HM5316123BF-7 [ELPIDA]

131,072-word x 16-bit Multiport CMOS Video RAM; 131,072字×16位的多端口视频CMOS RAM
HM5316123BF-7
型号: HM5316123BF-7
厂家: ELPIDA MEMORY    ELPIDA MEMORY
描述:

131,072-word x 16-bit Multiport CMOS Video RAM
131,072字×16位的多端口视频CMOS RAM

文件: 总50页 (文件大小:509K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HM5316123B Series  
Preliminary  
131,072-word × 16-bit Multiport CMOS Video RAM  
E0160H10 (Ver. 1.0)  
(Previous ADE-203-266 (Z))  
Jun. 14, 2001  
The HM5316123B is a 2-Mbit multiport video • Bidirectional data transfer cycle between RAM  
and SAM capability  
RAM equipped with a 128-kword × 16-bit dynamic  
• Split transfer cycle capability  
RAM and a 256-word × 16-bit SAM (full-sized  
• Block write mode capability  
SAM). Its RAM and SAM operate independently  
• Flash write mode capability  
and asynchronously. The HM5316123B has • 3 variations of refresh (8 ms/512 cycles)  
RAS-only refresh  
CAS-before-RAS refresh  
–Hidden refresh  
compatibility with the HM5316123.  
Features  
• TTL compatible  
• Multiport organization  
Asynchronous and simultaneous operation of  
RAM and SAM capability  
RAM: 128-kword × 16-bit  
SAM: 256-word × 16-bit  
• Access time  
RAM: 70 ns/80 ns/100 ns (max)  
SAM: 20 ns/23 ns/25 ns (max)  
• Cycle time  
Ordering Information  
Type No.  
Access time Package  
———————————————————————  
HM5316123BF-7  
——————————————  
HM5316123BF-8 80ns  
——————————————  
HM5316123BF-10 100ns  
———————————————————————  
70ns  
64-pin plastic  
shrink SOP  
(FP-64DS)  
RAM: 130 ns/150 ns/180 ns (min)  
SAM: 25 ns/28 ns/30 ns (min)  
• Low power  
Active  
RAM: 660 mW/605 mW/550 mW  
SAM: 468 mW/413 mW/385 mW  
Standby 38.5mW (max)  
• Masked-write-transfer cycle capability  
• Stopping column feature capability  
• Persistent mask capability  
• Byte write control capability: 2WE control  
• Fast page mode capability  
Cycle time: 45ns/50ns/55ns  
Power RAM: 688 mW/660 mW/633 mW  
• Mask write mode capability  
Preliminary: This document contains information on a new  
product. Specifications and information contained herein  
are subject to change without notice.  
Elpida Memory, Inc. is a joint venture DRAM company of NEC corporation and Hitachi, Ltd.  
HM5316123B Series  
Pin Arrangement  
Pin Description  
HM5316123BF Series  
Symbol  
Function  
——————————————————————–  
A0 – A8 Address inputs  
——————————————————————–  
I/O0 – I/O15 RAM port data inputs/outputs  
——————————————————————–  
SI/O0 – SI/O15 SAM port data inputs/outputs  
——————————————————————–  
RAS Row address strobe  
——————————————————————–  
CAS Column address strobe  
——————————————————————–  
WEU Upper byte write enable  
——————————————————————–  
WEL Lower byte write enable  
——————————————————————–  
DT/OE Date transfer/output enable  
——————————————————————–  
SC Serial clock  
——————————————————————–  
SE SAM port enable  
——————————————————————–  
DSF1, DSF2 Special function input flag  
——————————————————————–  
QSF Special function output flag  
——————————————————————–  
Power Supply  
——————————————————————–  
Ground  
——————————————————————–  
VCC  
DT/DE  
VSS  
SI/O0  
I/O0  
SI/O1  
I/O1  
1
2
3
4
5
6
7
8
9
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
SC  
SE  
VSS  
SI/O15  
I/O15  
SI/O14  
I/O14  
VCC  
VCC  
SI/O2  
SI/O13  
I/O13  
SI/O12  
I/O12  
VSS  
SI/O11  
I/O11  
SI/O10  
I/O10  
VCC  
SI/O9  
I/O9  
SI/O8  
I/O8  
VSS  
I/O2 10  
SI/O3 11  
I/O3 12  
VSS 13  
SI/O4 14  
I/O4 15  
SI/O5 16  
I/O5 17  
VCC 18  
SI/O6 19  
I/O6 20  
SI/O7 21  
I/O7 22  
VSS 23  
WEL 24  
WEU 25  
RAS 26  
A8 27  
DSF1  
DSF2  
CAS  
QSF  
A0  
A7 28  
A6 29  
A1  
V
CC  
A5 30  
A2  
A4 31  
A3  
V
SS  
VCC 32  
VSS  
(Top View)  
Preliminary Data Sheet E0160H10  
2
HM5316123B Series  
Block Diagram  
A0 – A8  
A0 – A7  
A0 – A8  
Row Address  
Buffer  
Column Address  
Buffer  
Refresh  
Counter  
Serial Address  
QSF  
Row Decoder  
Memory Array  
Counter  
0
255  
511  
0
Input Data  
Control  
Serial Output Serial Input  
Buffer Buffer  
SI/O0 – SI/O15  
Input  
Buffer  
Output  
Buffer  
Timing Generator  
I/O0 – I/O15  
Preliminary Data Sheet E0160H10  
3
HM5316123B Series  
Pin Functions  
RAS (input pin): RAS is a basic RAM signal. It is  
active in low level and standby in high level. Row  
address and signals as shown in table 1 are input at  
the falling edge of RAS. The input level of these  
signals determine the operation cycle of the  
HM5316123B.  
Table 1. Operation Cycles of the HM5316123B  
RAS  
Mnemonic ———————————————— ——————— —————— ——————————  
Code CAS DT/OE WE DSF1 DSF2 DSF1 DSF2 RAS CAS RAS CAS/WE  
———————————————————————————————————————————————–  
CBRS Stop  
———————————————————————————————————————————————–  
CBRR  
———————————————————————————————————————————————–  
CBRN  
———————————————————————————————————————————————–  
MWT Row TAP WN  
———————————————————————————————————————————————–  
MSWT Row TAP WM  
———————————————————————————————————————————————–  
RT Row TAP  
———————————————————————————————————————————————–  
SRT Row TAP  
———————————————————————————————————————————————–  
RWM Row Column WM Input data  
CAS  
Address  
I/On Input  
0
0
1
0
0
0
1
0
0
0
0
1
1
0
0
1
0
0
0
0
0
1
0
0
1
0
0
1
0
1
0
0
0
1
0
1
1
0
0
1
1
0
0
0
0
0
———————————————————————————————————————————————–  
Register  
Mnemonic Write  
Code Mask  
Pers  
W.M.  
