EDK1216CFBJ-75-F [ELPIDA]

128M bits DDR Mobile RAM™; 128M DDR位移动RAM
EDK1216CFBJ-75-F
型号: EDK1216CFBJ-75-F
厂家: ELPIDA MEMORY    ELPIDA MEMORY
描述:

128M bits DDR Mobile RAM™
128M DDR位移动RAM

存储 内存集成电路 动态存储器 双倍数据速率
文件: 总56页 (文件大小:708K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY DATA SHEET  
128M bits DDR Mobile RAM  
EDK1216CFBJ (8M words × 16 bits)  
Specifications  
Pin Configurations  
Density: 128M bits  
Organization  
/xxx indicates active low signal.  
60-ball FBGA  
2M words × 16 bits × 4 banks  
1
2
3
4
5
6
7
8
9
10  
Package: 60-ball FBGA  
Lead-free (RoHS compliant) and Halogen-free  
Power supply: VDD, VDDQ = 1.7V to 1.95V  
Clock frequency: 133MHz (max.)  
1KB page size  
A
B
C
D
E
VSS DQ15 VSSQ  
VDDQ DQ13 DQ14  
VSSQ DQ11 DQ12  
VDDQ DQ9 DQ10  
VSSQ UDQS DQ8  
VDDQ DQ0  
VDD  
DQ1  
DQ3  
DQ5  
DQ2 VSSQ  
DQ4 VDDQ  
DQ6 VSSQ  
Row address: A0 to A11  
Column address: A0 to A8  
Four internal banks for concurrent operation  
Interface: LVCMOS  
DQ7 LDQS VDDQ  
Burst lengths (BL): 2, 4, 8, 16  
Burst type (BT):  
Sequential (2, 4, 8, 16)  
Interleave (2, 4, 8, 16)  
/CAS Latency (CL): 3  
F
G
H
UDM  
CK  
VSS  
CKE  
A9  
NC  
/CK  
NC  
A8  
VDD  
NC  
/WE  
/CS  
LDM  
/CAS /RAS  
BA1  
A1  
A11  
A7  
BA0  
A0  
J
Precharge: auto precharge option for each burst  
A6  
A10  
A2  
access  
K
VSS  
A4  
A5  
A3  
VDD  
Driver strength: normal, 1/2, 1/4, 1/8  
Refresh: auto-refresh, self-refresh  
Refresh cycles: 4096 cycles/64ms  
Average refresh period: 15.6µs  
Operating ambient temperature range  
TA =25°C to +85°C  
(Top View)  
Address input  
A0 to A11  
BA0, BA1  
DQ0 to DQ15  
UDQS, LDQS  
/CS  
Bank select address  
Data-input/output  
Input and output data strobe  
Chip select  
/RAS  
/CAS  
/WE  
UDM, LDM  
CK  
/CK  
CKE  
VDD  
Row address strobe  
Column address strobe  
Write enable  
Write data mask  
Clock input  
Features  
Low power consumption  
Partial Array Self-Refresh (PASR)  
Differential clock input  
Clock enable  
Auto Temperature Compensated Self-Refresh  
(ATCSR) by built-in temperature sensor  
Power for internal circuit  
Ground for internal circuit  
Power for DQ circuit  
Ground for DQ circuit  
No connection  
VSS  
Double-data-rate architecture; two data transfers per  
VDDQ  
VSSQ  
NC  
one clock cycle  
Bi-directional data strobe (DQS) is transmitted  
/received with data for capturing data at the receiver.  
DQS is edge-aligned with data for READs; center-  
aligned with data for WRITEs  
Differential clock inputs (CK and /CK)  
Commands entered on each positive CK edge: data  
and data mask referenced to both edges of DQS  
Burst termination by burst stop command and  
Precharge command  
Document No. E1194E20 (Ver. 2.0)  
Date Published October 2009 (K) Japan  
Printed in Japan  
URL: http://www.elpida.com  
Elpida Memory, Inc. 2007-2009  
EDK1216CFBJ  
Ordering Information  
Organization  
(words × bits)  
Internal  
banks  
Clock frequency Data rate  
Part number  
MHz (max.)  
Mbps (max.)  
/CAS latency  
Package  
EDK1216CFBJ-75-F  
8M × 16  
4
133  
266  
3
60-ball FBGA  
Part Number  
E D K 12 16 C F BJ - 75 - F  
Elpida Memory  
Type  
Environment Code  
F: Lead Free (RoHS compliant)  
and Halogen Free  
D: Monolithic Device  
Speed  
75: 133MHz  
Product Family  
K: DDR Mobile RAM  
Density/Page size  
12: 128Mb/1KB  
Package  
BJ: FBGA  
Organization  
16: x16  
Power Supply, Interface  
C: VDD = 1.8V, VDDQ = 1.8V, LVCMOS  
Die Rev.  
Preliminary Data Sheet E1194E20 (Ver. 2.0)  
2
EDK1216CFBJ  
CONTENTS  
Specifications.................................................................................................................................................1  
Features.........................................................................................................................................................1  
Pin Configurations .........................................................................................................................................1  
Ordering Information......................................................................................................................................2  
Part Number ..................................................................................................................................................2  
Electrical Specifications.................................................................................................................................4  
Block Diagram .............................................................................................................................................10  
Pin Function.................................................................................................................................................11  
Command Operation ...................................................................................................................................13  
Simplified State Diagram.............................................................................................................................19  
Operation of the DDR Mobile RAM .............................................................................................................20  
Timing Waveforms.......................................................................................................................................44  
Package Drawing ........................................................................................................................................53  
Recommended Soldering Conditions..........................................................................................................54  
Preliminary Data Sheet E1194E20 (Ver. 2.0)  
3
EDK1216CFBJ  
Electrical Specifications  
All voltages are referenced to VSS (GND).  
After power up, wait more than 200 µs and then, execute power on sequence and CBR (Auto) refresh before  
proper device operation is achieved.  
Absolute Maximum Ratings  
Parameter  
Symbol  
VT  
Rating  
Unit  
V
Note  
Voltage on any pin relative to VSS  
Supply voltage relative to VSS  
Short circuit output current  
Power dissipation  
–0.5 to +2.45  
–0.5 to +2.45  
50  
VDD  
IOS  
PD  
V
mA  
W
1.0  
Operating ambient temperature  
Storage temperature  
TA  
–25 to +85  
–55 to +125  
°C  
°C  
Tstg  
Caution  
Exposing the device to stress above those listed in Absolute Maximum Ratings could cause  
permanent damage. The device is not meant to be operated under conditions outside the limits  
described in the operational section of this specification. Exposure to Absolute Maximum Rating  
conditions for extended periods may affect device reliability.  
Recommended DC Operating Conditions (TA = 25°C to +85°C)  
Parameter  
Pins  
Symbol  
min.  
1.70  
typ.  
1.8  
max.  
1.95  
Unit  
V
Notes  
VDD,  
VDDQ  
Supply voltage  
VSS,  
0
0
0
V
V
V
VSSQ  
DC input voltage level  
CK, /CK  
VIN (DC)  
–0.3  
VDDQ + 0.3  
0.6 × VDDQ  
AC Input differential cross  
point voltage  
VIX  
0.4 × VDDQ  
0.5 × VDDQ  
5
DC input differential voltage  
AC input differential voltage  
DC input high voltage  
DC input low voltage  
VID (DC)  
VID (AC)  
0.4 × VDDQ  
0.6 × VDDQ  
VDDQ + 0.6  
VDDQ + 0.6  
VDDQ + 0.3  
0.3 × VDDQ  
VDDQ + 0.3  
0.2 × VDDQ  
V
V
V
V
V
V
4
4
VIHD (DC) 0.7× VDDQ  
VILD (DC) –0.3  
VIHD (AC) 0.8× VDDQ  
VILD (AC) –0.3  
1, 2  
DQ, DM, DQS,  
address, bank  
select address,  
command signals  
AC input high voltage  
AC input low voltage  
Notes: 1. VIH (max.) = 2.45V (pulse width 5ns).  
2. VIL (min.) = –0.5V (pulse width 5ns).  
3. All voltage referred to VSS and VSSQ must be same potential.  
4. VID (DC) and VID (AC) are the magnitude of the difference between the input level on CK and the input  
level on /CK.  
5. The value of VIX is expected to be 0.5 × VDDQ and must track variations in the DC level of the same.  
Preliminary Data Sheet E1194E20 (Ver. 2.0)  
4
EDK1216CFBJ  
DC Characteristics 1 (TA = –25°C to +85°C, VDD and VDDQ = 1.7V to 1.95V, VSS and VSSQ = 0V)  
Parameter  
Symbol Grade  
max.  
Unit  
Test condition  
Notes  
tRC tRC (min.), CKE VIH (min.),  
tCK = tCK (min.)  
Address and Command input signals are  
changed one time during 2tCK. Data input  
signals are stable  
Operating current  
IDD0  
40  
mA  
Standby current in power down  
IDD2P  
0.8  
0.6  
mA  
mA  
CKE VIL (max.), tCK = tCK (min.)  
CKE VIL (max.), tCK = ∞  
Standby current in power down  
(input signal stable)  
IDD2PS  
CKE VIH (min.), tCK = tCK (min.),  
/CS VIH (min.),  
Standby current in non power down IDD2N  
4.0  
mA  
Input signals are changed one time during  
2tCK.  
CKE VIH (min.), tCK = ,  
Standby current in non power down  
IDD2NS  
2.0  
3.0  
2.0  
mA  
mA  
mA  
Address and Command Input signals are  
(input signal stable)  
stable. DQ and DQS are Don't care.  
Active standby current in power  
down  
IDD3P  
CKE VIL (max.), tCK = tCK (min.)  
CKE VIL (max.), tCK = ∞  
Active standby current in power  
down  
IDD3PS  
IDD3N  
(input signal stable)  
CKE VIH (min.), tCK = tCK (min.),  
/CS VIH (min.),  
Input signals are changed one time during  
2tCK.  
Active standby current in non power  
down  
10  
mA  
mA  
CKE VIH (min.), tCK = ,  
Active standby current in non power  
down (input signal stable)  
IDD3NS  
7.0  
Address and Command Input signals are  
stable. DQ and DQS are Don't care.  
Burst length = 4, tCK tCK (min.),  
IOUT = 0mA, One bank active, 50 % data  
changing each burst  
Burst operating current  
Refresh current  
IDD4  
IDD5  
80  
70  
mA  
mA  
1
2
tRFC tRFC (min.)  
Advanced Data Retention Current  
(TA = –25°C to +85°C, VDD and VDDQ = 1.7V to 1.95V, VSS and VSSQ = 0V)  
Parameter  
Symbol  
IDD6  
Grade  
typ.  
max.  
140  
Unit  
Condition  
Notes  
Advanced data retention current  
(Self-refresh current)  
PASR="000" (Full)  
PASR="001" (2BK)  
PASR="010" (1BK)  
PASR="000" (Full)  
PASR="001" (2BK)  
PASR="010" (1BK)  
µA  
25°C TA +45°C  
CKE 0.2V  
120  
110  
210  
160  
140  
µA  
µA  
µA  
µA  
µA  
IDD6  
+45°C < TA +85°C  
CKE 0.2V  
Preliminary Data Sheet E1194E20 (Ver. 2.0)  
5
EDK1216CFBJ  
Notes: 1. IDD4 depends on output loading and cycle rates. Specified values are obtained with the output open.  
In addition to this, IDD4 is measured on condition that addresses are changed only one time during  
tCK (min.).  
2. IDD5 is measured on condition that addresses are changed only one time during tCK (min.).  
