30  
7.5  
10  
6
4
6
4
5
D A4 RA4 D D A5 RA5 D D A6 RA6 D D A7 RA7 D D D D  
D D  
A0 RA0 D D D D A1 RA1 D D D D A2 RA2 D D D D A3  
RA3 D D D D D D D A4 RA4 D D D D A5 RA5 D D D D A6  
RA6 D D D D A7 RA7 D D D D D D D  
A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D  
D A4 RA4 D D A5 RA5 D D A6 RA6 D D A7 RA7 D D D D  
D D  
A0 RA0 D D D A1 RA1 D D D A2 RA2 D D D A3 RA3 D D  
D D D D D D D D D D D A4 RA4 D D D A5 RA5 D D D A6  
RA6 D D D A7 RA7 D D D D D D D D D D D D D  
all  
all  
all  
×16  
×8  
DDR3-1333  
30  
×16  
45  
7.5  
Remark: Ax = Active command for bank x.  
RAx = Read with auto precharge command from bank x.  
ex. RA0 = READA command from bank 0  
Notes: 1. All banks are being interleaved at minimum tRC (IDD) without violating tRRD (IDD) and tFAW (IDD) using  
a burst length = 8.  
2. Control and address bus inputs are STABLE during DESELECTs.  
3. IOUT = 0mA.  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
30  
EDJ5308BBBG, EDJ5316BBBG  
IDD Measurement Conditions for IDD5B  
Symbol  
IDD5B  
Name  
Burst refresh current  
Measurement Condition  
Timing Diagram Example  
CKE  
H
External Clock  
on  
tCK  
tCK min. (IDD)  
tRC  
N/A  
tRAS  
N/A  
tRCD  
N/A  
tRRD  
N/A  
tRFC  
tRFC min. (IDD)  
N/A  
CL  
AL  
N/A  
/CS  
H between valid commands  
SWITCHING  
SWITCHING  
Address and command inputs  
Data inputs  
Output buffer DQ, DQS  
/ MR1 bit A12  
ODT  
/ MR1 bits [A6, A2]  
off / 1  
disabled  
/ [0,0]  
Burst length  
Active banks  
Idle banks  
N/A  
Refresh command every tRFC = tRFC (min.)  
none  
Precharge Power-down  
Mode / MR0 bit A12  
N/A  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
31  
EDJ5308BBBG, EDJ5316BBBG  
IDD Measurement Conditions for IDD6 and IDD6ET  
Symbol  
IDD6  
IDD6ET  
Self-refresh current extended temperature  
Self-refresh current normal temperature range  
TC = 0 to +85°C  
range  
Name  
TC = 0 to +95°C  
Measurement Condition  
Temperature  
TC = +85°C  
TC = +95°C  
Auto Self-refresh (ASR) /  
MR2 bit A6  
Disabled / 0  
Disabled / 0  
Self-Refresh Temperature Range  
(SRT) / MR2 bit A7  
Disabled / 0  
Enabled / 1  
CKE  
L
L
External Clock  
tCK  
OFF; CK and /CK at L  
OFF; CK and /CK at L  
N/A  
N/A  
tRC  
N/A  
N/A  
tRAS  
tRCD  
tRRD  
CL  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
AL  
N/A  
N/A  
/CS  
FLOATING  
FLOATING  
Command inputs  
/RAS, /CAS, /WE)  
FLOATING  
FLOATING  
Row, column addresses  
Bank addresses  
Data I/O  
FLOATING  
FLOATING  
FLOATING  
FLOATING  
FLOATING  
FLOATING  
Output Buffer DQ, DQS  
/ MR1 bit A12  
ODT  
/ MR1 bits [A6, A2]  
off / 1  
off / 1  
disabled  
/ [0,0]  
disabled  
/ [0,0]  
Burst length  
Active banks  
Idle banks  
8 fixed / MR0 bits [A1, A0] = {0,0}  
all during self-refresh actions  
all between self-refresh actions  
8 fixed / MR0 bits [A1, A0] = {0,0}  
all during self-refresh actions  
all between self-refresh actions  
Precharge Power-down  
Mode / MR0 bit A12  
N/A  
N/A  
IDD6 Current Definition  
Parameter  
Symbol  
Parameter/Condition  
CKE 0.2V; external clock off, CK and /CK at 0V; Other control and address  
inputs are FLOATING; Data Bus inputs are FLOATING, PASR disabled.  
Applicable for MR2 settings A6 = 0 and A7 = 0.  
Normal temperature range self-  
refresh current  
IDD6  
CKE 0.2V; external clock off, CK and /CK at 0V; Other control and address  
inputs are FLOATING; Data Bus inputs are FLOATING, PASR disabled.  
Applicable for MR2 settings A6 = 0 and A7 = 1  
CKE 0.2V; external clock off, CK and /CK at 0V; Other control and address  
inputs are FLOATING; Data Bus inputs are FLOATING, PASR disabled.  
Applicable when ASR is enabled by MR2 settings A6 = 1 and A7 = 0.  
Extended temperature range  
self-refresh current  
IDD6ET  
IDD6TC  
Auto self-refresh current  
.
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
32  
EDJ5308BBBG, EDJ5316BBBG  
Electrical Specifications  
DC Characteristics 1 (TC = 0°C to +85°C, VDD, VDDQ = 1.5V ± 0.075V)  
× 8  
× 16  
Parameter  
Symbol  
Data rate (Mbps) max.  
max.  
Unit  
mA  
Notes  
Operating current  
(ACT-PRE)  
1333  
1066  
TBD  
TBD  
TBD  
TBD  
IDD0  
Operating current  
1333  
TBD  
TBD  
IDD1  
mA  
mA  
mA  
mA  
mA  
1066  
TBD  
TBD  
(ACT-READ-PRE)  
1333  
1066  
1333  
1066  
1333  
1066  
1333  
1066  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
IDD2PF  
IDD2PS  
IDD2Q  
IDD2N  
Fast PD Exit  
Slow PD Exit  
Precharge power-down standby current  
Precharge quiet standby current  
Precharge standby current  
Active power-down current  
(Always fast exit)  
1333  
1066  
TBD  
TBD  
TBD  
TBD  
IDD3P  
mA  
1333  
1066  
1333  
1066  
1333  
1066  
1333  
1066  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Active standby current  
IDD3N  
IDD4R  
IDD4W  
IDD5B  
IDD7R  
mA  
mA  
mA  
mA  
mA  
Operating current  
(Burst read operating)  
Operating current  
(Burst write operating)  
Burst refresh current  
1333  
1066  
TBD  
TBD  
TBD  
TBD  
All bank interleave read current  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
33  
EDJ5308BBBG, EDJ5316BBBG  
Self-Refresh Current (TC = 0°C to +85°C, VDD, VDDQ = 1.5V ± 0.075V)  
× 8  
× 16  
Parameter  
Symbol  
IDD6S  
Grade  
max.  
max.  
Unit  
mA  
Notes  
Self-refresh current  
normal temperature range  
TBD  
TBD  
Self-refresh current  
IDD6ET  
IDD6TC  
TBD  
TBD  
TBD  
TBD  
mA  
mA  
extended temperature range  
Auto self-refresh current  
DC Characteristics 2 (TC = 0°C to +85°C, VDD, VDDQ = 1.5V ± 0.075V)  
Parameter  
Symbol  
ILI  
Value  
TBD  
TBD  
Unit  
Notes  
Input leakage current  
Output leakage current  
µA  
µA  
VDD VIN VSS  
ILO  
VDDQ VOUT VSS  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
34  
EDJ5308BBBG, EDJ5316BBBG  
Pin Capacitance (TC = 25°C, VDD, VDDQ = 1.5V ± 0.075V)  
Parameter  
Input pin capacitance, CK and /CK  
DDR3-1333  
DDR3-1066  
Delta input pin capacitance, CK and /CK  
DDR3-1333  
DDR3-1066  
Input pin capacitance, control pins  
DDR3-1333  
Symbol  
CCK  
Pins  
min.  
0.8  
0.8  
0
max.  
1.4  
Unit  
pF  
pF  
pF  
pF  
pF  
pF  
Notes  
1, 2, 4  
1, 2, 4  
1, 2, 3  
1, 2, 3  
1
1.6  
CK, /CK  
0.15  
0.15  
1.3  
CDCK  
0
0.75  
0.75  
CIN_CTRL  
/CS, CKE, ODT  
DDR3-1066  
1.5  
1
Input pin capacitance, address and  
command pins  
0.75  
1.3  
pF  
1
CIN_ADD_CMD  
CDIN_CTRL  
/RAS, /CAS, /WE, Address  
/CS, CKE, ODT  
DDR3-1333  
DDR3-1066  
Delta input pin capacitance, control pins  
DDR3-1333  
0.75  
0.4  
0.5  
1.5  
0.2  
0.3  
pF  
pF  
pF  
1
1, 5  
1, 5  
DDR3-1066  
Delta input pin capacitance, address and  
command pins  
DDR3-1333  
0.4  
0.4  
pF  
1, 6  
CDIN_ADD_CMD /RAS, /CAS, /WE, Address  
DDR3-1066  
Input/output pin capacitance  
DDR3-1333  
DDR3-1066  
Delta input/output pin capacitance  
DDR3-1333  
DDR3-1066  
Delta input/output pin capacitance  
DDR3-1333  
0.5  
1.5  
1.5  
0.5  
0.5  
0
0.5  
2.5  
3.0  
0.3  
0.3  
0.15  
pF  
pF  
pF  
pF  
pF  
pF  
1, 6  
1, 7  
CIO  
DQ, DQS, /DQS,  
1, 7  
TDQS, /TDQS  
DM  
1, 8, 9  
1, 8, 9  
1, 2  
CDIO  
CDDQS  
CZQ  
DQS, /DQS  
ZQ  
DDR3-1066  
0
0.2  
3
pF  
pF  
1, 2  
Input/output pin capacitance of ZQ  
1, 2, 10  
Notes: 1. VDD, VDDQ, VSS, VSSQ applied and all other pins (except the pin under test) floating.  
VDD = VDDQ =1.5V, VBIAS=VDD/2  
2. This parameter is Non-stacked (monolith) DDR3 SDRAM spec. Stacked devices pin parasitics are TBD.  
3. Absolute value of CCK(CK-pin) CCK(/CK-pin)  
4. CCK (min.) will be equal to CIN (min.)  
5. CDIN_CTRL = CIN_CTRL 0.5 × (CCK(CK-pin) + CCK(/CK-pin))  
6. CDIN_ADD_CMD = CIN_ADD_CMD 0.5 × (CCK(CK-pin) + CCK(/CK-pin))  
7. TDQS/TDQS are not necessarily input function, but since TDQS is sharing DM pin and the parasitic  
characterization of TDQS/TDQS should be close as much as possible, CIO and CDIO requirement is  
applied.  
8. DQ should be in high impedance state.  
9. CDIO = CIO (DQ) 0.5 × (CIO(DQS-pin) + CIO(/DQS-pin)).  
10. Maximum external load capacitance on ZQ pin: 5pF.  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
35  
EDJ5308BBBG, EDJ5316BBBG  
Standard Speed Bins  
[DDR3-1333 Speed Bins]  
Speed Bin  
DDR3-1333G  
8-8-8  
DDR3-1333H  
9-9-9  
CL-tRCD-tRP  
/CAS write  
Symbol  
latency  
min.  
max.  
20  
min.  
max.  
20  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
nCK  
Notes  
tAA  
12  
13.5  
tRCD  
12  
13.5  
tRP  
12  
13.5  
tRC  
48.0  
49.5  
tRAS  
36  
9 × tREFI  
3.3  
36  
9 × tREFI  
Reserved  
Reserved  
3.3  
8
tCK (avg)@CL=5  
CWL = 5  
CWL = 6, 7  
CWL = 5  
CWL = 6  
CWL = 7  
CWL = 5  
CWL = 6  
CWL = 7  
CWL = 5  
CWL = 6  
CWL = 7  
CWL = 5, 6  
CWL= 7  
2.5  
Reserved  
Reserved  
2.5  
1, 2, 3, 4, 7  
Reserved  
2.5  
Reserved  
3.3  
4
tCK (avg)@CL=6  
tCK (avg)@CL=7  
tCK (avg)@CL=8  
1, 2, 3, 7  
Reserved  
Reserved  
Reserved  
1.875  
Reserved  
Reserved  
Reserved  
< 2.5  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
1.875  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
< 2.5  
1, 2, 3, 4, 7  
4
4
1, 2, 3, 4, 7  
Reserved  
Reserved  
1.875  
Reserved  
Reserved  
< 2.5  
1, 2, 3, 4  
4
1, 2, 3, 7  
1.5  
< 1.875  
Reserved  
< 1.875  
Reserved  
< 1.875  
Optional  
Reserved  
Reserved  
< 1.5  
Reserved  
Reserved  
< 1.875  
1, 2, 3, 4  
tCK (avg)@CL=9  
tCK (avg)@CL=10  
Reserved  
1.5  
4
1, 2, 3, 4  
CWL = 5, 6  
CWL= 7  
Reserved  
1.5  
Reserved  
1.5  
Reserved  
< 1.875  
4
1, 2, 3  
5
CWL= 7  
Optional  
5, 6, 7, 8, 9, 10  
Optional  
6, 8, 9, 10  
Optional  
Supported CL settings  
Supported CWL  
settings  
5, 6, 7  
5, 6, 7  
nCK  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
36  
EDJ5308BBBG, EDJ5316BBBG  
[DDR3-1066 Speed Bins]  
Speed Bin  
DDR3-1066F  
7-7-7  
CL-tRCD-tRP  
/CAS write  
latency  
Symbol  
min.  
max.  
20  
Unit  
ns  
Notes  
tAA  
13.125  
13.125  
13.125  
50.625  
37.5  
tRCD  
ns  
tRP  
ns  
tRC  
ns  
tRAS  
9 × tREFI  
Reserved  
Reserved  
3.3  
ns  
8
tCK (avg)@CL=5  
CWL = 5  
CWL = 6  
CWL = 5  
CWL = 6  
CWL = 5  
CWL = 6  
CWL = 5  
CWL = 6  
Reserved  
Reserved  
2.5  
ns  
1, 2, 3, 4, 6  
4
ns  
tCK (avg)@CL=6  
tCK (avg)@CL=7  
tCK (avg)@CL=8  
ns  
1, 2, 3, 6  
1, 2, 3, 4  
4
Reserved  
Reserved  
1.875  
Reserved  
Reserved  
< 2.5  
ns  
ns  
ns  
1, 2, 3, 4  
4
Reserved  
1.875  
Reserved  
< 2.5  
ns  
ns  
1, 2, 3  
Supported CL settings  
Supported CWL settings  
6, 7, 8  
5, 6  
nCK  
nCK  
Notes: 1 The CL setting and CWL setting result in tCK (avg) (min.) and tCK (avg) (max.) requirements. When  
making a selection of tCK (avg), both need to be fulfilled: Requirements from CL setting as well as  
requirements from CWL setting.  
2. tCK (avg) (min.) limits: Since /CAS latency is not purely analog - data and strobe output are synchronized  
by the DLL - all possible intermediate frequencies may not be guaranteed. An application should use the  
next smaller JEDEC standard tCK (avg) value (2.5, 1.875, 1.5, or 1.25ns) when calculating  
CL (ntCK) = tAA(ns) / tCK(avg)(ns), rounding up to the next ‘Supported CL’.  
3. tCK (avg) (max.) limits: Calculate tCK (avg) + tAA (max.)/CLselected and round the resulting tCK (avg)  
down to the next valid speed bin limit (i.e. 3.3ns or 2.5ns or 1.875ns or 1.25ns). This result is tCK (avg)  
(max.) corresponding to CLselected.  
4.‘Reserved’ settings are not allowed. User must program a different value.  
5. 'Optional' settings allow certain devices in the industry to support this setting, however, it is not a  
mandatory feature.  
6. Any DDR3-1066 speed bin also supports functional operation at lower frequencies as shown in the table  
DDR3-1066 Speed Bins which are not subject to production tests but verified by design/characterization.  
7. Any DDR3-1333 speed bin also supports functional operation at lower frequencies as shown in the table  
DDR3-1333 Speed Bins which is not subject to production tests but verified by design/characterization.  
8. tREFI depends on operating case temperature (TC).  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
37  
EDJ5308BBBG, EDJ5316BBBG  
AC Characteristics (TC = 0°C to +85°C, VDD, VDDQ = 1.5V ± 0.075V, VSS, VSSQ = 0V)  
AC Characteristics [DDR3-1333]  
-DG, -DJ  
1333  
Data rate (Mbps)  
Parameter  
Symbol  
min.  
max.  
3333  
Unit  
ps  
Notes  
6
Average clock cycle time  
Minimum clock cycle time  
(DLL-off mode)  
tCK (avg)  
1500  
tCK (DLL-off) 8  
ns  
Average CK high-level width  
tCH (avg)  
tCL (avg)  
0.47  
0.53  
0.53  
tCK (avg)  
tCK (avg)  
Average CK low-level width  
0.47  
12 (DG)  
Active to read or write command delay  
Precharge command period  
tRCD  
tRP  
ns  
ns  
ns  
26  
26  
26  
13.5 (DJ)  
12 (DG)  
13.5 (DJ)  
48 (DG)  
49.5 (DJ)  
Active to active/auto-refresh command time  
tRC  
Active to precharge command  
tRAS  
tRRD  
tRRD  
tRRD  
tRRD  
36  
9 × tREFI  
ns  
26  
Active bank A to active bank B command period  
6
ns  
26, 27  
26, 27  
26, 27  
26, 27  
(x8)  
4
nCK  
ns  
Active bank A to active bank B command period  
(x16)  
7.5  
4
nCK  
Four active window  
(x8)  
(x16)  
Address and control input hold time  
(VIH/VIL (DC) levels)  
tFAW  
30  
ns  
ns  
ps  
26  
tFAW  
45  
26  
tIH (base)  
140  
16, 23  
Address and control input setup time  
(VIH/VIL (AC) levels)  
DQ and DM input hold time  
(VIH/VIL (DC) levels)  
DQ and DM input setup time  
(VIH/VIL (AC) levels)  
tIS (base)  
tDH (base)  
tDS (base)  
65  
65  
30  
ps  
ps  
ps  
16, 23  
17, 25  
17, 25  
Control and Address input pulse width for each input  
DQ and DM input pulse width for each input  
DQ high-impedance time  
tIPW  
620  
400  
ps  
ps  
ps  
ps  
tDIPW  
tHZ (DQ)  
tLZ (DQ)  
250  
250  
12, 13, 14  
12, 13, 14  
DQ low-impedance time  
DQS, /DQS high-impedance time  
(RL + BL/2 reference)  
DQS, /DQS low-impedance time  
(RL 1 reference)  
DQS, /DQS to DQ skew, per group, per access  
500  
500  
tHZ (DQS)  
tLZ (DQS)  
250  
ps  
ps  
12, 13, 14  
250  
125  
12, 13, 14  
12, 13  
tDQSQ  
tCCD  
tQH  
ps  
/CAS to /CAS command delay  
4
nCK  
DQ output hold time from DQS, /DQS  
0.38  
tCK (avg) 12, 13  
DQS, /DQS rising edge output access time from rising  
tDQSCK  
tDQSS  
255  
255  
ps 12, 13  
CK, /CK  
DQS latching rising transitions to associated clock  
edges  
0.25  
0.25  
tCK (avg) 24  
DQS falling edge hold time from rising CK  
DQS falling edge setup time to rising CK  
DQS input high pulse width  
tDSH  
0.2  
tCK (avg) 24  
tCK (avg) 24  
tCK (avg)  
tDSS  
0.2  
tDQSH  
tDQSL  
0.45  
0.45  
0.55  
0.55  
DQS input low pulse width  
tCK (avg)  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
38  
EDJ5308BBBG, EDJ5316BBBG  
-DG, -DJ  
1333  
Data rate (Mbps)  
Parameter  
Symbol  
tQSH  
min.  
0.40  
0.40  
4
max.  
Unit  
Notes  
DQS output high time  
tCK (avg) 12, 13  
tCK (avg) 12, 13  
nCK  
DQS output low time  
tQSL  
Mode register set command cycle time  
Mode register set command update delay  
tMRD  
tMOD  
tMOD  
tRPRE  
tRPST  
tWPRE  
tWPST  
tWR  
15  
ns  
27  
27  
12  
nCK  
Read preamble  
Read postamble  
Write preamble  
Write postamble  
Write recovery time  
0.9  
0.3  
0.9  
0.3  
15  
tCK (avg) 1, 19  
tCK (avg) 11, 12, 13  
tCK (avg)  
tCK (avg)  
ns  
1
1
26  
WR + RU  
Auto precharge write recovery + precharge time  
tDAL  
tRTW  
tRTW  
nCK  
(tRP/tCK (avg))  
Read to write command delay  
(BC4MRS, BC4OTF)  
RL + tCCD/2 +  
2nCK WL  
RL + tCCD +  
2nCK WL  
(BL8MRS, BL8OTF)  
Internal write to read command delay  
tWTR  
tWTR  
tRTP  
tRTP  
7.5  
ns  
18, 26, 27  
18, 26, 27  
26, 27  
4
nCK  
ns  
Internal read to precharge command delay  
7.5  
4
nCK  
26, 27  
Minimum CKE low width for self-refresh entry to exit  
timing  
tCKE(min.)  
+1nCK  
tCKESR  
Valid clock requirement after self-refresh entry or  
tCKSRE  
tCKSRE  
tCKSRX  
tCKSRX  
tXS  
10  
ns  
27  
27  
27  
27  
27  
27  
power-down entry  
5
nCK  
ns  
Valid clock requirement before self-refresh exit or  
power-down exit  
10  
5
nCK  
ns  
Exit self-refresh to commands not requiring  
a locked DLL  
tRFC (min.) + 10  
tXS  
5
nCK  
nCK  
ns  
Exit self-refresh to commands requiring a locked DLL tXSDLL  
tDLLK (min.)  
90  
Auto-refresh to active/auto-refresh command time  
Average periodic refresh interval  
(0°C TC +85°C)  
(+85°C < TC +95°C)  
CKE minimum pulse width  
(high and low pulse width)  
tRFC  
tREFI  
tREFI  
tCKE  
7.8  
3.9  
µs  
µs  
ns  
5.625  
27  
tCKE  
tXPR  
tXPR  
tDLLK  
tPD  
3
nCK  
ns  
27  
27  
27  
Exit reset from CKE high to a valid command  
tRFC (min.)+10  
5
nCK  
nCK  
DLL locking time  
512  
Power-down entry to exit time  
Exit precharge power-down with DLL frozen to  
commands requiring a locked DLL  
tCKE (min.)  
9 × tREFI  
15  
2
tXPDLL  
tXPDLL  
24  
10  
ns  
nCK  
2
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
39  
EDJ5308BBBG, EDJ5316BBBG  
-DG, -DJ  
1333  
Data rate (Mbps)  
Parameter  
Symbol  
tXP  
min.  
max.  
Unit  
ns  
Notes  
27  
Exit power-down with DLL on to any valid command;  
Exit precharge power- down with DLL frozen to  
commands not requiring a locked DLL  
6
tXP  
3
1
1
1
nCK  
nCK  
nCK  
nCK  
27  
Command pass disable/enable delay  
tCPDED  
tACTPDEN  
tPRPDEN  
Timing of last ACT command to power-down entry  
20  
20  
Timing of last PRE command to power-down entry  
Timing of last READ/READA command to power-down  
entry  
Timing of last WRIT command to power-down entry  
(BL8MRS, BL8OTF, BC4OTF)  
tRDPDEN  
tWRPDEN  
tWRPDEN  
tWRAPDEN  
RL + 4 + 1  
nCK  
nCK  
nCK  
nCK  
WL + 4 +  
tWR/tCK (avg)  
WL + 2 +  
tWR/tCK (avg)  
WL + 4 +  
WR + 1  
9
(BC4MRS)  
9
Timing of last WRITA command to power-down entry  
(BL8MRS, BL8OTF, BC4OTF)  
10  
WL + 2 +  
WR + 1  
1
(BC4MRS)  
tWRAPDEN  
tREFPDEN  
nCK  
nCK  
10  
Timing of last REF command to power-down entry  
Timing of last MRS command to power-down entry  
20, 21  
tMRSPDEN tMOD (min.)  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
40  
EDJ5308BBBG, EDJ5316BBBG  
ODT AC Electrical Characteristics [DDR3-1333]  
-DG, -DJ  
1333  
Data rate (Mbps)  
Parameter  
Symbol  
tAON  
min.  
max.  
250  
Unit  
ps  
Notes  
7, 12  
RTT turn-on  
250  
Asynchronous RTT turn-on delay  
tAONPD  
tAOF  
1
9
ns  
(power-down with DLL frozen)  
RTT_Nom and RTT_WR turn-off time from  
ODTLoff reference  
Asynchronous RTT turn-off delay  
(power-down with DLL frozen)  
0.3  
1
0.7  
9
tCK (avg) 8, 12  
ns  
tAOFPD  
ODT to power-down entry/exit latency  
ODT turn-on Latency  
tANPD  
WL – 1.0  
WL – 2.0  
nCK  
nCK  
ODTLon  
WL – 2.0  
WL – 2.0  
WL – 2.0  
ODT turn-off Latency  
ODTLoff  
WL – 2.0  
WL – 2.0  
nCK  
nCK  
ODT Latency for changing from RTT_Nom to RTT_WR ODTLcnw  
ODT Latency for change from RTT_WR to RTT_Nom  
ODTLcwn4  
ODTLcwn8  
4 + ODTLoff  
6 + ODTLoff  
nCK  
nCK  
nCK  
(BC4)  
ODT Latency for change from RTT_WR to RTT_Nom  
(BL8)  
ODT high time without WRIT command or with WRIT  
command and BC4  
ODTH4  
4
ODT high time with WRIT command and BL8  
ODTH8  
tADC  
6
nCK  
RTT dynamic change skew  
0.3  
512  
256  
64  
0.7  
tCK (avg) 12  
nCK  
Power-up and reset calibration time  
Normal operation full calibration time  
Normal operation short calibration time  
tZQinit  
tZQoper  
tZQCS  
nCK  
nCK  
Write Leveling Characteristics [DDR3-1333]  
-DG, -DJ  
1333  
Parameter  
Symbol  
min.  
max.  
Unit  
nCK  
Notes  
3
First DQS pulse rising edge after write leveling mode is  
programmed  
tWLMRD  
40  
DQS, /DQS delay after write leveling mode is  
tWLDQSEN  
tWLS  
25  
nCK  
ps  
3
programmed  
Write leveling setup time from rising CK, /CK crossing to  
rising DQS, /DQS crossing  
Write leveling hold time from rising DQS, /DQS crossing  
to rising CK, /CK crossing  
195  
195  
tWLH  
ps  
Write leveling output delay  
Write leveling output error  
tWLO  
0
0
9
2
ns  
ns  
tWLOE  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
41  
EDJ5308BBBG, EDJ5316BBBG  
AC Characteristics [DDR3-1066]  
-AE  
Data rate (Mbps)  
1066  
min.  
Parameter  
Symbol  
max.  
3333  
Unit  
ps  
Notes  
6
Clock cycle time Average CL = X  
tCK(avg)  
1875  
Minimum clock cycle time  
(DLL-off mode)  
tCK(DLL-off)  
8
ns  
Average duty cycle high-level  
Average duty cycle low-level  
Active to read or write command delay  
Precharge command period  
Active to active/auto-refresh command time  
Active to precharge command  
Active bank A to active bank B command period  
(x8)  
tCH (avg)  
tCL (avg)  
tRCD  
tRP  
0.47  
0.47  
13.1  
13.1  
50.6  
37.5  
7.5  
4
0.53  
0.53  
tCK (avg)  
tCK (avg)  
ns  
26  
ns  
26  
tRC  
ns  
26  
tRAS  
9 × tREFI  
ns  
26  
tRRD  
tRRD  
tRRD  
tRRD  
ns  
26, 27  
26, 27  
26, 27  
26, 27  
nCK  
ns  
Active bank A to active bank B command period  
(x16)  
10  
4
nCK  
Four active window  
(x8)  
tFAW  
37.5  
50  
ns  
ns  
ps  
26  
(x16)  
tFAW  
26  
Address and control input hold time  
(VIH/VIL (DC) levels)  
tIH (base)  
200  
16, 23  
Address and control input setup time  
(VIH/VIL (AC) levels)  
tIS (base)  
tDH (base)  
tDS (base)  
125  
100  
25  
ps  
ps  
ps  
16, 23  
17, 25  
17, 25  
DQ and DM input hold time  
(VIH/VIL (DC) levels)  
DQ and DM input setup time  
(VIH/VIL (AC) levels)  
Control and Address input pulse width for each input  
DQ and DM input pulse width for each input  
DQ high-impedance time  
tIPW  
780  
490  
ps  
ps  
ps  
ps  
tDIPW  
tHZ (DQ)  
tLZ (DQ)  
300  
300  
12, 13, 14  
12, 13, 14  
DQ low-impedance time  
600  
600  
DQS, /DQS high-impedance time  
(RL + BL/2 reference)  
tHZ (DQS)  
tLZ (DQS)  
300  
ps  
ps  
12, 13, 14  
DQS, /DQS low-impedance time  
(RL 1 reference)  
300  
150  
12, 13, 14  
12, 13  
DQS, /DQS -DQ skew, per group, per access  
/CAS to /CAS command delay  
tDQSQ  
tCCD  
tQH  
ps  
4
nCK  
DQ output hold time from DQS, /DQS  
0.38  
tCK (avg) 12, 13  
ps 12, 13  
DQS, /DQS rising edge output access time from rising  
CK, /CK  
tDQSCK  
tDQSS  
300  
+300  
DQS latching rising transitions to associated clock  
edges  
0.25  
0.25  
tCK (avg) 24  
DQS falling edge hold time from rising CK  
DQS falling edge setup time to rising CK  
DQS input high pulse width  
tDSH  
tDSS  
0.2  
tCK (avg) 24  
tCK (avg) 24  
tCK (avg)  
0.2  
tDQSH  
tDQSL  
tQSH  
tQSL  
0.45  
0.45  
0.38  
0.38  
4
0.55  
0.55  
DQS input low pulse width  
tCK (avg)  
DQS output high time  
tCK (avg) 12, 13  
tCK (avg) 12, 13  
nCK  
DQS output low time  
Mode register set command cycle time  
tMRD  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
42  
EDJ5308BBBG, EDJ5316BBBG  
-AE  
Data rate (Mbps)  
1066  
min.  
15  
Parameter  
Symbol  
tMOD  
tMOD  
max.  
Unit  
ns  
Notes  
27  
Mode register set command update delay  
12  
nCK  
27  
Read preamble  
Read postamble  
Write preamble  
Write postamble  
Write recovery time  
tRPRE  
tRPST  
tWPRE  
tWPST  
tWR  
0.9  
0.3  
0.9  
0.3  
15  
tCK (avg) 1, 19  
tCK (avg) 11, 12, 13  
tCK (avg)  
tCK (avg)  
ns  
1
1
26  
WR + RU  
(tRP/tCK (avg))  
Auto precharge write recovery + precharge time  
tDAL  
nCK  
Read to write command delay  
(BC4MRS, BC4OTF)  
RL + tCCD/2 +  
2nCK WL  
tRTW  
RL + tCCD +  
2nCK WL  
(BL8MRS, BL8OTF)  
tRTW  
tWTR  
Internal write to read command delay  
7.5  
ns  
18, 26, 27  
tWTR  
tRTP  
tRTP  
4
nCK  
ns  
18, 26, 27  
26, 27  
Internal read to precharge command delay  
7.5  
4
nCK  
26, 27  
Minimum CKE low width for self-refresh entry to exit  
timing  
tCKE (min.)  
+1nCK  
tCKESR  
Valid clock requirement after self-refresh entry or  
power-down entry  
tCKSRE  
tCKSRE  
tCKSRX  
tCKSRX  
tXS  
10  
ns  
27  
27  
27  
27  
27  
27  
5
nCK  
ns  
Valid clock requirement before self-refresh exit or  
power-down exit  
10  
5
nCK  
ns  
Exit self-refresh to commands not requiring a locked  
DLL  
tRFC (min.) + 10  
tXS  
5
nCK  
nCK  
ns  
Exit self-refresh to commands requiring a locked DLL  
Auto-refresh to active/auto-refresh command time  
tXSDLL  
tRFC  
tDLLK (min.)  
90  
Average periodic refresh interval  
(0°C TC +85°C)  
tREFI  
tREFI  
tCKE  
7.8  
3.9  
µs  
µs  
ns  
(+85°C < TC +95°C)  
CKE minimum pulse width  
(high and low pulse width)  
5.625  
27  
tCKE  
tXPR  
tXPR  
tDLLK  
tPD  
3
nCK  
ns  
27  
27  
27  
Exit reset from CKE high to a valid command  
tRFC(min.)+10  
5
nCK  
nCK  
DLL locking time  
512  
Power-down entry to exit time  
tCKE (min.)  
9 × tREFI  
15  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
43  
EDJ5308BBBG, EDJ5316BBBG  
-AE  
Data rate (Mbps)  
Parameter  
1066  
min.  
Symbol  
tXPDLL  
tXPDLL  
max.  
Unit  
ns  
Notes  
2
Exit precharge power-down with DLL frozen to  
commands requiring a locked DLL  
24  
10  
7.5  
3
nCK  
ns  
2
Fast exit/active precharge power-down to any command tXP  
tXP  
27  
27  
nCK  
nCK  
nCK  
nCK  
Command pass disable/enable delay  
tCPDED  
1
Timing of last ACT command to power-down entry  
Timing of last PRE command to power-down entry  
tACTPDEN  
tPRPDEN  
1
20  
20  
1
Timing of last READ/READA command to power-down  
tRDPDEN  
tWRPDEN  
tWRPDEN  
tWRAPDEN  
RL + 4 + 1  
nCK  
nCK  
nCK  
nCK  
entry  
Timing of last WRIT command to power-down entry  
(BL8MRS, BL8OTF, BC4OTF)  
WL + 4 +  
tWR/tCK (avg)  
WL + 2 +  
tWR/tCK (avg)  
WL + 4 +  
WR + 1  
9
(BC4MRS)  
9
Timing of last WRITA command to power-down entry  
(BL8MRS, BL8OTF, BC4OTF)  
10  
WL + 2 +  
WR + 1  
1
(BC4MRS)  
tWRAPDEN  
tREFPDEN  
nCK  
nCK  
10  
Timing of last REF command to power-down entry  
Timing of last MRS command to power-down entry  
20, 21  
tMRSPDEN tMOD (min.)  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
44  
EDJ5308BBBG, EDJ5316BBBG  
ODT AC Electrical Characteristics [DDR3-1066]  
-AE  
Data rate (Mbps)  
Parameter  
1066  
Symbol  
tAON  
min.  
max.  
300  
Unit  
ps  
Notes  
7, 12  
RTT turn-on  
–300  
Asynchronous RTT turn-on delay  
tAONPD  
tAOF  
1
9
ns  
(power-down with DLL frozen)  
RTT_Nom and RTT_WR turn-off time from ODTLoff  
reference  
ODT turn-off (power-down mode)  
ODT to power-down entry/exit latency  
ODT turn-on Latency  
0.3  
0.7  
9
tCK (avg) 8, 12  
tAOFPD  
tANPD  
1
ns  
WL – 1.0  
WL – 2.0  
WL – 2.0  
WL – 2.0  
nCK  
nCK  
nCK  
nCK  
ODTLon  
ODTLoff  
WL – 2.0  
WL – 2.0  
WL – 2.0  
ODT turn-off Latency  
ODT Latency for changing from RTT_Nom to RTT_WR ODTLcnw  