———————– No.of  
WM Color Bndry  
Function  
———————————————————————————————————————————————–  
CBRS Set CBR refresh with stop resister set  
———————————————————————————————————————————————–  
CBRR Reset Reset Reset CBR refresh with register reset  
———————————————————————————————————————————————–  
CBRN CBR refresh (no reset)  
———————————————————————————————————————————————–  
MWT  
Yes  
No  
Yes  
Load/use —  
Use  
Mask write transfer (new/old mask)  
———————————————————————————————————————————————–  
MSWT  
Yes  
No  
Yes  
Load/use —  
Use  
Use  
Masked split write transfer (new/old mask)  
———————————————————————————————————————————————–  
RT Read transfer  
———————————————————————————————————————————————–  
SRT Use Split read transfer  
———————————————————————————————————————————————–  
RWM  
YES  
No  
Yes  
Load/use —  
Use  
Road/write (new/old mask)  
———————————————————————————————————————————————–  
Preliminary Data Sheet E0160H10  
4
HM5316123B Series  
Table 1. Operation Cycles of the HM5316123B (cont)  
Mnemonic RAS  
————————————————  
CAS DT/OE WE DSF1 DSF2  
CAS  
Address  
—————— ——————  
I/On Input  
—————————–  
Code  
DSF1 DSF2 RAS CAS  
RAS  
CAS/WE  
———————————————————————————————————————————————–  
BWM  
1
1
0
0
0
1
0
Row Column WM  
Column  
Mask  
———————————————————————————————————————————————–  
RW (No) Row Column Input data  
———————————————————————————————————————————————–  
1
1
1
0
0
0
0
BW (No)  
1
1
1
0
0
1
0
Row Column  
Column  
Mask  
———————————————————————————————————————————————–  
FWM Row WM  
———————————————————————————————————————————————–  
1
1
0
1
0
0
LMR and  
Old Mask Set  
1
1
1
1
0
0
0
(Row) —  
Mask  
Data  
———————————————————————————————————————————————–  
LCR (Row) — Color  
———————————————————————————————————————————————–  
Option Mode — Data  
1
1
1
1
0
1
0
0
0
0
0
0
0
———————————————————————————————————————————————–  
Register  
Mnemonic Write  
Code Mask  
Pers  
W.M.  
———————  
WM Color  
No.of  
Bndry  
Function  
———————————————————————————————————————————————–  
BWM  
Yes  
No  
Yes  
Load/use  
Use  
Block write (new/old mask)  
Use  
———————————————————————————————————————————————–  
RW (No) No No Read/write (no mask)  
———————————————————————————————————————————————–  
BW (No) No No Use Block write (no mask)  
———————————————————————————————————————————————–  
FWM  
Yes  
No  
Yes  
Load/use Use  
Use  
Masked flash write (new/old mask)  
———————————————————————————————————————————————–  
LMR and Set Load Load mask register and old mask set  
Old Mask Set  
———————————————————————————————————————————————–  
LCR Load Load color resister set  
———————————————————————————————————————————————–  
Option  
———————————————————————————————————————————————–  
Notes: 1. With CBRS, all SAM operations use stop register.  
2. After LMR, RWM, BWM, FWM, MWT, and MSWT, use old mask which can be reset by CBRR.  
3. DSF2 is fixed low in all operation. (for the addition of operation mode in future)  
Preliminary Data Sheet E0160H10  
5
HM5316123B Series  
CAS (input pin): Column address and DSF1  
signals are fetched into chip at the falling edge of  
CAS, which determines the operation mode of the  
HM5316123B. CAS controls output impedance of  
I/O in RAM.  
DT/OE (input pin): DT/OE pin functions as DT  
(data transfer) pin at the falling edge of RAS and  
as OE (output enable) pin after that. When DT is  
low at the falling edge of RAS, this cycle becomes  
a transfer cycle. When DT is high at the falling  
edge of RAS, RAM and SAM operate  
independently.  
A0 – A8 (input pins): Row address (AX0 – AX8)  
is determined by A0 – A8 level at the falling edge  
of RAS. Column address (AY0 – AY7) is  
determined by A0 – A7 level at the falling edge of  
CAS. In transfer cycles, row address is the address  
on the word line which transfers data with SAM  
data register, and column address is the SAM start  
address after transfer.  
SC (input pin): SC is a basic SAM clock. In a  
serial read cycle, data outputs from an SI/O pin  
synchronously with the rising edge of SC. In a  
serial write cycle, data on an SI/O pin at the rising  
edge of SC is fetched into the SAM data register.  
SE (input pin): SE pin activates SAM. When SE is  
high, SI/O is in the high impedance state in serial  
read cycle and data on SI/O is not fetched into the  
SAM data register in serial write cycle. SE can be  
used as a mask for serial write because the internal  
pointer is incremented at the rising edge of SC.  
WEU and WEL (Input pins): WEU and WEL pins  
have two functions at the falling edge of RAS and  
after. When either WEU or WEL is low at the  
falling edge of RAS, the HM5316123B turns to  
mask write mode. According to the I/O level at the  
time, write on each I/O can be masked. (WEU and  
WEL levels at the falling edge of RAS is don’t  
care in read cycle.) When both WEU and WEL  
are high at the falling edge of RAS, a no mask  
write cycle is executed. After that, WEU and  
WEL switch read/write cycles. Both WEU and  
WEL must be held high in a read cycle. In a  
transfer cycle, the direction of transfer is  
determined by WEU and WEL levels at the falling  
edge of RAS. When either WEU or WEL is low,  
data is transferred from SAM to RAM (data is  
written into RAM), and when both WEU and WEL  
are high, data is transferred from RAM to SAM  
(data is read from RAM).  
SI/O0 – SI/O15 (input/output pins): SI/Os are  
input/output pins in SAM. Direction of  
input/output is determined by the previous transfer  
cycle. When it was a read transfer cycle, SI/O  
outputs data. When it was a masked write transfer  
cycle, SI/O inputs data.  
DSF1 (input pin): DSF1 is a special function data  
input flag pin. It is set to high at the falling edge  
of RAS when new functions such as color register  
and mask register read/write, split transfer, and  
flash write, are used.  
DSF2 (input pin): DSF2 is also a special function  
data input flag pin. This pin is fixed to low level in  
all operations of the HM5316123B.  
I/O0 – I/O15 (input/output pins): I/O pins function  
as mask data at the falling edge of RAS (in mask  
write mode). Data is written only to high I/O pins.  
Data on low I/O pins are masked and internal data  
are retained. After that, they function as  
inut/output pins as those of a standard DRAM. In  
block write cycle, they function as column mask  
data at the falling edges of CAS, and WEU or  
WEL.  
QSF (output pin): QSF outputs data of address A7  
in SAM. QSF is switched from low to high by  
accessing address 127 in SAM and from high to  
low by accessing address 255 in SAM.  
Preliminary Data Sheet E0160H10  
6
HM5316123B Series  
cycle. In this cycle also, to avoid I/O contention,  
data should be input after reading data and driving  
OE high.  