DC Characteristics 2 (TA = 25°C to +85°C, VDD and VDDQ = 1.7V to 1.95V, VSS and VSSQ = 0V)  
Parameter  
Symbol  
ILI  
min.  
–2.0  
max.  
2.0  
Unit  
µA  
Test condition  
Notes  
Input leakage current  
0 VIN VDDQ  
0 VOUT VDDQ,  
DQ = disable  
Output leakage current  
ILO  
–1.5  
1.5  
µA  
Output high voltage  
Output low voltage  
VOH  
VOL  
0.9 × VDDQ  
V
V
IOH = 0.1mA  
0.1 × VDDQ  
IOL = 0.1 mA  
Pin Capacitance (TA = +25°C, VDD and VDDQ = 1.7V to 1.95V)  
Parameter  
Symbol  
CI1  
Pins  
min.  
1.5  
1.5  
typ.  
max.  
3.5  
Unit  
pF  
pF  
pF  
pF  
pF  
pF  
Notes  
Input capacitance  
CK, /CK  
1
CI2  
All other input-only pins  
CK, /CK  
3.0  
1
Delta input capacitance  
Cdi1  
Cdi2  
CI/O  
Cdio  
0.25  
0.5  
1
All other input-only pins  
DQ, DM, DQS  
DQ, DM, DQS  
1
Input/output capacitance  
2.0  
4.5  
1, 2  
1
Delta input/output capacitance  
0.5  
Notes: 1. These parameters are measured on conditions: f = 100MHz, VOUT = VDDQ/2, VOUT = 0.2V,  
TA = +25°C.  
2. DOUT circuits are disabled.  
AC Characteristics (TA = 25°C to +85°C, VDD and VDDQ = 1.7V to 1.95V, VSS and VSSQ = 0V)  
Parameter  
Symbol  
tCK  
min.  
max.  
100  
0.55  
0.55  
Unit  
ns  
Notes  
Clock cycle time  
7.5  
CK high-level width  
tCH  
0.45  
tCK  
tCK  
tCK  
ns  
CK low-level width  
tCL  
0.45  
CK half period  
tHP  
min. ( tCH, tCL)  
DQ output access time from CK, /CK  
DQS-in cycle time  
tAC  
2.5  
6.0  
1.1  
6.0  
6.0  
2, 8  
tDSC  
tDQSCK  
tHZ  
0.9  
tCK  
ns  
DQS output access time from CK, /CK  
DQ-out high-impedance time from CK, /CK  
DQ-out low-impedance time from CK, /CK  
DQS to DQ skew  
2.5  
2, 8  
5, 8  
6, 8  
3
ns  
tLZ  
1.0  
ns  
tDQSQ  
tQH  
0.6  
ns  
DQ/DQS output hold time from DQS  
Data hold skew factor  
tHP tQHS  
ns  
4
tQHS  
tDS  
0.75  
ns  
DQ and DM input setup time  
DQ and DM input hold time  
DQ and DM input pulse width  
Read preamble  
0.8  
ns  
3
3
tDH  
0.8  
ns  
tDIPW  
tRPRE  
tRPST  
tWPRES  
tWPRE  
tWPST  
1.8  
ns  
0.9  
1.1  
0.6  
tCK  
tCK  
ns  
Read postamble  
0.4  
Write preamble setup time  
Write preamble  
0
0.25  
0.4  
tCK  
tCK  
Write postamble  
0.6  
7
Preliminary Data Sheet E1194E20 (Ver. 2.0)  
6
EDK1216CFBJ  
Parameter  
Symbol  
tDQSS  
tDSS  
tDSH  
tDQSH  
tDQSL  
tIS  
min.  
0.75  
0.2  
0.2  
0.4  
0.4  
1.3  
1.3  
2.6  
2
max.  
1.25  
Unit  
tCK  
tCK  
tCK  
tCK  
tCK  
ns  
Notes  
Write command to first DQS latching transition  
DQS falling edge to CK setup time  
DQS falling edge hold time from CK  
DQS input high pulse width  
0.6  
0.6  
DQS input low pulse width  
Address and control input setup time  
Address and control input hold time  
Address and control input pulse width  
Mode register set command cycle time  
Active to Precharge command period  
Active to Active/Auto refresh command period  
3
3
3
tIH  
ns  
tIPW  
ns  
tMRD  
tRAS  
tRC  
tCK  
ns  
45  
120000  
75  
ns  
Auto refresh to Active/Auto refresh command period tRFC  
97.5  
22.5  
22.5  
15  
ns  
Active to Read/Write delay  
tRCD  
tRP  
ns  
Precharge to active command period  
Active to active command period  
Column address to column address delay  
Write recovery time  
ns  
tRRD  
tCCD  
tWR  
ns  
1
tCK  
ns  
15  
64  
Autoprecharge write recovery and precharge time  
Self-Refresh Exit Period  
tDAL  
tSREX  
tWTR  
tREF  
9
120  
1
ns  
Internal Write to Read command delay  
Refresh period  
tCK  
ms  
Notes: 1. On all AC measurements, we assume the test conditions shown in “Test conditions” and full driver  
strength is assumed for the output load, that is both A6 and A5 of EMRS is set to be “L”.  
2. This parameter defines the signal transition delay from the cross point of CK and /CK. The signal  
transition is defined to occur when the signal level crossing VDDQ/2.  
3. The timing reference level is VDDQ/2.  
4. Output valid window is defined to be the period between two successive transition of data out signals.  
The signal transition is defined to occur when the signal level crossing VDDQ/2.  
5. tHZ is defined as DOUT transition delay from low-Z to high-Z at the end of read burst operation. The  
timing reference is cross point of CK and /CK. This parameter is not referred to a specific DOUT voltage  
level, but specify when the device output stops driving.  
6. tLZ is defined as DOUT transition delay from high-Z to low-Z at the beginning of read operation. This  
parameter is not referred to a specific DOUT voltage level, but specify when the device output begins  
driving.  
7. The transition from low-Z to high-Z is defined to occur when the device output stops driving. A specific  
reference voltage to judge this transition is not given.  
8. tAC, tDQSCK, tHZ and tLZ are specified with 20pF bus loading condition.  
9. Minimum 3 clocks of tDAL (= tWR + tRP) is required because it need minimum 2 clocks for tWR and  
minimum 1 clock for tRP.  
tDAL = (tWR/tCK) + (tRP/tCK): for each of the terms above, if not already an integer, round to the next  
higher integer.  
Preliminary Data Sheet E1194E20 (Ver. 2.0)  
7
EDK1216CFBJ  
Test Conditions  
Parameter  
Symbol  
Value  
Unit  
V
Note  
Input high voltage  
VIH (AC)  
VIL (AC)  
VID (AC)  
0.8 × VDDQ  
0.2 × VDDQ  
1.4  
1
1
1
Input low voltage  
V
Input differential voltage, CK and /CK inputs  
V
Input differential cross point voltage,  
CK and /CK inputs  
VIX (AC)  
VDDQ/2 with VDD=VDDQ  
V
Input signal slew rate  
SLEW  
CL  
1
V/ns  
pF  
1
Output load  
20  
Note: 1. VDD = VDDQ  
tCK  
tCH  
tCL  
VIH  
VIL  
/CK  
CK  
VID  
VIX  
tLZ  
tAC  
T
(VIH VIL)  
slew rate =  
T
DQOUT  
Q1  
Q2  
VDDQ/2  
(DQOUT)  
Test Condition (Wave form and Timing Reference)  
DQ  
CL  
Output Load  
Preliminary Data Sheet E1194E20 (Ver. 2.0)  
8
EDK1216CFBJ  
Timing Parameter Measured in Clock Cycle  
Number of clock cycle  
tCK  
7.5ns  
Parameter  
Symbol  
tWPD  
tRPD  
min.  
max.  
Unit  
tCK  
tCK  
tCK  
Notes  
Write to pre-charge command delay (same bank)  
Read to pre-charge command delay (same bank)  
Write to read command delay (to input all data)  
3 + BL/2  
BL/2  
tWRD  
2 + BL/2  
Burst stop command to write command delay  
tBSTW  
tBSTZ  
3
3
tCK  
tCK  
(CL = 3)  
Burst stop command to DQ high-Z  
(CL = 3)  
Read command to write command delay  
(to output all data)  
tRWD  
tHZP  
3 + BL/2  
3
tCK  
tCK  
(CL = 3)  
Pre-charge command to high-Z  
(CL = 3)  
Write command to data in latency  
Write recovery  
tWCD  
tWR  
1
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
2
DM to data in latency  
tDMD  
tMRD  
tSREX  
tRFC  
0
Mode register set command cycle time  
Self-refresh exit to non-column command  
Auto refresh period  
2
16  
13  
2
Power down entry  
tPDEN  
tPDEX  
tCKE  
1
2
2
Power down exit to command input  
CKE minimum pulse width  
1
1
Notes: 1. The device will be into power down mode at the second CK rising edge after CKE to be low level with  
NOP or DESL command.  
2. If PDEN command is issued but CKE stay in low level just for one clock (=tCKE min.) then CKE return to  
high level, the device will not be into power down mode.  
Preliminary Data Sheet E1194E20 (Ver. 2.0)  
9
EDK1216CFBJ  
Block Diagram  
CK  
/CK  
CKE  
Bank 3  
Bank 2  
Bank 1  
Address, BA0, BA1  
Row  
address  
buffer  
and  
Memory cell array  
Bank 0  
refresh  
counter  
Mode  
register  
Sense amp.  
Column decoder  
Column  
address  
buffer  
and  
/CS  
/RAS  
/CAS  
/WE  
burst  
counter  
Data control circuit  
Latch circuit  
DQS  
DM  
Input & Output buffer  
DQ  
Preliminary Data Sheet E1194E20 (Ver. 2.0)  
10  
EDK1216CFBJ  
Pin Function  
CK, /CK (input pins)  
The CK and the /CK are the master clock inputs. All inputs except DMs, DQSs and DQs are referred to the cross  
point of the CK rising edge and the /CK falling edge. When a read operation, DQSs and DQs are referred to the  
cross point of the CK and the /CK. When a write operation, DMs and DQs are referred to the cross point of the DQS  
and the VDDQ/2 level. DQSs for write operation are referred to the cross point of the CK and the /CK. The other  
input signals are referred at CK rising edge.  
/CS (input pin)  
When /CS is low, commands and data can be input. When /CS is high, all inputs are ignored. However, internal  
operations (bank active, burst operations, etc.) are held.  
/RAS, /CAS, and /WE (input pins)  
These pins define operating commands (read, write, etc.) depending on the combinations of their voltage levels.  
See "Command operation".  
A0 to A11 (input pins)  
Row address (AX0 to AX11) is determined by the A0 to the A11 level at the cross point of the CK rising edge and the  
/CK falling edge in a bank active command cycle. Column address is loaded at the cross point of the CK rising edge  
and the /CK falling edge in a read or a write command cycle (See “Address Pins Table”). This column address  
becomes the starting address of a burst operation.  
[Address Pins Table]  
Address (A0 to A11)  
Organization  
Part number  
Row address  
AX0 to AX11  
Column address  
AY0 to AY8  
EDK1216CFBJ  
× 16 bits  
A10 (AP) (input pin)  
A10 defines the precharge mode when a precharge command, a read command or a write command is issued. If  
A10 = high when a precharge command is issued, all banks are precharged. If A10 = low when a precharge  
command is issued, only the bank that is selected by BA1/BA0 is precharged. If A10 = high when read or write  
command, auto-precharge function is enabled.  
BA0 and BA1 (input pins)  
BA0 and BA1 are bank select signals (BA). The memory array is divided into bank 0, bank 1, bank 2 and bank 3.  
(See Bank Select Signal Table)  
[Bank Select Signal Table]  
BA0  
L
BA1  
L
Bank 0  
Bank 1  
H
L
Bank 2  
L
H
Bank 3  
H
H
Remark: H: VIH. L: VIL.  
CKE (input pin)  
CKE controls power down mode, self-refresh function with other command inputs.  
The CKE minimum pulse width should be 1 tCK.  
Preliminary Data Sheet E1194E20 (Ver. 2.0)  
11  
EDK1216CFBJ  
DQ0 to DQ15 (input/output pins)  
Data are input to and output from these pins.  
UDQS and LDQS (input and output pin): DQS provides the read data strobes (as output) and the write data  
strobes (as input). Each DQS pin corresponds to eight DQ pins, respectively (See DQS and DM Correspondence  
Table).  
UDM and LDM (input pin)  
DM is the reference signals of the data input mask function. DM is sampled at the cross point of DQS and VDDQ/2.  
When DM = high, the data input at the same timing are masked while the internal burst counter will be counting up.  