ODT Latency for change from RTT_WR to RTT_Nom  
ODTLcwn4  
ODTLcwn8  
4 + ODTLoff  
6 + ODTLoff  
nCK  
nCK  
nCK  
(BC4)  
ODT Latency for change from RTT_WR to RTT_Nom  
(BL8)  
ODT high time without WRIT command or with WRIT  
command and BC4  
ODTH4  
4
ODT high time with WRIT command and BL8  
ODTH8  
tADC  
6
nCK  
RTT dynamic change skew  
0.3  
512  
256  
64  
0.7  
tCK (avg) 12  
nCK  
Power-up and reset calibration time  
Normal operation full calibration time  
Normal operation short calibration time  
tZQinit  
tZQoper  
tZQCS  
nCK  
nCK  
Write Leveling Characteristics [DDR3-1066]  
-AE  
1066  
min.  
Parameter  
Symbol  
max.  
Unit  
nCK  
Notes  
3
First DQS pulse rising edge after write leveling mode is  
programmed  
tWLMRD  
40  
DQS, /DQS delay after write leveling mode is  
tWLDQSEN  
tWLS  
25  
nCK  
ps  
3
programmed  
Write leveling setup time from rising CK, /CK crossing to  
rising DQS, /DQS crossing  
Write leveling hold time from rising DQS, /DQS crossing  
to rising CK, /CK crossing  
245  
245  
tWLH  
ps  
Write leveling output delay  
Write leveling output error  
tWLO  
0
0
9
2
ns  
ns  
tWLOE  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
45  
EDJ5308BBBG, EDJ5316BBBG  
Notes for AC Electrical Characteristics  
Notes: 1. Actual value dependent upon measurement level definitions that are TBD.  
2. Commands requiring locked DLL are: READ (and READA) and synchronous ODT commands.  
3. The max values are system dependent.  
4. WR as programmed in mode register.  
5. Value must be rounded-up to next integer value.  
6. There is no maximum cycle time limit besides the need to satisfy the refresh interval, tREFI.  
7. ODT turn on time (min.) is when the device leaves high impedance and ODT resistance begins to turn on.  
ODT turn on time (max.) is when the ODT resistance is fully on. Both are measured from ODTLon.  
8. ODT turn-off time (min.) is when the device starts to turn-off ODT resistance. ODT turn-off time (max.) is  
when the bus is in high impedance. Both are measured from ODTLoff.  
9. tWR is defined in ns, for calculation of tWRPDEN it is necessary to round up tWR/tCK to the next integer.  
10. WR in clock cycles as programmed in MR0.  
11. The maximum postamble is bound by tHZDQS(max.)  
12. Output timing deratings are relative to the SDRAM input clock. When the device is operated with input  
clock jitter, this parameter needs to be derated by TBD.  
13. Value is only valid for RON34.  
14. Single ended signal parameter. Refer to the section of tLZ (DQS), tLZ (DQ), tHZ (DQS), tHZ (DQ) Notes  
for definition and measurement method.  
15. tREFI depends on operating case temperature (TC).  
16. tIS(base) and tIH(base) values are for 1V/ns command/address single-ended slew rate and 2V/ns CK,  
/CK differential slew rate. Note for DQ and DM signals, VREF(DC) = VREFDQ(DC). For input only pins  
except /RESET, VREF(DC) = VREFCA(DC). See Address / Command Setup, Hold and Derating section  
17. tDS(base) and tDH(base) values are for 1V/ns DQ single-ended slew rate and 2V/ns DQS, /DQS  
differential slew rate. Note for DQ and DM signals, VREF(DC) = VREFDQ(DC). For input only pins except  
/RESET, VREF(DC) = VREFCA(DC). See Data Setup, Hold and Slew Rate Derating section.  
18. Start of internal write transaction is definited as follows:  
For BL8 (fixed by MRS and on- the-fly): Rising clock edge 4 clock cycles after WL.  
For BC4 (on-the-fly): Rising clock edge 4 clock cycles after WL.  
For BC4 (fixed by MRS): Rising clock edge 2 clock cycles after WL.  
19. The maximum preamble is bound by tLZDQS(max.)  
20. CKE is allowed to be registered low while operations such as row activation, precharge, auto precharge or  
refresh are in progress, but power-down IDD spec will not be applied until finishing those operations.  
21. Although CKE is allowed to be registered low after a refresh command once tREFPDEN(min.) is satisfied,  
there are cases where additional time such as tXPDLL(min.) is also required. See Figure Power-Down  
Entry/Exit Clarifications - Case 2.  
22. tJIT(duty) = ± { 0.07 × tCK(avg) – [(0.5 - (min (tCH(avg), tCL(avg))) × tCK(avg)] }.  
For example, if tCH/tCL was 0.48/0.52, tJIT(duty) would calculate out to ±125ps for DDR3-800.  
The tCH(avg) and tCL(avg) values listed must not be exceeded.  
23. These parameters are measured from a command/address signal (CKE, /CS, /RAS, /CAS, /WE, ODT,  
BA0, A0, A1, etc.) transition edge to its respective clock signal (CK, /CK) crossing. The spec values are  
not affected by the amount of clock jitter applied (i.e. tJIT(per), tJIT(cc), etc.), as the setup and hold are  
relative to the clock signal crossing that latches the command/address. That is, these parameters should  
be met whether clock jitter is present or not.  
24 These parameters are measured from a data strobe signal ((L/U/T)DQS, /DQS) crossing to its respective  
clock signal (CK, /CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e.  
tJIT(per), tJIT(cc), etc.), as these are relative to the clock signal crossing. That is, these parameters  
should be met whether clock jitter is present or not.  
25. These parameters are measured from a data signal ((L/U)DM, (L/U)DQ0, (L/U)DQ1, etc.) transition edge  
to its respective data strobe signal ((L/U/T)DQS/DQS) crossing.  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
46  
EDJ5308BBBG, EDJ5316BBBG  
26. For these parameters, the DDR3 SDRAM device is characterized and verified to support  
tnPARAM [nCK] = RU{tPARAM [ns] / tCK(avg)}, which is in clock cycles, assuming all input clock jitter  
specifications are satisfied.  
For example, the device will support tnRP = RU{tRP / tCK(avg)}, which is in clock cycles, if all input clock  
jitter specifications are met. This means: For DDR3-800 6-6-6, of which tRP = 15ns, the device will  
support tnRP =RU{tRP / tCK(avg)} = 6, i.e. as long as the input clock jitter specifications are met, prechar  
ge command at Tm and active command at Tm+6 is valid even if (Tm+6 Tm) is less than 15ns due to  
input clock jitter.  
27. These parameters should be the larger of the two values, analog (ns) and number of clocks (nCK).  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
47  
EDJ5308BBBG, EDJ5316BBBG  
Clock Jitter [DDR3-1333]  
-DG, -DJ  
1333  
Data rate (Mbps)  
Parameter  
Symbol  
min.  
max.  
3333  
Unit  
ps  
Notes  
1
Average clock period  
tCK (avg)  
1500  
tCK(avg)min +  
tJIT(per)min  
tCK(avg)max+  
tJIT(per)max  
Absolute clock period  
tCK (abs)  
ps  
2
Clock period jitter  
tJIT (per)  
80  
80  
ps  
ps  
ps  
6
6
7
Clock period jitter during DLL locking period tJIT (per, lck) 70  
70  
Cycle to cycle period Jitter  
tJIT (cc)  
160  
Cycle to cycle clock period jitter  
during DLL locking period  
tJIT (cc, lck)  
140  
ps  
7
Cumulative error across 2 cycles  
Cumulative error across 3 cycles  
Cumulative error across 4 cycles  
Cumulative error across 5 cycles  
Cumulative error across 6 cycles  
Cumulative error across 7 cycles  
Cumulative error across 8 cycles  
Cumulative error across 9 cycles  
Cumulative error across 10 cycles  
Cumulative error across 11 cycles  
Cumulative error across 12 cycles  
tERR (2per)  
tERR (3per)  
tERR (4per)  
tERR (5per)  
tERR (6per)  
tERR (7per)  
tERR (8per)  
tERR (9per)  
118  
140  
155  
168  
177  
186  
193  
200  
118  
140  
155  
168  
177  
186  
193  
200  
205  
210  
215  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
8
8
8
8
8
8
8
8
8
8
8
tERR (10per) 205  
tERR (11per) 210  
tERR (12per) 215  
Cumulative error across  
n = 13, 14…49, 50 cycles  
tERR (nper) min. = (1+0.68in(n)) x tJIT(per) min  
tERR (nper) max. = (1+0.68in(n)) x tJIT(per) max  
tERR (nper)  
ps  
Average high pulse width  
Average low pulse width  
Duty cycle jitter  
tCH (avg)  
tCL (avg)  
tJIT (duty)  
0.47  
0.53  
tCK (avg) 3  
tCK (avg) 4  
0.47  
0.53  
ps  
5
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
48  
EDJ5308BBBG, EDJ5316BBBG  
Clock Jitter [DDR3-1066]  
-AE  
1066  
min.  
1875  
Data rate (Mbps)  
Parameter  
Symbol  
max.  
3333  
Unit  
ps  
Notes  
1
Average clock period  
tCK (avg)  
tCK(avg)min +  
tJIT(per)min  
tCK(avg)max+  
tJIT(per)max  
Absolute clock period  
tCK (abs)  
ps  
2
Clock period jitter  
tJIT (per)  
90  
90  
ps  
ps  
ps  
6
6
7
Clock period jitter during DLL locking period tJIT (per, lck) 80  
80  
Cycle to cycle period jitter  
tJIT (cc)  
180  
Cycle to cycle clock period jitter  
during DLL locking period  
tJIT (cc, lck)  
160  
ps  
7
Cumulative error across 2 cycles  
Cumulative error across 3 cycles  
Cumulative error across 4 cycles  
Cumulative error across 5 cycles  
Cumulative error across 6 cycles  
Cumulative error across 7 cycles  
Cumulative error across 8 cycles  
Cumulative error across 9 cycles  
Cumulative error across 10 cycles  
Cumulative error across 11 cycles  
Cumulative error across 12 cycles  
tERR (2per)  
tERR (3per)  
tERR (4per)  
tERR (5per)  
tERR (6per)  
tERR (7per)  
tERR (8per)  
tERR (9per)  
132  
157  
175  
188  
200  
209  
217  
224  
132  
157  
175  
188  
200  
209  
217  
224  
231  
237  
242  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
8
8
8
8
8
8
8
8
8
8
8
tERR (10per) 231  
tERR (11per) 237  
tERR (12per) 242  
Cumulative error across  
n=13, 14…49,50 cycles  
tERR (nper) min. = (1+0.68in(n)) x tJIT(per) min  
tERR (nper) max. = (1+0.68in(n)) x tJIT(per) max  
tERR (nper)  
ps  
Average high pulse width  
Average low pulse width  
Duty cycle jitter  
tCH (avg)  
tCL (avg)  
tJIT (duty)  
0.47  
0.53  
tCK (avg) 3  
tCK (avg) 4  
0.47  
0.53  
ps  
5
Notes: 1. tCK (avg) is calculated as the average clock period across any consecutive 200cycle window, where each  
clock period is calculated from rising edge to rising edge.  
N
tCK  
N
j
Σ
j = 1  
N = 200  
2. tCK (abs) is the absolute clock period, as measured from one rising edge to the next consecutive rising  
edge. tCK (abs) is not subject to production test.  
3. tCH (avg) is defined as the average high pulse width, as calculated across any consecutive 200 high  
pulses.  
N
(N × t  
)
tCH  
CK(avg)  
j
Σ
j = 1  
N = 200  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
49  
EDJ5308BBBG, EDJ5316BBBG  
4. tCL (avg) is defined as the average low pulse width, as calculated across any consecutive 200 low pulses.  
N
tCL  
(N × t  
)
j
CK(avg)  
Σ
j = 1  
N = 200  
5. tJIT (duty) is defined as the cumulative set of tCH jitter and tCL jitter. tCH jitter is the largest deviation of  
any single tCH from tCH (avg). tCL jitter is the largest deviation of any single tCL from tCL (avg).  
tJIT (duty) is not subject to production test.  
tJIT (duty) = Min./Max. of {tJIT (CH), tJIT (CL)}, where:  
tJIT (CH) = {tCHj- tCH (avg) where j = 1 to 200}  
tJIT (CL) = {tCLj- tCL (avg) where j = 1 to 200}  
6. tJIT (per) is defined as the largest deviation of any single tCK from tCK (avg).  
tJIT (per) = Min./Max. of { tCKj tCK (avg) where j = 1 to 200}  
tJIT (per) defines the single period jitter when the DLL is already locked. tJIT (per, lck) uses the same  
definition for single period jitter, during the DLL locking period only. tJIT (per) and tJIT (per, lck) are not  
subject to production test.  
7. tJIT (cc) is defined as the absolute difference in clock period between two consecutive clock cycles:  
tJIT (cc) = Max. of {tCKj+1 - tCKj}  
tJIT (cc) is defines the cycle when the DLL is already locked. tJIT (cc, lck) uses the same definition for  
cycle to cycle jitter, during the DLL locking period only. tJIT (cc) and tJIT (cc, lck) are not subject to  
production test.  
8. tERR (nper) is defined as the cumulative error across n multiple consecutive cycles from tCK (avg).  
tERR (nper) is not subject to production test.  
9. These parameters are specified per their average values, however it is understood that the following  
relationship between the average timing and the absolute instantaneous timing hold at all times.  
(minimum and maximum of spec values are to be used for calculations in the table below.)  
Parameter  
Symbol  
min.  
max.  
Unit  
Absolute clock period  
tCK (abs) tCK (avg), min. + tJIT (per),min. tCK (avg), max. + tJIT (per),max. ps  
Absolute clock high pulse  
tCH (avg), min. × tCK (avg),min. tCH (avg), max. × tCK (avg),max.  
tCH (abs)  
tCL (abs)  
ps  
ps  
width  
+ tJIT (duty),min.  
+ tJIT (duty),max.  
Absolute clock low pulse  
width  
tCL (avg), min. × tCK (avg),min. tCL (avg), max. × tCK (avg),max.  
+ tJIT (duty),min. + tJIT (duty),max.  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
50  
EDJ5308BBBG, EDJ5316BBBG  
Block Diagram  
CK  
/CK  
CKE  
Bank 7  
Bank 6  
Bank 5  
Bank 4  
Bank 3  
Bank 2  
Bank 1  
Address,  
BA0, BA1, BA2  
Row  
address  
buffer  
and  
Memory cell array  
Bank 0  
refresh  
counter  
Mode  
register  
Sense amp.  
Column decoder  
Column  
address  
buffer  
and  
/CS  
/RAS  
/CAS  
/WE  
burst  
counter  
Data control circuit  
Latch circuit  
DQS, /DQS  
TDQS, /TDQS  
CK, /CK  
DLL  
Input & Output buffer  
ODT  
DM  
DQ  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
51  
EDJ5308BBBG, EDJ5316BBBG  
Pin Function  
CK, /CK (input pins)  
CK and /CK are differential clock inputs. All address and control input signals are sampled on the crossing of the  
positive edge of CK and negative edge of /CK. Output (read) data is referenced to the crossings of CK and /CK  
(both directions of crossing).  
/CS (input pin)  
All commands are masked when /CS is registered high. /CS provides for external rank selection on systems with  
multiple ranks. /CS is considered part of the command code.  
/RAS, /CAS, /WE (input pins)  
/RAS, /CAS and /WE (along with /CS) define the command being entered.  
A0 to A12 (input pins)  
Provided the row address for active commands and the column address for read/write commands to select one  
location out of the memory array in the respective bank. (A10(AP) and A12(/BC) have additional functions, see  
below) The address inputs also provide the op-code during mode register set commands.  
[Address Pins Table]  
Address (A0 to A12)  
Part number  
Page size  
1KB  
Row address (RA)  
AX0 to AX12  
Column address (CA)  
AY0 to AY9  
Note  
EDJ5308BBBG  
EDJ5316BBBG  
2KB  
AX0 to AX11  
AY0 to AY9  
A10(AP) (input pin)  
A10 is sampled during read/write commands to determine whether auto precharge should be performed to the  
accessed bank after the read/write operation. (high: auto precharge; low: no auto precharge)  
A10 is sampled during a precharge command to determine whether the precharge applies to one bank (A10 = low)  
or all banks (A10 = high). If only one bank is to be precharged, the bank is selected by bank addresses (BA).  
A12(/BC) (input pin)  
A12 is sampled during read and write commands to determine if burst chop (on-the-fly) will be performed.  
(A12 = high: no burst chop, A12 = low: burst chopped.) See command truth table for details.  
BA0 to BA2 (input pins)  
BA0, BA1 and BA2 define to which bank an active, read, write or precharge command is being applied. BA0 and  
BA1 also determine which mode register (MR0 to MR3) is to be accessed during a MRS cycle.  
[Bank Select Signal Table]  
BA0  
L
BA1  
L
BA2  
L
Bank 0  
Bank 1  
H
L
L
L
Bank 2  
H
H
L
L
Bank 3  
H
L
L
Bank 4  
H
H
H
H
Bank 5  
H
L
L
Bank 6  
H
H
Bank 7  
H
Remark: H: VIH. L: VIL.  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
52  
EDJ5308BBBG, EDJ5316BBBG  
CKE (input pin)  
CKE high activates, and CKE low deactivates, internal clock signals and device input buffers and output drivers.  
Taking CKE low provides precharge power-down and self-refresh operation (all banks idle), or active power-down  
(row active in any bank). CKE is asynchronous for self-refresh exit. After VREF has become stable during the  
power-on and initialization sequence, it must be maintained for proper operation of the CKE receiver. For proper  
self-refresh entry and exit, VREF must be maintained to this input. CKE must be maintained high throughout read  
and write accesses. Input buffers, excluding CK, /CK, ODT and CKE are disabled during power-down. Input buffers,  
excluding CKE, are disabled during self-refresh.  
DM, DMU, DML (input pins)  
DM is an input mask signal for write data. Input data is masked when DM is sampled high coincident with that input  
data during a write access. DM is sampled on both edges of DQS. For ×8 configuration, the function of DM or  
TDQS, /TDQS is enabled by mode register A11 setting in MR1.  
DQ, DQU, DQL (input/output pins)  
Bi-directional data bus.  
DQS, /DQS, DQSU, /DQSU, DQSL, /DQSL (input/output pins)  
Output with read data, input with write data. Edge-aligned with read data, center-aligned with write data.  
The data strobe DQS is paired with differential signal /DQS to provide differential pair signaling to the system during  
READs and WRITEs.  
TDQS, /TDQS (output pins)  
TDQS and /TDQS is applicable for ×8 configuration only. When enabled via mode register A11 = 1 in MR1, DRAM  
will enable the same termination resistance function on TDQS, /TDQS as is applied to DQS, /DQS. When disabled  
via mode register A11 = 0 in MR1, DM/TDQS will provide the data mask function and /TDQS is not used.  
In ×16 configuration, the TDQS function must be disabled via mode register A11 = 0 in MR1.  
/RESET (input pin)  
/RESET is a CMOS rail to rail signal with DC high and low at 80% and 20% of VDD (1.20V for DC high and 0.30V  
for DC low).  
It is negative active signal (active low) and is referred to GND. There is no termination required on this signal. It will  
be heavily loaded across multiple chips. /RESET is destructive to data contents.  
ODT (input pins)  
ODT (registered high) enables termination resistance internal to the DDR3 SDRAM. When enabled, ODT is only  
applied to each DQ, DQS, /DQS, DM/TDQS, NU(/TDQS) (when TDQS is enabled via mode register A11 = 1 in MR1)  
signal for ×8 configuration. For ×16 configuration ODT is applied to each DQ, DQSU, /DQSU, DQSL, /DQSL, DMU,  
and DML signal. The ODT pin will be ignored if the mode register (MR1) is programmed to disable ODT.  
ZQ (supply)  
Reference pin for ZQ calibration.  
VDD, VSS, VDDQ, VSSQ (power supply)  
VDD and VSS are power supply pins for internal circuits. VDDQ and VSSQ are power supply pins for the output  
buffers.  
VREFCA, VREFDQ (power supply)  
Reference voltage  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
53  
EDJ5308BBBG, EDJ5316BBBG  
Command Operation  
Command Truth Table  
The DDR3 SDRAM recognizes the following commands specified by the /CS, /RAS, /CAS, /WE and address pins.  
CKE  
Previous Current  
BA0 to A12  
A10  
(AP)  
Address  
Function  
Symbol cycle  
cycle  
/CS /RAS /CAS /WE BA2  
(/BC)  
Notes  
Mode register set  
Auto-refresh  
MRS  
REF  
H
H
H
H
H
L
L
L
L
L
L
L
L
L
L
L
BA  
V
op-code  
H
H
V
V
V
V
V
V
Self-refresh entry  
SELF  
V
6, 8, 11  
6, 7, 8,  
11  
Self-refresh exit  
SREX  
L
H
H
V
V
V
V
V
V
V
L
H
H
H
H
H
H
H
L
L
L
L
L
L
L
H
L
H
H
H
H
L
H
L
L
H
L
L
L
V
V
V
L
V
V
V
Single bank precharge  
Precharge all banks  
Bank activate  
PRE  
H
H
H
H
H
H
BA  
V
V
PALL  
ACT  
L
V
H
L
BA  
BA  
BA  
BA  
RA  
V
12  
Write (Fixed BL)  
WRIT  
WRS4  
WRS8  
H
H
H
L
L
L
CA  
CA  
CA  
Write (BC4, on the fly)  
L
L
Write (BL8, on the fly)  
L
H
Write with auto precharge  
(Fixed BL)  
Write with auto precharge  
(BC4, on the fly)  
Write with auto precharge  
(BL8, on the fly)  
WRITA  
WRAS4  
WRAS8  
H
H
H
H
H
H
L
L
L
H
H
H
L
L
L
L
L
L
BA  
BA  
BA  
V
L
H
H
H
CA  
CA  
CA  
H
Read (Fixed BL)  
READ  
RDS4  
RDS8  
H
H
H
H
H
H
L
L
L
H
H
H
L
L
L
H
H
H
BA  
BA  
BA  
V
L
L
L
L
CA  
CA  
CA  
Read (BC4, on the fly)  
Read (BL8, on the fly)  
H
Read with auto precharge  
READA  
RDAS4  
RDAS8  
H
H
H
H
H
H
L
L
L
H
H
H
L
L
L
H
H
H
BA  
BA  
BA  
V
L
H
H
H
CA  
CA  
CA  
(Fixed BL)  
Read with auto precharge  
(BC4, on the fly)  
Read with auto precharge  
(BL8, on the fly)  
H
No operation  
NOP  
H
H
H
H
L
H
H
L
L
H
H
L
H
×
H
×
H
×
V
×
V
×
V
×
V
×
9
Device deselect  
DESL  
PDEN  
10  
Power-down mode entry  
V
H
V
H
H
H
V
H
V
H
H
H
V
H
V
H
L
V
V
V
V
×
V
V
V
V
×
V
V
V
V
H
L
V
V
V
V
×
5, 11  
L
Power-down mode exit  
PDEX  
H
H
H
H
H
L
5, 11  
L
ZQ calibration long  
ZQ calibration short  
ZQCL  
ZQCS  
H
H
L
L
L
×
×
×
Remark: H = VIH. L = VIL. × = VIH or VIL. V = Valid  
BA = Bank addresses. RA = Row Address. CA = Column Address.  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
54  
EDJ5308BBBG, EDJ5316BBBG  
Notes: 1. All DDR3 commands are defined by states of /CS, /RAS, /CAS, /WE and CKE at the rising edge of the  
clock. The most significant bit (MSB) of BA, RA, and CA are device density and configuration dependent.  
2. /RESET is an active low asynchronous signal that must be driven high during normal operation  
3. Bank Addresses (BA) determine which bank is to be operated upon. For MRS, BA selects an mode  
register.  
4. Burst READs or WRITEs cannot be terminated or interrupted and fixed/on the fly BL will be defined by  
MRS.  
5. The power-down mode does not perform any refresh operations.  
6. The state of ODT does not affect the states described in this table. The ODT function is not available  
during self-refresh.  
7. Self-refresh exit is asynchronous.  
8. VREF (Both VREFDQ and VREFCA) must be maintained during self-refresh operation.  
9. The No Operation command (NOP) should be used in cases when the DDR3 SDRAM is in an idle or a  
wait state. The purpose of the NOP command is to prevent the DDR3 SDRAM from registering any  
unwanted commands between operations. A NOP command will not terminate a previous operation that is  
still executing, such as a burst read or write cycle.  
10. The DESL command performs the same function as a NOP command.  
11. Refer to the CKE Truth Table for more detail with CKE transition.  
12. No more than 4 banks may be activated in a rolling tFAW window. Converting to clocks is done by  
dividing tFAW (ns) by tCK (ns) and rounding up to next integer value. As an example of the rolling  
window, if (tFAW/tCK) rounds up to 10 clocks, and an activate command is issued in clock N, no more  
than three further activate commands may be issued in clock N+1 through N+9.  
No Operation Command [NOP]  
The No Operation command (NOP) should be used in cases when the DDR3 SDRAM is in an idle or a wait state.  
The purpose of the NOP command is to prevent the DDR3 SDRAM from registering any unwanted commands  
between operations. A NOP command will not terminate a previous operation that is still executing, such as a burst  
read or write cycle.  
The no operation (NOP) command is used to instruct the selected DDR3 SDRAM to perform a NOP (/CS low, /RAS,  
/CAS, /WE high). This prevents unwanted commands from being registered during idle or wait states. Operations  
already in progress are not affected.  
Device Deselect Command [DESL]  
The deselect function (/CS high) prevents new commands from being executed by the DDR3 SDRAM. The DDR3  
SDRAM is effectively deselected. Operations already in progress are not affected.  
Mode Register Set Command [MR0 to MR3]  
The mode registers are loaded via row address inputs. See mode register descriptions in the Programming the  
Mode Register section. The mode register set command can only be issued when all banks are idle, and a  
subsequent executable command cannot be issued until tMRD is met.  
Bank Activate Command [ACT]  
This command is used to open (or activate) a row in a particular bank for a subsequent access. The values on the  
BA inputs select the bank, and the address provided on row address inputs selects the row. This row remains active  
(or open) for accesses until a precharge command is issued to that bank. A precharge command must be issued  
before opening a different row in the same bank.  
Note: No more than 4 banks may be activated in a rolling tFAW window. Converting to clocks is done by dividing  
tFAW (ns) by tCK (ns) and rounding up to next integer value. As an example of the rolling window, if  
(tFAW/tCK) rounds up to 10 clocks, and an activate command is issued in clock N, no more than three further  
activate commands may be issued in clock N+1 through N+9.  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
55  
EDJ5308BBBG, EDJ5316BBBG  
Read Command [READ, RDS4, RDS8, READA, RDAS4, RDAS8]  
The read command is used to initiate a burst read access to an active row. The values on the BA inputs select the  
bank, and the address provided on column address inputs selects the starting column location. The value on input  
A10 determines whether or not auto precharge is used. If auto precharge is selected, the row being accessed will be  
precharged at the end of the read burst; if auto precharge is not selected, the row will remain open for subsequent  
accesses.  
Write Command [WRIT, WRS4, WRS8, WRITA, WRAS4, WRAS8]  
The write command is used to initiate a burst write access to an active row. The values on the BA inputs select the  
bank, and the address provided on column address inputs selects the starting column location. The value on input  
A10 determines whether or not auto precharge is used. If auto precharge is selected, the row being accessed will be  
precharged at the end of the write burst; if auto precharge is not selected, the row will remain open for subsequent  
accesses. Input data appearing on the DQ is written to the memory array subject to the DM input logic level  
appearing coincident with the data. If a given DM signal is registered low, the corresponding data will be written to  
memory; if the DM signal is registered high, the corresponding data inputs will be ignored, and a write will not be  
executed to that byte/column location.  
Precharge Command [PRE, PALL]  
The precharge command is used to deactivate the open row in a particular bank or the open row in all banks. The  
bank(s) will be available for a subsequent row access a specified time (tRP) after the precharge command is issued.  
Input A10 determines whether one or all banks are to be precharged, and in the case where only one bank is to be  
precharged, inputs BA select the bank. Otherwise BA are treated as "Don't Care." Once a bank has been  