Operation of HM5316123B  
RAM Port Operation  
RAM Read Cycle (DT/OE high, CAS high and  
DSF1 low at the falling edge of RAS, DSF1 low at  
the falling edge of CAS)  
• Mask Write Mode (WEU or WEL low at the  
falling edge of RAS)  
If WEU or WEL is set low at the falling edge of  
RAS, two modes of mask write cycle are capable.  
1. In new mask mode, mask data is loaded from  
I/O pin and used. Whether or not an I/O is written  
depends on I/O level at the falling edge of RAS.  
The data is written in high level I/Os, and the data  
is masked and retained in low level I/Os. This  
mask data is effective during the RAS cycle. So,  
in page mode cycles the mask data is retained  
during the page access.  
2. If a load mask register cycle (LMR) has been  
performed, the mask data is not loaded from I/O  
pins and the mask data stored in mask registers  
persistently are used. This operation is known as  
persistent write mask, set by LMR cycle and reset  
by CBRR cycle.  
Row address is entered at the RAS falling edge and  
column address at the CAS falling edge to the  
device as in standard DRAM. Then, when WEU  
or WEL is high and DT/OE is low while CAS is  
low, the selected address data outputs through I/O  
pin. At the falling edge of RAS, DT/OE and CAS  
become high to distinguish RAM read cycle from  
transfer cycle and CBR refresh cycle. Address  
access time (t ) and RAS to column address  
AA  
RAD  
delay time (t  
) specifications are added to  
enable fast page mode.  
RAM Write Cycle (Eraly Write, Delayed Write,  
Read-Modify-Write)  
(DT/OE high, CAS high and DSF1 low at the  
falling edge of RAS, DSF1 low at the falling edge  
of CAS)  
Fast Page Mode Cycle (DT/OE high, CAS high  
and DSF1 low at the falling edge of RAS)  
• No Mask Write Cycle (WEU and WEL high at  
the falling edge of RAS)  
High-speed page mode cycle reads/writes the data  
of the same row address at high speed by toggling  
CAS while RAS is low. Its cycle time is one third  
of the random read/write cycle. In this cycle, read,  
write, and block write cycles can be mixed. Note  
When CAS is set low and either WEU or WEL is  
set low after RAS low, a write cycle is executed.  
If either WEU or WEL is set low before the CAS  
falling edge, this cycle becomes an early write  
cycle and all I/O become in high impedance. All  
16 data are latched on the falling edge of CAS. If  
only one of WEU and WEL is low when CAS  
falls, the write will affect only those corresponding  
8 bits. If the other of WEU and WEL falls at the  
same time in the cycle, the write will then occur  
for those 8 bits, with the latched data.  
that address access time (t ), RAS to column  
AA  
address delay time (t  
), and access time from  
RAD  
CAS precharge (t  
) are added. In one RAS  
ACP  
cycle, 256-word memory cells of the same row  
address can be accessed. It is necessary to specify  
access frequency within t  
max (100 µs).  
RASP  
If both WEU and WEL are set low after the CAS  
falling edge, this cycle becomes a delayed write  
cycle and all 16 data are latched on the falling edge  
of WEU or WEL. Byte write occures if only one  
of WEU or WEL falls during the cycle. I/O does  
not become high impedance in this cycle, so data  
should be entered with OE in high.  
If both WEU and WEL are set low after t  
CWD  
(min) and t  
(min) after the CAS falling edge,  
AWD  
this cycle becomes a read-modify-write cycle and  
enables read/write at the same address in one  
Preliminary Data Sheet E0160H10  
7
HM5316123B Series  
so once it is set, it retains the data until reset.  
Since mask register set cycle is just as same as the  
usual read and write cycle, so read, early and  
delayed write cycles can be executed.  
Color Register Set/Read Cycle (CAS high,  
DT/OE high, WEU and WEL high and DSF1 high  
at the falling edge of RAS)  
In color register set cycle, color data is set to the  
internal color register used in flash write cycle or  
block write cycle. 16 bits of internal color register  
are provided at each I/O. This register is  
composed of static circuits, so once it is set, it  
retains the data until reset. Since color register set  
cycle is just as same as the usual write cycle, so  
read, early write and delayed write cycle can be  
executed. In this cycle, the HM5316123B  
refreshes the row address fetched at the falling  
edge of RAS.  
Flash Write Cycle (CAS high, DT/OE high, WEU  
or WEL low, and DSF1 high at the falling edge of  
RAS)  
In a flash write cycle, a row of data (256 word x 16  
bit) is cleared to 0 or 1 at each I/O according to the  
data of color register mentioned before. It is also  
necessary to mask I/O in this cycle. When CAS  
and DT/OE is set high, WEU or WEL is low, and  
DSF1 is high at the falling edge of RAS, this cycle  
starts. Then, the row address to clear is given to  
row address. Mask data is as same as that of a  
Mask Register Set/Read Cycle (CAS high,  
DT/OE high, WEU and WEL high, and DSF1 high  
at the falling edge of RAS)  
RAM write cycle.  
Cycle time is the same as  
those of RAM read/write cycles, so all bits can be  
cleared in 1/256 of the usual cycle time. (See  
figure 1.)  
In mask register set cycle, mask data is set to the  
internal mask register used in mask write cycle,  
block write cycle, flash write cycle, masked write  
transfer, and masked split write transfer. 16 bits of  
internal mask register are provided at each I/O.  
This mask register is composed of static circuits,  
Color Register Set Cycle  
RAS  
Flash Write Cycle  
Flash Write Cycle  
CAS  
Address  
WEU,WEL  
DT/OE  
DSF1  
Row  
Xi  
Xj  
*1  
Color Data  
Set color register  
*1  
I/O  
Execute flash write into each Execute flash write into  
I/O on row address Xi using  
color register.  
each I/O on row address  
Xj using color register.  
Note: 1. I/O Mask Data (In new mask mode)  
Low: Mask  
High: Non Mask  
In persistent mask mode, I/O don't care  
Figure 1 Use of Flash Write  
Preliminary Data Sheet E0160H10  
8
HM5316123B Series  
Block Write Cycle (CAS high, DT/OE high and  
DSF1 low at the falling edge of RAS, DSF1 high  
and WEU or WEL low at the falling edge of CAS)  
In a block write cycle, 4 columns of data (4  
column x 16 bit) are cleared to 0 or 1 at each I/O  
according to the data of color register. Column  
addresses A0 and A1 are disregarded. The mask  
data on I/Os and the mask data on column  
addresses can be determined independently. I/O  
level at the falling edge of CAS determines the  
address to be cleared. (See Figure 2.) The block  
write cycle is as the same as the usual write cycle,  
so early and delayed write, read-modify-write, and  
page mode write cycle can be executed.  
• No mask Mode Block Write Cycle (WEU and  
WEL high at the falling edge of RAS)  
The data on 16 I/Os are all cleared when WEU and  
WEL are high at the falling edge of RAS.  