Each DM pin corresponds to eight DQ pins, respectively (See DQS and DM Correspondence Table).  
[DQS and DM Correspondence Table]  
Part number  
Organization  
DQS  
Data mask  
LDM  
DQs  
EDK1216CFBJ  
× 16 bits  
LDQS  
UDQS  
DQ0 to DQ7  
DQ8 to DQ15  
UDM  
VDD, VSS, VDDQ, VSSQ (Power supply)  
VDD and VSS are power supply pins for internal circuits. VDDQ and VSSQ are power supply pins for the output  
buffers. VDD and VDDQ must have same voltage range (1.7V to 1.95V).  
Preliminary Data Sheet E1194E20 (Ver. 2.0)  
12  
EDK1216CFBJ  
Command Operation  
Command Truth Table  
The DDR Mobile RAM recognizes the following commands specified by the /CS, /RAS, /CAS, /WE and address pins.  
CKE  
Command  
Symbol  
DESL  
NOP  
n – 1  
H
n
/CS /RAS /CAS /WE BA1 BA0 AP  
Address  
Ignore command  
H
H
H
H
H
H
H
H
H
H
H
L
H
L
L
L
L
L
L
L
L
L
L
L
L
L
×
H
H
H
H
H
H
L
×
H
H
L
×
H
L
×
×
×
V
V
V
V
V
V
×
×
×
L
×
×
×
V
V
V
V
V
V
×
×
×
L
L
×
×
×
L
H
L
H
V
L
H
×
×
L
L
×
×
×
V
V
V
V
V
×
×
×
×
V
V
No operation  
H
Burst stop command  
Column address and read command  
Read with auto-precharge  
Column address and write command  
Write with auto-precharge  
Row address strobe and bank active  
Precharge select bank  
Precharge all bank  
BST  
H
READ  
READA  
WRIT  
WRITA  
ACT  
H
H
H
L
H
L
H
L
H
L
L
H
H
H
H
L
H
L
PRE  
H
L
PALL  
REF  
H
L
L
Refresh  
H
L
H
H
L
SELF  
MRS  
H
L
L
Mode register set  
H
H
H
L
L
EMRS  
H
L
L
L
H
Remark: H: VIH. L: VIL. ×: Don’t Care V: Valid address input  
Note: The CKE level must be kept for 1 CK cycle at least.  
Ignore command [DESL]  
When /CS is high at the cross point of the CK rising edge and the VDDQ/2 level, all input signals are neglected and  
internal state is held.  
No operation [NOP]  
As long as this command is input at the cross point of the CK rising edge and the VDDQ/2 level, address and data  
input are neglected and internal state is held.  
Burst stop command [BST]  
This command stops a current burst operation.  
Column address strobe and read command [READ]  
This command starts a read operation. The start address of the burst read is determined by the column address  
(See “Address Pins Table” in Pin Function) and the bank select address. After the completion of the read operation,  
all output buffers become high-Z.  
Read with auto-precharge [READA]  
This command starts a read operation. After completion of the read operation, precharge is automatically executed.  
Column address strobe and write command [WRIT]  
This command starts a write operation. The start address of the burst write is determined by the column address  
(See “Address Pins Table” in Pin Function) and the bank select address.  
Write with auto-precharge [WRITA]  
This command starts a write operation. After completion of the write operation, precharge is automatically executed.  
Preliminary Data Sheet E1194E20 (Ver. 2.0)  
13  
EDK1216CFBJ  
Row address strobe and bank activate [ACT]  
This command activates the bank that is selected by BA0 and BA1 and determines the row address (AX0 to AX12).  
(See Bank Select Signal Table)  
Precharge selected bank [PRE]  
This command starts precharge operation for the bank selected by BA0 and BA1. (See Bank Select Signal Table)  
[Bank Select Signal Table]  
BA0  
L
BA1  
L
Bank 0  
Bank 1  
H
L
Bank 2  
L
H
Bank 3  
H
H
Remark: H: VIH. L: VIL.  
Precharge all banks [PALL]  
This command starts a precharge operation for all banks.  
Refresh [REF/SELF]  
This command starts a refresh operation. There are two types of refresh operation, one is auto-refresh, and another  
is self-refresh. For details, refer to the CKE truth table section.  
Mode register set/Extended mode register set [MRS/EMRS]  
The DDR Mobile RAM has the two mode registers, the mode register and the extended mode register, to defines  
how it works. The both mode registers are set through the address pins (the A0 to the A11, BA0 to BA1) in the  
mode register set cycle. For details, refer to "Mode register and extended mode register set".  
Preliminary Data Sheet E1194E20 (Ver. 2.0)  
14  
EDK1216CFBJ  
Function Truth Table  
The following tables show the operations that are performed when each command is issued in each state of the  
DDR Mobile RAM.  
Current state  
Precharging*1  
/CS  
H
L
/RAS /CAS /WE  
Address  
Command  
DESL  
Operation  
NOP  
×
×
×
×
H
H
H
H
L
H
H
L
H
L
×
NOP  
NOP  
L
×
BST  
ILLEGAL*11  
ILLEGAL*11  
ILLEGAL*11  
ILLEGAL*11  
NOP  
L
H
L
BA, CA, A10  
BA, CA, A10  
BA, RA  
BA, A10  
×
READ/READA  
WRIT/WRITA  
ACT  
L
L
L
H
H
L
H
L
L
L
PRE, PALL  
L
L
×
ILLEGAL  
NOP  
Idle*2  
H
L
×
×
×
×
DESL  
H
H
H
H
L
H
H
L
H
L
×
NOP  
NOP  
L
×
BST  
NOP  
L
H
L
BA, CA, A10  
BA, CA, A10  
BA, RA  
BA, A10  
READ/READA  
WRIT/WRITA  
ACT  
ILLEGAL*11  
ILLEGAL*11  
Activating  
NOP  
L
L
L
H
H
H
L
L
L
PRE, PALL  
Refresh/  
L
L
H
L
L
×
L
L
×
H
L
×
REF, SELF  
MRS  
Self-refresh*12  
MODE  
Mode register set*12  
Refresh  
×
×
DESL  
NOP  
(auto-refresh)*3  
L
H
L
L
H
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
H
H
H
L
H
H
L
H
L
×
NOP  
BST  
NOP  
×
ILLEGAL  
×
×
×
H
L
×
ILLEGAL  
×
×
ILLEGAL  
Activating*4  
×
×
×
DESL  
NOP  
H
H
H
H
L
H
H
L
×
NOP  
NOP  
×
BST  
ILLEGAL*11  
ILLEGAL*11  
ILLEGAL*11  
ILLEGAL*11  
ILLEGAL*11  
ILLEGAL  
H
L
BA, CA, A10  
READ/READA  
WRIT/WRITA  
ACT  
L
BA, CA, A10  
H
H
L
H
L
BA, RA  
L
BA, A10  
PRE, PALL  
L
×
×
H
L
×
Active*5  
×
×
×
DESL  
NOP  
H
H
H
H
L
H
H
L
×
NOP  
NOP  
×
BST  
NOP  
H
L
BA, CA, A10  
BA, CA, A10  
BA, RA  
BA, A10  
×
READ/READA  
WRIT/WRITA  
ACT  
Starting read operation  
Starting write operation  
ILLEGAL*11  
Pre-charge  
ILLEGAL  
L
H
H
L
H
L
L
PRE, PALL  
L
×
Preliminary Data Sheet E1194E20 (Ver. 2.0)  
15  
EDK1216CFBJ  
Current state  
Read*6  
/CS  
H
/RAS /CAS /WE  
Address  
Command  
DESL  
NOP  
Operation  
NOP  
×
×
×
H
L
×
×
×
L
H
H
H
H
NOP  
L
BST  
Burst stop  
Interrupting burst read  
operation to  
L
H
L
H
BA, CA, A10  
READ/READA  
start new read  
L
L
H
L
L
L
BA, CA, A10  
BA, RA  
WRIT/WRITA  
ACT  
ILLEGAL*13  
ILLEGAL*11  
H
H
Interrupting burst read  
operation to start pre-  
charge  
L
L
H
L
BA, A10  
PRE, PALL  
L
L
L
×
×
×
×
ILLEGAL  
Read with auto-pre-  
charge*7  
H
×
×
DESL  
NOP  
L
L
L
L
L
L
L
H
L
L
H
H
H
H
L
H
H
L
H
L
×
NOP  
NOP  
×
BST  
ILLEGAL  
ILLEGAL  
ILLEGAL  
ILLEGAL*11  
ILLEGAL*11  
ILLEGAL  
NOP  
H
L
BA, CA, A10  
READ/READA  
WRIT/WRITA  
ACT  
L
BA, CA, A10  
H
H
L
H
L
BA, RA  
L
BA, A10  
PRE, PALL  
L
×
×
×
×
×
Write*8  
×
×
×
DESL  
NOP  
BST  
H
H
H
H
H
L
NOP  
Burst Stop  
Interrupting burst write  
operation to  
L
H
L
H
BA, CA, A10  
BA, CA, A10  
READ/READA  
start read operation.  
Interrupting burst write  
operation to  
L
H
L
L
WRIT/WRITA  
start new write  
operation.  
L
L
L
L
H
H
H
L
BA, RA  
ACT  
ILLEGAL*11  
Interrupting write operation  
to start pre-charge.  
BA, A10  
PRE, PALL  
L
H
L
L
L
L
L
×
×
ILLEGAL  
Write recovering*9  
×
×
×
×
DESL  
NOP  
H
H
H
H
H
L
H
L
×
NOP  
NOP  
×
BST  
ILLEGAL  
H
BA, CA, A10  
READ/READA  
Starting read operation.  
Starting new write  
operation.  
L
H
L
L
BA, CA, A10  
WRIT/WRITA  
L
L
L
L
L
L
H
H
L
H
L
BA, RA  
BA, A10  
×
ACT  
ILLEGAL*11  
ILLEGAL*11  
ILLEGAL  
PRE/PALL  
×
Preliminary Data Sheet E1194E20 (Ver. 2.0)  
16  
EDK1216CFBJ  
Current state  
/CS  
H
/RAS /CAS /WE  
Address  
Command  
DESL  
Operation  
NOP  
Write with auto- pre-  
×
×
×
×
charge*10  
L
L
L
L
L
L
L
H
H
H
H
L
H
H
L
H
L
×
NOP  
NOP  
×
BST  
ILLEGAL  
ILLEGAL  
ILLEGAL  
ILLEGAL*11  
ILLEGAL*11  
ILLEGAL  
H
L
BA, CA, A10  
BA, CA, A10  
BA, RA  
BA, A10  
×
READ/READA  
WRIT/WRIT A  
ACT  
L
H
H
L
H
L
L
PRE, PALL  
L
×
Remark: H: VIH. L: VIL. ×: Don’t Care  
Notes: 1. The DDR Mobile RAM is in "Precharging" state for tRP after precharge command is issued.  
2. The DDR Mobile RAM reaches "IDLE" state tRP after precharge command is issued.  
3. The DDR Mobile RAM is in "Refresh" state for tRFC after auto-refresh command is issued.  
4. The DDR Mobile RAM is in "Activating" state for tRCD after ACT command is issued.  
5. The DDR Mobile RAM is in "Active" state after "Activating" is completed.  
6. The DDR Mobile RAM is in "READ" state until burst data have been output and DQ output circuits are  
turned off.  
7. The DDR Mobile RAM is in "READ with auto-precharge" from READA command until burst data has been  
output and DQ output circuits are turned off.  
8. The DDR Mobile RAM is in "WRITE" state from WRIT command to the last burst data are input.  
9. The DDR Mobile RAM is in "Write recovering" for tWR after the last data are input.  
10. The DDR Mobile RAM is in "Write with auto-precharge" until tWR after the last data has been input.  
11. This command may be issued for other banks, depending on the state of the banks.  
12. All banks must be in "IDLE".  
13. Before executing a write command to stop the preceding burst read operation, BST command must be  
issued.  
Preliminary Data Sheet E1194E20 (Ver. 2.0)  
17  
EDK1216CFBJ  
CKE Truth Table  
CKE  
n – 1  
H
Current state  
Command  
n
/CS  
L
/RAS /CAS /WE  
Address  
Notes  
Idle  
Idle  
Auto-refresh command (REF)  
Self-refresh entry (SELF)  
H
L
L
L
H
H
H
×
×
×
×
×
×
×
×
×
2
2
H
L
L
L
H
L
L
H
×
H
×
Idle/Active  
Power down entry (PDEN)  
Self refresh exit (SELFX)  
Power down exit (PDEX)  
H
L
H
L
L
H
H
H
H
H
×
H
×
H
×
Self refresh  
Power down  
L
H
L
L
H
×
H
×
H
×
L
H
Notes: 1. H: VIH . L: VIL × : Don’t Care .  
2. All the banks must be in IDLE before executing this command.  
3. The CKE level must be kept for 1 clock cycle at least.  
Auto-refresh command [REF]  
This command executes auto-refresh. The bank and the ROW addresses to be refreshed are internally determined  
by the internal refresh controller. The output buffer becomes high-Z after auto-refresh start. Precharge has been  
completed automatically after the auto-refresh. The ACT or MRS command can be issued tRFC after the last auto-  
refresh command.  
The average refresh cycle is 15.6µs. To allow for improved efficiency in scheduling, some flexibility in the absolute  
refresh interval (64ms) is provided. A maximum of eight auto-refresh commands can be posted to the DDR Mobile  
RAM or the maximum absolute interval between any auto-refresh command and the next auto-refresh command is  
8 × tREF.  
Self-refresh entry [SELF]  
This command starts self-refresh. The self-refresh operation continues as long as CKE is held low. During the self-  
refresh operation, all ROW addresses are repeated refreshing by the internal refresh controller. A self-refresh is  