precharged, it is in the idle state and must be activated prior to any read or write commands being issued to that  
bank. A precharge command will be treated as a NOP if there is no open row in that bank (idle state), or if the  
previously open row is already in the process of precharging.  
Auto precharge Command [READA, WRITA]  
Before a new row in an active bank can be opened, the active bank must be precharged using either the precharge  
command or the auto precharge function. When a read or a write command is given to the DDR3 SDRAM, the /CAS  
timing accepts one extra address, column address A10, to allow the active bank to automatically begin precharge at  
the earliest possible moment during the burst read or write cycle. If A10 is low when the read or write command is  
issued, then normal read or write burst operation is executed and the bank remains active at the completion of the  
burst sequence. If A10 is high when the read or write command is issued, then the auto precharge function is  
engaged. During auto precharge, a read command will execute as normal with the exception that the active bank  
will begin to precharge on the rising edge which is /CAS latency (CL) clock cycles before the end of the read burst.  
(This timing is equal to the rising edge which is (AL* + BL/2) cycles later from the read with auto precharge  
command.)  
Auto precharge can also be implemented during write commands. The precharge operation engaged by the Auto  
precharge command will not begin until the last data of the burst write sequence is properly stored in the memory  
array.  
This feature allows the precharge operation to be partially or completely hidden during burst read cycles (dependent  
upon /CAS latency) thus improving system performance for random data access. The tRAS lockout circuit internally  
delays the Precharge operation until the array restore operation has been completed so that the auto precharge  
command may be issued with any read or write command.  
Note: AL (Additive Latency), refer to Posted /CAS description in the Register Definition section.  
Auto-Refresh Command [REF]  
Auto-refresh is used during normal operation of the DDR3 SDRAM and is analogous to /CAS-before-/RAS (CBR)  
refresh in FPM/EDO DRAM. This command is nonpersistent, so it must be issued each time a refresh is required.  
The addressing is generated by the internal refresh controller. This makes the address bits a "Don't Care" during an  
auto-refresh command.  
A maximum of eight auto-refresh commands can be posted to any given DDR3, meaning that the maximum absolute  
interval between any auto-refresh command and the next auto-refresh command is 9 × tREFI. This maximum  
absolute interval is to allow DDR3 output drivers and internal terminators to automatically recalibrate compensating  
for voltage and temperature changes.  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
56  
EDJ5308BBBG, EDJ5316BBBG  
Self-Refresh Command [SELF]  
The self-refresh command can be used to retain data in the DDR3, even if the rest of the system is powered down.  
When in the self-refresh mode, the DDR3 retains data without external clocking. The self-refresh command is  
initiated like an auto-refresh command except CKE is disabled (low). The DLL is automatically disabled upon  
entering self-refresh and is automatically enabled and reset upon exiting self-refresh. The active termination is also  
disabled upon entering self-refresh and enabled upon exiting self-refresh. (512 clock cycles must then occur before  
a read command can be issued). Input signals except CKE are "Don't Care" during self-refresh. The procedure for  
exiting self-refresh requires a sequence of commands. First, CK and /CK must be stable prior to CKE going back  
high. Once CKE is high, the DDR3 must have NOP commands issued for tXSDLL because time is required for the  
completion of any internal refresh in progress. A simple algorithm for meeting both refresh, DLL requirements and  
out-put calibration is to apply NOPs for 512 clock cycles before applying any other command to allow the DLL to lock  
and the output drivers to recalibrate.  
ZQ calibration Command [ZQCL, ZQCS]  
ZQ calibration command (short or long) is used to calibrate DRAM RON and ODT values over PVT.  
ZQ Calibration Long (ZQCL) command is used to perform the initial calibration during power-up initialization  
sequence.  
ZQ Calibration Short (ZQCS) command is used to perform periodic calibrations to account for VT variations.  
All banks must be precharged and tRP met before ZQCL or ZQCS commands are issued by the controller.  
ZQ calibration commands can also be issued in parallel to DLL lock time when coming out of self-refresh.  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
57  
EDJ5308BBBG, EDJ5316BBBG  
CKE Truth Table  
CKE  
Previous  
Current  
Command (n)*3  
/CS, /RAS, /CAS, /WE Operation (n)*3  
Current state*2  
Power-down  
cycle (n-1)*1 cycle (n)*1  
Notes  
L
L
H
L
H
L
L
L
L
L
L
L
×
Maintain power-down  
14, 15  
L
DESL or NOP  
×
Power-down exit  
11, 14  
Self-refresh  
L
Maintain self-refresh  
Self-refresh exit  
15, 16  
L
DESL or NOP  
DESL or NOP  
DESL or NOP  
DESL or NOP  
DESL or NOP  
DESL or NOP  
DESL or NOP  
REFRESH  
8, 12, 16  
11, 13, 14  
Bank Active  
Reading  
H
H
H
H
H
H
H
Active power-down entry  
Power-down entry  
11, 13, 14, 17  
11, 13, 14, 17  
Writing  
Power-down entry  
11, 13, 14, 17  
Precharging  
Refreshing  
All banks idle  
Power-down entry  
Precharge power-down entry  
Precharge power-down entry  
Self-refresh entry  
11  
11, 13, 14, 18  
9, 13, 18  
Any state other than  
listed above  
H
H
Refer to the Command Truth Table  
10  
Remark: H = VIH. L = VIL. × = Don’t care  
Notes: 1. CKE (n) is the logic state of CKE at clock edge n; CKE (n1) is the state of CKE at the previous clock  
edge.  
2. Current state is the state of the DDR3 SDRAM immediately prior to clock edge n.  
3. Command (n) is the command registered at clock edge n, and operation (n) is a result of Command (n).  
ODT is not included here.  
4. All states and sequences not shown are illegal or reserved unless explicitly described elsewhere in this  
document.  
5. The state of ODT does not affect the states described in this table. The ODT function is not available  
during self-refresh.  
6. CKE must be registered with the same value on tCKE (min.) consecutive positive clock edges. CKE must  
remain at the valid input level the entire time it takes to achieve the tCKE (min.) clocks of registration.  
Thus, after any CKE transition, CKE may not transition from its valid level during the time period of tIS +  
tCKE (min.) + tIH.  
7. DESL and NOP are defined in the Command Truth Table.  
8. On self-refresh exit, DESL or NOP commands must be issued on every clock edge occurring during the  
tXS period. Read or ODT command may be issued only after tXSDLL is satisfied.  
9. Self-refresh mode can only be entered from the all banks idle state.  
10. Must be a legal command as defined in the Command Truth Table.  
11. Valid commands for power-down entry and exit are NOP and DESL only.  
12. Valid commands for self-refresh exit are NOP and DESL only.  
13. Self-refresh can not be entered while read or write operations, (extended) mode register set operations or  
precharge operations are in progress. See section Power-Down and self-refresh Command for a detailed  
list of restrictions.  
14. The power-down does not perform any refresh operations.  
15. “×” means “don’t care” (including floating around VREF) in self-refresh and power-down. It also applies to  
address pins.  
16. VREF (Both VREFDQ and VREFCA) must be maintained during self-refresh operation.  
17. If all banks are closed at the conclusion of the read, write or precharge command, the precharge power-  
down is entered, otherwise active power-down is entered.  
18. Idle state means that all banks are closed (tRP, tDAL, etc. satisfied), no data bursts are in progress. CKE  
is high and all timings from previous operation are satisfied (tMRD, tMOD, tRFC, tZQinit, tZQoper, tZQCS,  
etc.) as well as all self-refresh exit and power-down exit parameters are satisfied (tXS, tXP, tXPDLL, etc).  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
58  
EDJ5308BBBG, EDJ5316BBBG  
Simplified State Diagram  
CKE_L  
MRS, MPR,  
WRITE  
LEVELING  
POWER  
SELF  
REFRESH  
APPLIED  
POWER  
ON  
RESET  
PROCEDURE  
INITIALIZATION  
SELF  
MRS  
SELFX  
ZQCL  
ZQCS  
FROM ANY  
STATE  
RESET  
REF  
ZQ  
REFRESHING  
IDLE  
CALIBRATION  
PDEN  
ACT  
PDEX  
ACTIVE  
POWER  
DOWN  
ACTIVATING  
PRECHARGE  
POWER  
DOWN  
CKE_L  
PDEX  
CKE_L  
PDEN  
WRIT  
BANK  
ACTIVE  
READ  
WRIT  
READ  
READA  
WRITA  
WRIT  
READ  
WRITING  
READING  
READA  
WRITA  
WRITA  
READA  
PRE, PALL  
WRITING  
READING  
PRE, PALL  
PRE, PALL  
PRECHARGING  
Automatic sequence  
Command sequence  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
59  
EDJ5308BBBG, EDJ5316BBBG  
RESET and Initialization Procedure  
Power-Up and Initialization Sequence  
1. Apply power (/RESET is recommended to be maintained below 0.2 × VDD, (all other inputs may be undefined). )  
/RESET needs to be maintained for minimum 200µs with stable power. CKE is pulled low anytime before  
/RESET being de-asserted (min. time 10ns). The power voltage ramp time between 300mV to VDD (min.) must  
be no greater than 200ms; and during the ramp, VDD > VDDQ and (VDD VDDQ) < 0.3V.  
VDD and VDDQ are driven from a single power converter output  
AND  
The voltage levels on all pins other than VDD, VDDQ, VSS, VSSQ must be less than or equal to VDDQ and VDD  
on one side and must be larger than or equal to VSSQ and VSS on the other side. In addition, VTT is limited to  
0.95V max once power ramp is finished,  
AND  
VREF tracks VDDQ/2.  
OR  
Apply VDD without any slope reversal before or at the same time as VDDQ.  
Apply VDDQ without any slope reversal before or at the same time as VTT and VREF.  
The voltage levels on all pins other than VDD, VDDQ, VSS, VSSQ must be less than or equal to VDDQ and VDD  
on one side and must be larger than or equal to VSSQ and VSS on the other side.  
2. After /RESET is de-asserted, wait for another 500µs until CKE become active. During this time, the DRAM will  
start internal state initialization; this will be done independently of external clocks.  
3. Clocks (CK, /CK) need to be started and stabilized for at least 10ns or 5tCK (which is larger) before CKE goes  
active. Since CKE is a synchronous signal, the corresponding set up time to clock (tIS) must be met. Also a NOP  
or DESL command must be registered (with tIS set up time to clock) before CKE goes active. Once the CKE  
registered “high” after Reset, CKE needs to be continuously registered high until the initialization sequence is  
finished, including expiration of tDLLK and tZQinit.  
4. The DDR3 SDRAM will keep its on-die termination in high-impedance state during /RESET being asserted at  
least until CKE being registered high. Therefore, the ODT signal may be in undefined state until tIS before CKE  
being registered high. After that, the ODT signal must be kept inactive (low) until the power-up and initialization  
sequence is finished, including expiration of tDLLK and tZQinit.  
5. After CKE being registered high, wait minimum of tXPR, before issueing the first MRS command to load mode  
register. (tXPR = max. (tXS ; 5 × tCK)  
6. Issue MRS command to load MR2 with all application settings. (To issue MRS command for MR2, provide low to  
BA0 and BA2, high to BA1.)  
7. Issue MRS command to load MR3 with all application settings. (To issue MRS command for MR3, provide low to  
BA2, high to BA0 and BA1.)  
8. Issue MRS command to load MR1 with all application settings and DLL enabled. (To issue DLL Enable  
command, provide low to A0, high to BA0 and low to BA1 and BA2).  
9. Issue MRS command to load MR0 with all application settings and DLL reset. (To issue DLL reset command,  
provide high to A8 and low to BA0 to BA2).  
10.Issue ZQCL command to start ZQ calibration.  
11.Wait for both tDLLK and tZQinit completed.  
12.The DDR3 SDRAM is now ready for normal operation.  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
60  
EDJ5308BBBG, EDJ5316BBBG  
Ta  
Tb  
Tc  
Td  
Te  
Tf  
Tg  
Th  
Ti  
Tj  
Tk  
CK, /CK  
VDD, VDDQ  
/RESET  
max. (10 ns; 5tCK)  
200µs  
500µs  
tIS  
10ns  
CKE  
2
*
tDLLK  
ZQcal  
tXPR  
tIS  
tMRD  
tMRD  
MRS  
MR3  
tMRD  
tMOD  
tZQinit  
Command  
BA  
1
MRS  
MR2  
MRS  
MR1  
MRS  
MR0  
*
tIS  
ODT  
DRAM_RTT  
Notes: 1. From time point "Td" until "Tk", NOP or DESL commands must be  
applied between MRS and ZQcal commands.  
2. tXPR = max. (tXS; 5tCK)  
: VIH or VIL  
Reset and Initialization Sequence at Power-On Ramping  
Reset and Initialization with Stable Power  
The following sequence is required for /RESET at no power interruption initialization.  
1. Assert /RESET below 0.2 × VDD anytime when reset is needed (all other inputs may be undefined). /RESET  
needs to be maintained for minimum 100ns. CKE is pulled low before /RESET being de-asserted (minimum time  
10ns).  
2. Follow Power-Up Initialization Sequence steps 2 to 12.  
3. The reset sequence is now completed; DDR3 SDRAM is ready for normal operation.  
Ta  
Tb  
Tc  
Td  
Te  
Tf  
Tg  
Th  
Ti  
Tj  
Tk  
CK, /CK  
VDD, VDDQ  
/RESET  
max. (10 ns; 5tCK)  
100ns  
500µs  
tIS  
10ns  
CKE  
2
*
tDLLK  
ZQCL  
tXPR  
tIS  
tMRD  
tMRD  
MRS  
MR3  
tMRD  
tMOD  
tZQinit  
Command  
BA  
1
MRS  
MR2  
MRS  
MR1  
MRS  
MR0  
*
tIS  
ODT  
DRAM_RTT  
Notes: 1. From time point "Td" until"Tk", NOP or DESL commands must be  
applied between MRS and ZQCL commands.  
2. tXPR = max. (tXS; 5tCK)  
: VIH or VIL  
Reset Procedure at Power Stable Condition  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
61  
EDJ5308BBBG, EDJ5316BBBG  
Programming the Mode Register  
For application flexibility, various functions, features and modes are programmable in four mode registers, provided  
by the DDR3 SDRAM, as user defined variables, and they must be programmed via a Mode Register Set (MRS)  
command. As the default values of the Mode Registers (MR#) are not defined, content of mode registers must be  
fully initialized and/or re-initialized, i.e. written, after Power-up and/or reset for proper operation. Also the contents of  
the mode registers can be altered by re-executing the MRS command during normal operation. When programming  
the mode registers, even if the user chooses to modify only a sub-set of the MRS fields, all address fields within the  
accessed mode register must be redefined when the MRS command is issued. MRS command and DLL Reset  
does not affect array contents, which means these commands can be executed any time after power-up without  
affecting the array contents.  
The mode register set command cycle time, tMRD is required to complete the write operation to the mode register  
and is the minimum time required between two MRS commands. The MRS command to non-MRS command delay,  
tMOD, is required for the DRAM to update the features except DLL reset and is the minimum time required from an  
MRS command to a non-MRS command excluding NOP and DESL. The mode register contents can be changed  
using the same command and timing requirements during normal operation as long as the DRAM is in idle state, i.e.  
all banks are in the precharged state with tRP satisfied, all data bursts are completed and CKE is already high prior  
to writing into the mode register. The mode registers are divided into various fields depending on the functionality  
and/or modes.  
Mode Register Set Command Cycle Time (tMRD)  
tMRD is the minimum time required from an MRS command to the next MRS command. As DLL enable and DLL  
reset are both MRS commands, tMRD is applicable between MRS to MR1 for DLL enable and MRS to MR0 for DLL  
reset, and not tMOD.  
/CK  
CK  
Command  
MRS  
NOP  
MRS  
NOP  
tMRD  
tMRD Timing  
MRS Command to Non-MRS Command Delay (tMOD)  
tMOD is the minimum time required from an MRS command to a non-MRS command excluding NOP and DESL.  
Note that additional restrictions may apply, for example, MRS to MR0 for DLL reset followed by read.  
/CK  
CK  
Command  
MRS  
NOP  
non-MRS  
NOP  
tMOD  
Old  
setting  
Updating  
New Setting  
tMOD Timing  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
62  
EDJ5308BBBG, EDJ5316BBBG  
DDR3 SDRAM Mode Register 0 [MR0]  
The mode register MR0 stores the data for controlling various operating modes of DDR3 SDRAM.  
It controls burst length, read burst type, /CAS latency, test mode, DLL reset, WR and DLL control for precharge  
power-down, which include various vendor specific options to make DDR3 SDRAM useful for various applications.  
The mode register is written by asserting low on /CS, /RAS, /CAS, /WE, BA0 and BA1, while controlling the states of  
address pins according to the table below.  
MR0 Programming  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
63  
EDJ5308BBBG, EDJ5316BBBG  
DDR3 SDRAM Mode Register 1 [MR1]  
The Mode Register MR1 stores the data for enabling or disabling the DLL, output driver strength, RTT_Nom  
impedance, additive latency, write leveling enable, TDQS enable and Qoff. The Mode Register 1 is written by  
asserting low on /CS, /RAS, /CAS, /WE, high on BA0 and low on BA1, while controlling the states of address pins  
according to the table below  
BA2 BA1 BA0 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0  
Address field  
0*1  
0
1
0*1  
0*1 Level Rtt_Nom D.I.C  
AL  
D.I.C DLL  
Mode register 1  
Rtt_Nom  
Rtt_Nom  
Qoff  
TDQS  
A11 TDQS enable  
RTT_Nom*5  
ODT Disabled  
RZQ/4  
A9 A6 A2  
0
1
Disabled  
Enabled  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
A0  
DLL enable  
Enable  
0
1
RZQ/2  
Disable  
RZQ/6  
4
RZQ/12  
*
Write leveling enable  
Disabled  
A7  
4
RZQ/8  
*
0
1
Reserved  
Reserved  
Enabled  
Output driver  
Qoff  
Output buffers enabled  
A12  
0
A5  
0
A1  
0
impedance control  
Reserved for RZQ/6  
RZQ/7  
A3  
0
A4  
0
Additive Latency  
0 (AL disabled)  
CL-1  
2
Output buffers disabled  
*
1
0
1
1
0
1
0
RZQ/TBD  
0
1
CL-2  
1
1
RZQ/TBD  
1
1
Reserved  
Notes: 1. BA2, A8 and A10 are reserved for future use (RFU) and must be programmed to 0 during MRS.  
2. Outputs disabled - DQ, DQS, /DQS.  
3. RZQ = 240Ω  
4. If RTT_Nom is used during writes, only the values RZQ/2, RZQ/4 and RAQ/6 are allowed.  
5. In Write leveling Mode (MR1[bit7] = 1) with MR1[bit12]=1, all RTT_Nom settings are allowed;  
in Write Leveling Mode (MR1[bit7] =1) with MR1[bit12]=0, only RTT_Nom settings of RZQ/2,  
RZQ/4 and RZQ/6 are allowed  
MR1 Programming  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
64  
EDJ5308BBBG, EDJ5316BBBG  
DDR3 SDRAM Mode Register 2 [MR2]  
The Mode Register MR2 stores the data for controlling refresh related features, RTT_WR impedance and /CAS write  
latency (CWL). The Mode Register 2 is written by asserting low on /CS, /RAS, /CAS, /WE, high on BA1 and low on  
BA0, while con-trolling the states of address pins according to the table below.  
MR2 Programming  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
65  
EDJ5308BBBG, EDJ5316BBBG  
DDR3 SDRAM Mode Register 3 [MR3]  
The Mode Register MR3 controls Multi Purpose Registers (MPR). The Mode Register 3 is written by asserting low  
on /CS, /RAS, /CAS, /WE, high on BA1 and BA0, while controlling the states of address pins according to the table  
below.  
Address field  
BA2 BA1 BA0 A12 A11 A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
Mode register 3  
0*1  
0
1
1
MPR MPR Loc  
MPR Address  
A1 A0  
MPR location  
2
MPR Operation  
A2  
0
0
1
1
0
1
0
1
Predefined pattern*  
MPR  
RFU  
RFU  
RFU  
3
Normal operation  
*
0
1
Data flow from MPR  
Notes : 1. BA2,A3 toA12 are reserved for future use (RFU) and must be programmed to 0 during MRS.  
2. The predefined pattern will be used for read synchronization.  
3 . When MPR control is set for normal operation with MR3 A[2]=0, MR3 A[1:0] will be ignored.  
MR3 Programming  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
66  
EDJ5308BBBG, EDJ5316BBBG  
Burst Length (MR0)  
Read and write accesses to the DDR3 are burst oriented, with the burst length being programmable, as shown in the  
figure MR0 Programming. The burst length determines the maximum number of column locations that can be  
accessed for a given read or write command. Burst length options include fixed BC4, fixed BL8, and on the fly which  
allows BC4 or BL8 to be selected coincident with the registration of a read on write command Via A12 (/BC).  
Reserved states should not be used, as unknown operation or incompatibility with future versions may result.  
Burst Chop  
In case of burst length being fixed to 4 by MR0 setting, the internal write operation starts two clock cycles earlier than  
for the BL8 mode. This means that the starting point for tWR and tWTR will be pulled in by two clocks. In case of  
burst length being selected on the fly via A12(/BC), the internal write operation starts at the same point in time like a  
burst of 8 write operation. This means that during on-the-fly control, the starting point for tWR and tWTR will not be  
pulled in by two clocks.  
Burst Type (MR0)  
[Burst Length and Sequence]  
Starting address  
(A2, A1, A0)  
Sequential addressing  
(decimal)  
Interleave addressing  
(decimal)  
Burst length  
Operation  
READ  
4 (burst chop)  
000  
001  
010  
011  
100  
101  
110  
111  
0VV  
1VV  
000  
001  
010  
011  
100  
101  
110  
111  
VVV  
0, 1, 2, 3, T, T, T, T  
1, 2, 3, 0, T, T, T, T  
2, 3, 0, 1, T, T, T, T  
3, 0, 1, 2, T, T, T, T  
4, 5, 6, 7, T, T, T, T  
5, 6, 7, 4, T, T, T, T  
6, 7, 4, 5, T, T, T, T  
7, 4, 5, 6, T, T, T, T  
0, 1, 2, 3, X, X, X, X  
4, 5, 6, 7, X, X, X, X  
0, 1, 2, 3, 4, 5, 6, 7  
1, 2, 3, 0, 5, 6, 7, 4  
2, 3, 0, 1, 6, 7, 4, 5  
3, 0, 1, 2, 7, 4, 5, 6  
4, 5, 6, 7, 0, 1, 2, 3  
5, 6, 7, 4, 1, 2, 3, 0  
6, 7, 4, 5, 2, 3, 0, 1  
7, 4, 5, 6, 3, 0, 1, 2  
0, 1, 2, 3, 4, 5, 6, 7  
0, 1, 2, 3, T, T, T, T  
1, 0, 3, 2, T, T, T, T  
2, 3, 0, 1, T, T, T, T  
3, 2, 1, 0, T, T, T, T  
4, 5, 6, 7, T, T, T, T  
5, 4, 7, 6, T, T, T, T  
6, 7, 4, 5, T, T, T, T  
7, 6, 5, 4, T, T, T, T  
0, 1, 2, 3, X, X, X, X  
4, 5, 6, 7, X, X, X, X  
0, 1, 2, 3, 4, 5, 6, 7  
1, 0, 3, 2, 5, 4, 7, 6  
2, 3, 0, 1, 6, 7, 4, 5  
3, 2, 1, 0, 7, 6, 5, 4  
4, 5, 6, 7, 0, 1, 2, 3  
5, 4, 7, 6, 1, 0, 3, 2  
6, 7, 4, 5, 2, 3, 0, 1  
7, 6, 5, 4, 3, 2, 1, 0  
0, 1, 2, 3, 4, 5, 6, 7  
WRITE  
READ  
8
WRITE  
Remark: T: Output driver for data and strobes are in high impedance.  
V: a valid logic level (0 or 1), but respective buffer input ignores level on input pins.  
X: Don’t Care.  
Notes: 1. Page length is a function of I/O organization and column addressing  
2. 0...7 bit number is value of CA [2:0] that causes this bit to be the first read during a burst.  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
67  
EDJ5308BBBG, EDJ5316BBBG  
DLL Enable (MR1)  
The DLL must be enabled for normal operation. DLL enable is required during power-up initialization, and upon  
returning to normal operation after having the DLL disabled. The DLL is automatically disabled when entering self-  
refresh operation and is automatically re-enabled upon exit of self-refresh operation. Any time the DLL is enabled  
and subsequently reset, tDLLK clock cycles must occur before a read or synchronous ODT command can be issued  
to allow time for the internal clock to be synchronized with the external clock. Failing to wait for synchronization to  
occur may result in a violation of the tDQSCK, tAON or tAOF parameters. During tDLLK, CKE must continuously be  
registered high.  
DDR3 SDRAM does not require DLL for any write operation. DDR3 does not require DLL to be locked prior to any  
write operation. DDR3 requires DLL to be locked only for read operation and to achieve synchronous ODT timing.  
DLL Disable (MR1)  
DDR3 DLL-off mode is entered by setting MR1 bit A0 to 1; this will disable the DLL for subsequent operations until  
A0 bit set back to 0. The MR1 A0 bit for DLL control can be switched either during initialization or later.  
The DLL-off mode operations listed below are an optional feature for DDR3. The maximum clock frequency for DLL-  
off mode is 125MHz. There is no minimum frequency limit besides the need to satisfy the refresh interval, tREFI.  
Due to latency counter and timing restrictions, only one value of /CAS Latency (CL) in MR0 and CAS Write Latency  
(CWL) in MR2 are supported. The DLL-off mode is only required to support setting of both CL = 6 and CWL = 6.  
DLL-off mode will affect the Read data Clock to Data Strobe relationship (tDQSCK) but not the Data Strobe to Data  
relationship (tDQSQ, tQH, tQHS). Special attention is needed to line up Read data to controller time domain.  
Comparing with DLL-on mode, where tDQSCK starts from the rising clock edge (AL + CL) cycles after the Read  
command, the DLL-off mode tDQSCK starts (AL + CL 1) cycles after the read command. Another difference is that  
tDQSCK may not be small compared to tCK (it might even be larger than tCK) and the difference between tDQSCK  
(min.). and tDQSCK (max.) is significantly larger than in DLL-on mode.  
The timing relations on DLL-off mode READ operation are shown at following Timing Diagram (CL = 6, BL8):  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
CK, /CK  
Command  
READ  
A
BA  
DQSdiff_DLL-on  
RL = AL + CL = 6 (CL = 6, AL = 0)  
CL = 6  
DQ_DLL-on  
CA0 CA1 CA2 CA3 CA4 CA5 CA6 CA7  
RL (DLL-off) = AL + (CL - 1) = 5  
tDQSCK(DLL-off)_min  
DQSdiff_DLL-off  
DQ_DLL-off  
CA0 CA1 CA2 CA3 CA4 CA5 CA6 CA7  
tDQSCK(DLL-off)_max  
DQSdiff_DLL-off  
DQ_DLL-off  
CA0 CA1 CA2 CA3 CA4 CA5 CA6 CA7  
DLL-Off Mode Read Timing Operation  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
68  
EDJ5308BBBG, EDJ5316BBBG  
Switch from DLL “on” to DLL “off” and Required Frequency Change During Self-Refresh  
1. Starting from Idle state (all banks pre-charged, all timings fulfilled, and DRAMs On-die Termination resistors,  
RTT, must be in high impedance state before MRS to MR1 to disable the DLL.)  
2. Set MR1 Bit A0 to “1” to disable the DLL.  
3. Wait tMOD.  