• Mask Block Write Cycle (WEU or WEL low at  
the falling edge of RAS)  
When either WEU or WEL is low at the falling  
edge of RAS, the HM5316123B starts mask block  
write cycle to clear the data on an optional I/O.  
The mask data is the same as that of a RAM write  
cycle. High I/O is cleared, low I/O is not cleared  
and the internal data is retained. In new mask  
mode, the mask data is available in the RAS cycle.  
In persistent mask mode, I/O don't care about mask  
mode.  
• Column Mask (WEU or WEL low at the falling  
edge of CAS)  
Column mask data is determined by 4I/Os (I/O0,  
I/O1, I/O2, I/O3) level at CAS low and WEU or  
WEL low edge. When upper byte column mask is  
performed by WEL high and WEU low, column  
mask data are determined by 4I/Os (I/O0, I/O1,  
I/O2, I/O3) and other I/Os (I/O4 to I/O15) don't  
care.  
Preliminary Data Sheet E0160H10  
9
HM5316123B Series  
Color Register Set Cycle  
Block Write Cycle  
Block Write Cycle  
RAS  
CAS  
Row  
Row  
Column A2–A7  
Column A2–A7  
Row  
Address  
*1  
*1  
WEU, WEL  
DT/OE  
DSF1  
I/O  
Column Mask  
Color Data  
Column Mask  
*1  
*1  
*1  
I/O data/RAS  
Mode  
WEU, WEL  
Either Low  
New mask mode Mask  
Persistent  
mask mode  
H or L  
(mask register used)  
H or L  
Both High  
No mask  
I/O Mask Data (In new mask mode)  
Low: Mask  
High: Non Mask  
In persistent mask mode, I/O don't care  
Column Mask Data  
Column0 (A0 = 0, A1 = 0) Mask Data  
Column1 (A0 = 1, A1 = 0) Mask Data  
Column2 (A0 = 0, A1 = 1) Mask Data  
I/O0  
I/O1  
I/O2  
Low: Mask  
High: Non Mask  
I/O3 Column3 (A0 = 1, A1 = 1) Mask Data  
Figure 2 Use of Block Write  
Preliminary Data Sheet E0160H10  
10  
HM5316123B Series  
columns, but any boundaries cannot be set as the  
start address.  
Transfer Operation  
The HM5316123B provides the read transfer  
cycle, split read transfer cycle, masked write  
transfer cycle and masked split write transfer cycle  
as data transfer cycles. Theses transfer cycles are  
set by driving CAS high and DT/OE low at the  
falling edge of RAS. They have following  
functions:  
(1) Transfer data between row address and SAM  
data register  
Read transfer cycle and split read transfer cycle:  
RAM to SAM  
Masked write transfer cycle and masked split write  
transfer cycle: SAM to RAM  
(2) Determine SI/O state (except for split read  
transfer cycle and masked split write transfer  
cycle)  
(5) Load/use mask data in masked write transfer  
cycle and masked split write transfer cycle.  
Read Transfer Cycle (CAS high, DT/OE low,  
WEU and WEL high and DSF1 low at the falling  
edge of RAS)  
This cycle becomes read transfer cycle by driving  
DT/OE low, WEU and WEL high and DSF1 low at  
the falling edge of RAS. The row address data  
(256 x 16 bits) determined by this cycle is  
transferred to SAM data register synchronously at  
the rising edge of DT/OE. After the rising edge of  
DT/OE, the new address data outputs from SAM  
start address determined by column address. In  
read transfer cycle, DT/OE must be risen to  
transfer data from RAM to SAM.  
Read transfer cycle: SI/O output  
This cycle can access SAM even during transfer  
(real time read transfer). In this case, the timing  
Masked write transfer cycle: SI/O input  
(3) Determine first SAM address to access after  
transferring at column address (SAM start  
address).  
t
(min) specified between the last SAM access  
SDD  
before transfer and DT/OE rising edge and t  
SDH  
(min) specified between the first SAM access and  
DT/OE rising edge must be satisfied. (See figure  
3.)  
When read transfer cycle is executed, SI/O  
becomes output state by first SAM access. Input  
SAM start address must be determined by read  
transfer cycle or masked write transfer cycle (split  
transfer cycle isn’t available)before SAM access,  
after power on, and determined for each transfer  
cycle.  
must be set high impedance before t  
the first SAM access to avoid data contention.  
(min) of  
(4) Use the stopping columns (boundaries) in the  
serial shift register. If the stopping columns have  
been set, split transfer cycles use the stopping  
SZS  
RAS  
CAS  
Address  
Xi  
Yj  
L
DT/OE  
DSF1  
tSDD tSDH  
SC  
SI/O  
Yj  
Yj + 1  
SAM Data before Transfer  
SAM Data after Transfer  
Figure 3 Real Time Read Transfer  
Preliminary Data Sheet E0160H10  
11  
HM5316123B Series  
address A7 is 0) automatically. After data are read  
from data register DR1, data start to be read from  
SAM start addresses of data register DR0. If the  
next split read transfer isn’t executed while data  
are read from data register DR0, data start to be  
read from SAM start address 0 of DR1 after data  
are read from data register DR0. If split read  
transfer is executed setting row address AX8 to 1  
and SAM start addresses A0 to A6 while data are  
read from data register DR1, 128-word x 16-bit  
data are transferred to data register DR2. After  
data are read from data register DR1, data start to  
be read from SAM start addresses of data register  
DR2. If the next split read transfer isn’t executed  
while data is read from data register DR2, data  
start to be read from SAM start address 0 of data  
register DR1 after data are read from data register  
DR2. In split read data transfer, the SAM start  
address A7 is automatically set in the data register,  
which isn’t used.  
Masked Write Transfer cycle (CAS high, DT/OE  
low, WEU or WEL low, and DSF1 low at the  
falling edge of RAS)  
Masked write transfer cycle can transfer only  
selected I/O data in a row of data input by serial  
write cycle to RAM. Whether one I/O data is  
transferred or not depends on the corresponding  
I/O level (mask data) at the falling edge of RAS.  
This mask transfer operation is the same as a mask  
write operation in RAM cycles, so the persistent  
mode can be supported. The row address of data  
transferred into RAM is determined by the address  
at the falling edge of RAS. The column address is  
specified as the first address for serial write after  
terminating this cycle. Also in this cycle, SAM  
access becomes enabled after t  
(min) after  
SRD  
RAS becomes high. SAM access is inhibited  
during RAS low. In this period, SC must bot be  
risen. Data transferred to SAM by read transfer  
cycle or split read transfer cycle can be written to  
other addreses of RAM by write transfer cycle.  
However, the adddress to write data must be the  
same as that of the read transfer cycle or the split  
read transfer cycle (row address AX8)  
The data on SAM address A7, which will be  
accessed next, outputs to QSF, QSF is switched  
from low to high by accessing SAM last address  
127 and from high to low by accessing address  
255.  