terminated by a self-refresh exit command.  
Power down mode entry [PDEN]  
tPDEN (= 2 clocks) after the cycle when [PDEN] is issued, the DDR Mobile RAM enters into power-down mode. In  
power down mode, power consumption is suppressed by deactivating the input initial circuit. Power down mode  
continues while CKE is held low. No internal refresh operation occurs during the power down mode.  
Self-refresh exit [SELFX]  
This command is executed to exit from self-refresh mode. tSREX after [SELFX], the device will be into idle state.  
Power down exit [PDEX]  
The DDR Mobile RAM can exit from power down mode tPDEX (1 cycle min.) after the cycle when [PDEX] is issued.  
Preliminary Data Sheet E1194E20 (Ver. 2.0)  
18  
EDK1216CFBJ  
Simplified State Diagram  
SELF  
REFRESH  
EXTENDED  
MODE  
REGISTER  
SET  
SR ENTRY  
SR EXIT  
MRS  
REFRESH  
MODE  
REGISTER  
SET  
AUTO  
REFRESH  
IDLE  
CKE  
CKE_  
IDLE  
POWER  
DOWN  
ACTIVE  
POWER  
DOWN  
ACTIVE  
CKE_  
CKE  
BST  
WRITE  
ROW  
ACTIVE  
BST  
READ  
WRITE  
WRITE  
WITH  
AP  
READ  
WITH  
AP  
READ  
WRITE  
READ  
READ  
READ  
WITH AP  
WRITE  
WITH AP  
READ  
WITH AP  
PRECHARGE  
WRITEA  
READA  
PRECHARGE PRECHARGE  
POWER  
APPLIED  
POWER  
ON  
PRECHARGE  
PRECHARGE  
Automatic sequence  
Manual input  
Preliminary Data Sheet E1194E20 (Ver. 2.0)  
19  
EDK1216CFBJ  
Operation of the DDR Mobile RAM  
Initialization  
The DDR Mobile RAM is initialized in the power-on sequence according to the following.  
(1) To stabilize internal circuits, when power is applied, a 200µs or longer pause must precede any signal toggling.  
VDD should be turned on simultaneously or before VDDQ.  
(2) After the pause, all banks must be precharged using the Precharge command (The Precharge all banks  
command is convenient).  
(3) Once the precharge is completed and the minimum tRP is satisfied, two or more Auto refresh must be performed.  
(4) The mode register must be programmed and the extended mode register should be programmed. After the  
mode register set cycle or the extended mode register set cycle, tMRD (2 clocks minimum) pause must be  
satisfied.  
Remarks:  
1
The sequence of Auto refresh, mode register programming and extended mode register programming above may  
be transposed.  
2
CKE must be held high until the Precharge command is issued to ensure data-bus high-Z.  
Mode Register and Extended Mode Register Set  
There are two mode registers, the mode register and the extended mode register so as to define the operating  
mode. Parameters are set to both through the A0 to the A11 and BA0 and BA1 pins by the mode register set  
command [MRS] or the extended mode register set command [EMRS]. The mode register and the extended mode  
register are set by inputting signal via the A0 to the A11 and BA0 and BA1 pins during mode register set cycles.  
BA0 and BA1 determine which one of the mode register or the extended mode register are set. Prior to a read or a  
write operation, the mode register must be set.  
Mode register  
The mode register has four fields;  
Reserved  
: A11 through A7  
: A6 through A4  
: A3  
/CAS latency  
Wrap type  
Burst length  
: A2 through A0  
Following mode register programming, no command can be issued before at least 2 clocks have elapsed.  
/CAS Latency  
/CAS latency must be set to 3.  
Burst Length  
Burst Length is the number of words that will be output or input in a read or write cycle. After a read burst is  
completed, the output bus will become high-Z. The burst length is programmable as 2, 4, 8 and 16.  
Wrap Type (Burst Sequence)  
The wrap type specifies the order in which the burst data will be addressed. This order is programmable as either  
“Sequential” or “Interleave”. “Burst Operation” shows the addressing sequence for each burst length for each wrap  
type.  
Preliminary Data Sheet E1194E20 (Ver. 2.0)  
20  
EDK1216CFBJ  
Extended Mode Register  
The extended mode register has three fields;  
Reserved  
Driver Strength  
: A11 through A7, A4, A3  
: A6 through A5  
Partial Array Self Refresh  
: A2 through A0  
Following extended mode register programming, no command can be issued before at least 2 clocks have elapsed.  
Note: EMRS has default value at power up. [A9 : A0] = [00 0000 0000].  
Driver Strength  
By setting specific parameter on A6 and A5, driving capability of data output drivers is selected.  
Advanced Temperature Compensated Self Refresh (ATCSR)  
The DDR Mobile RAM automatically changes the self-refresh cycle by on die temperature sensor. No extended  
mode register program is required. Manual TCSR (Temperature Compensated Self-Refresh) is not implemented.  
Partial Array Self Refresh  
Memory array size to be refreshed during self-refresh operation is programmable in order to reduce power. Data  
outside the defined area will not be retained during self-refresh.  
Preliminary Data Sheet E1194E20 (Ver. 2.0)  
21  
EDK1216CFBJ  
Power-Down Mode and CKE Control  
DDR Mobile RAM will be into power-down mode at the second CK rising edge after CKE to be low level with NOP or  
DESL command at first CK rising edge after CKE signal to be low.  
CK  
/CK  
CKE  
Valid*1  
Valid*1  
NOP  
NOP  
Valid*2  
Valid*2  
NOP  
Command  
Address  
Power-down mode  
Notes: 1. Valid*1 can be either Activate command or Precharge command, When Valid*1 is Activate command,  
power-down mode will be active power-down mode, while it will be precharge power down mode,  
if Valid*1 will be Precharge command.  
2. Valid*2 can be any command as long as all of specified AC parameters are satisfied.  
Power-Down Entry and Exit  
However, if the CKE has one clock cycle high and on clock cycle low just as below, even DDR Mobile RAM will not  
enter power-down mode, this command flow does not hurt any data and can be done.  
CK  
/CK  
CKE  
Command  
PRE  
NOP  
NOP  
ACT  
Note: Assume PRE and ACT command is closing and activating same bank.  
CKE Control  
Preliminary Data Sheet E1194E20 (Ver. 2.0)  
22  
EDK1216CFBJ  
Mode Register Definition  
BA1 BA0 A11 A10 A9  
A8  
0
A7  
0
A6  
A5  
A4  
A3  
A2  
A1  
BL  
A0  
0
0
0
0
0
LTMODE  
WT  
Mode Register Set  
Bits2-0  
000  
WT = 0  
WT = 1  
R
2
R
2
001  
Bits6-4  
000  
001  
010  
011  
100  
101  
110  
111  
/CAS latency  
010  
4
4
R
R
R
3
Burst length  
011  
100  
101  
110  
111  
8
8
16  
R
R
R
16  
R
R
R
Latency  
mode  
R
R
R
R
0
1
Sequential  
Interleave  
Wrap type  
BA1 BA0 A11 A10 A9  
A8  
A7  
0
A6  
A5  
A4  
0
A3  
0
A2  
A1  
A0  
1
0
0
0
0
DS  
PASR  
Extended Mode Register Set  
Bits2-0 Refresh Array  
0
000  
001  
010  
011  
100  
101  
110  
111  
All banks  
Bank A & Bank B (BA1=0)  
Bank A (BA0=BA1=0)  
Partial Array  
Self Refresh  
R
R
R
R
R
Bits6-5 Strength  
00  
01  
10  
11  
Normal  
1/2 strength  
1/4 strength  
1/8 strength  
Driver Strength  
Remark R : Reserved  
Preliminary Data Sheet E1194E20 (Ver. 2.0)  
23  
EDK1216CFBJ  
Burst Operation  
The burst type (BT) and the first three bits of the column address determine the order of a data out.  
Burst length = 2  
Burst length = 4  
Starting Ad. Addressing(decimal)  
Starting Ad. Addressing(decimal)  
A0  
0
Sequence Interleave  
A1  
0
A0 Sequence  
Interleave  
0, 1, 2,  
1, 0, 3,  
2, 3, 0,  
3, 2, 1,  
0,  
1,  
1
0
0,  
1,  
1
0
0
1
0
1
0, 1, 2,  
1, 2, 3,  
2, 3, 0,  
3
0
1
2
3
2
1
0
1
0
1
1
3,  
0, 1,  
Burst length = 8  
Starting Ad.  
Addressing(decimal)  
A2 A1 A0 Sequence  
Interleave  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0, 1, 2, 3, 4, 5, 6,  
1, 2, 3, 4, 5, 6, 7,  
2, 3, 4, 5, 6, 7, 0,  
3, 4, 5, 6, 7, 0, 1,  
4, 5, 6, 7, 0, 1, 2,  
5, 6, 7, 0, 1, 2, 3,  
6, 7, 0, 1, 2, 3, 4,  
7, 0, 1, 2, 3, 4, 5,  
7
0
1
2
3
4
5
6
0, 1, 2, 3, 4, 5, 6,  
1, 0, 3, 2, 5, 4, 7,  
2, 3, 0, 1, 6, 7, 4,  
3, 2, 1, 0, 7, 6, 5,  
4, 5, 6, 7, 0, 1, 2,  
5, 4, 7, 6, 1, 0, 3,  
6, 7, 4, 5, 2, 3, 0,  
7, 6, 5, 4, 3, 2, 1,  
7
6
5
4
3
2
1
0
Burst length = 16  
Starting Ad.  
Addressing(decimal)  
A3 A2 A1 A0 Sequence  
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15  
Interleave  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15  
1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14  
2, 3, 0, 1, 6, 7, 4, 5, 10, 11, 8, 9, 14, 15, 12, 13  
3, 2, 1, 0, 7, 6, 5, 4, 11, 10, 9, 8, 15, 14, 13, 12  
4, 5, 6, 7, 0, 1, 2, 3, 12, 13, 14, 15, 8, 9, 10, 11  
5, 4, 7, 6, 1, 0, 3, 2, 13, 12, 15, 14, 9, 8, 11, 10  
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,  
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0,  
3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1,  
4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2,  
5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3,  
6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4,  
7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5,  
8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6,  
9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7,  
10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 8,  
0
1
2
3
4
5
6
7
8
9
6, 7, 4, 5, 2, 3, 0, 1, 14, 15, 12, 13, 10, 11, 8,  
7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9,  
8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6,  
9, 8, 11, 10, 13, 12, 15, 14, 1, 0, 3, 2, 5, 4, 7,  
10, 11, 8, 9, 14, 15, 12, 13, 2, 3, 0, 1, 6, 7, 4,  
9
8
7
6
5
4
3
2
1
0
11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 11, 10, 9, 8, 15, 14, 13, 12, 3, 2, 1, 0, 7, 6, 5,  
12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 12, 13, 14, 15, 8, 9, 10, 11, 4, 5, 6, 7, 0, 1, 2,  
13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 13, 12, 15, 14, 9, 8, 11, 10, 5, 4, 7, 6, 1, 0, 3,  
14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 14, 15, 12, 13, 10, 11, 8, 9, 6, 7, 4, 5, 2, 3, 0,  
15, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1,  
Preliminary Data Sheet E1194E20 (Ver. 2.0)  
24  
EDK1216CFBJ  
Read/Write Operations  
Bank Active  
A read or a write operation begins with the bank active command [ACT]. The bank active command determines a  
bank address and a row address. For the bank and the row, a read or a write command can be issued tRCD after  
the ACT is issued.  
Read operation  
The burst length (BL), the /CAS latency (CL) and the burst type (BT) of the mode register are referred when a read  
command is issued. The burst length (BL) determines the length of a sequential output data by the read command  
that can be set to 2, 4, 8 or 16. The starting address of the burst read is defined by the column address, the bank  