4. Enter Self-Refresh Mode; wait until (tCKSRE) satisfied.  
5. Change frequency, in guidance with Input Clock Frequency Change during Precharge Power-Down section.  
6. Wait until a stable clock is available for at least (tCKSRX) at DRAM inputs. After stable clock, wait tCKSRX  
before issuing SRX commnad.  
7. Starting with the Self-refresh exit command, ODT must continuously be registered low and CKE must  
continuously be registered high until all tMOD timings from any MRS command are satisfied.  
8. Wait tXS, then set Mode Registers with appropriate values (especially an update of CL, CWL and WR may be  
necessary. A ZQCL command may also be issued after tXS).  
9. Wait for tMOD, then DRAM is ready for next command.  
Ta  
Tb  
Tc Tc+1Tc+2  
Td  
Te  
Tf Tf+1 Tf+2  
Tg Tg+1  
Th  
CK  
/CK  
tMOD  
tCKSRE  
tCKSRX  
tXS  
tMOD  
MRS  
SRE NOP  
SRX  
MRS  
Valid  
Command  
CKE  
tCKESR  
ODT  
Change Frequency  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
69  
EDJ5308BBBG, EDJ5316BBBG  
Switch from DLL “off” to DLL “on” (with required frequency change) During Self-Refresh  
1. Starting from Idle state (all banks pre-charged, all timings fulfilled and DRAMs On-die Termination resistors (RTT)  
must be in high impedance state before Self-Refresh mode is entered.)  
2. Enter Self-refresh Mode, wait until tCKSRE satisfied.  
3. Change frequency, in guidance with Input Clock Frequency Change during Precharge Power-Down section.  
4. Wait until a stable clock is available for at least (tCKSRX) at DRAM inputs.  
5. Starting with the self-refresh exit command, ODT must continuously be registered low and CKE must  
continuously be registered high until all tDLLK timing from subsequent DLL Reset command is satisfied.  
6. Wait tXS, then set MR1 bit A0 to “0” to enable the DLL.  
7. Wait tMRD, then set MR0 bit A8 to “1” to start DLL Reset.  
8. Wait tMRD, and then set Mode Registers with appropriate values (especially an update of CL, CWL and WR may  
be necessary. After tMOD is satisfied from any proceeding MRS command, a ZQCL command may also be  
issued during or after tDLLK.)  
9. Wait for tMOD, and then DRAM is ready for next command (remember to wait tDLLK after DLL Reset before  
applying command requiring a locked DLL!). In addition, wait also for tZQoper in case a ZQCL command was  
issued.  
Ta  
Tb  
Tc Tc+1Tc+2  
Td  
Te  
Tf Tf+1Tf+2  
Tg  
CK  
/CK  
tCKSRE  
tCKSRX  
tDLLK  
MRS  
tXS  
tMRD tMRD  
SRE NOP  
SRX  
MRS  
MRS  
Valid  
Command  
CKE  
tCKESR  
ODTLoff + 1x tCK  
ODT  
Change Frequency  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
70  
EDJ5308BBBG, EDJ5316BBBG  
Additive Latency (MR1)  
A posted /CAS read or write command when issued is held for the time of the Additive Latency (AL) before it is  
issued inside the device. The read or write posted /CAS command may be issued with or without auto precharge.  
The Read Latency (RL) is controlled by the sum of AL and the /CAS latency (CL).  
The value of AL is also added to compute the overall Write Latency (WL).  
MRS (1) bits A4 and A3 are used to enable Additive latency.  
MRS1  
A4  
0
A3  
0
AL*  
0 (posted CAS disabled)  
CL 1  
0
1
1
0
CL 2  
1
1
Reserved  
Note: AL has a value of CL 1 or CL 2 as per the CL value programmed in the /CAS latency MRS setting.  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
71  
EDJ5308BBBG, EDJ5316BBBG  
Write Leveling (MR1)  
For better signal integrity, DDR3 memory module adopts fly by topology for the commands, addresses, control  
signals and clocks. The fly by topology has benefits for reducing number of stubs and their length but in other  
aspect, causes flight time skew between clock and strobe at every DRAM on DIMM. It makes Controller hard to  
maintain tDQSS, tDSS and tDSH specification. Therefore, the controller should support ’write leveling’ in DDR3  
SDRAM to compensate the skew.  
Write leveling is a scheme to adjust DQS to CK relationship by the controller, with a simple feedback provided by the  
DRAM. The memory controller involved in the leveling must have adjustable delay setting on DQS to align the rising  
edge of DQS with that of the clock at the DRAM pin. DRAM asynchronously feeds back CK, sampled with the rising  
edge of DQS, through the DQ bus. The controller repeatedly delays DQS until a transition from 0 to 1 is detected.  
The DQS delay established through this exercise would ensure tDQSS, tDSS and tDSH specification. A conceptual  
timing of this scheme is shown as below.  
diff_Clock  
Source  
diff_DQS  
Destination  
diff_Clock  
diff_DQS  
DQ  
X
0
0
Push DQS to  
capture 0-1 transition  
DQ  
X
1
1
Write leveling concept  
DQS, /DQS driven by the controller during leveling mode must be terminated by the DRAM, based on the ranks  
populated. Similarly, the DQ bus driven by the DRAM must also be terminated at the controller.  
One or more data bits should carry the leveling feedback to the controller across the DRAM configurations ×8 and  
×16. On a ×16 device, both byte lanes should be levelized independently. Therefore, a separate feedback  
mechanism should be available for each byte lane. The upper data bits should provide the feedback of the upper  
diff_DQS (diff_DQSU) to clock relationship whereas the lower data bits would indicate the lower diff_DQS  
(diff_DQSL) to clock relationship.  
DRAM Setting for Write Leveling and DRAM Termination Function in That Mode  
DRAM enters into Write leveling mode if A7 in MR1 set 1. And after finishing leveling, DRAM exits from write  
leveling mode if A7 in MR1 set 0 (MR1 Setting Involved in the Leveling Procedure table).  
Note that in write leveling mode, only DQS/DQS terminations are activated and deactivated via ODT pin, not like  
normal operation (refer to the DRAM Termination Function in The Leveling Mode table)  
[MR1 Setting Involved in the Leveling Procedure]  
Function  
MR1 bit  
A7  
Enable  
Disable  
Note  
1
Write leveling enable  
Output buffer mode (Qoff)  
1
0
0
1
A12  
Note: 1. Output buffer mode definition is consistent with DDR2  
[DRAM Termination Function in The Leveling Mode]  
ODT pin@DRAM  
De-asserted  
Asserted  
DQS, /DQS termination  
DQs termination  
Off  
On  
Off  
Off  
Note: In Write Leveling Mode with its output buffer disabled (MR1 [bit7] = 1 with MR1 [bit12] = 1) all RTT_Nom  
settings are allowed; in Write Leveling Mode with its output buffer enabled (MR1 [bit7] = 1 with MR1 [bit12] =  
0) only RTT_Nom settings of RZQ/2, RZQ/4 and RZQ/6 are allowed.  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
72  
EDJ5308BBBG, EDJ5316BBBG  
Write Leveling Procedure  
Memory controller initiates Leveling mode of all DRAMs by setting bit 7 of MR1 to 1. Since the controller levelizes  
rank at a time, the output of other rank must be disabled by setting MR1 bit A12 to 1. Controller may assert ODT  
after tMOD, time at which DRAM is ready to accept the ODT signal.  
Controller may drive DQS low and /DQS high after a delay of tWLDQSEN, at which time DRAM has applied on-die  
termination on these signals. After tWLMRD, controller provides a single DQS, /DQS edge which is used by the  
DRAM to sample CK driven from controller. tWLMRD timing is controller dependent.  
DRAM samples CK status with rising edge of DQS and provides feedback on all the DQ bits asynchronously after  
tWLO timing. There is a DQ output uncertainty of tWLOE defined to allow mismatch on DQ bits; there are no read  
strobes (DQS, /DQS) needed for these DQs. Controller samples incoming DQ and decides to increment or  
decrement DQS delay setting and launches the next DQS, /DQS pulse after some time, which is controller  
dependent.  
Once a 0 to 1 transition is detected, the controller locks DQS delay setting and write leveling is achieved for the  
device. The below figure describes detailed timing diagram for overall procedure and the timing parameters are  
shown in below figure.  
T2  
T1  
tWLS  
tWLS  
tWLH  
tWLH  
5
*
CK  
/CK  
2
3
4
2
3
*
*
*
*
*
Command MRS  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
tMOD  
6
6
*
*
ODT  
tDQSH (min.)  
tDQSL (min.) tDQSH (min.) tDQSL (min.)  
tWLDQSEN  
diff_DQS*4  
tWLOE  
tWLO  
tWLMRD  
tWLO  
All DQs,  
Prime DQ*1  
Remaining  
DQs  
Notes:1. DRAM has the option to drive leveling feedback on a prime DQ or all DQs. If feedback is driven only on one DQ,  
the remaining DQs must be driven low as shown in above Figure, and maintained at this state through out  
the leveling procedure.  
2. MRS : Load MR1 to enter write leveling mode.  
3. NOP : NOP or deselec  
4. diff_DQS is the differential data strobe (DQS, /DQS). Timing reference points are the zero crossing. DQS is  
shown with solid line, /DQS is shown with dotted line.  
5. CK, /CK : CK is shown with solid dark line, where as /CK is drawn with dotted line.  
6. DQS needs to fulfill minimum pulse width requirements tDQSH (min.) and tDQSL (min.) as defined for regular  
writes; the max pulse width is system dependent.  
Timing Details Write leveling Sequence  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
73  
EDJ5308BBBG, EDJ5316BBBG  
Write Leveling Mode Exit  
The following sequence describes how Write Leveling Mode should be exited:  
1. After the last rising strobe (see T111) edge stop driving the strobe signals (see ~T128). Note: From now on, DQ  
pins are in undefined driving mode, and will remain undefined, until tMOD after the respective MR command  
(T145).  
2. Drive ODT pin low (tIS must be satisfied) and keep it low (see T128).  
3. After the RTT is switched off: disable Write Level Mode via MR command (see T132).  
4. After tMOD is satisfied (T145), any valid commands may be registered. (MR commands may already be issued  
after tMRD (T136).  
T111  
T112  
T116  
T117  
T128 T131  
T132  
T136  
MRS  
T145  
Valid  
CK, /CK  
Command  
WL_off  
1
tMOD  
BA  
Valid  
VVaalidlid  
tIS  
tMRD  
ODT  
tODTL_off  
RTT_DQS-/DQS  
DQS-/DQS  
RTT_DQ  
tWLO + tWLOE  
DQ  
Result = 1  
Timing Details Write leveling Exit  
[Related Parameters]  
Symbol  
Parameter  
min.  
40  
max.  
Unit  
First DQS pulse rising edge after write leveling mode is  
programmed  
DQS, /DQS delay after write leveling mode is programmed  
Write leveling setup time from rising CK, /CK crossing to rising  
DQS, /DQS crossing  
1
1
1
tWLMRD  
tWLDQSEN  
tWLS  
*
*
*
tCK  
tCK  
tCK  
25  
0.15  
Write leveling hold time from rising DQS, /DQS crossing to rising  
CK, /CK crossing  
Write leveling output delay  
1
tWLH  
0.15  
0
*
tCK  
tWLO  
10  
2
ns  
ns  
tWLOE  
Write leveling output error  
Note: 1. The max values are system dependent.  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
74  
EDJ5308BBBG, EDJ5316BBBG  
TDQS, /TDQS function (MR1)  
TDQS (Termination Data Strobe) is a feature of ×8 DDR3 SDRAM that provides additional termination resistance  
outputs that may be useful in some system configurations.  
TDQS is not supported in ×16 configurations. When enabled via the mode register, the same termination resistance  
function is applied to the TDQS and /TDQS pins that are applied to the DQS and /DQS pins.  
In contrast to the RDQS function of DDR2 SDRAM, TDQS provides the termination resistance function only. The  
data strobe function of RDQS is not provided by TDQS.  
The TDQS and DM functions share the same pin. When the TDQS function is enabled via the mode register, the DM  
function is not supported. When the TDQS function is disabled, the DM function is provided and the /TDQS pin is  
not used. See Table TDQS, /TDQS function for details.  
The TDQS function is available in ×8 DDR3 SDRAM only and must be disabled via the mode register A11 = 0 in  
MR1 for ×16 configurations.  
[TDQS, /TDQS function]  
A11@MR1  
TDQS enable  
Disable  
0
1
Enable  
Notes: 1. If TDQS is enabled, the DM function is disabled.  
2. When not used, TDQS function can be disabled to save termination power  
3. TDQS function is only available for ×8 DRAM and must be disabled for ×16  
[Function matrix]  
A11@MR1 (TDQS enable)  
DM/TDQS  
DM  
NU/ /TDQS  
High-Z  
0
1
TDQS  
/TDQS  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
75  
EDJ5308BBBG, EDJ5316BBBG  
Extended Temperature Usage (MR2)  
[Mode Register Description]  
Field Bits Description  
Description  
Auto self-refresh (ASR) (Optional)  
when enabled, DDR3 SDRAM automatically  
provides self-refresh power management functions  
for all supported operating temperature values. If  
not enabled, the SRT bit must be programmed to  
indicate TC during subsequent self-refresh  
operation  
0
1
Manual SR Reference (SRT)  
ASR  
SRT  
A6  
A7  
ASR enable (optional)  
Self-Refresh Temperature (SRT) Range  
If ASR = 0, the SRT bit must be programmed to  
indicate TC during subsequent self-refresh  
operation  
0
1
Normal operating temperature range  
Extended (optional) operating temperature range  
If ASR = 1, SRT bit must be set to 0  
Auto Self-Refresh Mode - ASR Mode (optional)  
DDR3 SDRAM provides an Auto Self-Refresh mode (ASR) for application ease. ASR mode is enabled by setting  
MR2 bit A6 = 1 and MR2 bit A7 = 0. The DRAM will manage self-refresh entry in either the Normal or Extended  
(optional) Temperature Ranges. In this mode, the DRAM will also manage self-refresh power consumption when the  
DRAM operating temperature changes, lower at low temperatures and higher at high temperatures.  
If the ASR option is not supported by the DRAM, MR2 bit A6 must be set to 0.  
If the ASR mode is not enabled (MR2 bit A6 = 0), the SRT bit (MR2 A7) must be manually programmed with the  
operating temperature range required during self-refresh operation.  
Support of the ASR option does not automatically imply support of the Extended Temperature Range.  
Self- Refresh Temperature Range - SRT (optional)  
If ASR = 0, the Self-Refresh Temperature (SRT) Range bit must be programmed to guarantee proper self-refresh  
operation. If SRT = 0, then the DRAM will set an appropriate refresh rate for self-refresh operation in the Normal  
Temperature Range. If SRT = 1 then the DRAM will set an appropriate, potentially different, refresh rate to allow  
self-refresh operation in either the Normal or Extended Temperature Ranges. The value of the SRT bit can effect  
self-refresh power consumption, please refer to the IDD table for details.  
For parts that do not support the Extended Temperature Range, MR2 bit A7 must be set to 0 and the DRAM should  
not be operated outside the Normal Temperature Range.  
[Self-Refresh Mode Summary]  
MR2  
Allowed operating temperature range  
A6  
0
A7  
0
Self-refresh operation  
for self-refresh mode  
Self-refresh rate appropriate for the Normal Temperature Range  
Normal (0°C to +85°C)  
Self-refresh rate appropriate for either the Normal or Extended  
Temperature Ranges. The DRAM must support Extended  
Temperature Range. The value of the SRT bit can effect self-  
refresh power consumption, please refer to the Self- refresh  
Current for details.  
ASR enabled (for devices supporting ASR and Normal  
Temperature Range). Self-refresh power consumption is  
temperature dependent  
0
1
1
0
Normal and Extended (0°C to +95°C)  
Normal (0°C to +85°C)  
ASR enabled (for devices supporting ASR and Extended  
Temperature Range). Self-refresh power consumption is  
temperature dependent  
1
1
0
1
Normal and Extended (0°C to +95°C)  
Illegal  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
76  
EDJ5308BBBG, EDJ5316BBBG  
Multi Purpose Register (MR3)  
The Multi Purpose Register (MPR) function is used to read out predefined system timing calibration bit sequence.  
Conceptual Block Diagram of Multi Purpose Register  
To enable the MPR, a mode register set (MRS) command must be issued to MR3 register with bit A2 = 1. Prior to  
issuing the MRS command, all banks must be in the idle state (all banks precharged and tRP/tRPA met). Once the  
MPR is enabled, any subsequent READ or READA commands will be redirected to the multi purpose register. The  
resulting operation when a READ or READA command is issued is defined by MR3 bits [A1: A0] when the MPR is  
enabled. When the MPR is enabled, only READ or READA commands are allowed until a subsequent MRS  
command is issued with the MPR disabled (MR3 bit A2=0). Power-down mode, self-refresh, and any other non-  
READ/READA command are not allowed during MPR enable mode. The /RESET function is supported during MPR  
enable mode.  
[Functional Description of MR3 Bits for MPR]  
MR3  
A2  
A [1:0]  
MPR  
MPR-Loc  
Function  
Notes  
1
Normal operation, no MPR transaction.  
All subsequent reads will come from DRAM array.  
All subsequent WRITEs will go to DRAM array.  
Enable MPR mode, subsequent READ/READA commands defined by MR3 A [1:0]  
bits.  
Don’t care  
(0 or 1)  
0
1
MR3 A [1:0]  
Note: 1. See Available Data Locations and Burst Order Bit Mapping for Multi Purpose Register table  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
77  
EDJ5308BBBG, EDJ5316BBBG  
One bit wide logical interface via all DQ pins during READ operation  
Register Read on ×8:  
DQ [0] drives information from MPR.  
DQ [7:1] either drive the same information as DQ [0], or they drive 0.  
Register Read on ×16:  
DQL [0] and DQU [0] drive information from MPR.  
DQL [7:1] and DQU [7:1] either drive the same information as DQL [0], or they drive 0.  
Note: A standardization of which DQ is used by DDR3 SDRAM for MPR reads is strongly recommended to ensure  
functionality also for AMB2 on DDR3 FB-DIMM.  
Addressing during Multi Purpose Register reads for all MPR agents:  
BA [2:0]: don’t care.  
A [1:0]: A [1:0] must be equal to ‘00’b. Data read burst order in nibble is fixed  
A [2]:  
For BL8, A [2] must be equal to 0.  
Burst order is fixed to [0,1,2,3,4,5,6,7] *1  
For Burst Chop 4 cases, the burst order is switched on nibble base  
A [2] = 0, Burst order: 0,1,2,3 *1  
A [2] = 1, Burst order: 4,5,6,7 *1  
A [9:3]: don’t care  
A10(AP): don’t care  
A12(/BC): Selects burst chop mode on-the-fly, if enabled within MR0  
A11: don’t care  
Regular interface functionality during register reads:  
Support two burst ordering which are switched with A2 and A [1:0] = 00.  
Support of read burst chop (MRS and on-the-fly via A12(/BC).  
All other address bits (remaining column address bits including A10, all bank address bits) will be ignored by the  
DDR3 SDRAM.  
Regular read latencies and AC timings apply.  
DLL must be locked prior to MPR Reads.  
Note: Burst order bit 0 is assigned to LSB and burst order bit 7 is assigned to MSB of the selected MPR agent.  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
78  
EDJ5308BBBG, EDJ5316BBBG  
Functional Block Diagrams  
Figures below provide functional block diagrams for the multi purpose register ×8 and ×16 DDR3 SDRAM.  
Memory Array  
8×8  
8×8  
64  
Copy to  
DQ[7:0]  
DQ[7:0]  
8
Q
Read Path  
DQS  
MPR  
/DQS  
DM  
ByteLane  
Functional Block Diagram of Multi Purpose Register in ×8 DDR3 SDRAM  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
79  
EDJ5308BBBG, EDJ5316BBBG  
Memory Array  
DQU[7:0]  
8×8  
Read Path  
DQSU  
/DQSU  
8×8  
8×8  
64  
DMU  
ByteLaneUpper  
Copy to  
DQU[7:0]  
8
8×8  
8×8  
64  
Copy to  
DQL[7:0]  
DQL[7:0]  
8
Q
Read Path  
DQSL  
MPR  
/DQSL  
DML  
ByteLaneLower  
Functional Block Diagram of Multi Purpose Register in ×16 DDR3 SDRAM  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
80  
EDJ5308BBBG, EDJ5316BBBG  
Register Address Table  
The table below provides an overview of the available data locations, how they are addressed by MR3 A [1:0] during  
a MR0 to MR3, and how their individual bits are mapped into the burst order bits during a multi purpose register  
read.  
[Available Data Locations and Burst Order Bit Mapping for Multi Purpose Register]  
Read  
MR3  
A [2]  
MR3  
A [1:0]  
Burst  
Length  
Function  
Address Burst Order and Data Pattern  
A [2:0]  
Notes  
Burst order 0,1,2,3,4,5,6,7  
BL8  
BC4  
BC4  
000  
1
1
1
Pre-defined pattern [0,1,0,1,0,1,0,1]  
Read predefined  
pattern for  
system  
Burst order 0,1,2,3,  
Pre-defined pattern [0,1,0,1]  
Burst order 4,5,6,7  
Pre-defined pattern [0,1,0,1]  
1
00  
000  
calibration  
100  
BL8  
BC4  
BC4  
BL8  
BC4  
BC4  
BL8  
BC4  
BC4  
000  
000  
100  
000  
000  
100  
000  
000  
100  
Burst order 0,1,2,3,4,5,6,7  
1
1
1
1
1
1
1
1
1
1
1
1
01  
10  
11  
RFU  
RFU  
RFU  
Burst order 0,1,2,3  
Burst order 4,5,6,7  
Burst order 0,1,2,3,4,5,6,7  
Burst order 0,1,2,3  
Burst order 4,5,6,7  
Burst order 0,1,2,3,4,5,6,7  
Burst order 0,1,2,3,  
Burst order 4,5,6,7  
Note: 1. Burst order bit 0 is assigned to LSB and burst order bit 7 is assigned to MSB of the selected MPR agent.  
Relevant Timing Parameters  
The following AC timing parameters are important for operating the Multi Purpose Register: tRP, tMRD, tMOD and  
tMPRR.  
Besides these timings, all other timing parameters needed for proper operation of the DDR3 SDRAM need to be  
observed.  
[MPR Recovery Time tMPRR]  
Symbol  
tMPRR  
Description  
Multi Purpose Register Recovery Time, defined between end of MPR read burst and MRS which  
reloads MPR or disables MPR function  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
81  
EDJ5308BBBG, EDJ5316BBBG  
Protocol Examples  
Protocol Example: Read Out Predetermined Read-Calibration Pattern  
Multiple reads from Multi Purpose Register, in order to do system level read timing calibration based on  
predetermined and standardized pattern.  
Protocol Steps:  
Precharge All  
Wait until tRP is satisfied  
MRS MR3, op-code “A2 = 1 “ and “A[1:0] = 00“  
Redirect all subsequent reads into the Multi Purpose Register, and load Pre-defined pattern into MPR.  
Wait until tMRD and tMOD are satisfied (Multi Purpose Register is then ready to be read). During the period  
MR3 A2 =1, no data write operation is allowed.  
Read:  
A [1:0] = ‘00’ (Data burst order is fixed starting at nibble, always 00 here)  
A [2] = ‘0’ (For BL8, burst order is fixed as 0,1,2,3,4,5,6,7)  
A12(/BC) = 1 (use regular burst length of 8)  
All other address pins (including BA [2:0] and A10(AP)): don’t care.  
After RL = AL + CL, DRAM bursts out the predefined Read Calibration Pattern.  
Memory controller repeats these calibration reads until read data capture at memory controller is optimized.  
After end of last MPR read burst wait until tMPRR is satisfied.  
MRS MR3, op-code “A2 = 0“ and “A[1:0] = valid data but value are don’t care“  
All subsequent read and write accesses will be regular READs and WRITEs from/to the DRAM array.  
Wait until tMRD and tMOD are satisfied  
Continue with “regular” DRAM commands, like activate a memory bank for regular read or write access,  
T0  
T4 T5  
T9  
T17 T18 T19 T20 T21 T22 T23 T24 T25 T26 T27 T28 T29 T30 T31  
T39  
CK  
/CK  
tMRD  
tMOD  
1
*
Command  
PALL  
MRS  
READ  
MRS  
tMPRR  
NOP  
tRP  
NOP  
NOP  
NOP  
tMOD  
3
0
Valid  
3
BA  
2
*
0
0
Valid  
A[1:0]  
2
*
1
0
A[2]  
00  
Valid  
Valid  
Valid  
00  
A[9:3]  
1
0
0
0
0
0
0
0
0
A10(AP)  
A[11]  
1
*
A12(/BC)  
A[15:13]  
Valid  
Valid  
DQS, /DQS  
DQ  
RL  
Notes: 1. READ with BL8 either by MRS or OTF  
2. Memory Control must drive 0 on A[2:0]  
VIH or VIL  
MPR Readout of Predefined Pattern, BL8 fixed Burst Order, Single Readout  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
82  
EDJ5308BBBG, EDJ5316BBBG  
T0  
T4 T5  
T9  
T17 T18 T19 T20 T21 T22 T23 T24 T25 T26 T27 T28 T29 T30 T31  
T43  
CK  
/CK  
tMRD  
tMOD  
MRS  
tMPRR  
1
1
*
*
Command  
PALL NOP MRS  
tRP  
NOP  
READ  
NOP  
READ  
NOP  
NOP  
tMOD  
tCCD  
BA  
3
3
Valid  
Valid  
2
2
*
*
A[1:0]  
A[2]  
0
1
0
0
0
0
Valid  
0
2
2
*
*
00  
00  
0
A[9:3]  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
1
0
0
0
0
A10, AP  
A[11]  
0
0
0
1
1
*
*
A12(/BC)  
A[15:13]  
Valid  
Valid  
Valid  
Valid  
DQS, /DQS  
RL  
RL  
DQ  
Notes: 1. READ with BL8 either by MRS or OTF  
2. Memory Control must drive 0 on A[2:0]  
VIH or VIL  
T43  
MPR Readout of Predefined Pattern, BL8 Fixed Burst Order, Back-to-Back Readout  
T0  
T4 T5  
T9  
T17 T18 T19 T20 T21 T22  
T23 T24 T25 T26 T27 T28 T29 T30 T31  
CK  
/CK  
tMRD  
tMOD  
1
1
*
*
Command  
PALL NOP MRS  
tRP  
NOP  
READ  
READ  
MRS  
tMPRR  
NOP  
NOP  
NOP  
tMOD  
tCCD  
3
0
3
Valid  
Valid  
BA  
A[1:0]  
2
2
*
*
0
0
Valid  
0
0
1
3
4
*
*
1
A[2]  
00  
00  
0
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
A[9:3]  
1
0
0
0
0
A10(AP)  
A[11]  
0
0
0
1
1
*
*
A12(/BC)  
A[15:13]  
Valid  
Valid  
Valid  
Valid  
DQS, /DQS  
DQ  
RL  
RL  
VIH or VIL  
Notes:1. READ with BC4 either by MRS or OTF  
2. Memory Control must drive 0 on A[1:0]  
3. A[2] = 0 selects lower 4 nibble bits 0 ... 3  
4. A[2] = 1 selects upper 4 nibble bits 4 ... 7  
MPR Readout Predefined Pattern, BC4, Lower Nibble Then Upper Nibble  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
83  
EDJ5308BBBG, EDJ5316BBBG  
T0  
T4 T5  
T9  
T17 T18 T19 T20 T21 T22 T23 T24 T25 T26 T27 T28 T29 T30 T31  
T43  
CK, /CK  
tMRD  
tMOD  
1
1
*
*
Command  
PALL NOP MRS  
tRP  
NOP  
READ  
NOP  
READ  
MRS  
tMPRR  
NOP  
NOP  
tMOD  
tCCD  
3
0
3
Valid  
0
Valid  
Valid  
BA  
A[1:0]  
2
*
2
*
0
1
0
0
4
*
3
*
1
A[2]  
00  
00  
0
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
A[9:3]  
1
0
0
0
0
A10, AP  
A[11]  
0
0
0
1
1
*
*
A12(/BC)  
A[15:13]  
Valid  
Valid  
Valid  
Valid  
DQS, /DQS  
DQ  
RL  
RL  
Notes:1. READ with BC4 either by MRS or OTF  
2. Memory Control must drive 0 on A[1:0]  
3. A[2] = 0 selects lower 4 nibble bits 0 ... 3  
4. A[2] = 1 selects upper 4 nibble bits 4 ... 7  
VIH or VIL  
MPR Readout of Predefined Pattern, BC4, Upper Nibble Then Lower Nibble  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
84  
EDJ5308BBBG, EDJ5316BBBG  
Operation of the DDR3 SDRAM  
Read Timing Definition  
CK, /CK crossing to DQS, /DQS crossing  
tDQSCK; rising edges only of CK and DQS  
tQSH; rising edges of DQS to falling edges of DQS  
tQSL; rising edges of / DQS to falling edges of /DQS  
tLZ (DQS), tHZ (DQS) for preamble/postamble (see tHZ (DQS), tLZ (DQS)  
RL Measured to this point  
CK  
/CK  
tDQSCK(min.)  
tDQSCK(min.)  
tDQSCK(min.)  
tDQSCK(min.)  
tLZ(DQS)(min.)  
tQSL  
tQSH  
tRPRE  
tRPST  
DQS, /DQS  
Early strobe  
Bit0  
Bit1  
Bit2  
Bit3  
Bit4  
Bit5  
Bit6  
Bit7  
tDQSCK(max.)  
tDQSCK(max.)  