Split read transfer cycle is set when CAS is high,  
DT/OE is low, WEU and WEL is high and DSF1 is  
high at the falling edge of RAS. The cycle can be  
executed asyncronously with SC. However,  
HM5316123B must be satisfied tSTS (min) timing  
specified between SC rising (Boundary address)  
and RAS falling. In split transfer cycle, the  
Split Read Transfer Cycle (CAS high, DT/OE low,  
WEU and WEL high and DSF1 high at the falling edge of  
RAS)  
To execute a continuous serial read by real time  
read transfer, the HM5316123B must satisfy SC  
and DT/OE timings and requires an external circuit  
to detect SAM last address. Split read transfer  
cycle makes it possible to execute a continuous  
serial read without the above timing limitation.  
The HM5316123B supports two types of split  
register operation. One is the normal split register  
operation to split the data register into two halves.  
The other is the boundary split register operation  
using stopping columns described later.  
Figure 4 shows the block diagram for the normal  
split register operation. SAM data register (DR)  
consists of 2 split buffers, whose organizations are  
128-word x 16-bit each. Let us suppose that data  
is read from upper data reagister DR1 (The row  
address AX8 is 0 and SAM address A7 is 1.).  
When split read transfer is executed setting row  
address AX8 to 0 and SAM start addresses A0 to  
A6, 128-word x 16-bit data are transferred from  
RAM to the lower data register DR0 (SAM  
HM5316123B must satisfy t  
(min), t  
(min)  
RST  
CST  
and t  
(min) timings specified between RAS or  
AST  
CAS falling and column address. (See figure 5.)  
In split read transfer, SI/O isn’t switched to output  
state. Therefore, read transfer must be executed to  
switch SI/O to output state when the previous  
transfer cycle is masked write transfer cycle or  
masked split write transfer cycle. SAM start  
address must be set in every split read transfer  
cycle.  
Preliminary Data Sheet E0160H10  
12  
HM5316123B Series  
Memory  
Array  
Memory  
Array  
AX8 = 0  
AX8 = 1  
SAM I/O Buffer  
SI/O  
Figure 4 Block Diagram for Split Transfer  
RAS  
CAS  
tSTS (min)  
tRST (min)  
tCST(min)  
Yj  
Address  
Xi  
tAST(min)  
DT/OE  
DSF1  
SC  
Ym  
Bi  
Bj – 1  
Bj  
Yj  
Note: Ym is the SAM start address in before SRT. Bi and Bj initiate the boundary address.  
Figure 5 Limitation in Split Transfer  
Preliminary Data Sheet E0160H10  
13  
HM5316123B Series  
Stopping Column in Split Transfer Cycle  
Masked Split Write Transfer Cycle (CAS high,  
DT/OE low, WEU or WEL low and DSF1 high at  
the falling edge of RAS)  
The HM5316123B has the boundary split register  
operation using stopping columns. If a CBRS  
cycle has been performed, split transfer cycle  
performs the boundary operation. Figure 6 shows  
an example of boundary split register. (Boundary  
code is B6.)  
A continuous serial write cannot be executed  
because accessing SAM is inhibited during RAS  
low in write transfer. Masked split write transfer  
cycle makes it possible. In this cycle, t  
(min),  
STS  
First of all a read data transfer cycle is executed,  
and SAM start addresses A0 to A7 are set. The  
RAM data are transferred to the SAM, and SAM  
serial read starts from the start address (Y1) on the  
lower SAM. After that, a split read transfer cycle  
is executed, and the next start address (Y2) is set.  
The RAM data are transferred to the upper SAM.  
When the serial read arrive at the first boundary  
after the split read transfer cycle, the next read  
jumps to the start address (Y2) on the upper SAM  
(jump 1) and continues. Then the second split read  
transfer cycle is executed, and another start address  
(Y3) is set. The RAM data are transferred to the  
lower SAM. When the serial read arrive at the  
other boundary again, the next read jumps to the  
start address (Y3) on the lower SAM. In stopping  
column, split transfer is needed for jump operation  
between lower SAM and upper SAM.  
t
(min), t  
(min) and t  
(min) timings  
RST  
CST  
AST  
must be satisfied like split read transfer cycle. And  
it is impossible to switch SI/O to input state in this  
cycle. If SI/O is in output state, masked write  
transfer cycle should be executed to switch SI/O  
into input state. Data transferred to SAM by read  
transfer cycle or split read transfer cycle can be  
written to other addresses of RAM by masked split  
write transfer cycle. However, masked write  
transfer cycle must be executed before split write  
transfer cycle. And in this masked split write  
transfer cycle, the MSB of row address (AX8) to  
write data must be the same as that of the read  
transfer cycle or the split read transfer cycle.  
Column size  
64 bit  
Boundaries (B6)  
(Y1)  
(Y3)  
(Y2)  
Start  
Jump 1  
Jump 2  
Lower SAM  
128 bits  
Upper SAM  
128 bits  
Figure 6 Example of Boundary Split Register  
Preliminary Data Sheet E0160H10  
14  
HM5316123B Series  
Stopping Column Boundary Table  
——————————————————————————————  
Stop Address  
——————————————————————————————  
Boundary code Column size A2 A3 A4 A5 A6  
——————————————————————————————  
B2  
——————————————————————————————  
B3  
——————————————————————————————  
B4 16  
——————————————————————————————  
B5 32  
——————————————————————————————  
B6 64  
——————————————————————————————  
B7 128  
4
0
*
*
*
*
8
1
0
*
*
*
1
1
0
*
*
1
1
1
0
*
1
1
1
1
0
1
1
1
1
1
——————————————————————————————  
Notes: 1. A0, A1, and A7: don't care  
2. *: don’t care  
Stopping Column Set Cycle (CBRS)  
No Reset CBR Cycle (CBRN)  
This cycle becomes stopping column set cycle by  
driving CAS low, WEU or WEL low, DSF1 high at  
the falling edge of RAS. Stopping column data  
(boundaries) are latched from address inputs on the  
falling edge of RAS. To determine the boundary,  
This cycle becomes no reset CBR cycle (CBRN)  
by driving CAS low, WE high and DSF1 high at  
the falling edge of RAS. The CBRN can only  
execute the refresh operation.  
Byte Control (WEU, WEL)  
A2 to A6 can be used and don’t care A0, A1, and  
A7. In the HM5316123B, 6 types of boundary (B2  
to B7) can be set including the default case. (See  
stopping column boundary table.) If A2 to A5 are  
set to high and A6 is set to low, the boundaries  
(B6) are selected. Figure 6 shows the example.  
The stop address that is set by the CBRS is used  
from next split transfer cycle. Once a CBRS is  
executed, the stopping column operation mode  
continues until CBRR.  
In a write cycle, when WEL set low and WEU set  
high, I/O0 to I/O7 become write mode and I/O8 to  
I/O15 become no write mode, and when WEL set  
high and WEU set low, I/O0 to I/O7 become no  
write mode and I/O8 to I/O15 become write mode.  