select address which is loaded via the A0 to A11 and BA0 and BA1 pins in the cycle when the read command is  
issued. The data output timing is characterized by CL and tAC. The read burst start (CL-1) × tCK + tAC (ns) after  
the clock rising edge where the read command is latched. The DDR Mobile RAM outputs the data strobe through  
DQS pins simultaneously with data. tRPRE prior to the first rising edge of the data strobe, the DQS pins are driven  
low from high-Z state. This low period of DQS is referred as read preamble. The burst data are output coincidentally  
at both the rising and falling edge of the data strobe. The DQ pins become high-Z in the next cycle after the burst  
read operation completed. tRPST from the last falling edge of the data strobe, the DQS pins become high-Z. This  
low period of DQS is referred as read postamble.  
CK  
/CK  
tRCD  
Command  
Address  
NOP  
ACT  
Row  
NOP  
READ  
NOP  
Column  
tRPRE  
out0 out1  
BL = 2  
tRPST  
out0 out1 out2 out3  
BL = 4  
BL = 8  
DQS  
DQ  
out0 out1 out2 out3 out4 out5 out6 out7  
out out  
14 15  
out0 out1 out2 out3 out4 out5 out6 out7  
BL = 16  
CL = 3  
BL: Burst length  
Read Operation (Burst Length)  
Preliminary Data Sheet E1194E20 (Ver. 2.0)  
25  
EDK1216CFBJ  
t0  
t0.5  
t1  
t1.5  
t2  
t2.5  
t3  
t3.5  
t4  
t4.5  
t5  
t5.5  
CK  
/CK  
READ  
NOP  
Command  
tRPRE  
tRPST  
VTT  
VTT  
DQS  
DQ  
tAC,tDQSCK  
out0 out1 out2 out3  
Read Operation (/CAS Latency)  
Write operation  
The burst length (BL) and the burst type (BT) of the mode register are referred when a write command is issued.  
The burst length (BL) determines the length of a sequential data input by the write command that can be set to 2, 4,  
8 or 16. The latency from write command to data input is fixed to 1. The starting address of the burst write is  
defined by the column address, the bank select address which is loaded via the A0 to A11, BA0 to BA1 pins in the  
cycle when the write command is issued. DQS should be input as the strobe for the input-data and DM as well  
during burst operation. tWPRE prior to the first rising edge of DQS, DQS must be set to low. tWPST after the last  
falling edge of DQS, the DQS pins can be changed to high-Z. The leading low period of DQS is referred as write  
preamble. The last low period of DQS is referred as write postamble.  
Example  
CK  
/CK  
tRCD  
Command  
Address  
NOP  
ACT  
Row  
NOP  
WRIT  
NOP  
Column  
tWPRE  
tWPRES  
in0 in1  
BL = 2  
tWPST  
in0 in1 in2 in3  
DQS  
DQ  
BL = 4  
BL = 8  
in0 in1 in2 in3 in4 in5 in6 in7  
in  
in  
in0 in1 in2 in3 in4 in5 in6 in7  
14 15  
BL = 16  
BL: Burst length  
Write Operation  
Preliminary Data Sheet E1194E20 (Ver. 2.0)  
26  
EDK1216CFBJ  
Burst Stop  
Burst stop command during burst operation  
The burst stop (BST) command stops the burst read and sets all output buffers to high-Z. tBSTZ (= CL) cycles after  
a BST command issued, all DQ and DQS pins become high-Z.  
The BST command is also supported for the burst write operation. No data will be written in subsequent cycles.  
Note that bank address is not referred when this command is executed.  
t0  
t0.5  
t1  
t1.5  
t2  
t2.5  
t3  
t3.5  
t4  
t4.5  
t5  
t5.5  
CK  
/CK  
READ  
Command  
BST  
NOP  
tBSTZ  
DQS  
DQ  
out0 out1  
CL: /CAS latency  
Burst Stop during a Read Operation  
Preliminary Data Sheet E1194E20 (Ver. 2.0)  
27  
EDK1216CFBJ  
Auto-Precharge  
Read with auto-precharge  
The precharge is automatically performed after completing a read operation. The precharge starts BL/2 (= tRPD)  
clocks after READA command input. tRAS lock out mechanism for READA allows a read command with auto  
precharge to be issued to a bank that has been activated (opened) but has not yet satisfied the tRAS (min)  
specification. A column command to the other active bank can be issued the next cycle after the last data output.  
Read with auto-precharge command does not limit row commands execution for other bank.  
CK  
/CK  
tRP (min)  
tRAS (min)  
tRCD (min)  
BL/2 (= tRPD)  
ACT  
READA  
NOP  
ACT  
Command  
DQS  
tAC,tDQSCK  
DQ  
out0 out1 out2 out3  
Note: Internal auto-precharge starts at the timing indicated by " ".  
Read with auto-precharge  
Write with auto-precharge  
The precharge is automatically performed after completing a burst write operation. The precharge operation is  
started (WL) + BL/2 + tWR (= tWPD) clocks after WRITA command issued.  
A column command to the other banks can be issued the next cycle after the internal precharge command issued.  
Write with auto-precharge command does not limit row commands execution for other bank.  
CK  
/CK  
tRAS (min)  
tRP  
tRCD (min)  
ACT  
NOP  
WRITA  
NOP  
ACT  
Command  
WL + BL/2 + tWR (= tWPD)  
DM  
DQS  
DQ  
in1 in2 in3 in4  
BL = 4  
Note: Internal auto-precharge starts at the timing indicated by " ".  
Burst Write (BL = 4)  
Preliminary Data Sheet E1194E20 (Ver. 2.0)  
28  
EDK1216CFBJ  
The Concurrent Auto Precharge  
The DDR Mobile RAM supports the concurrent auto precharge feature, a read with auto-precharge or a write with  
auto-precharge, can be followed by any command to the other banks, as long as that command does not interrupt  
the read or write data transfer, and all other related limitations apply (e.g. contention between READ data and  
WRITE data must be avoided.) The minimum delay from a read or write command with auto precharge, to a  
command to a different bank, is summarized below.  
To command (different bank, non-  
interrupting command)  
Minimum delay  
From command  
Read w/AP  
(Concurrent AP supported)  
Units  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
Read or Read w/AP  
Write or Write w/AP  
Precharge or Activate  
Read or Read w/AP  
Write or Write w/AP  
Precharge or Activate  
BL/2  
CL (rounded up)+ (BL/2)  
1
Write w/AP  
1 + (BL/2) + tWTR  
BL/2  
1
Preliminary Data Sheet E1194E20 (Ver. 2.0)  
29  
EDK1216CFBJ  
Command Intervals  
A Read command to the consecutive Read command Interval  
Destination row of the  
consecutive read command  
Bank  
address  
Row address State  
Operation  
The consecutive read can be performed after an interval of no less than 1 cycle to  
interrupt the preceding read operation.  
Precharge the bank to interrupt the preceding read operation. tRP after the  
precharge command, issue the ACT command. tRCD after the ACT command, the  
consecutive read command can be issued. See ‘A read command to the  
consecutive precharge interval’ section.  
The consecutive read can be performed after an interval of no less than 1 cycle to  
interrupt the preceding read operation.  
Precharge the bank without interrupting the preceding read operation. tRP after  
the precharge command, issue the ACT command. tRCD after the ACT command,  
the consecutive read command can be issued.  
1. Same  
Same  
Different  
Any  
ACTIVE  
2. Same  
3. Different  
ACTIVE  
IDLE  
t0  
tn  
tn+1  
tn+2  
tn+3  
tn+4  
tn+5  
tn+6  
CK  
/CK  
Command  
NOP  
ACT  
Row  
NOP  
READ  
READ  
Column A Column B  
Address  
BA  
out out out out out out  
A0 A1 B0 B1 B2 B3  
DQ  
Column = A Column = B  
Read Read  
Column = A  
Dout  
Column = B  
Dout  
DQS  
Bank0  
Active  
CL = 3  
BL = 4  
Bank0  
READ to READ Command Interval (same ROW address in the same bank)*  
Note: n 3  
Preliminary Data Sheet E1194E20 (Ver. 2.0)  
30  
EDK1216CFBJ  
t0  
t1  
t2  
tn  
tn+1  
tn+2  
tn+3  
tn+4  
tn+5  
tn+6  
CK  
/CK  
Command  
READ  
READ  
NOP  
ACT  
NOP  
ACT  
NOP  
Row0  
Row1  
Column A Column B  
Address  
BA  
out out out out out out  
A0 A1 B0 B1 B2 B3  
DQ  
Column = A Column = B  
Read Read  
Bank0  
Dout  
Bank3  
Dout  
DQS  
Bank0  
Active  
Bank3  
Active  
Bank0  
Read  
Bank3  
Read  
CL = 3  
BL = 4  
READ to READ Command Interval (different bank)*  
Note: n 3  
Preliminary Data Sheet E1194E20 (Ver. 2.0)  
31  
EDK1216CFBJ  
A Write command to the consecutive Write command Interval  
Destination row of the consecutive write  
command  
Bank  
address  
Row address State  
Operation  
The consecutive write can be performed after an interval of no less than 1 cycle to  
interrupt the preceding write operation.  
Precharge the bank to interrupt the preceding write operation. tRP after the  
precharge command, issue the ACT command. tRCD after the ACT command, the  
consecutive write command can be issued. See ‘A write command to the  
consecutive precharge interval’ section.  
The consecutive write can be performed after an interval of no less than 1 cycle to  
interrupt the preceding write operation.  
Precharge the bank without interrupting the preceding write operation. tRP after  
the precharge command, issue the ACT command. tRCD after the ACT command,  
the consecutive write command can be issued.  
1. Same  
Same  
Different  
Any  
ACTIVE  
2. Same  
3. Different  
ACTIVE  
IDLE  
t0  
tn  
tn+1  
tn+2  
tn+3  
tn+4  
tn+5  
tn+6  
CK  
/CK  
Command  
NOP  
ACT  
Row  
NOP  
WRIT  
WRIT  
Column A Column B  
Address  
BA  
DQ  
inA0 inA1 inB0 inB1 inB2 inB3  
Column = A  
Write  
Column = B  
Write  
DQS  
Bank0  
Active  
BL = 4  
Bank0  
WRITE to WRITE Command Interval (same ROW address in the same bank)  
Preliminary Data Sheet E1194E20 (Ver. 2.0)  
32  
EDK1216CFBJ  
t0  
t1  
t2  
tn  
tn+1  
tn+2  
tn+3  
tn+4  
tn+5  
CK  
/CK  
Command  
NOP  
ACT  
NOP  
ACT  
NOP  
WRIT  
WRIT  
Row0  
Row1  
Column A Column B  
Address  
BA  
DQ  
inA0 inA1 inB0 inB1 inB2 inB3  
Bank0  
Write  
Bank3  
Write  
DQS  
Bank0  
Active  
Bank3  
Active  
BL = 4  
Bank0, 3  
WRITE to WRITE Command Interval (different bank)  
Preliminary Data Sheet E1194E20 (Ver. 2.0)  
33  
EDK1216CFBJ  
A Read command to the consecutive Write command interval with the BST command  
Destination row of the consecutive write  
command  
Bank  
address  
Row address State  
Operation  
Issue the BST command. tBSTW (tBSTZ) after the BST command, the  
1. Same  
Same  
Different  
Any  
ACTIVE  
consecutive write command can be issued.  
Precharge the bank to interrupt the preceding read operation. tRP after the  
precharge command, issue the ACT command. tRCD after the ACT command, the  
consecutive write command can be issued. See ‘A read command to the  
consecutive precharge interval’ section.  
Issue the BST command. tBSTW (tBSTZ) after the BST command, the  
consecutive write command can be issued.  
Precharge the bank independently of the preceding read operation. tRP after the  
precharge command, issue the ACT command. tRCD after the ACT command, the  
consecutive write command can be issued.  