tQSL  
tDQSCK(max.) tDQSCK(max.)  
tLZ(DQS)(max.)  
tHZ(DQS)(max.)  
tQSH  
tRPRE  
tRPST  
DQS, /DQS  
Late strobe  
Bit0  
Bit1  
Bit2  
Bit3  
Bit4  
Bit5  
Bit6  
Bit7  
Notes: Within a burst, rising strobe edge is not necessarily fixed to be always at tDQSCK(min.) or tDQSCK(max.).  
Instead, rising strobe edge can vary between tDQSCK(min.) or tDQSCK(max.) within a burst.  
Likewise tLZ(DQS)(min.) and tHZ(DQS)(min.) are not tied to tDQSCK(min.) (early strobe case) and  
tLZ(DQS)(max.) and tHZ(DQS)(max.) are not tied to tDQSCK(max.) (late strobe case).  
The minimum pulse width of read preamble is defined by tRPRE(min.).  
The minimum pulse width of read preamble is defined by tRPST(min.).  
DDR3 Clock to Data Strobe Relationship  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
85  
EDJ5308BBBG, EDJ5316BBBG  
DQS, /DQS crossing to Data Output  
tDQSQ; both rising/falling edges of DQS, no tAC defined  
T0  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
/CK  
CK  
Command*3  
READ  
NOP  
RL = AL + CL  
Bank  
Coln  
Address*4  
tRPRE  
tQH  
tQH  
tRPST  
DQS, /DQS  
tDQSQ(max.)  
tDQSQ(max.)  
tLZ(DQ)(max.)  
tHZ(DQ)(max.)  
Dout Dout  
n+1  
Dout Dout  
n+2 n+3  
Dout Dout Dout Dout  
n+4 n+5 n+6 n+7  
DQ*2  
n
tLZ(DQ)(min.)  
(Last data valid)  
Dout Dout  
n+1  
Dout Dout  
n+2 n+3  
Dout Dout Dout Dout  
n+4 n+5 n+6 n+7  
DQ*2  
n
(First data no longer valid)  
Dout  
n
Dout  
n+1  
Dout  
n+2  
Dout  
n+3  
Dout  
n+4  
Dout  
n+5  
Dout  
n+6  
Dout  
n+7  
All DQS collectively  
Data valid  
Data valid  
VIH or VIL  
Notes: 1. BL8, RL = 5(AL = 0, CL = 5).  
2. Dout n = data-out from column n.  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BL8 setting activated by MR0 bit [A1, A0] = [0, 0] and A12 = 1 during READ command at T0.  
5. Output timings are referenced to VDDQ/2, and DLL on for locking.  
6. tDQSQ defines the skew between DQS, /DQS to data and does not define DQS, /DQS to clock.  
7. Early data transitions may not always happen at the same DQ.  
Data transitions of a DQ can vary(either early or late) within a busy.  
DDR3 Data Strobe to Data Relationship  
tLZ (DQS), tLZ (DQ), tHZ (DQS), tHZ (DQ) Notes  
tHZ and tLZ transitions occur in the same access time as valid data transitions. These parameters are referenced to  
a specific voltage level which specifies when the device output is no longer driving tHZ(DQS) and tHZ(DQ), or begins  
driving tLZ(DQS), tLZ(DQ). The figure below shows a method to calculate the point when device is no longer driving  
tHZ(DQS) and tHZ(DQ), or begins driving tLZ(DQS), tLZ(DQ) by measuring the signal at two different voltages. The  
actual voltage measurement points are not critical as long as the calculation is consistent. The parameters  
tLZ(DQS), tLZ(DQ), tHZ(DQS), and tHZ(DQ) are defined as singled ended.  
VTT + 2x mV  
VTT + x mV  
VOH x mV  
VOH 2x mV  
tLZ (DQS), tLZ (DQ)  
tHZ (DQS), tHZ (DQ)  
VTT x mV  
VOL + 2x mV  
VOL + x mV  
T2  
T1  
VTT 2x mV  
T1  
T2  
tHZ (DQS), tHZ (DQ) end point = 2 × T1 - T2  
tLZ (DQS), tLZ (DQ) begin point = 2 × T1 - T2  
Method for Calculating Transitions and Endpoints  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
86  
EDJ5308BBBG, EDJ5316BBBG  
Read Operation  
During read or write command DDR3 will support BC4 and BL8 on the fly using address A12 during the READ or  
WRITE (auto precharge can be enabled or disabled).  
A12 = 0, BC4 (BC4 = burst chop, tCCD = 4)  
A12 = 1, BL8  
A12 will be used only for burst length control, not a column address.  
The Burst Read command is initiated by having /CS and /CAS low while holding /RAS and /WE high at the rising  
edge of the clock. The address inputs determine the starting column address for the burst. The delay from the start  
of the command to when the data from the first cell appears on the outputs is equal to the value of the read latency  
(RL). The data strobe output (DQS) is driven low 1 clock cycle before valid data (DQ) is driven onto the data bus.  
The first bit of the burst is synchronized with the rising edge of the data strobe (DQS). Each subsequent data-out  
appears on the DQ pin in phase with the DQS signal in a source synchronous manner.  
The RL is equal to an additive latency (AL) plus /CAS latency (CL). The CL is defined by the mode register 0 (MR0),  
similar to the existing SDR and DDR-I SDRAMs. The AL is defined by the mode register 1  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
CK  
/CK  
Command*3  
Address*4  
READ  
NOP  
Bank  
Col n  
tRPST  
tRPRE  
DQS, /DQS  
DQ*2  
Dout Dout Dout  
n+1 n+2 n+3  
Dout Dout Dout  
n+5 n+6 n+7  
Dout  
n
Dout  
n+4  
CL = 5  
RL = AL + CL  
VIH or VIL  
Notes: 1. BL8, AL = 0, RL = 5, CL = 5  
2. Dout n = data-out from column n.  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BL8 setting activated by MR0 bit [A1, A0] = [0, 0] or MR0 bit [A1, A0] = [0, 1] and A12 = 1 during READ command at T0.  
Burst Read Operation, RL = 5  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
87  
EDJ5308BBBG, EDJ5316BBBG  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11 T12  
T13  
CK  
/CK  
Command*3  
Address*4  
READ  
NOP  
Bank  
Col n  
tRPST  
tRPRE  
DQS, /DQS*2  
DQ  
Dout Dout Dout Dout Dout Dout Dout Dout  
n+1 n+2 n+3 n+4 n+5 n+6 n+7  
n
AL = 4  
CL = 5  
RL = AL + CL  
VIH or VIL  
Notes: 1. BL8, RL = 9, AL = (CL 1), CL = 5  
2. Dout n = data-out from column n.  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BL8 setting activated by either MR0 bit [A1, A0] = [0, 0] or MR0 bit [A1, A0] = [0, 1] and A12 = 1 during READ command at T0.  
Burst Read Operation, RL = 9  
T0  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13 T14  
CK  
/CK  
Command*3  
READ  
READ  
NOP  
NOP  
tCCD  
Address*4  
Bank  
Col n  
Bank  
Col b  
tRPST  
tRPRE  
DQS, /DQS  
DQ*2  
Dout Dout Dout Dout Dout Dout Dout Dout Dout Dout Dout Dout Dout Dout Dout Dout  
n
n+1 n+2 n+3 n+4 n+5 n+6 n+7  
b
b+1 b+2 b+3 b+4 b+5 b+6 b+7  
RL = 5  
RL = 5  
VIH or VIL  
Notes: 1. BL8, RL = 5 (CL = 5, AL = 0).  
2. Dout n (or b) = data-out from column n (or column b).  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BL8 setting activated by MR0 bit [A1, A0] = [0, 0] or MR0 bit [A1, A0] = [0, 1] and A12 = 1 during READ command at T0 and T4.  
READ (BL8) to READ (BL8)  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
88  
EDJ5308BBBG, EDJ5316BBBG  
T0  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13 T14  
CK  
/CK  
Command*3  
Address*4  
READ  
READ  
NOP  
NOP  
tCCD  
Bank  
Col b  
Bank  
Col n  
tRPST  
tRPST  
tRPRE  
tRPRE  
DQS, /DQS  
DQ*2  
Dout Dout Dout Dout  
Dout Dout Dout Dout  
b+1 b+2 b+3  
n
n+1 n+2 n+3  
b
RL = 5  
RL = 5  
VIH or VIL  
Notes: 1. BC4, RL = 5 (CL = 5, AL = 0).  
2. Dout n (or b) = data-out from column n (or column b).  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BC4 setting activated by MR0 bit [A1, A0] = [1, 0] or MR0 bit [A1, A0] = [0, 1] and A12 = 0 during READ command at T0 and T4.  
READ (BC4) to READ (BC4)  
T0  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13 T14 T15  
CK  
/CK  
Command*3  
READ  
WRIT  
NOP  
NOP  
tWR  
READ to WRIT command delay = RL + tCCD + 2tCK WL  
tBL = 4 clocks  
tWTR  
Address*4  
Bank  
Col n  
Bank  
Col b  
tRPRE  
tRPST  
tWPRE  
tWPST  
DQS, /DQS  
DQ*2  
Dout Dout Dout Dout Dout Dout Dout Dout  
Din Din Din Din  
Din Din Din Din  
n
n+1 n+2 n+3 n+4 n+5 n+6 n+7  
b
b+1 b+2 b+3 b+4 b+5 b+6 b+7  
RL = 5  
WL = 5  
VIH or VIL  
Notes: 1. BL8, RL = 5 (CL = 5, AL = 0), WL = 5 (CWL = 5, AL = 0).  
2. Dout n = data-out from column n, Din b= data-in from column b.  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BL8 setting activated by MR0 bit [A1, A0] = [0, 0] or MR0 bit [A1, A0] = [0, 1] and A12 = 1 during READ command at T0 and WRIT command T6.  
READ (BL8) to WRITE (BL8)  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
89  
EDJ5308BBBG, EDJ5316BBBG  
T0  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13 T14 T15  
CK  
/CK  
Command*3  
READ  
WRIT  
NOP  
NOP  
tWR  
READ to WRIT Command delay = RL + tCCD/2 + 2tCK WL  
tBL = 4 clocks  
tWTR  
Bank  
Col n  
Bank  
Col b  
Address*4  
tRPRE  
tRPST  
tWPRE  
tWPST  
DQS, /DQS  
DQ*2  
Dout Dout Dout Dout  
n+1 n+2 n+3  
Din Din Din Din  
b+1 b+2 b+3  
n
b
RL = 5  
WL = 5  
VIH or VIL  
Notes: 1. BC4, RL = 5 (CL = 5, AL = 0), WL = 5 (CWL = 5, AL = 0).  
2. Dout n = data-out from column n, Din b= data-in from column b.  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BC4 setting activated by MR0 bit [A1, A0] = [0, 1] and A12 = 0 during READ command at T0 and WRIT command T4.  
READ (BC4) to WRITE (BC4) OTF  
T0  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13 T14  
CK  
/CK  
Command*3  
READ  
READ  
NOP  
NOP  
tCCD  
Bank  
Col n  
Bank  
Col b  
Address*4  
tRPST  
tRPRE  
DQS, /DQS  
DQ*2  
Dout Dout Dout Dout Dout Dout Dout Dout Dout Dout Dout Dout  
n
n+1 n+2 n+3 n+4 n+5 n+6 n+7  
b
b+1 b+2 b+3  
RL = 5  
RL = 5  
VIH or VIL  
Notes: 1. RL = 5 (CL = 5, AL = 0).  
2. Dout n (or b) = data-out from column n (or column b).  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BC4 setting activated by MR0 bit [A1, A0] = [0, 1] and A12 = 0 during READ command at T4.  
BL8 setting activated by MR0 bit [A1, A0] = [0, 1] and A12 = 1 during READ command at T0.  
READ (BL8) to READ (BC4) OTF  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
90  
EDJ5308BBBG, EDJ5316BBBG  
T0  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13 T14  
CK  
/CK  
Command*3  
Address*4  
READ  
READ  
NOP  
NOP  
tCCD  
Bank  
Col n  
Bank  
Col b  
tRPST  
tRPRE  
tRPRE  
tRPST  
DQS, /DQS  
DQ*2  
Dout Dout Dout Dout  
Dout Dout Dout Dout Dout Dout Dout Dout  
b+1 b+2 b+3 b+4 b+5 b+6 b+7  
n
n+1 n+2 n+3  
b
RL = 5  
RL = 5  
VIH or VIL  
Notes: 1. RL = 5 (CL = 5, AL = 0).  
2. Dout n (or b) = data-out from column n (or column b).  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BC4 setting activated by MR0 bit [A1, A0] = [0, 1] and A12 = 0 during READ command at T0.  
BL8 setting activated by MR0 bit [A1, A0] = [0, 1] and A12 = 1 during READ command at T4.  
READ (BC4) to READ (BL8) OTF  
T0  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13 T14 T15  
CK  
/CK  
Command*3  
READ  
WRIT  
NOP  
NOP  
tWR  
tBL = 4 clocks  
READ to WRIT command delay = RL + tCCD/2 + 2tCK WL  
tWTR  
Address*4  
Bank  
Col n  
Bank  
Col b  
tRPST  
tWPST  
tWPRE  
tRPRE  
DQS, /DQS  
DQ*2  
Dout Dout Dout Dout  
n+1 n+2 n+3  
Din Din Din Din  
Din Din Din  
Din  
n
b
b+1 b+2 b+3 b+4 b+5 b+6 b+7  
RL = 5  
WL = 5  
VIH or VIL  
Notes: 1. RL = 5 (CL = 5, AL = 0), WL = 5 (CWL = 5, AL = 0).  
2. Dout n = data-out from column n , Din b= data-in from column b.  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BC4 setting activated by MR0 bit [A1, A0] = [0, 1] and A12 = 0 during READ command at T0.  
BL8 setting activated by MR0 bit [A1, A0] = [0, 1] and A12 = 1 during WRIT command at T4.  
READ (BC4) to WRITE (BL8) OTF  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
91  
EDJ5308BBBG, EDJ5316BBBG  
T0  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13 T14 T15  
CK  
/CK  
Command*3  
READ  
WRIT  
NOP  
NOP  
tWR  
READ to WRIT command delay = RL + tCCD + 2tCK WL  
tBL = 4 clocks  
tWTR  
Bank  
Col n  
Bank  
Col b  
Address*4  
tRPRE  
tRPST  
tWPRE  
tWPST  
DQS, /DQS  
DQ*2  
Dout Dout Dout Dout Dout Dout Dout Dout  
Din Din Din Din  
b+1 b+2 b+3  
n
n+1 n+2 n+3 n+4 n+5 n+6 n+7  
b
RL = 5  
WL = 5  
VIH or VIL  
Notes: 1. RL = 5 (CL = 5, AL = 0), WL = 5 (CWL = 5, AL = 0).  
2. Dout n = data-out from column n, n Din b= data-in from column b.  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BL8 setting activated by MR0 bit [A1, A0] = [0, 1] and A12 = 1 during READ command at T0.  
BC4 setting activated by MR0 bit [A1, A0] = [0, 1] and A12 = 0 during WRIT command at T6.  
READ (BL8) to WRITE (BC4) OTF  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
92  
EDJ5308BBBG, EDJ5316BBBG  
Write Timing Definition  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
1
/CK*  
CK  
3
WRIT  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Command*  
WL = AL + CWL  
Bank,  
Col n  
4
Address*  
tDQSS tDSH  
tDSH  
tDSH  
tDSH  
tWPRE (min)  
tWPST (min)  
tDQSS(min)  
DQS, /DQS  
tDQSH  
tDQSL tDQSL  
tDQSH  
tDQSH  
tDQSH  
tDQSL  
tDQSH (min)  
tDQSL  
tDQSL (min)  
tDSS  
tDSS  
tDSS  
tDSS  
tDSS  
Din  
Din  
Din  
Din  
Din  
Din  
Din  
Din  
n
2
DQ*  
n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7  
tDSH  
tDSH  
tDSH  
tDSH  
tWPRE (min)  
tWPST (min)  
tDQSL (min)  
DQS, /DQS  
tDQSH  
tDQSH  
tDQSH  
tDQSH  
tDQSL  
tDQSH (min)  
tDQSL  
tDQSL  
tDQSL  
tDSS  
tDSS  
tDSS  
tDSS  
tDSS  
Din  
Din  
Din  
Din  
Din  
Din  
Din  
Din  
n
2
DQ*  
n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7  
tDQSS  
tDSH  
tWPRE (min)  
tDSH  
tDSH  
tDSH  
tDQSS(max)  
tWPST (min)  
DQS, /DQS  
tDQSH  
tDQSL  
tDQSH  
tDQSH  
tDQSH  
tDQSL  
tDQSL  
tDQSL  
tDQSL (min)  
tDQSH (min)  
tDSS  
tDSS  
tDSS  
tDSS  
tDSS  
Din  
n
Din  
Din  
Din  
Din  
Din  
Din  
Din  
2
DQ*  
n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7  
Notes: 1.  
BL8, WL = 5 (AL = 0, CWL = 5)  
Din n = data-in from column n.  
VIH or VIL  
2.  
3.  
NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BL8 setting activated by MR0 bit [A1, A0] = [0, 0] or MR0 bit [A1, A0] = [0, 1] and A12 = 1 during WRIT command at T0.  
5. tDQSS must be met at each rising clock edge.  
Write Timing Definition  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
93  
EDJ5308BBBG, EDJ5316BBBG  
Write Operation  
During read or write command DDR3 will support BC4 and BL8 on the fly using address A12 during the READ or  
WRITE (auto precharge can be enabled or disabled).  
A12 = 0, BC4 (BC4 = burst chop, tCCD = 4)  
A12 = 1, BL8  
A12 will be used only for burst length control, not a column address.  
The Burst Write command is initiated by having /CS, /CAS and /WE low while holding /RAS high at the rising edge of  
the clock. The address inputs determine the starting column address. Write latency (WL) is equal to (AL + CWL). A  
data strobe signal (DQS) should be driven low (preamble) one clock prior to the WL. The first data bit of the burst  
cycle must be applied to the DQ pins at the first rising edge of the DQS following the preamble. The tDQSS  
specification must be satisfied for write cycles. The subsequent burst bit data are issued on successive edges of the  
DQS until the burst length of 4 is completed. When the burst has finished, any additional data supplied to the DQ  
pins will be ignored. The DQ Signal is ignored after the burst write operation is complete. The time from the  
completion of the burst write to bank precharge is the write recovery time (tWR).  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11 T12  
T13  
CK  
/CK  
Command*3  
Address*4  
NOP  
WRIT  
WL = AL + CWL  
Bank  
Col n  
tWPRE  
tWPST  
DQS, /DQS  
DQ*2  
Din Din Din Din Din Din Din Din  
n+1 n+2 n+3 n+4 n+5 n+6 n+7  
n
VIH or VIL  
Notes: 1. BL8, WL = 5 (AL = 0, CWL = 5)  
2. Din n = data-in from column n.  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BL8 setting activated by either MR0 bit [A1, A0] = [0, 0] or MR0 bit [A1, A0] = [0, 1] and A12 = 1 during WRIT command at T0.  
Burst Write Operation, WL = 5  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
94  
EDJ5308BBBG, EDJ5316BBBG  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11 T12  
T13  
CK  
/CK  
Command*3  
Address*4  
NOP  
WRIT  
Bank  
Col n  
tWPST  
tWPRE  
DQS, /DQS  
DQ*2  
Din Din Din Din Din Din Din Din  
n+1 n+2 n+3 n+4 n+5 n+6 n+7  
n
AL = 4  
CWL = 5  
WL = AL + CWL  
VIH or VIL  
Notes: 1. BL8, WL = 9 (AL = (CL 1), CL = 5, CWL = 5)  
2. Din n = data-in from column n.  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BL8 setting activated by MR0 bit [A1, A0] = [0, 0] or MR0 bit [A1, A0] = [0, 1] and A12 = 1 during WRITcommand at T0.  
Burst Write Operation, WL = 9  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
Tn Tn+1 Tn+2  
CK  
/CK  
Command*3  
Address*4  
NOP  
WRIT  
READ  
tWTR*5  
Bank  
Col n  
Bank  
Col b  
tWPRE  
tWPST  
DQS, /DQS  
DQ*2  
Din  
n
Din Din Din  
n+1 n+2 n+3  
WL = 5  
RL = 5  
Notes: 1. BC4, WL = 5, RL = 5.  
2. Din n = data-in from column n; Dout b = data-out from column b.  
VIH or VIL  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BC4 setting activated by MR0 bit [A1, A0] = [1, 0] during WRIT command at T0 and READ command at Tn.  
5. tWTR controls the write to read delay to the same device and starts with the first rising clock edge after the  
last write data shown at T7.  
Write to Read Operation  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
95  
EDJ5308BBBG, EDJ5316BBBG  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
Tn Tn+1 Tn+2  
CK  
/CK  
Command*3  
Address*4  
WRIT  
PRE  
NOP  
tWR*5  
Bank  
Col n  
tWPRE  
tWPST  
DQS, /DQS  
DQ*2  
Din  
n
Din Din Din  
n+1 n+2 n+3  
WL = 5  
VIH or VIL  
Notes: 1. BC4, WL = 5, RL = 5.  
2. Din n = data-in from column n.  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BC4 setting activated by MR0 bit [A1, A0] = [1, 0] during WRIT command at T0.  
5. The write recovery time (tWR) referenced from the first rising clock edge after the last write data shown at T7.  
tWR specifies the last burst write cycle until the precharge command can be issued to the same bank .  
Write to Precharge Operation  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11 T12  
T13  
CK  
/CK  
Command*3  
Address*4  
WRIT  
NOP  
WRIT  
NOP  
tCCD  
tWR  
tBL = 4 clocks  
tWTR  
Bank  
Col n  
Bank  
Col b  
tWPRE  
tWPST  
DQS, /DQS  
DQ*2  
Din Din Din Din Din Din Din Din Din Din Din Din Din Din Din Din  
n
n+1 n+2 n+3 n+4 n+5 n+6 n+7  
b
b+1 b+2 b+3 b+4 b+5 b+6 b+7  
WL = 5  
WL = 5  
Notes: 1. BL8, WL = 5 (CWL = 5, AL = 0)  
2. Din n (or b) = data-in from column n (or column b).  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
VIH or VIL  
4. BL8 setting activated by either MR0 bit [A1, A0] = [0, 0] or MR0 bit [A1, A0] = [0, 1] and A12 = 1 during WRIT command at T0 and T4.  
WRITE (BL8) to WRITE (BL8)  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
96  
EDJ5308BBBG, EDJ5316BBBG  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11 T12  
T13  
CK  
/CK  
Command*3  
Address*4  
NOP  
tCCD  
NOP  
WRIT  
WRIT  
tWR  
tBL = 4 clocks  
tWTR  
Bank  
Col n  
Bank  
Col b  
tWPRE  
tWPST  
tWPRE  
tWPST  
DQS, /DQS  
DQ*2  
Din Din Din Din  
n+1 n+2 n+3  
Din Din Din Din  
b+1 b+2 b+3  
n
b
WL = 5  
WL = 5  
Notes: 1. BC4, WL = 5 (CWL = 5, AL = 0)  
2. Din n (or b) = data-in from column n (or column b).  
VIH or VIL  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BC4 setting activated by either MR0 bit [A1, A0] = [0, 1] and A12 = 0 during WRIT command at T0 and T4.  
WRITE (BC4) to WRITE (BC4)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11 T12  
T13  
T14  
CK  
/CK  
Command*3  
Address*4  
WRIT  
READ  
NOP  
NOP  
tWTR  
Bank  
Col n  
Bank  
Col b  
tWPRE  
tWPST  
DQS, /DQS  
DQ*2  
Din Din Din Din Din Din Din Din  
n+1 n+2 n+3 n+4 n+5 n+6 n+7  
n
WL = 5  
RL = 5  
Notes: 1. RL = 5 (CL = 5, AL = 0), WL = 5 (CWL = 5, AL = 0)  
2. Din n = data-in from column n; DOUT b = data-out from column b.  
VIH or VIL  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BL8 setting activated by MR0 bit [A1, A0] = [0, 0] or MR0 bit [A1, A0] = [0, 1] and A12 = 1 during WRIT command at T0.  
READ command at T13 can be either BC4 or BL8 depending on MR0 bit [A1, A0] and A12 status at T13.  
WRITE (BL8) to READ (BC4/BL8)  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
97  
EDJ5308BBBG, EDJ5316BBBG  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11 T12  
T13  
T14  
CK  
/CK  
Command*3  
Address*4  
WRIT  
READ  
NOP  
tBL = 4 clocks  
NOP  
tWTR  
Bank  
Col b  
Bank  
Col n  
tWPRE  
tWPST  
DQS, /DQS  
DQ*2  
Din Din Din Din  
n+1 n+2 n+3  
n
RL = 5  
WL = 5  
Notes: 1. BC4, RL = 5 (CL = 5, AL = 0), WL = 5 (CWL = 5, AL = 0)  
2. Din n = data-in from column n; Dout b = data-out from column b.  
VIH or VIL  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BC4 setting activated by MR0 bit [A1, A0] = [0, 1] and A12 = 0 during WRIT command at T0.  
READ command at T13 can be either BC4 or BL8 depending on MR0 bit [A1, A0] and A12 status at T13.  
WRITE (BC4) to READ (BC4/BL8)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11 T12  
T13  
T14  
CK  
/CK  
Command*3  
Address*4  
WRIT  
WRIT  
NOP  
tCCD  
NOP  
tBL = 4 clocks  
tWR  
tWTR  
Bank  
Col n  
Bank  
Col b  
tWPRE  
tWPST  
DQS, /DQS  
DQ*2  
Din Din Din Din Din Din Din Din Din Din Din Din  
n
n+1 n+2 n+3 n+4 n+5 n+6 n+7  
b
b+1 b+2 b+3  
WL = 5  
WL = 5  
Notes: 1. WL = 5 (CWL = 5, AL = 0)  
2. Din n (or b) = data-in from column n (or column b).  
VIH or VIL  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BL8 setting activated by MR0 bit [A1, A0] = [0, 1] and A12 = 1 during WRIT command at T0.  
BC4 setting activated by MR0 bit [A1, A0] = [0, 1] and A12 = 0 during WRIT command at T4.  
WRITE (BL8) to WRITE (BC4)  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
98  
EDJ5308BBBG, EDJ5316BBBG  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11 T12  
T13  
T14  
CK  
/CK  
Command*3  
Address*4  
NOP  
tCCD  
NOP  
tBL = 4 clocks  
WRIT  
WRIT  
tWR  
tWTR  
Bank  
Col n  
Bank  
Col b  
tWPRE  
tWPST  
tWPRE  
tWPST  
DQS, /DQS  
DQ*2  
Din Din Din Din  
Din Din Din Din Din Din Din Din  
b+1 b+2 b+3 b+4 b+5 b+6 b+7  
n
n+1 n+2 n+3  
b
WL = 5  
WL = 5  
Notes: 1. WL = 5 (CWL = 5, AL = 0)  
2. Din n (or b) = data-in from column n (or column b).  
VIH or VIL  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BC4 setting activated by MR0 bit [A1, A0] = [0, 1] and A12 = 0 during WRIT command at T0.  
BL8 setting activated by MR0 bit [A1, A0] = [0, 1] and A12 = 1 during WRIT command at T4.  
WRITE (BC4) to WRITE (BL8)  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
99  
EDJ5308BBBG, EDJ5316BBBG  
Write Timing Violations  
Motivation  
Generally, if timing parameters are violated, a complete reset/initialization procedure has to be initiated to make sure  
the DRAM works properly.  
However it is desirable for certain minor violations, that the DRAM is guaranteed not to "hang up" and error to be  
limited to that particular operation.  
For the following it will be assumed that there are no timing violations w.r.t to the write command itself (including  
ODT etc.) and that it does satisfy all timing requirements not mentioned below.  
Data Setup and Hold Violations  
Should the data to strobe timing requirements (tDS, tDH) be violated, for any of the strobe edges associated with a  
write burst, then wrong data might be written to the memory location addressed with this write command.  
In the example (Figure Write Timing Parameters) the relevant strobe edges for write burst A are associated with the  
clock edges: T5, T5.5, T6, T6.5, T7, T7.5, T8, T8.5.  
Subsequent reads from that location might result in unpredictable read data, however the DRAM will work properly  
otherwise.  
Strobe to Strobe and Strobe to Clock Violations  
Should the strobe timing requirements (tDQSH, tDQSL, tWPRE, tWPST) or the strobe to clock timing requirements  
(tDSS, tDSH tDQSS) be violated for any of the strobe edges associated with a write burst, then wrong data might be  
written to the memory location addressed with the offending write command. Subsequent reads from that location  
might result in unpredictable read data, however the DRAM will work properly otherwise.  
In the example (Figure Write Timing Parameters) the relevant strobe edges for write burst A are associated with the  
clock edges: T4, T4.5, T5, T5.5, T6, T6.5, T7, T7.5, T8, T8.5 and T9. Any timing requirements starting and ending  
on one of these strobe edges are T8, T8.5, T9, T9.5, T10, T10.5, T11, T11.5, T12, T12.5 and T13. Some edges are  
associated with both bursts.  
T0  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13 T14  
CK  
/CK  
Command*3  
WRIT  
A
WRIT  
B
NOP  
NOP  
Address*4  
/CS  
ODTL  
BL/2 + 2 + ODTL  
WL  
tDQSS  
tDSS  
tDSH  
tDQSL  
tWPST  
tWPRE  
tDQSH  
DQS, /DQS  
DQ*2  
tDH  
tDS  
VIH or VIL  
Write Timing Parameters  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
100  
EDJ5308BBBG, EDJ5316BBBG  
Write Data Mask  
One write data mask (DM) pin for each 8 data bits (DQ) will be supported on DDR3 SDRAMs, Consistent with the  
implementation on DDR-I SDRAMs. It has identical timings on write operations as the data bits, and though used in  
a uni-directional manner, is internally loaded identically to data bits to ensure matched system timing. DM is not  
used during read cycles.  
T1  
T2  
T3  
T4  
T5  
T6  
DQS  
/DQS  
DQ  
DM  
in  
in  
in  
in  
in  
in  
in  
in  
Write mask latency = 0  
Data Mask Timing  
/CK  
CK  
[tDQSS(min.)]  
tWR  
WRIT  
Command  
NOP  
WL  
tDQSS  
DQS, /DQS  
DQ  
in0  
in2 in3  
DM  
WL  
tDQSS  
[tDQSS(max.)]  
DQS, /DQS  
DQ  
in0  
in2 in3  
DM  
Data Mask Function, WL = 5, AL = 0 shown  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
101  
EDJ5308BBBG, EDJ5316BBBG  
Precharge  
The precharge command is used to precharge or close a bank that has been activated. The precharge command is  
triggered when /CS, /RAS and /WE are low and /CAS is high at the rising edge of the clock. The precharge  
command can be used to precharge each bank independently or all banks simultaneously. Four address bits A10,  
BA0, BA1 and BA2 are used to define which bank to precharge when the command is issued.  
[Bank Selection for Precharge by Address Bits]  
A10  
L
BA0  
L
BA1  
L
BA2  
L
Precharged Bank(s)  
Bank 0 only  
L
H
L
L
L
Bank 1 only  
L
H
H
L
L
Bank 2 only  
L
H
L
L
Bank 3 only  
L
H
H
H
H
×
Bank 4 only  
L
H
L
L
Bank 5 only  
L
H
H
×
Bank 6 only  
L
H
×
Bank 7 only  
H
All banks 0 to 7  
Remark: H: VIH, L: VIL, ×: VIH or VIL  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
102  
EDJ5308BBBG, EDJ5316BBBG  
Auto Precharge Operation  
Before a new row in an active bank can be opened, the active bank must be precharged using either the precharge  
command or the auto precharge function. When a read or a write command is given to the DDR3 SDRAM, the /CAS  