The write cycle that byte control is capable are  
RAM write cycle, block write cycle, load write  
mask register cycle and load color register cycle.  
The byte control write cycle is capable to execute  
early write, delay write, read-modify-write and  
page mode. But write mask in new mask mode,  
flash write, transfer and refresh cycle can not  
execute byte control.  
Register Reset Cycle (CBRR)  
This cycle becomes register reset cycle (CBRR) by  
driving CAS low, WEU and WEL high, and DSF1  
low at the falling edge of RAS. A CBRR can reset  
the persistent mask operation and stopping column  
operation, so the HM5316123B becomes the new  
mask operation and boundary code B7. When a  
CBRR is executed for stopping column operation  
reset and split transfer operation, it need to satisfy  
t
(min) and t  
(min) between RAS falling  
STS  
RST  
and SC rising for correct SAM read/write  
operation.  
Preliminary Data Sheet E0160H10  
15  
HM5316123B Series  
SAM Port Operation  
Serial Read Cycle  
Refresh  
RAM Refresh  
SAM port is in read mode when the previous data  
transfer cycle is a read transfer cycle. Access is  
synchronized with SC rising, and SAM data is  
output from SI/O. When SE is set high, SI/O  
becomes high impedance, and the internal pointer  
is incremented by the SC rising. After indicating  
the last address (address 255), the internal pointer  
indicates address 0 at the next access.  
RAM, which is composed of dynamic circuits,  
requires refresh cycle to retain data. Refresh is  
executed by accessing all 512 row addresses within  
8 ms. There are three refresh cycles: (1) RAS-only  
refresh cycle, (2) CAS-before-RAS (CBRN,  
CBRS, and CBRR) refresh cycle, and (3) Hidden  
refresh cycle. Besides them, the cycles which  
activate RAS, such as read/write cycles or transfer  
cycles, can also refresh the row address.  
Therefore, no refresh cycle is required when all  
row addresses are accessed within 8 ms.  
Serial Write Cycle  
If previous data transfer cycle is masked write  
transfer cycle, SAM port goes into write mode. In  
this cycle, SI/O data is fetched into data register at  
the SC rising edge like in the serial read cycle. If  
SE is high, SI/O data isn’t fetched into data  
register. The internal pointer is incremented by the  
SC rising, so SE high can be used as mask data for  
SAM. After indicating the last address (address  
255), the internal pointer indicates address 0 at the  
next access.  
(1) RAS-Only Refresh Cycle: RAS-only refresh  
cycle is executed by activating only the RAS cycle  
with CAS fixed to high after inputting the row  
address (= refresh address) from external circuits.  
To distinguish this cycle from a data transfer cycle,  
DT/OE must be high at the falling edge of RAS.  
(2) CBR Refresh Cycle: CBR refresh cycle  
(CBRN, CBRS and CBRR) are set by activating  
CAS before RAS. In this cycle, the refresh address  
need not to be input through external circuits  
because it is input through an internal refresh  
counter. In this cycle, output is in high impedance  
and power dissipation is lowered because CAS  
circuits don’t operate.  
(3) Hidden Refresh Cycle: Hidden refresh cycle  
executes CBR refresh with the data output by  
reactivating RAS when DT/OE and CAS keep low  
in normal RAM read cycles.  
SAM Refresh  
SAM parts (data register, shift resister and  
selector), organized as fully static circuitry, require  
no refresh.  
Preliminary Data Sheet E0160H10  
16  
HM5316123B Series  
Absolute Maximum Ratings  
Parameter  
Symbol  
Value  
Unit  
——————————————————————————————————————————  
Voltage on any pin relative to V  
V
–1.0 to +7.0  
V
SS  
T
——————————————————————————————————————————  
Supply voltage relative to V  
V
–0.5 to +7.0  
V
SS  
CC  
——————————————————————————————————————————  
Short circuit output current  
Iout  
50  
mA  
——————————————————————————————————————————  
Power dissipation  
P
1.0  
W
T
——————————————————————————————————————————  
Operating temperature  
Topr  
0 to +70  
°C  
——————————————————————————————————————————  
Storage temperature  
Tstg  
–55 to +125  
°C  
——————————————————————————————————————————  
Recommended DC Operating Conditions (Ta = 0 to +70°C)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Notes  
——————————————————————————————————————————  
Supply voltage  
V
4.5  
5.0  
5.5  
V
1
CC  
——————————————————————————————————————————  
Input high voltage  
V
2.4  
6.5  
V
1
IH  
——————————————————————————————————————————  
*2  
Input low voltage  
V
–0.5  
0.8  
V
1
IL  
——————————————————————————————————————————  
Notes: 1. All voltage referred to V  
SS  
2. –3.0 V for pulse width < 10 ns.  
Preliminary Data Sheet E0160H10  
17  
HM5316123B Series  
DC Characteristics (Ta = 0 to +70°C, V = 5 V ± 10%, V = 0 V)  
CC  
SS  
HM5316123B  
—————————————–  
-7 -8  
-10  
———— ———— ————  
Symbol Min Max Min Max Min Max Unit Test conditions  
Parameter  
——————————————————————————————————————————  
Operating current I  
120  
———————————————————cycling  
195 175 160 mA = min  
110  
100 mA RAS, CAS SC = V , SE = V  
CC1  
IL IH  
—————————  
I
t
SE = V , SC cycling  
CC7  
RC  
IL  
t
= min  
SCC  
—————————————————————————————————————–––––––––  
Block write current  
I
125  
———————————————————cycling  
200 180 160 mA = min  
115  
100 mA RAS, CAS SC = V , SE = V  
CC1BW  
IL IH  
—————————  
I
t
SE = V , SC cycling  
CC7BW  
RC  
IL  
t
= min  
SCC  
—————————————————————————————————————–––––––––  
Standby current  
I
7
7
7
mA RAS, CAS SC = V , SE = V  
CC2  
IL IH  
———————————————————= V  
—————————  
IH  
I
85  
75  
70  
mA  
SE = V , SC cycling  
CC8  
IL  
t
= min  
SCC  
—————————————————————————————————————–––––––––  
RAS-only refresh I  
115  
105  
90  
mA RAS cycling SC = V , SE = V  
CC3  
IL IH  
current  
———————————————————CAS =V  
—————————  
IH  
= min  
I
185  
165  
150 mA  
t
SE = V , SC cycling  
CC9  
RC  
IL  
t
= min  
SCC  
—————————————————————————————————————–––––––––  
Fast page mode  
current *3  
I
125  
120  
115 mA CAS cycling SC = V , SE = V  
CC4  
IL IH  
———————————————————RAS = V  
—————————  
IL  
= min  
I
200  
185  
175 mA  
t
SE = V , SC cycling  
CC10  
PC  
IL  
t
= min  
SCC  
—————————————————————————————————————–––––––––  
Fast page mode  
block write  
current *3  
I
145  
135  
130 mA CAS cycling SC = V , SE = V  
CC4BW  
IL IH  
———————————————————RAS = V  
—————————  
IL  
= min  
I
220  
205  
195 mA  
t
SE = V , SC cycling  
CC10BW  
PC  
IL  
t
= min  
SCC  
—————————————————————————————————————–––––––––  
CAS-before RAS  
I
85  
75  
65  
mA RAS cycling SC = V , SE = V  
CC5  
IL IH  
refresh current  
———————————————————t = min —————————  
RC  
I
155  
140  
125 mA  
SE = V , SC cycling  
IL  
CC11  
t
= min  
SCC  
—————————————————————————————————————–––––––––  
Data transfer  
current  
I
130  
———————————————————cycling  
205 185 165 mA = min  
120  
110 mA RAS, CAS SC = V , SE = V  
CC6  
IL IH  
—————————  
I
t
SE = V , SC cycling  
CC12  
RC  
IL  
t
= min  
SCC  
—————————————————————————————————————–––––––––  
Input leakage current  
I
–10 10  
–10 10  
–10 10  
µA  
LI  
—————————————————————————————————————–––––––––  
Output leakage current  
I
–10 10  
–10 10  
–10 10  
µA  
LO  
—————————————————————————————————————–––––––––  
Output high voltage  
V
2.4  
2.4  
2.4  
V
I
= –1 mA  
OH  
OH  
—————————————————————————————————————–––––––––  
Output low voltage  
V
0.4  
0.4  
0.4  
V
I
= 2.1 mA  
OL  
OL  
——————————————————————————————————————————  
Preliminary Data Sheet E0160H10  
18  
HM5316123B Series  
Notes: 1. I  
depends on output load condition when the device is selected. I  
max is specified at the  
CC  
CC  
output open condition.  