2. Same  
3. Different  
ACTIVE  
IDLE  
t0  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
CK  
/CK  
Command  
READ  
BST  
NOP  
tBSTW (tBSTZ)  
WRIT  
NOP  
DM  
tBSTZ (= CL)  
DQ  
out0 out1  
in0 in1 in2 in3  
High-Z  
DQS  
OUTPUT  
INPUT  
BL = 4  
CL = 3  
READ to WRITE Command Interval  
Preliminary Data Sheet E1194E20 (Ver. 2.0)  
34  
EDK1216CFBJ  
A Write command to the consecutive Read command interval: To complete the burst operation  
Destination row of the consecutive read  
command  
Bank  
Row address State  
address  
Operation  
To complete the burst operation, the consecutive read command should be  
performed tWRD (= BL/ 2 + 2) after the write command.  
Precharge the bank tWPD after the preceding write command. tRP after the  
precharge command, issue the ACT command. tRCD after the ACT command, the  
consecutive read command can be issued. See ‘A read command to the  
consecutive precharge interval’ section.  
To complete a burst operation, the consecutive read command should be  
performed tWRD (= BL/ 2 + 2) after the write command.  
Precharge the bank independently of the preceding write operation. tRP after the  
precharge command, issue the ACT command. tRCD after the ACT command, the  
consecutive read command can be issued.  
1. Same  
2. Same  
3. Different  
Same  
Different  
Any  
ACTIVE  
ACTIVE  
IDLE  
t0  
t1  
t2  
t3  
tn  
tn + 1  
tn + 2  
tn + 3  
tn + 4  
CK  
/CK  
Command  
WRIT  
NOP  
READ  
NOP  
tWRD (min)  
tWTR*  
DM  
out2  
DQ  
out0 out1  
in0  
in1  
in2  
in3  
DQS  
INPUT  
OUTPUT  
BL = 4  
CL = 3  
Note: tWTR is referenced from the first positive CK edge after the last desired data in pair tWTR.  
WRITE to READ Command Interval  
Preliminary Data Sheet E1194E20 (Ver. 2.0)  
35  
EDK1216CFBJ  
A Write command to the consecutive Read command interval: To interrupt the write operation  
Destination row of the consecutive read  
command  
Bank  
Row address State  
address  
Operation  
DM must be input 1 cycle prior to the read command input to prevent from being  
written invalid data. In case, the read command is input in the next cycle of the  
write command, DM is not necessary.  
1. Same  
2. Same  
3. Different  
Same  
Different  
Any  
ACTIVE  
—*1  
DM must be input 1 cycle prior to the read command input to prevent from being  
written invalid data. In case, the read command is input in the next cycle of the  
write command, DM is not necessary.  
ACTIVE  
IDLE  
—*1  
Note: 1. Precharge must be preceded to read command. Therefore read command can not interrupt the write  
operation in this case.  
WRITE to READ Command Interval (Same bank, same ROW address)  
t0  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
CK  
/CK  
Command  
WRIT  
READ  
NOP  
DM  
High-Z  
High-Z  
DQ  
in0 in1 in2  
out0 out1 out2 out3  
DQS  
BL = 4  
CL = 3  
Data masked  
[WRITE to READ delay = 1 clock cycle]  
Preliminary Data Sheet E1194E20 (Ver. 2.0)  
36  
EDK1216CFBJ  
t0  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
CK  
/CK  
Command  
WRIT  
NOP  
READ  
NOP  
DM  
High-Z  
High-Z  
DQ  
in0 in1 in2  
in3  
out0 out1 out2 out3  
DQS  
Data masked  
BL = 4  
CL = 3  
[WRITE to READ delay = 2 clock cycle]  
t0  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
CK  
/CK  
Command  
WRIT  
NOP  
READ  
NOP  
tWTR*  
DM  
DQ  
in0 in1 in2  
in3  
out0 out1 out2 out3  
DQS  
BL = 4  
CL = 3  
Data masked  
Note: tWTR is referenced from the first positive CK edge after the last desired data in pair tWTR.  
[WRITE to READ delay = 3 clock cycle]  
Preliminary Data Sheet E1194E20 (Ver. 2.0)  
37  
EDK1216CFBJ  
A Write command to the Bust stop command interval: To interrupt the write operation  
WRITE to BST Command Interval (Same bank, same ROW address)  
t0  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
CK  
/CK  
Command  
DM  
WRIT  
BST  
NOP  
DQ  
in0 in1  
DQS  
BL = 4 or longer  
Data will be written  
Following data will not be written.  
[WRITE to BST delay = 1 clock cycle]  
t0  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
CK  
/CK  
Command  
WRIT  
NOP  
BST  
NOP  
DM  
DQ  
in0 in1 in2  
in3  
DQS  
Data will be written  
Following data will not be written.  
BL = 8 or longer  
[WRITE to BST delay = 2 clock cycle]  
Preliminary Data Sheet E1194E20 (Ver. 2.0)  
38  
EDK1216CFBJ  
t0  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
CK  
/CK  
Command  
DM  
WRIT  
NOP  
BST  
NOP  
DQ  
in0 in1 in2  
in3  
in4  
in5  
DQS  
BL = 8 or longer  
Data will be written  
Following data will not be written.  
[WRITE to BST delay = 3 clock cycle]  
Preliminary Data Sheet E1194E20 (Ver. 2.0)  
39  
EDK1216CFBJ  
A Read command to the consecutive Precharge command interval  
Operation by each case of destination bank of the consecutive Precharge command.  
Bank address  
Operation  
The PRE and PALL command can interrupt a read operation.  
1.  
2.  
Same  
To complete a burst read operation, tRPD is required between the read and the precharge  
command. Please refer to the following timing chart.  
The PRE command does not interrupt a read command.  
No interval timing is required between the read and the precharge command.  
Different  
READ to PRECHARGE Command Interval (same bank) : To output all data  
To complete a burst read operation and get a burst length of data, the consecutive precharge command must be  
issued tRPD (= BL/ 2 cycles) after the read command is issued.  
t0  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
CK  
/CK  
PRE/  
PALL  
Command  
DQ  
NOP  
READ  
NOP  
NOP  
out0 out1 out2 out3  
DQS  
tRPD = BL/2  
READ to PRECHARGE Command Interval (same bank): To output all data (CL = 3, BL = 4)  
READ to PRECHARGE Command Interval (same bank): To stop output data  
A burst data output can be interrupted with a precharge command. All DQ pins and DQS pins become high-Z tHZP  
(= CL) after the precharge command.  
t0  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
CK  
/CK  
Command  
DQ  
NOP  
READ PRE/PALL  
NOP  
High-Z  
High-Z  
out0 out1  
DQS  
tHZP  
READ to PRECHARGE Command Interval (same bank): To stop output data (CL = 3, BL = 4, 8)  
Preliminary Data Sheet E1194E20 (Ver. 2.0)  
40  
EDK1216CFBJ  
A Write command to the consecutive Precharge command interval  
Operation by each case of destination bank of the consecutive Precharge command.  
Bank address  
Operation  
The PRE and PALL command can interrupt a write operation.  
1.  
2.  
Same  
To complete a burst write operation, tWPD is required between the write and the precharge  
command. Please refer to the following timing chart.  
The PRE command does not interrupt a write command.  
No interval timing is required between the write and the precharge command.  
Different  
WRITE to PRECHARGE Command Interval (same bank)  
The minimum interval tWPD is necessary between the write command and the precharge command.  
t0  
t1  
t2  
t3  
t4  
tn  
tn + 1  
tn + 2  
CK  
/CK  
Command  
PRE/PALL  
WRIT  
NOP  
tWPD  
NOP  
tWR  
DM  
DQS  
DQ  
in0  
in1  
in2  
in3  
Last data input  
WRITE to PRECHARGE Command Interval (same bank) (BL = 4)  
t0  
t1  
t2  
t3  
tn  
tn + 1  
tn + 2  
tn + 3  
CK  
/CK  
Command  
PRE/PALL  
WRIT  
NOP  
NOP  
tWPD  
tWR  
DM  
DQS  
DQ  
in0  
in1  
in2  
in3  
Last data  
input  
Data  
masked  
BL = 4  
WRITE to PRECHARGE Command Interval (same bank) (BL = 4, DM to mask data)  
Preliminary Data Sheet E1194E20 (Ver. 2.0)  
41  
EDK1216CFBJ  
Bank active command interval  
Destination row of the consecutive ACT  
command  
Bank  
address  
Row address  
State  
Operation  
Two successive ACT commands can be issued at tRC interval. In between two  
1. Same  
2. Different  
Any  
Any  
ACTIVE  
successive ACT operations, precharge command should be executed.  
Precharge the bank. tRP after the precharge command, the consecutive ACT  
command can be issued.  
tRRD after an ACT command, the next ACT command can be issued.  
ACTIVE  
IDLE  
CK  
/CK  
Command  
A
C
T
ACT  
NOP  
PRE  
NOP  
ACT  
NOP  
Address  
BA  
ROW: 0  
ROW: 1  
ROW: 0  
Bank0  
Active  
Bank3  
Active  
Bank0  
Precharge  
Bank0  
Active  
tRRD  
tRC  
Bank Active to Bank Active  
Mode register set to Bank-active command interval  
The interval between setting the mode register and executing a bank-active command must be no less than tMRD.  
CK  
/CK  
Command  
MRS  
NOP  
ACT  
NOP  
Address  
CODE  
BS and ROW  
Mode Register Set  
Bank3  
Active  
tMRD  
Preliminary Data Sheet E1194E20 (Ver. 2.0)  
42  
EDK1216CFBJ  
DM Control  
DM can mask input data. By setting DM to low, data can be written. UDM and LDM can mask the upper and lower  
byte of input data, respectively. When DM is set to high, the corresponding data is not written, and the previous data  
is held. The latency between DM input and enabling/disabling mask function is 0.  
t1  
t2  
t3  
t4  
t5  
t6  
DQS  
Mask  
Mask  
DQ  
DM  
Write mask latency = 0  
DM Control  
Preliminary Data Sheet E1194E20 (Ver. 2.0)  
43  
EDK1216CFBJ  
Timing Waveforms  
Command and Addresses Input Timing Definition  
CK  
/CK  
tIS  
tIH  
tIH  
Command  
(/RAS, /CAS,  
/WE, /CS)  
tIS  
Address  
= Don't care  
Read Timing Definition (1)  
CK  
/CK  
Command  
READ  
tHZ (max.)  
tHZ (min.)  
High-Z  
tLZ (max.)  
tLZ (min.)  
High-Z  
High-Z  
DQ  
(Output)  
tLZ (max.)  
tLZ (min.)  
High-Z  
DQS  
CL = 3  
BL = 2  
Preliminary Data Sheet E1194E20 (Ver. 2.0)  
44  
EDK1216CFBJ  
Read Timing Definition (2)  
/CK  
CK  
tDQSCK  
tAC (min.)  
DQS  
tAC (min.)  
tDSC  
Fastest DQ  
(Output)  
tQH  
tDQSQ  
Slowest DQ  
(Output)  
Data valid  
window  
tDQSCK  
tAC (max.)  
DQS  
tDQSQ  
Fastest DQ  
(Output)  
tQH  
tQHS  
tAC (max.)  
Slowest DQ  
(Output)  
Data valid  
window  
BL = 4  
= Invalid  
Write Timing Definition  
tCK  
/CK  
CK  
tDQSS  
tDSS  
tDSH  
tDSS  
tDSC  
tWPRES  
DQS  
tDQSL  
tDQSH  
tWPST  
tWPRE  
DQ  
(Din)  
tDIPW  
tDIPW  
tDS  
tDH  
tDH  
DM  
tDS  
tDIPW  
BL = 4  
= Don't care  
Preliminary Data Sheet E1194E20 (Ver. 2.0)  
45  
EDK1216CFBJ  
Power on Sequence*  
CK  
/CK  
Clock cycle is necessary  
VIH  
CKE  
/CS  
tMRD  
tMRD  
2 refresh cycles are necessary  
/RAS  
/CAS  
/WE  
BA0  
BA1  
A10  
Address key  
Address key  
Address  
DM  
DQ  
High-Z  
tRP  
tRFC  
tRFC  
Precharge  
All Banks  
Command  
is necessary  
Mode  
Register Set  
Command  
Extended  
Mode  
Register Set  
Command  
is necessary  
CBR (Auto)  
Refresh  
Command  
is necessary  
CBR (Auto)  