timing accepts one extra address, column address A10, to allow the active bank to automatically begin precharge at  
the earliest possible moment during the burst read or write cycle. If A10 is low when the read or write Command is  
issued, then normal read or write burst operation is executed and the bank remains active at the completion of the  
burst sequence. If A10 is high when the Read or Write Command is issued, then the auto precharge function is  
engaged. During auto precharge, a read Command will execute as normal with the exception that the active bank  
will begin to precharge on the rising edge which is /CAS latency (CL) clock cycles before the end of the read burst.  
Auto precharge can also be implemented during Write commands. The precharge operation engaged by the Auto  
precharge command will not begin until the last data of the burst write sequence is properly stored in the memory  
array.  
This feature allows the precharge operation to be partially or completely hidden during burst read cycles (dependent  
upon /CAS latency) thus improving system performance for random data access. The /RAS lockout circuit internally  
delays the Precharge operation until the array restore operation has been completed so that the auto precharge  
command may be issued with any read or write command.  
Burst Read with Auto Precharge  
If A10 is high when a Read Command is issued, the Read with Auto precharge function is engaged. The DDR3  
SDRAM starts an auto precharge operation on the rising edge which is (AL + BL/2) cycles later from the read with  
AP command when tRAS (min.) is satisfied. If tRAS (min.) is not satisfied at the edge, the start point of auto  
precharge operation will be delayed until tRAS (min.) is satisfied. A new bank active (command) may be issued to  
the same bank if the following two conditions are satisfied simultaneously.  
(1) The /RAS precharge time (tRP) has been satisfied from the clock at which the auto precharge begins.  
(2) The /RAS cycle time (tRC) from the previous bank activation has been satisfied.  
Burst Write with Auto precharge  
If A10 is high when a write command is issued, the Write with auto precharge function is engaged. The DDR3  
SDRAM automatically begins precharge operation after the completion of the burst writes plus write recovery time  
(tWR). The bank undergoing auto precharge from the completion of the write burst may be reactivated if the  
following two conditions are satisfied.  
(1) The data-in to bank activate delay time (tWR + tRP) has been satisfied.  
(2) The /RAS cycle time (tRC) from the previous bank activation has been satisfied.  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
103  
EDJ5308BBBG, EDJ5316BBBG  
Auto-Refresh  
When /CS, /RAS and /CAS are held low and /WE high at the rising edge of the clock, the chip enters the automatic  
refresh mode (REF). All banks of the DDR3 SDRAM must be precharged and idle for a minimum of the precharge  
time (tRP) before the auto-refresh command (REF) can be applied. An address counter, internal to the device,  
supplies the bank address during the refresh cycle. No control of the external address bus is required once this  
cycle has started.  
When the refresh cycle has completed, all banks of the DDR3 SDRAM will be in the precharged (idle) state. A delay  
between the auto-refresh command (REF) and the next activate command or subsequent auto-refresh command  
must be greater than or equal to the auto-refresh cycle time (tRFC).  
To allow for improved efficiency in scheduling and switching between tasks, some flexibility in the absolute refresh  
interval is provided. A maximum of 8 refresh commands can be posted to any given DDR3 SDRAM, meaning that  
the maximum absolute interval between any refresh command and the next Refresh command is 9 × tREFI.  
T0  
T1  
T2  
T3  
/CK  
CK  
VIH  
tRP  
tRFC  
tRFC  
CKE  
Any  
Command  
PRE  
NOP  
REF  
REF  
NOP  
Command  
Auto-Refresh  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
104  
EDJ5308BBBG, EDJ5316BBBG  
Self-Refresh  
The self-refresh command can be used to retain data in the DDR3 SDRAM, even if the rest of the system is powered  
down. When in the self-refresh mode, the DDR3 SDRAM retains data without external clocking. The DDR3 SDRAM  
device has a built-in timer to accommodate self-refresh operation. The Self-Refresh Entry (SELF) command is  
defined by having /CS, /RAS, /CAS and CKE held low with /WE high at the rising edge of the clock.  
Before issuing the self-refresh entry command, the DDR3 SDRAM must be idle with all bank precharge state with  
tRP satisfied. Also, on-die termination must be turned off before issuing Self-refresh entry command, by either  
registering ODT pin low “ODTL + 0.5tCK” prior to the self-refresh entry command or using MRS to MR1 command.  
Once the self-refresh entry command is registered, CKE must be held low to keep the device in self-refresh mode.  
The DLL is automatically disabled upon entering Self-refresh and is automatically enabled (including a DLL-Reset)  
upon exiting self-refresh.  
When the DDR3 SDRAM has entered self-refresh mode all of the external control signals, except CKE and /RESET,  
are “don’t care”. For proper self-refresh operation, all power supply and reference pins (VDD, VDDQ, VSS, VSSQ,  
VREFCA and VREFDQ) must be at valid levels. The DRAM initiates a minimum of one refresh command internally  
within tCKESR period once it enters self-refresh mode.  
The clock is internally disabled during self-refresh operation to save power. The minimum time that the DDR3  
SDRAM must remain in self-refresh mode is tCKESR. The user may change the external clock frequency or halt the  
external clock tCKSRE clock cycles after self-refresh entry is registered, however, the clock must be restarted and  
stable tCKSRX clock cycles before the device can exit self-refresh operation. To protect DRAM internal delay on  
CKE line to block the input signals, one NOP (or DESL) command is needed after self-refresh entry.  
The procedure for exiting self-refresh requires a sequence of events. First, the clock must be stable tCKSRX prior to  
CKE going back high. Once a Self-Refresh Exit command (SREX, combination of CKE going high and either NOP or  
DESL on command bus) is registered, a delay of at least tXS must be satisfied before a valid command not requiring  
a locked DLL can be issued to the device to allow for any internal refresh in progress. Before a command which  
requires a locked DLL can be applied, a delay of at least tXSDLL and applicable ZQCAL function requirements  
(TBD) must be satisfied.  
CKE must remain high for the entire self-refresh exit period tXSDLL for proper operation except for self-refresh  
reentry. Upon exit from self-refresh, the DDR3 SDRAM can be put back into Self-refresh mode after waiting at least  
tXS period and issuing one refresh command (refresh period of tRFC). NOP or DESL commands must be registered  
on each positive clock edge during the self-refresh exit interval tXS. ODT must be turned off during tXSDLL.  
The use of Self-refresh mode introduces the possibility that an internally timed refresh event can be missed when  
CKE is raised for exit from self-refresh mode. Upon exit from self-refresh, the DDR3 SDRAM requires a minimum of  
one extra refresh command before it is put back into self-refresh mode.  
Ta  
Tb  
Tc Tc+1Tc+2  
Td  
Te  
Tf Tf+1 Tf+2  
Tg Tg+1  
Th Th+1  
CK, /CK  
tCKSRE  
tCKSRX  
tXSDLL  
tRP  
tXS  
4
2
2
3
3
*
*
*
* *  
Valid Valid  
1
*
Command  
Valid Valid  
PALL  
SELF NOP  
SREX  
tCKESR  
CKE  
ODT  
ODTLoff + 0.5 x tCK  
Notes: 1. Only NOP or DESL commands.  
2. Valid commands not requiring a locked DLL.  
3. Valid commands requiring a locked DLL.  
4. One NOP or DESL commands.  
Self-Refresh Entry and Exit Timing  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
105  
EDJ5308BBBG, EDJ5316BBBG  
Power-Down Mode  
Power-down is synchronously entered when CKE is registered low (along with NOP or DESL command). CKE is not  
allowed to go low while mode register set command, MPR operations, ZQCAL operations, DLL locking or read / write  
operation are in progress. CKE is allowed to go low while any of other operations such as row activation, precharge  
or auto precharge and refresh are in progress, but power-down IDD spec will not be applied until finishing those  
operations.  
The DLL should be in a locked state when power-down is entered for fastest power-down exit timing. If the DLL is  
not locked during power-down entry, the DLL must be reset after exiting power-down mode for proper read operation  
and synchronous ODT operation. DRAM design provides all AC and DC timing and voltage specification as well  
proper DLL operation with any CKE intensive operations as long as DRAM controller complies with DRAM  
specifications.  
During power-down, if all banks are closed after any in-progress commands are completed, the device will be in  
precharge power-down mode; if any bank is open after in-progress commands are completed, the device will be in  
active power-down mode.  
Entering power-down deactivates the input and output buffers, excluding CK, /CK, ODT, CKE and /RESET. To  
protect DRAM internal delay on CKE line to block the input signals, multiple NOP or DESL commands are needed  
during the CKE switch off and cycle(s) after this timing period are defined as tCPDED. CKE_low will result in  
deactivation of command and address receivers after tCPDED has expired.  
[Power-Down Entry Definitions]  
Status of DRAM  
MR0 bit A12  
DLL  
On  
PD Exit  
Fast  
Relevant Parameters  
Active  
(A bank or more Open)  
Don’t Care  
tXP to any valid command  
tXP to any valid command. Since it is in  
precharge state, commands here will be ACT,  
AR, MRS, PRE or PALL .  
Precharged  
0
1
Off  
On  
Slow  
Fast  
(All banks Precharged)  
tXPDLL to commands who need DLL to operate,  
such as READ, READA or ODT control line.  
Precharged  
(All Banks Precharged)  
tXP to any valid command  
Also the DLL is disabled upon entering precharge power-down for slow exit mode, but the DLL is kept enabled  
during precharge power-down for fast exit mode or active power-down. In power-down mode, CKE low, RESET high  
and a stable clock signal must be maintained at the inputs of the DDR3 SDRAM, and ODT should be in a valid state  
but all other input signals are “Don’t Care” (If RESET goes low during power-down, the DRAM will be out of PD  
mode and into reset state). CKE low must be maintained until tPD has been satisfied. Power-down duration is limited  
by 9 times tREFI of the device.  
The power-down state is synchronously exited when CKE is registered high (along with a NOP or DESL command).  
CKE high must be maintained until tCKE has been satisfied. A valid, executable command can be applied with  
power-down exit latency, tXP and/or tXPDLL after CKE goes high. Power-down exit latency is defined at AC  
Characteristics table of this data sheet.  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
106  
EDJ5308BBBG, EDJ5316BBBG  
Timing Diagrams for Proposed CKE with Power-Down Entry, Power-Down Exit  
T0  
T1  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
Tx  
Tx+1  
/CK  
CK  
Command  
READ  
Valid  
NOP  
NOP  
BA  
tCPDED  
tRDPDEN  
tIS  
VIH  
CKE  
RL = CL + AL = 5 (AL = 0)  
tPD  
out out out out out out out out  
DQ(BL8)  
DQ(BC4)  
0
1
2
3
4
5
6
7
out out out out  
0
1
2
3
Power-Down Entry after Read and Read with Auto Precharge  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10 T14 T15  
T16 T17 T18 Tn  
CK  
/CK  
Command  
NOP  
NOP  
NOP  
WRITA  
Valid  
BA  
tCPDED  
tIS  
CKE  
tWRAPDEN  
WL=5  
tWR*  
tPD  
in in in in in in in in  
DQ(BL8)  
DQ(BC4)  
0
1
2
3
4
5
6
7
in in in in  
0
1
2
3
Start Internal  
Precharge  
Note: tWR is programmed through MRS.  
Power-Down Entry After Write with Auto Precharge  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
107  
EDJ5308BBBG, EDJ5316BBBG  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10 Tx Tx+1 Tx+2 Tx+3  
CK  
/CK  
Command  
WRITE  
Valid  
NOP  
NOP  
BA  
tCPDED  
tIS  
CKE  
tWRPDEN  
WL=5  
tWR  
tPD  
in in in in in in in in  
DQ(BL8)  
DQ(BC4)  
0
1
2
3
4
5
6
7
in in in in  
0
1
2
3
Power-Down Entry after Write  
T0  
T1  
Tn Tn+1  
Tx  
Ty  
CK  
/CK  
tPD  
tIH  
tIH  
CKE  
tIS  
tIS  
tCPDED  
Valid NOP NOP  
tCKE (min.)  
Command  
NOP NOP NOP NOP NOP Valid NOP NOP NOP NOP  
N
tXP  
Enter power-down mode  
Exit power-down  
Note: Valid command at T0 is ACT, NOP, DESL or precharge with still one bank remaining open after completion of  
precharge command.  
Active Power-Down Entry and Exit Timing Diagram  
T0  
T1  
Tn Tn+1  
Tx  
Ty  
CK  
/CK  
tPD  
tIH  
tIH  
CKE  
tIS  
tCPDED  
tIS  
tCKE (min.)  
Command  
NOP NOP  
NOP NOP NOP NOP NOP Valid NOP NOP NOP1NOP N  
tXP  
Enter power-down mode  
Exit power-down  
Precharge Power-Down (Fast Exit Mode) Entry and Exit  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
108  
EDJ5308BBBG, EDJ5316BBBG  
T0  
T1  
Tn Tn+1  
Tx  
Ty  
CK  
/CK  
tIH  
tIH  
CKE  
tIS  
tIS  
tPD  
tCPDED  
tCKE (min.)  
NOP NOP NOP NOP NOP NOP Valid NOP Valid NOP NO  
tXP  
Command  
NOP NOP NOP  
tXPDLL  
Exit power-down  
Enter power-down mode  
Precharge Power-Down (Slow Exit Mode) Entry and Exit  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
CK  
/CK  
Command  
REF  
NOP  
NOP  
tCPDED  
tREFPDEN  
tIS  
CKE  
Refresh Command to Power-Down Entry  
T0  
T1  
T2  
T3  
T4  
Tn  
Tn+1 Tn+2  
End  
CK  
/CK  
Command  
NOP  
NOP  
ACT  
tCPDED  
tPD  
tACTPDEN  
tIS  
CKE  
Active Command to Power-Down Entry  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
109  
EDJ5308BBBG, EDJ5316BBBG  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
End  
CK  
/CK  
PRE/  
PALL  
Command  
NOP  
NOP  
tCPDED  
tPREPDEN  
tIS  
CKE  
Precharge/Precharge All Command to Power-Down Entry  
T0  
T1  
T2  
T3  
Tn  
Tn+1  
NOP  
Tn+2  
NOP  
Tn+3 Tn+4 Tn+5  
Tn+6 Tn+7  
CK  
/CK  
Command  
MRS  
NOP  
NOP  
NOP  
tCPDED  
tMRSPDEN  
tIS  
CKE  
MRS Command to Power-Down Entry  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
110  
EDJ5308BBBG, EDJ5316BBBG  
Timing Values tXXXPDEN Parameters  
Status of DRAM  
Idle or Active  
Idle or Active  
Active  
Last Command before CKE_low  
Parameter  
tACTPDEN  
tPRPDEN  
Parameter Value  
Unit  
nCK  
nCK  
nCK  
Activate  
1
Precharge  
1
READ/READA  
tRDPDEN  
tWRPDEN  
tWRPDEN  
tWRAPDEN  
tWRAPDEN  
tREFPDEN  
tMRSPDEN  
RL + 4 + 1  
Active  
WRIT for BL8MRS, BL8OTF, BC4OTF  
WRIT for BC4MRS  
WRITA for BL8MRS, BL8OTF, BC4OTF  
WRITA for BC4MRS  
Refresh  
WL + 4 + (tWR/tCK (avg)) *1 nCK  
WL + 2 + (tWR/tCK (avg))*1 nCK  
Active  
Active  
WL + 4 + WR*2 + 1  
WL + 2 + WR*2 + 1  
nCK  
nCK  
nCK  
Active  
Idle  
1
Idle  
Mode Register Set  
tMOD  
Notes: 1. tWR is defined in ns, for calculation of tWRPDEN, it is necessary to round up tWR / tCK to next integer.  
2. WR in clock cycles as programmed in mode register.  
Power-Down Entry and Exit Clarification  
Case 1:  
When CKE registered low for power-down entry, tPD must be satisfied before CKE can be registered hight as  
power-down exit.  
Case 1a:  
After power-down exit, tCKE must be satisfied before CKE can be registered low again.  
T0  
T1  
Tn  
Tn+1  
Tx  
Ty  
CK  
/CK  
tIH  
tIH  
CKE  
tIS  
tIS  
tPD  
tCPDED  
NOP NOP NOP  
tCKE  
NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP  
N
Command  
Exit power-down  
Enter power-down  
Power-Down Entry/Exit Clarifications (1)  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
111  
EDJ5308BBBG, EDJ5316BBBG  
Case 2:  
For certain CKE intensive operations, for example, repeated "PD Exit - Refresh - PD Entry" sequence, the number of  
clock cycles between PD Exit and PD Entry may be insufficient to keep the DLL updated. Therefore the following  
conditions must be met in addition to tPD in order to maintain proper DRAM operation when Refresh commands is  
issued in between PD Exit and PD Entry.  
Power-down mode can be used in conjunction with Refresh command if the following conditions are met:  
1. tXP must be satisfied before issuing the command  
2. tXPDLL must be satisfied (referenced to registration of PD exit) before next power-down can be entered.  
T0 T1  
Tn Tn+1  
tIH  
Tx  
Ty  
CK  
/CK  
tIH  
CKE  
tIS  
tCPDED  
tIS  
tXPDLL (min.)  
tCKE (min.)  
tPD  
Command  
NOP NOP NOP  
NOP  
NOP  
tXP  
REF NOP NOP NOP NOP NOP NOP NOP  
Exit power-down  
Enter power-down  
Power-Down Entry/Exit Clarifications (2)  
Case 3:  
If an early PD Entry is issued after Refresh command, once PD Exit is issued, NOP or DESL with CKE high must be  
issued until tRFC from the refresh command is satisfied. This means CKE cannot be de-asserted twice within tRFC  
window.  
T0  
T1  
Tn  
Tn+1  
Tx  
Ty  
CK  
/CK  
tIH  
tIH  
CKE  
tIS  
tIS  
tPD  
tXPDLL  
tCPDED  
REF NOP NOP  
tCKE (min.)  
Command  
NOP NOP NOP NOP NOP NOP NOP NOP NOP Valid  
N
tRFC (min.)  
Exit power-down  
Enter power-down  
Note: * Synchronous ODT Timing starts at the end of tXPDLL (min.)  
Power-Down Entry/Exit Clarifications (3)  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
112  
EDJ5308BBBG, EDJ5316BBBG  
Input Clock Frequency Change during Precharge Power-Down  
Once the DDR3 SDRAM is initialized, the DDR3 SDRAM requires the clock to be “stable” during almost all states of  
normal operation. This means once the clock frequency has been set and is to be in the “stable state”, the clock  
period is not allowed to deviate except for what is allowed for by the clock jitter and SSC (Spread Spectrum  
Clocking) specifications.  
The input clock frequency can be changed from one stable clock rate to another stable clock rate under two  
conditions: (1) self-refresh mode and (2) precharge power-down mode. Outside of these two modes, it is illegal to  
change the clock frequency. For the first condition, once the DDR3 SDRAM has been successfully placed in to Self-  
Refresh mode and tCKSRE has been satisfied, the state of the clock becomes a don’t care. Once a don’t care,  
changing the clock frequency is permissible, provided the new clock frequency is stable prior to tCKSRX. When  
entering and exiting Self-Refresh mode for the sole purpose of changing the clock frequency, the self-refresh entry  
and exit specifications must still be met as outlined in Self-Refresh section.  
The second condition is when the DDR3 SDRAM is in Precharge Power-down mode (either fast exit mode or slow  
exit mode.) ODT must be at a logic low ensuring RTT is in an off state prior to entering Precharge Power-down mode  
and CKE must be at a logic low. A minimum of tCKSRE must occur after CKE goes low before the clock frequency  
may change. The DDR3 SDRAM input clock frequency is allowed to change only within the minimum and maximum  
operating frequency specified for the particular speed grade. During the input clock frequency change, ODT and  
CKE must be held at stable low levels. Once the input clock frequency is changed, stable new clocks must be  
provided to the DRAM tCKSRX before Precharge Power-down may be exited; after Precharge Power-down is exited  
and tXP has expired, the DLL must be RESET via MRS. Depending on the new clock frequency additional MRS  
commands may need to be issued to appropriately set the WR, CL, and CWL with CKE continuously registered high.  
During DLL re-lock period, ODT must remain low. After the DLL lock time, the DRAM is ready to operate with new  
clock frequency. This process is depicted in the figure Clock Frequency Change in Precharge Power-Down Mode.  
Previous clock frequency  
New clock frequency  
T0  
T1  
tIS  
T2  
Ta  
Tb  
Tc  
Tc+1 Td  
Td+1  
Te  
Te+1  
/CK  
CK  
tIH  
tCKSRE  
tCKSRX  
CKE  
tCPDED  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
Address  
MRS  
NOP  
Valid  
Valid  
DLL  
RESET  
tXP  
tAOFPD/tAOF  
ODT  
tDLLK  
High-Z  
High-Z  
DQS, /DQS  
DQ  
DM  
Enter precharge  
power-down mode  
Exit precharge  
power-down mode  
Frequency  
change  
Notes: 1. Applicable for both slow exit and fast exit precharge power-down.  
2. tCKSRE and tCKSRX are self-refresh mode specifications but the values  
they represent are applicable here.  
3. tAOFPD and tAOF must be satisfied and outputs high-z prior to T1;  
refer to ODT timing for exact requirements.  
Clock Frequency Change in Precharge Power-Down Mode  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
113  
EDJ5308BBBG, EDJ5316BBBG  
On-Die Termination (ODT)  
ODT (On-Die Termination) is a feature of the DDR3 SDRAM that allows the DRAM to turn on/off termination  
resistance for each DQ, DQS, /DQS and DM for ×8 configuration (and TDQS, /TDQS for ×8 configuration, when  
enabled via A11=1 in MR1) via the ODT control pin. For ×16 configuration ODT is applied to each DQU, DQL,  
DQSU, /DQSU, DQSL, /DQSL, DMU and DML signal via the ODT control pin. The ODT feature is designed to  
improve signal integrity of the memory channel by allowing the DRAM controller to independently turn on/off  
termination resistance for any or all DRAM devices.  
The ODT feature is turned off and not supported in Self-Refresh mode.  
A simple functional representation of the DRAM ODT feature is shown in figure Functional Representation of ODT.  
ODT  
VDDQ/2  
To other  
circuitry  
like  
RTT  
RCV, ...  
Switch  
DQ, DQS, DM, TDQS  
Functional Representation of ODT  
The switch is enabled by the internal ODT control logic, which uses the external ODT pin and other control  
information, see below. The value of RTT is determined by the settings of Mode Register bits (see MR1  
programming figure in the section Programming the Mode Register). The ODT pin will be ignored if the Mode  
Register MR1 is programmed to disable ODT and in self-refresh mode.  
ODT Mode Register and ODT Truth Table  
The ODT Mode is enabled if either of MR1 bits A2 or A6 or A9 are non-zero. In this case the value of RTT is  
determined by the settings of those bits .  
Application: Controller sends WRIT command together with ODT asserted.  
One possible application: The rank that is being written to provide termination.  
DRAM turns ON termination if it sees ODT asserted (except ODT is disabled by MR)  
DRAM does not use any write or read command decode information  
The Termination Truth Table is shown in the Termination Truth Table  
[Termination Truth Table]  
ODT pin  
DRAM Termination State  
0
1
OFF  
ON, (OFF, if disabled by MR1 bits A2, A6 and A9 in general)  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
114  
EDJ5308BBBG, EDJ5316BBBG  
Synchronous ODT Mode  
Synchronous ODT mode is selected whenever the DLL is turned on and locked. Based on the power-down  
definition, these modes are:  
Active mode  
Idle mode with CKE high  
Active power-down mode (regardless of MR0 bit A12)  
Precharge power-down mode if DLL is enabled during precharge power-down by MR0 bit A12.  
In synchronous ODT mode, RTT will be turned on or off ODTLon clock cycles after ODT is sampled high by a rising  
clock edge and turned off ODTLoff clock cycles after ODT is registered low by a rising clock edge. The ODT latency  
is tied to the write latency (WL) by: ODTLon = WL – 2; ODTLoff = WL – 2.  
ODT Latency and Posted ODT  
In Synchronous ODT mode, the Additive Latency (AL) programmed into the Mode Register (MR1) also applies to the  
ODT signal. The DRAM internal ODT signal is delayed for a number of clock cycles defined by the Additive Latency  
(AL) relative to the external ODT signal.  
ODTLon = CWL + AL 2; ODTLoff = CWL + AL 2. For details, refer to DDR3 SDRAM latency definitions.  
[ODT Latency Table]  
Parameter  
Symbol  
ODTLon  
ODTLoff  
Value  
Unit  
nCK  
nCK  
ODT turn-on Latency  
ODT turn-off Latency  
WL – 2 = CWL + AL – 2  
WL – 2 = CWL + AL – 2  
Synchronous ODT Timing Parameters  
In synchronous ODT mode, the following timing parameters apply (see Synchronous ODT Timing Examples (1)):  
ODTL, tAON,(min.),max, tAOF,(min.),(max.) Minimum RTT turn-on time (tAON min) is the point in time when the  
device leaves high impedance and ODT resistance begins to turn on. Maximum RTT turn-on time (tAON max) is the  
point in time when the ODT resistance is fully on. Both are measured from ODTLon.  
Minimum RTT turn-off time (tAOF min ) is the point in time when the device starts to turn-off the ODT resistance.  
Maximum RTT turn-off time (tAOF max) is the point in time when the on-die termination has reached high  
impedance. Both are measured from ODTLoff.  
When ODT is asserted, it must remain high until ODTH4 is satisfied. If a Write command is registered by the  
SDRAM with ODT high, then ODT must remain high until ODTH4 (BC4) or ODTH8 (BL8) after the Write command  
(see figure Synchronous ODT Timing Examples (2)). ODTH4 and ODTH8 are measured from ODT registered high  
to ODT registered low or from the registration of a Write command until ODT is registered low.  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
115  
EDJ5308BBBG, EDJ5316BBBG  
T0 T1 T2 T3 T4 T5 T6 T7  
T8 T9 T10 T11 T12 T13 T14 T15 END  
CK  
/CK  
CKE  
ODTH4 (min.)  
AL = 3  
ODT  
AL = 3  
IntODT  
ODTLon = CWL + AL 2  
ODTLoff = CWL + AL 2  
CWL 2  
tAON (max.)  
tAOF (max.)  
tAOF (min.)  
tAON (min.)  
RTT  
RTT  
Synchronous ODT Timing Examples (1): AL=3, CWL = 5;  
ODTLon = AL + CWL - 2 = 6; ODTLoff = AL + CWL - 2 = 6  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18  
CK  
/CK  
CKE  
Command  
WRS4  
ODTH4  
ODTH4  
ODTH4  
ODT  
ODTLoff = WL 2  
ODTLon = WL 2  
ODTLoff = WL 2  
ODTLon = WL 2  
tAON (max.)  
tAON (min.)  
tAOF (max.)  
tAOF (min.)  
tAOF (max.)  
tAOF (min.)  
DRAM_RTT  
RTT  
RTT  
tAON (max.)  
tAON (min.)  
Synchronous ODT Timing Examples (2)*: BC4, WL = 7  
ODT must be held high for at least ODTH4 after assertion (T1); ODT must be kept high ODTH4 (BC4) or ODTH8  
(BL8) after write command (T7). ODTH is measured from ODT first registered high to ODT first registered low, or  
from registration of write command with ODT high to ODT registered low. Note that although ODTH4 is satisfied from  
ODT registered high at T6 ODT must not go low before T11 as ODTH4 must also be satisfied from the registration of  