2. Address can be changed once while RAS is low and CAS is high.  
3. Address can be changed once in 1 page cycle (t ).  
PC  
Capacitance (Ta = 25°C, V = 5 V ± 10 %, f = 1 MHz, Bias: Clock, I/O = V , address = V )  
CC  
CC  
SS  
Parameter  
Symbol  
Typ  
Max  
Unit  
Note  
——————————————————————————————————————————  
Input capacitance (Address)  
C
5
pF  
1
I1  
——————————————————————————————————————————  
Input capacitance (Clocks)  
C
5
pF  
1
I2  
——————————————————————————————————————————  
Output capacitance (I/O, SI/O, QSF)  
C
7
pF  
1
I/O  
——————————————————————————————————————————  
Notes: 1. This parameter is sampled and not 100% tested.  
Preliminary Data Sheet E0160H10  
19  
HM5316123B Series  
,
*1 *16  
AC Characteristics (Ta = 0 to +70°C, V = 5 V ± 10%, V = 0 V)  
CC  
SS  
Test Conditions  
– Input rise and fall times: 5ns  
– Input pulse levels: V to 3.0 V  
SS  
– Input timing reference levels: 0.8 V, 2.4 V  
– Output timing reference levels: 0.8 V, 2.0 V  
– Output load: RAM 1TTL+CL(50PF)  
SAM, QSF 1TTL+CL(30PF)  
(Including scope and jig)  
Common Parameter  
HM5316123B  
——————————————  
-7  
-8  
-10  
———— ———— ————  
Min Max Min Max Min Max Unit Notes  
Parameter  
Symbol  
—————————————————————————————————————————  
Random read or write cycle time  
t
130 —  
150 —  
180  
ns  
RC  
—————————————————————————————————————————  
RAS precharge time  
t
50  
60  
70  
ns  
RP  
—————————————————————————————————————————  
RAS pulse width  
t
70 10000 80 10000 100 10000 ns  
RAS  
—————————————————————————————————————————  
CAS pulse width  
t
20  
20  
25  
ns  
CAS  
—————————————————————————————————————————  
Row address setup time  
t
0
0
0
ns  
ASR  
—————————————————————————————————————————  
Row address hold time  
t
10  
10  
10  
ns  
RAH  
—————————————————————————————————————————  
Column address setup time  
t
0
0
0
ns  
ASC  
—————————————————————————————————————————  
Column address hold time  
t
12  
15  
15  
ns  
CAH  
—————————————————————————————————————————  
RAS to CAS delay time  
t
20 50  
20 60  
20 75  
ns  
2
RCD  
—————————————————————————————————————————  
RAS hold time referenced to CAS  
t
20  
20  
25  
ns  
RSH  
—————————————————————————————————————————  
CAS hold time referenced to RAS  
t
70  
80  
100  
ns  
CSH  
—————————————————————————————————————————  
CAS to RAS precharge time  
t
10  
10  
10  
ns  
CRP  
—————————————————————————————————————————  
Preliminary Data Sheet E0160H10  
20  
HM5316123B Series  
Common Parameter (cont)  
HM5316123B  
——————————————  
-7  
-8  
-10  
———— ———— ————  
Min Max Min Max Min Max Unit Notes  
Parameter  
Symbol  
—————————————————————————————————————————  
Transition time (rise to fall)  
t
3
50  
3
50  
3
50  
ns  
3
T
—————————————————————————————————————————  
Refresh period  
t
8
8
8
ms  
REF  
—————————————————————————————————————————  
DT to RAS setup time  
t
0
0
0
ns  
DTS  
—————————————————————————————————————————  
DT to RAS hold time  
t
10  
10  
10  
ns  
DTH  
—————————————————————————————————————————  
DSF1 to RAS setup time  
t
0
0
0
ns  
FSR  
—————————————————————————————————————————  
DSF1 to RAS hold time  
t
10  
10  
10  
ns  
RFH  
—————————————————————————————————————————  
DSF1 to CAS setup time  
t
0
0
0
ns  
FSC  
—————————————————————————————————————————  
DSF1 to CAS hold time  
t
12  
15  
15  
ns  
CFH  
—————————————————————————————————————————  
Data-in to CAS delay time  
t
0
0
0
ns  
4
DZC  
—————————————————————————————————————————  
Data-in to OE delay time  
t
0
0
0
ns  
4
DZO  
—————————————————————————————————————————  
Output buffer turn-off delay  
t
15  
20  
20  
ns  
5
OFF1  
referenced to CAS  
—————————————————————————————————————————  
Output buffer turn-off delay  
t
15  
20  
20  
ns  
5
OFF2  
referenced to OE  
—————————————————————————————————————————  
Preliminary Data Sheet E0160H10  
21  
HM5316123B Series  
Read Cycle (RAM), Page Mode Read Cycle  
HM5316123B  
——————————————  
-7  
-8  
-10  
———— ———— ————  
Min Max Min Max Min Max Unit Notes  
Parameter  
Symbol  
—————————————————————————————————————————  
Access time from RAS  
t
70  
80  
100 ns  
6, 7  
RAC  
—————————————————————————————————————————  
Access time from CAS  
t
20  
20  
25  
ns  
7, 8  
CAC  
—————————————————————————————————————————  
Access time from OE  
t
20  
20  
25  
ns  
7
OAC  
—————————————————————————————————————————  
Address access time  
t
35  
40  
45  
ns  
7, 9  
AA  
—————————————————————————————————————————  
Read command setup time  
t
0
0
0
ns  
RCS  
—————————————————————————————————————————  
Read command hold time  
t
0
0
0
ns  
10  
RCH  
—————————————————————————————————————————  
Read command hold time  
t
0
5
10  
ns  
10  
RRH  
referenced to RAS  
—————————————————————————————————————————  
RAS to column address delay time t  
15 35  
15 40  
15 55  
ns  
2
RAD  
—————————————————————————————————————————  
Column address to RAS lead time t  
35  
40  
45  
ns  
RAL  
—————————————————————————————————————————  
Column address to CAS lead time t  
35  
40  
45  
ns  
CAL  
—————————————————————————————————————————  