Refresh  
Command  
is necessary  
Activate  
Command  
is necessary  
= Don't care  
Note: The sequence of auto refresh, mode register programming and extended mode register programming above  
may be transposed.  
Preliminary Data Sheet E1194E20 (Ver. 2.0)  
46  
EDK1216CFBJ  
Read Cycle  
tCK  
tCH tCL  
CK  
/CK  
tRC  
VIH  
CKE  
tRAS  
tRP  
tRCD  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
/CS  
tIS tIH  
tIS tIH  
/RAS  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
/CAS  
tIS tIH  
/WE  
BA  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
A10  
tIS tIH  
tIS tIH  
tIS tIH  
Address  
DM  
tRPST  
tRPRE  
tDSC  
High-Z  
DQS (output)  
High-Z  
DQ (output)  
Bank 0  
Active  
Bank 0  
Read  
Bank 0  
Precharge  
CL = 3  
BL = 4  
Bank0 Access  
= Don't care  
Preliminary Data Sheet E1194E20 (Ver. 2.0)  
47  
EDK1216CFBJ  
Write Cycle  
tCK  
tCH  
tCL  
CK  
/CK  
tRC  
VIH  
CKE  
/CS  
tRP  
tRAS  
tRCD  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
/RAS  
/CAS  
/WE  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
tIS  
tIH  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
BA  
tIS tIH  
A10  
tIS tIH  
tIS tIH  
tIS tIH  
Address  
tDQSS  
tDQSL  
tWPST  
tDH  
DQS  
(input)  
tDQSH  
tDS  
tDS  
tDS  
DM  
tDH  
DQ (input)  
tDH  
tWR  
CL = 2  
BL = 4  
Bank0 Access  
Bankk 00  
Actiivvee  
Bank 0  
Write  
Bank 0  
Precharge  
= Don't care  
Preliminary Data Sheet E1194E20 (Ver. 2.0)  
48  
EDK1216CFBJ  
Mode Register Set Cycle  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10 T11 T12 T13 T14 T15  
/CK  
CK  
VIH  
CKE  
/CS  
/RAS  
/CAS  
/WE  
BA  
Address  
DM  
code  
code  
C: b  
R: b  
valid  
High-Z  
High-Z  
DQS  
DQ  
b
tMRD  
tRP  
Bank 3  
Read  
Bank 3  
Precharge  
Mode  
register  
set  
Bank 3  
Active  
CL = 3  
BL = 4  
Precharge  
If needed  
= Don't care  
Read/Write Cycle  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9 T10 T11 Tn  
Tn+1 Tn+2 Tn+3 Tn+4  
/CK  
CK  
VIH  
CKE  
/CS  
/RAS  
/CAS  
/WE  
BA  
Address  
R:a  
C:b''  
C:a R:b  
C:b  
DM  
DQS  
DQ  
a
b
b’’  
Read  
Write  
tWRD  
Read  
tRWD  
Bank 0  
Active  
Bank 0 Bank 3  
Read Active  
Bank 3  
Write  
Bank 3  
Read  
Read cycle  
CL = 3  
BL = 4  
= Don't care  
Preliminary Data Sheet E1194E20 (Ver. 2.0)  
49  
EDK1216CFBJ  
Auto Refresh Cycle  
/CK  
CK  
VIH  
CKE  
/CS  
/RAS  
/CAS  
/WE  
BA  
Address  
A10=1  
R: b  
C: b  
DM  
DQS  
DQ  
High-Z  
High-Z  
b
tRP  
tRFC  
Precharge  
If needed  
Auto  
Refresh  
Bank 0  
Active  
Bank 0  
Read  
CL = 3  
BL = 4  
= Don't care  
Preliminary Data Sheet E1194E20 (Ver. 2.0)  
50  
EDK1216CFBJ  
Self-Refresh Cycle  
/CK  
CK  
tIS  
tIH  
CKE = low  
CKE  
/CS  
/RAS  
/CAS  
/WE  
BA  
Address  
A10=1  
R: b  
C: b  
DM  
DQS  
DQ  
tRP  
tSREX  
Bank 0  
Active  
Bank 0  
Read  
Self refresh  
exit  
Precharge  
If needed  
Self  
refresh  
entry  
BL = 4  
= Don't care  
Preliminary Data Sheet E1194E20 (Ver. 2.0)  
51  
EDK1216CFBJ  
Power Down Entry and Exit  
/CK  
CK  
t
t
IS  
IH  
CKE = low  
CKE  
tCKE  
/CS  
/RAS  
/CAS  
/WE  
BA  
Address  
A10=1  
R: b  
R: c  
DM  
DQS  
DQ  
tRP  
tPDEX  
Power Bank 0  
tPDEN  
Precharge  
If needed  
Power down  
entry  
Bank 0  
Read  
down  
exit  
Active  
BL = 4  
=
Don't care  
Preliminary Data Sheet E1194E20 (Ver. 2.0)  
52  
EDK1216CFBJ  
Package Drawing  
60-ball FBGA  
Solder ball: Lead free (Sn-Ag-Cu)  
Unit: mm  
5.5 ± 0.1  
0.2 S A  
INDEX MARK  
0.2 S B  
0.2  
S
+0.12  
0.08  
0.88  
S
0.25 ± 0.05  
0.08  
S
M
φ0.05  
S A B  
60-φ0.3 ± 0.05  
A
B
INDEX MARK  
1.25  
0.5  
4.5  
ECA-TS2-0230-02  
Preliminary Data Sheet E1194E20 (Ver. 2.0)  
53  
EDK1216CFBJ  
Recommended Soldering Conditions  
Please consult with our sales offices for soldering conditions of the EDK1216CFBJ.  
Type of Surface Mount Device  
EDK1216CFBJ: 60-ball FBGA < Lead free (Sn-Ag-Cu) >  
Preliminary Data Sheet E1194E20 (Ver. 2.0)  
54  
EDK1216CFBJ  
NOTES FOR CMOS DEVICES  
PRECAUTION AGAINST ESD FOR MOS DEVICES  
1
Exposing the MOS devices to a strong electric field can cause destruction of the gate  
oxide and ultimately degrade the MOS devices operation. Steps must be taken to stop  
generation of static electricity as much as possible, and quickly dissipate it, when once  
it has occurred. Environmental control must be adequate. When it is dry, humidifier  
should be used. It is recommended to avoid using insulators that easily build static  
electricity. MOS devices must be stored and transported in an anti-static container,  
static shielding bag or conductive material. All test and measurement tools including  
work bench and floor should be grounded. The operator should be grounded using  
wrist strap. MOS devices must not be touched with bare hands. Similar precautions  
need to be taken for PW boards with semiconductor MOS devices on it.  
2
HANDLING OF UNUSED INPUT PINS FOR CMOS DEVICES  
No connection for CMOS devices input pins can be a cause of malfunction. If no  
connection is provided to the input pins, it is possible that an internal input level may be  
generated due to noise, etc., hence causing malfunction. CMOS devices behave  
differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed  
high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected  
to VDD or GND with a resistor, if it is considered to have a possibility of being an output  
pin. The unused pins must be handled in accordance with the related specifications.  
3
STATUS BEFORE INITIALIZATION OF MOS DEVICES  
Power-on does not necessarily define initial status of MOS devices. Production process  
of MOS does not define the initial operation status of the device. Immediately after the  
power source is turned ON, the MOS devices with reset function have not yet been  
initialized. Hence, power-on does not guarantee output pin levels, I/O settings or  
contents of registers. MOS devices are not initialized until the reset signal is received.  
Reset operation must be executed immediately after power-on for MOS devices having  
reset function.  
CME0107  
Preliminary Data Sheet E1194E20 (Ver. 2.0)  
55  
EDK1216CFBJ  
Mobile RAM is a trademark of Elpida Memory, Inc.  
The information in this document is subject to change without notice. Before using this document, confirm that this is the latest version.  
No part of this document may be copied or reproduced in any form or by any means without the prior  
written consent of Elpida Memory, Inc.  
Elpida Memory, Inc. does not assume any liability for infringement of any intellectual property rights  
(including but not limited to patents, copyrights, and circuit layout licenses) of Elpida Memory, Inc. or  
third parties by or arising from the use of the products or information listed in this document. No license,  
express, implied or otherwise, is granted under any patents, copyrights or other intellectual property  
rights of Elpida Memory, Inc. or others.  
Descriptions of circuits, software and other related information in this document are provided for  
illustrative purposes in semiconductor product operation and application examples. The incorporation of  
these circuits, software and information in the design of the customer's equipment shall be done under  
the full responsibility of the customer. Elpida Memory, Inc. assumes no responsibility for any losses  
incurred by customers or third parties arising from the use of these circuits, software and information.  
[Product applications]  
Be aware that this product is for use in typical electronic equipment for general-purpose applications.  
Elpida Memory, Inc. makes every attempt to ensure that its products are of high quality and reliability.  
However, users are instructed to contact Elpida Memory's sales office before using the product in  
aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment,  
medical equipment for life support, or other such application in which especially high quality and  
reliability is demanded or where its failure or malfunction may directly threaten human life or cause risk  
of bodily injury.  
[Product usage]  
Design your application so that the product is used within the ranges and conditions guaranteed by  
Elpida Memory, Inc., including the maximum ratings, operating supply voltage range, heat radiation  
characteristics, installation conditions and other related characteristics. Elpida Memory, Inc. bears no  
responsibility for failure or damage when the product is used beyond the guaranteed ranges and  
conditions. Even within the guaranteed ranges and conditions, consider normally foreseeable failure  
rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so  
that the equipment incorporating Elpida Memory, Inc. products does not cause bodily injury, fire or other  
consequential damage due to the operation of the Elpida Memory, Inc. product.  
[Usage environment]  
Usage in environments with special characteristics as listed below was not considered in the design.  
Accordingly, our company assumes no responsibility for loss of a customer or a third party when used in  
environments with the special characteristics listed below.  
Example:  
1) Usage in liquids, including water, oils, chemicals and organic solvents.  
2) Usage in exposure to direct sunlight or the outdoors, or in dusty places.  
3) Usage involving exposure to significant amounts of corrosive gas, including sea air, CL2, H2S, NH3,  
SO2, and NO .  
x
4) Usage in environments with static electricity, or strong electromagnetic waves or radiation.  
5) Usage in places where dew forms.  
6) Usage in environments with mechanical vibration, impact, or stress.  
7) Usage near heating elements, igniters, or flammable items.  
If you export the products or technology described in this document that are controlled by the Foreign  
Exchange and Foreign Trade Law of Japan, you must follow the necessary procedures in accordance  
with the relevant laws and regulations of Japan. Also, if you export products/technology controlled by  
U.S. export control regulations, or another country's export control laws or regulations, you must follow  
the necessary procedures in accordance with such laws or regulations.  
If these products/technology are sold, leased, or transferred to a third party, or a third party is granted  
license to use these products, that third party must be made aware that they are responsible for  
compliance with the relevant laws and regulations.  
M01E0706  
Preliminary Data Sheet E1194E20 (Ver. 2.0)  
56  