the write command at T7.  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
116  
EDJ5308BBBG, EDJ5316BBBG  
ODT during Reads  
As the DDR3 SDRAM cannot terminate and drive at the same time, RTT must be disabled at least half a clock cycle  
before the read preamble by driving the ODT pin low appropriately. RTT may nominally not be enabled until one  
clock cycle after the end of the post-amble as shown in the example in the figure below.  
Note that ODT may be disabled earlier before the Read and enabled later after the Read than shown in this example  
in the figure below.  
ODT must be disabled externally during Reads by driving ODT low.  
(example: CL = 6; AL = CL - 1 = 5; RL = AL + CL = 11; CWL = 5; ODTLon = CWL + AL -2 = 8;  
ODTLoff = CWL + AL - 2 = 8)  
T0 T1 T2 T3 T4 T5 T6 T7  
T8 T9 T10 T11 T12 T13 T14 T15 T16 End  
CK  
/CK  
READ  
Command  
Address  
A
RL = AL + CL  
ODT  
ODTLoff = WL 2 = CWL + AL 2  
ODTLon = WL 2 = CWL + AL 2  
tAOF (max.)  
tAOF (min.)  
tAON (min.)  
tAON (max.)  
RTT  
RTT  
DRAM_RTT  
DQS, /DQS  
DQ  
out out out out out out out out  
0
1
2
3
4
5
6
7
Example of ODT during Reads  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
117  
EDJ5308BBBG, EDJ5316BBBG  
Dynamic ODT  
In certain application cases and to further enhance signal integrity on the data bus, it is desirable that the termination  
strength of the DDR3 SDRAM can be changed without issuing an MRS command. This requirement is supported by  
the “Dynamic ODT” feature as described as follows:  
Functional Description:  
The Dynamic ODT mode is enabled if bit A9 or A10 of MR2 is set to ’1’. The function and is described as follows:  
Two RTT values are available: RTT_Nom and RTT_WR.  
The value for RTT_Nom is pre-selected via bits A[9,6,2] in MR1  
The value for RTT_WR is pre-selected via bits A[10,9] in MR2  
During operation without write commands, the termination is controlled as follows:  
Nominal termination strength RTT_Nom is selected.  
Termination on/off timing is controlled via ODT pin and latencies ODTLon and ODTLoff.  
When a write command (WRIT, WRITA, WRS4, WRS8, WRAS4, WRAS8) is registered, and if Dynamic ODT is  
enabled, the termination is controlled as follows:  
A latency ODTLcnw after the write command, termination strength RTT_WR is selected.  
A latency ODTLcwn8 (for BL8, fixed by MRS or selected OTF) or ODTLcwn4 (for BC4, fixed by MRS or selected  
OTF) after the write command, termination strength RTT_Nom is selected.  
Termination on/off timing is controlled via ODT pin and ODTLon, ODTLoff.  
Table Latencies and Timing Parameters Relevant for Dynamic ODT shows latencies and timing parameters, which  
are relevant for the on-die termination control in Dynamic ODT mode:  
When ODT is asserted, it must remain high until ODTH4 is satisfied. If a write command is registered by the SDRAM  
with ODT high, then ODT must remain high until ODTH4 (BC4) or ODTH8 (BL8) after the write command (see the  
figure Synchronous ODT Timing Examples (2)). ODTH4 and ODTH8 are measured from ODT registered high to  
ODT registered low or from the registration of a write command until ODT is registered low.  
[Latencies and Timing Parameters Relevant for Dynamic ODT]  
Definition for all DDR3  
Parameters  
Symbols  
ODTLon  
Defined from  
Registering external  
ODT signal high  
Defined to  
speed bins  
Unit  
nCK  
ODT turn-on Latency  
Turning termination on  
ODTLon = WL – 2.0  
Registering external  
ODT signal low  
Registering external Change RTT strength from  
write command RTT_Nom to RTT_WR  
ODT turn-off Latency  
ODTLoff  
Turning termination off  
ODTLoff = WL – 2.0  
ODTLcnw = WL – 2.0  
nCK  
nCK  
ODT latency for changing  
from RTT_Nom to RTT_WR  
ODTLcnw  
ODT latency for change  
from RTT_WR to RTT_Nom  
(BC4)  
ODT latency for change  
from RTT_WR to RTT_Nom  
(BL8)  
Registering external Change RTT strength from ODTLcwn4 =  
write command RTT_WR to RTT_Nom 4 + ODTLoff  
ODTLcwn4  
ODTLcwn8  
nCK  
nCK  
Registering external Change RTT strength from ODTLcwn8 =  
write command  
RTT_WR to RTT_Nom  
6 + ODTLoff  
Minimum ODT high time after  
ODTH4  
ODTH4  
ODTH8  
tADC  
registering ODT high ODT registered low  
ODTH4 (min.) = 4  
ODTH4 (min.) = 4  
ODTH8 (min.) = 6  
0.3ns to 0.7ns  
nCK  
ODT assertion  
Minimum ODT high time after  
Write (BC4)  
Minimum ODT high time after  
Write (BL8)  
registering Write with  
ODT registered low  
ODT high  
registering Write with  
ODT registered low  
ODT high  
ODTLcnw  
RTT valid  
ODTLcwn  
nCK  
nCK  
RTT change skew  
tCK (avg)  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
118  
EDJ5308BBBG, EDJ5316BBBG  
Mode Register Settings for Dynamic ODT Mode:  
The table Mode Register for RTT Selection shows the Mode Register bits to select RTT_Nom and RTT_WR values.  
[Mode Register for RTT Selection]  
MR1  
MR2  
RTT_Nom  
(RZQ)  
RTT_Nom  
RTT_WR  
(RZQ)  
Dynamic ODT OFF: Write does not  
affect RTT value  
RTT_WR*1  
A9  
0
A6  
0
A2  
0
()  
A10  
0
A9  
0
()  
off  
off  
0
0
0
1
1
1
1
0
1
1
0
0
1
1
1
0
1
0
1
0
1
RZQ/4  
60  
0
1
1
1
0
1
RZQ/4  
60  
RZQ/2  
120  
RZQ/2  
120  
RZQ/6  
40  
Reserved  
Reserved  
RZQ/12*2  
RZQ/8*2  
Reserved  
Reserved  
20  
30  
Reserved  
Reserved  
Notes: 1. RZQ = 240.  
2. If RTT_Nom is used during WRITEs, only the values RZQ/2, RZQ/4 and RZQ/6 are allowed.  
ODT Timing Diagrams  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19  
CK  
/CK  
ODTLcnw  
WRS4  
Command  
ODTH4  
ODTH4  
ODT  
RTT  
ODTLon  
ODTLoff  
tADC (min.)  
RTT_Nom  
tADC (max.)  
tAON (min.)  
RTT_Nom  
tADC (min.)  
RTT_WR  
tAOF (min.)  
tAOF (max.)  
tAON (max.)  
tADC (max.)  
ODTLcwn4  
DQS, /DQS  
DQ  
in in in in  
0
1
2
3
WL  
Dynamic ODT: Behavior with ODT Being Asserted Before and after the Write*  
Note: Example for BC4 (via MRS or OTF), AL = 0, CWL = 5. ODTH4 applies to first registering ODT high and to the  
registration of the write command. In this example ODTH4 would be satisfied if ODT is low at T8 (4 clocks  
after the write command).  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
119  
EDJ5308BBBG, EDJ5316BBBG  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
CK  
/CK  
Command  
ODTH4  
ODT  
ODTLon  
ODTLoff  
tAON (min.)  
tAOF (min.)  
tAOF (max.)  
RTT_Nom  
RTT  
tAON (max.)  
DQS, /DQS  
DQ  
Dynamic ODT*: Behavior without Write Command; AL = 0, CWL = 5  
Note: ODTH4 is defined from ODT registered high to ODT registered low, so in this example ODTH4 is satisfied;  
ODT registered low at T5 would also be legal.  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
CK  
/CK  
ODTLcnw  
ODTLon  
Command  
ODT  
WRS8  
ODTH8  
ODTLoff  
tAON (min.)  
tAOF (min.)  
tAOF (max.)  
RTT_WR  
RTT  
tADC (max.)  
ODTLcwn8  
DQS, /DQS  
DQ  
in  
0
in  
in  
in  
in  
in  
in  
6
in  
1
2
3
4
5
7
WL  
Dynamic ODT*: Behavior with ODT Pin Being Asserted Together with Write Command  
for Duration of 6 Clock Cycles  
Note: Example for BL8 (via MRS or OTF), AL = 0, CWL = 5. In this example ODTH8 = 6 is exactly satisfied.  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
120  
EDJ5308BBBG, EDJ5316BBBG  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
CK  
/CK  
ODTLcnw  
WRS4  
Command  
ODTH4  
ODT  
RTT  
ODTLon  
ODTLoff  
tAON (min.)  
tAOF (min.)  
tAOF (max.)  
tADC (min.)  
RTT_Nom  
RTT_WR  
tADC (max.)  
tADC (max.)  
ODTLcwn4  
DQS, /DQS  
DQ  
in  
in  
in  
2
in  
0
1
3
WL  
Dynamic ODT*: Behavior with ODT Pin Being Asserted Together with Write Command  
for a Duration of 6 Clock Cycles, Example for BC4 (via MRS or OTF), AL = 0, CWL = 5.  
Note: ODTH4 is defined from ODT registered high to ODT registered low, so in this example ODTH4 is satisfied;  
ODT registered low at T5 would also be legal.  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
CK  
/CK  
ODTLcnw  
ODTH4  
Command  
ODT  
WRS4  
ODTLon  
ODTLoff  
tAON (min.)  
tAOF (min.)  
tAOF (max.)  
RTT_WR  
RTT  
tADC (max.)  
ODTLcwn4  
DQS, /DQS  
DQ  
in  
0
in  
1
in  
in  
2
3
WL  
Dynamic ODT*: Behavior with ODT Pin Being Asserted Together with Write Command  
for Duration of 4 Clock Cycles  
Note: Example for BC4 (via MRS or OTF), AL = 0, CWL = 5. In this example ODTH4 = 4 is exactly satisfied.  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
121  
EDJ5308BBBG, EDJ5316BBBG  
Asynchronous ODT Mode  
Asynchronous ODT mode is selected when DRAM runs in DLL-on mode, but DLL is temporarily disabled (i.e. frozen)  
in precharge power-down (by MR0 bit A12).  
Precharge power-down mode if DLL is disabled during precharge power-down by MR0 bit A12.  
In asynchronous ODT timing mode, internal ODT command is not delayed by Additive Latency (AL) relative to the  
external ODT command.  
In asynchronous ODT mode, the following timing parameters apply (see figure Asynchronous ODT Timings):  
tAONPD (min.), (max.), tAOFPD (min.),(max.)  
Minimum RTT turn-on time (tAONPD (min.)) is the point in time when the device termination circuit leaves high  
impedance state and ODT resistance begins to turn on. Maximum RTT turn-on time (tAONPD (max.)) is the point in  
time when the ODT resistance is fully on. tAONPD (min.) and tAONPD (max.) are measured from ODT being  
sampled high.  
Minimum RTT turn-off time (tAOFPD (min.)) is the point in time when the devices termination circuit starts to turn off  
the ODT resistance. Maximum ODT turn-off time (tAOFPD (max.)) is the point in time when the on-die termination  
has reached high impedance. tAOFPD (min.) and tAOFPD (max.) are measured from ODT being sampled low.  
CK  
/CK  
CKE  
tIH  
tIH  
tIS  
tIS  
ODT  
tAOFPD (min.)  
tAONPD (max.)  
RTT  
DRAM_RTT  
tAONPD (min.)  
tAOFPD (max.)  
Asynchronous ODT Timings on DDR3 SDRAM with Fast ODT Transition: AL is Ignored  
In precharge power-down, ODT receiver remains active, however no read or write command can be issued, as the  
respective address/command receivers may be disabled.  
[Asynchronous ODT Timing Parameters for All Speed Bins]  
Symbol  
tAONPD  
tAOFPD  
Parameters  
min.  
1
max.  
Unit  
ns  
Asynchronous RTT turn-on delay (power-down with DLL frozen)  
Asynchronous RTT turn-off delay (power-down with DLL frozen)  
9
9
1
ns  
[ODT for Power-Down (with DLL Frozen) Entry and Exit Transition Period]  
Description  
min.  
max.  
ODT to RTT turn-on delay  
min {ODTLon × tCK + tAON(min.);  
tAONPD(min.) }  
max {ODTLon × tCK + tAON(max.);  
tAONPD(max.) }  
min { (WL 2.0) × tCK + tAON(min.); max {(WL 2.0) × tCK + tAON(max.);  
tAONPD(min.) }  
min { ODTLoff × tCK +tAOF(min.);  
tAOFPD(min.) }  
tAONPD(max.) }  
max { ODTLoff × tCK + tAOF(max.);  
tAOFPD(max.) }  
ODT to RTT turn-off delay  
tANPD  
min { (WL 2.0) × tCK +tAOF(min.); max {(WL 2.0) × tCK + tAOF(max.);  
tAOFPD(min.) }  
tAOFPD(max.) }  
WL 1.0  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
122  
EDJ5308BBBG, EDJ5316BBBG  
Synchronous to Asynchronous ODT Mode Transition during Power-Down Entry  
If DLL is selected to be frozen in precharge power-down mode by the setting of bit A12 in MR0 to 0 there is a  
transition period around power-down entry, where the DDR3 SDRAM may show either synchronous or  
asynchronous ODT behavior.  
This transition period ends when CKE is first registered low and starts tANPD before that. If there is a Refresh  
command in progress while CKE goes low, then the transition period ends tRFC after the refresh command. tANPD  
is equal to (WL 1.0) and is counted (backwards) from the clock cycle where CKE is first registered low.  
ODT assertion during the transition period may result in an RTT change as early as the smaller of tAONPD(min.)  
and (ODTLon × tCK + tAON(min.)) and as late as the larger of tAONPD(max.) and (ODTLon × tCK + tAON(max.)).  
ODT de-assertion during the transition period may result in an RTT change as early as the smaller of tAOFPD(min.)  
and (ODTLoff × tCK + tAOF(min.)) and as late as the larger of tAOFPD(max.) and (ODTLoff × tCK + tAOF(max.)).  
Note that, if AL has a large value, the range where RTT is uncertain becomes quite large.  
The figure below shows the three different cases: ODT_A, synchronous behavior before tANPD; ODT_B has a state  
change during the transition period; ODT_C shows a state change after the transition period.  
CK  
/CK  
REF  
NOP NOP  
Command  
CKE  
PD entry transition period  
tANPD  
ODT  
tRFC  
ODT_A_sync  
ODTLoff  
tAOF (max.)  
tAOF (min.)  
RTT  
DRAM_RTT_A_sync  
ODT_B_tran  
ODTLoff + tAOFPD (max.)  
tAOFPD (max.)  
ODTLoff + tAOFPD (min.)  
tAOFPD (min.)  
DRAM_RTT_B_tran  
ODT_C_async  
tAOFPD (max.)  
tAOFPD (min.)  
RTT  
DRAM_RTT_C_async  
Synchronous to Asynchronous Transition During Precharge Power-Down (with DLL Frozen) Entry  
(AL = 0; CWL = 5; tANPD = WL 1 = 4)  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
123  
EDJ5308BBBG, EDJ5316BBBG  
Asynchronous to Synchronous ODT Mode Transition during Power-Down Exit  
If DLL is selected to be frozen in precharge power-down mode by the setting of bit A12 in MR0 to 0, there is also a  
transition period around power-down exit, where either synchronous or asynchronous response to a change in ODT  
must be expected from the DDR3 SDRAM.  
This transition period starts tANPD before CKE is first registered high, and ends tXPDLL after CKE is first registered  
high. tANPD is equal to (WL 1.0) and is counted backward from the clock cycle where CKE is first registered high.  
ODT assertion during the transition period may result in an RTT change as early as the smaller of tAONPD(min.)  
and (ODTLon × tCK + tAON(min.)) and as late as the larger of tAONPD(max.) and (ODTLon × tCK + tAON(max.)).  
ODT de-assertion during the transition period may result in an RTT change as early as the smaller of tAOFPD(min.)  
and (ODTLoff × tCK + tAOF(min.)) and as late as the larger of tAOFPD(max.) and (ODTLoff × tCK + tAOF(max.)).  
See ODT for Power-Down (with DLL Frozen) Entry and Exit Transition Period table.  
Note that, if AL has a large value, the range where RTT is uncertain becomes quite large. The figure below shows  
the three different cases: ODT_C, asynchronous response before tANPD; ODT_B has a state change of ODT during  
the transition period; ODT_A shows a state change of ODT after the transition period with synchronous response.  
T1 T3 T5 T7 T9 T11 T13 T15 T17 T19 T21 T23 T25 T27 T29 T31 T33 T35  
CK  
/CK  
Command  
NOP NOP  
CKE  
PD exit transition period  
tANPD  
tXPDLL  
ODT_C_async  
tAOFPD (max.)  
tAOFPD (min.)  
DRAM_RTT_C_async  
ODT_B_tran  
RTT  
tAOFPD (min.)  
ODTLoff + tAOF (min.)  
ODTLoff + tAOF (max.)  
tAOFPD (max.)  
DRAM_RTT_B_tran  
ODT_A_sync  
ODTLoff  
tAOF (max.)  
tAOF (min.)  
RTT  
DRAM_RTT_A_sync  
Asynchronous to Synchronous Transition during Precharge Power-Down (with DLL Frozen) Exit  
(CL = 6; AL = CL - 1; CWL = 5; tANPD= WL 1 = 9)  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
124  
EDJ5308BBBG, EDJ5316BBBG  
Asynchronous to Synchronous ODT Mode during Short CKE high and Short CKE Low Periods  
If the total time in precharge power-down state or idle state is very short, the transition periods for power-down entry  
and power-down exit may overlap. In this case the response of the DDR3 SDRAM RTT to a change in ODT state at  
the input may be synchronous OR asynchronous from the start of the power-down entry transition period to the end  
of the PD exit transition period (even if the entry period ends later than the exit period).  
If the total time in idle state is very short, the transition periods for power-down exit and power-down entry may  
overlap. In this case the response of the DDR3 SDRAM RTT to a change in ODT state at the input may be  
synchronous OR asynchronous from the start of the power-down exit transition period to the end of the power-down  
entry transition period.  
Note that in the bootom part of figure below it is assumed that there was no refresh command in progress when idle  
state was entered.  
CK  
/CK  
Command  
REF  
NOP NOP  
NOP NOP  
CKE  
tANPD  
tRFC  
PD entry transition period  
PD exit transition period  
tXPDLL  
tANPD  
short CKE low transition period  
CKE  
tANPD  
tXPDLL  
tXPDLL  
tANPD  
short CKE high transition period  
Transition Period for Short CKE Cycles with Entry and Exit Period Overlapping  
(AL = 0, WL = 5, tANPD = WL 1 = 4)  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
125  
EDJ5308BBBG, EDJ5316BBBG  
ZQ Calibration  
ZQ calibration command is used to calibrate DRAM RON and ODT values over PVT. DDR3 SDRAM needs longer  
time to calibrate RON and ODT at initialization and relatively smaller time to perform periodic calibrations.  
ZQCL command is used to perform the initial calibration during power-up initialization sequence. This command may  
be issued at any time by the controller depending on the system environment. ZQCL command triggers the  
calibration engine inside the DRAM and once calibration is achieved the calibrated values are transferred from  
calibration engine to DRAM I/O which gets reflected as updated RON and ODT values.  
The first ZQCL command issued after reset is allowed a timing period of tZQinit to perform the full calibration and the  
transfer of values. All other ZQCL commands except the first ZQCL command issued after RESET is allowed a  
timing period of tZQoper.  
ZQCS command is used to perform periodic calibrations to account for VT variations. A shorter timing window is  
provided to perform the calibration and transfer of values as defined by timing parameter tZQCS.  
No other activities must be performed on the DRAM channel by the controller for the duration of tZQinit, tZQoper or  
tZQCS. The quiet time on the DRAM channel helps in accurate calibration of RON and ODT. Once DRAM calibration  
is achieved the DRAM should disable ZQ current consumption path to reduce power.  
All banks must be precharged and tRP met before ZQCL or ZQCS commands are issued by the controller.  
ZQ calibration commands can also be issued in parallel to DLL lock time when coming out of self-refresh. Upon self-  
refresh exit, DDR3 SDRAM will not perform an IO calibration without an explicit ZQ calibration command. The  
earliest possible time for ZQ Calibration command (short or long) after self-refresh exit is tXS.  
In dual rank systems that share the ZQ resistor between devices, the controller must not allow any overlap of  
tZQoper or tZQinit or tZQCS between ranks.  
CK  
Valid  
Valid  
Command  
A10  
ZQCL  
NOP/DESL  
ZQCS  
NOP/DESL  
A10 = H  
X
A10 = L  
X
Address  
CKE  
tZQinit or tZQ oper  
Hi-Z  
tZQCS  
Hi-Z  
DQ Bus*2  
Activities  
Activities  
Notes: 1. ODT must be disabled via ODT signal or MRS during calibration procedure.  
2. All device connected to DQ bus should be High impedance during calibration.  
ZQ Calibration  
ZQ External Resistor Value and Tolerance  
DDR3 SDRAM has a 240, ±1% tolerance external resistor connecting from the DDR3 SDRAM ZQ pin to ground.  
The resister can be used as single DRAM per resistor.  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
126  
EDJ5308BBBG, EDJ5316BBBG  
Package Drawing  
78-ball FBGA (TBD)  
Solder ball: Lead free (Sn-Ag-Cu)  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
127  
EDJ5308BBBG, EDJ5316BBBG  
96-ball FBGA (TBD)  
Solder ball: Lead free (Sn-Ag-Cu)  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
128  
EDJ5308BBBG, EDJ5316BBBG  
Recommended Soldering Conditions  
Please consult with our sales offices for soldering conditions of the EDJ5308BBBG, EDJ5316BBBG.  
Type of Surface Mount Device  
EDJ5308BBBG: 78-ball FBGA < Lead free (Sn-Ag-Cu) >  
EDJ5316BBBG: 96-ball FBGA < Lead free (Sn-Ag-Cu) >  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
129  
EDJ5308BBBG, EDJ5316BBBG  
NOTES FOR CMOS DEVICES  
PRECAUTION AGAINST ESD FOR MOS DEVICES  
1
Exposing the MOS devices to a strong electric field can cause destruction of the gate  
oxide and ultimately degrade the MOS devices operation. Steps must be taken to stop  
generation of static electricity as much as possible, and quickly dissipate it, when once  
it has occurred. Environmental control must be adequate. When it is dry, humidifier  
should be used. It is recommended to avoid using insulators that easily build static  
electricity. MOS devices must be stored and transported in an anti-static container,  
static shielding bag or conductive material. All test and measurement tools including  
work bench and floor should be grounded. The operator should be grounded using  
wrist strap. MOS devices must not be touched with bare hands. Similar precautions  
need to be taken for PW boards with semiconductor MOS devices on it.  
2
HANDLING OF UNUSED INPUT PINS FOR CMOS DEVICES  
No connection for CMOS devices input pins can be a cause of malfunction. If no  
connection is provided to the input pins, it is possible that an internal input level may be  
generated due to noise, etc., hence causing malfunction. CMOS devices behave  
differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed  
high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected  
to VDD or GND with a resistor, if it is considered to have a possibility of being an output  
pin. The unused pins must be handled in accordance with the related specifications.  
3
STATUS BEFORE INITIALIZATION OF MOS DEVICES  
Power-on does not necessarily define initial status of MOS devices. Production process  
of MOS does not define the initial operation status of the device. Immediately after the  
power source is turned ON, the MOS devices with reset function have not yet been  
initialized. Hence, power-on does not guarantee output pin levels, I/O settings or  
contents of registers. MOS devices are not initialized until the reset signal is received.  
Reset operation must be executed immediately after power-on for MOS devices having  
reset function.  
CME0107  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
130  
EDJ5308BBBG, EDJ5316BBBG  
The information in this document is subject to change without notice. Before using this document, confirm that this is the latest version.  
No part of this document may be copied or reproduced in any form or by any means without the prior  
written consent of Elpida Memory, Inc.  
Elpida Memory, Inc. does not assume any liability for infringement of any intellectual property rights  
(including but not limited to patents, copyrights, and circuit layout licenses) of Elpida Memory, Inc. or  
third parties by or arising from the use of the products or information listed in this document. No license,  
express, implied or otherwise, is granted under any patents, copyrights or other intellectual property  
rights of Elpida Memory, Inc. or others.  
Descriptions of circuits, software and other related information in this document are provided for  
illustrative purposes in semiconductor product operation and application examples. The incorporation of  
these circuits, software and information in the design of the customer's equipment shall be done under  
the full responsibility of the customer. Elpida Memory, Inc. assumes no responsibility for any losses  
incurred by customers or third parties arising from the use of these circuits, software and information.  
[Product applications]  
Be aware that this product is for use in typical electronic equipment for general-purpose applications.  
Elpida Memory, Inc. makes every attempt to ensure that its products are of high quality and reliability.  
However, users are instructed to contact Elpida Memory's sales office before using the product in  
aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment,  
medical equipment for life support, or other such application in which especially high quality and  
reliability is demanded or where its failure or malfunction may directly threaten human life or cause risk  
of bodily injury.  
[Product usage]  
Design your application so that the product is used within the ranges and conditions guaranteed by  
Elpida Memory, Inc., including the maximum ratings, operating supply voltage range, heat radiation  
characteristics, installation conditions and other related characteristics. Elpida Memory, Inc. bears no  
responsibility for failure or damage when the product is used beyond the guaranteed ranges and  
conditions. Even within the guaranteed ranges and conditions, consider normally foreseeable failure  
rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so  
that the equipment incorporating Elpida Memory, Inc. products does not cause bodily injury, fire or other  
consequential damage due to the operation of the Elpida Memory, Inc. product.  
[Usage environment]  
Usage in environments with special characteristics as listed below was not considered in the design.  
Accordingly, our company assumes no responsibility for loss of a customer or a third party when used in  
environments with the special characteristics listed below.  
Example:  
1) Usage in liquids, including water, oils, chemicals and organic solvents.  
2) Usage in exposure to direct sunlight or the outdoors, or in dusty places.  
3) Usage involving exposure to significant amounts of corrosive gas, including sea air, CL2, H2S, NH3,  
SO2, and NO .  
x
4) Usage in environments with static electricity, or strong electromagnetic waves or radiation.  
5) Usage in places where dew forms.  
6) Usage in environments with mechanical vibration, impact, or stress.  
7) Usage near heating elements, igniters, or flammable items.  
If you export the products or technology described in this document that are controlled by the Foreign  
Exchange and Foreign Trade Law of Japan, you must follow the necessary procedures in accordance  
with the relevant laws and regulations of Japan. Also, if you export products/technology controlled by  
U.S. export control regulations, or another country's export control laws or regulations, you must follow  
the necessary procedures in accordance with such laws or regulations.  
If these products/technology are sold, leased, or transferred to a third party, or a third party is granted  
license to use these products, that third party must be made aware that they are responsible for  
compliance with the relevant laws and regulations.  
M01E0706  
Preliminary Data Sheet E1349E20 (Ver. 2.0)  
131  

相关型号:

EDJ5308BBBG-DG-F

DDR DRAM, 64MX8, 20ns, CMOS, PBGA78, ROHS COMPLIANT, FBGA-78
ELPIDA

EDJ5308BBBG-DJ-F

DDR DRAM, 64MX8, 20ns, CMOS, PBGA78, ROHS COMPLIANT, FBGA-78
ELPIDA

EDJ5316AASE-AC-E

DDR DRAM, 32MX16, CMOS, PBGA96, ROHS COMPLIANT, MICRO, BGA-96
ELPIDA

EDJ5316AASE-AE-E

DDR DRAM, 32MX16, CMOS, PBGA96, ROHS COMPLIANT, MICRO, BGA-96
ELPIDA

EDJ5316AASE-DG-E

DDR DRAM, 32MX16, CMOS, PBGA96, ROHS COMPLIANT, MICRO, BGA-96
ELPIDA

EDJ5316AASE-DJ-E

DDR DRAM, 32MX16, CMOS, PBGA96, ROHS COMPLIANT, MICRO, BGA-96
ELPIDA

EDJ5316BASE-8A-E

512M bits DDR3 SDRAM
ELPIDA

EDJ5316BASE-8C-E

512M bits DDR3 SDRAM
ELPIDA

EDJ5316BASE-AC-E

512M bits DDR3 SDRAM
ELPIDA

EDJ5316BASE-AE-E

512M bits DDR3 SDRAM
ELPIDA

EDJ5316BASE-AG-E

512M bits DDR3 SDRAM
ELPIDA

EDJ5316BASE-DG-E

512M bits DDR3 SDRAM
ELPIDA