相关型号:

EDK156M010A9BAA

SMD Surface mount lead terminals – General Purpose 85°C / 2000 h
KEMET

EDK157M016A9HAA

SMD Surface mount lead terminals – General Purpose 85°C / 2000 h
KEMET

EDK224M050A9BAA

SMD Surface mount lead terminals – General Purpose 85°C / 2000 h
KEMET

EDK225M025A9BAA

SMD Surface mount lead terminals – General Purpose 85°C / 2000 h
KEMET

EDK225M035A9BAA

SMD Surface mount lead terminals – General Purpose 85°C / 2000 h
KEMET

EDK225M050A9BAA

SMD Surface mount lead terminals – General Purpose 85°C / 2000 h
KEMET

EDK226M004A9BAA

SMD Surface mount lead terminals – General Purpose 85°C / 2000 h
KEMET

EDK226M010A9BAA

SMD Surface mount lead terminals – General Purpose 85°C / 2000 h
KEMET

EDK226M016A9BAA

SMD Surface mount lead terminals – General Purpose 85°C / 2000 h
KEMET

EDK226M016A9DAA

SMD Surface mount lead terminals – General Purpose 85°C / 2000 h
KEMET

EDK226M025A9DAA

SMD Surface mount lead terminals – General Purpose 85°C / 2000 h
KEMET

EDK226M025A9GAA

SMD Surface mount lead terminals – General Purpose 85°C / 2000 h
KEMET