Page mode cycle time  
t
45  
50  
55  
ns  
PC  
—————————————————————————————————————————  
CAS precharge time  
t
7
10  
10  
ns  
CP  
—————————————————————————————————————————  
Access time from CAS precharge  
t
40  
45  
50  
ns  
ACP  
—————————————————————————————————————————  
Page mode RAS pulse width  
t
70 100000 80 100000 100 100000 ns  
RASP  
—————————————————————————————————————————  
Preliminary Data Sheet E0160H10  
22  
HM5316123B Series  
Write Cycle (RAM), Page Mode Write Cycle, Color Register Set Cycle  
HM5316123B  
——————————————  
-7  
-8  
-10  
———— ———— ————  
Min Max Min Max Min Max Unit Notes  
Parameter  
Symbol  
—————————————————————————————————————————  
Write command setup time  
t
0
0
0
ns  
11  
WCS  
—————————————————————————————————————————  
Write command hold time  
t
12  
15  
15  
ns  
WCH  
—————————————————————————————————————————  
Write command pulse width  
t
12  
15  
15  
ns  
WP  
—————————————————————————————————————————  
Write command to RAS lead time  
t
20  
20  
20  
ns  
RWL  
—————————————————————————————————————————  
Write command to CAS lead time  
t
20  
20  
20  
ns  
CWL  
—————————————————————————————————————————  
Data-in setup time  
t
0
0
0
ns  
12  
DS  
—————————————————————————————————————————  
Data-in hold time  
t
12  
15  
15  
ns  
12  
DH  
—————————————————————————————————————————  
WE to RAS setup time  
t
0
0
0
ns  
WS  
—————————————————————————————————————————  
WE to RAS hold time  
t
10  
10  
10  
ns  
WH  
—————————————————————————————————————————  
Mask data to RAS setup time  
t
0
0
0
ns  
MS  
—————————————————————————————————————————  
Mask data to RAS hold time  
t
10  
10  
10  
ns  
MH  
—————————————————————————————————————————  
OE hold time referenced to WE  
t
15  
20  
20  
ns  
OEH  
—————————————————————————————————————————  
Page mode cycle time  
t
45  
50  
55  
ns  
PC  
—————————————————————————————————————————  
CAS precharge time  
t
7
10  
10  
ns  
CP  
—————————————————————————————————————————  
CAS to data-in delay time  
t
15  
20  
20  
ns  
13  
CDD  
—————————————————————————————————————————  
Page mode RAS pulse width  
t
70 100000 80 100000 100 100000 ns  
RASP  
—————————————————————————————————————————  
Preliminary Data Sheet E0160H10  
23  
HM5316123B Series  
Read-Modify-Write Cycle  
HM5316123B  
——————————————  
-7  
-8  
-10  
———— ———— ————  
Symbol Min Max Min Max Min Max Unit Notes  
Parameter  
—————————————————————————————————————————  
Read-modify-write cycle time  
t
180 —  
200 —  
230  
ns  
RWC  
—————————————————————————————————————————  
RAS pulse width (read-modify-write cycle)  
t
120 10000 130 10000 150 10000 ns  
RWS  
—————————————————————————————————————————  
CAS to WE delay time  
t
40  
45  
50  
ns 14  
CWD  
—————————————————————————————————————————  
Column address to WE delay time  
t
60  
65  
70  
ns 14  
AWD  
—————————————————————————————————————————  
OE to data-in delay time  
t
15  
20  
20  
ns 12  
ODD  
—————————————————————————————————————————  
Access time from RAS  
t
70  
80  
100  
ns 6, 7  
RAC  
—————————————————————————————————————————  
Access time from CAS  
t
20  
20  
25  
ns 7, 8  
CAC  
—————————————————————————————————————————  
Access time from OE  
t
20  
20  
25  
ns  
7
OAC  
—————————————————————————————————————————  
Address access time  
t
35  
40  
45  
ns 7, 9  
AA  
—————————————————————————————————————————  
RAS to column address delay time  
t
15 35  
15 40  
15 55  
ns  
RAD  
—————————————————————————————————————————  
Read command setup time  
t
0
0
0
ns  
RCS  
—————————————————————————————————————————  
Write command to RAS lead time  
t
20  
20  
20  
ns  
RWL  
—————————————————————————————————————————  
Write command to CAS lead time  
t
20  
20  
20  
ns  
CWL  
—————————————————————————————————————————  
Write command pulse width  
t
12  
15  
15  
ns  
WP  
—————————————————————————————————————————  
Data-in setup time  
t
0
0
0
ns 12  
DS  
—————————————————————————————————————————  
Data-in hold time  
t
12  
15  
15  
ns 12  
DH  
—————————————————————————————————————————  
OE hold time referenced to WE  
t
15  
20  
20  
ns  
OEH  
—————————————————————————————————————————  
Preliminary Data Sheet E0160H10  
24  
HM5316123B Series  
Refresh Cycle  
HM5316123B  
——————————————  
-7  
-8  
-10  
———— ———— ————  
Symbol Min Max Min Max Min Max Unit Notes  
Parameter  
—————————————————————————————————————————  
CAS setup time (CAS-before-RAS refresh)  
t
10  
10  
10  
ns  
CSR  
—————————————————————————————————————————  
CAS hold time (CAS-before-RAS refresh)  
t
10  
10  
10  
ns  
CHR  
—————————————————————————————————————————  
RAS precharge to CAS hold time  
t
10  
10  
10  
ns  
RPC  
—————————————————————————————————————————  
Flash Write Cycle, Block Write Cycle, and Register Read Cycle  
HM5316123B  
——————————————  
-7  
8
-10  
———— ———— ————  
Min Max Min Max Min Max Unit Notes  
Parameter  
Symbol  
—————————————————————————————————————————  
CAS to data-in delay time  
t
15  
20  
20  
ns  
13  
CDD  
—————————————————————————————————————————  
OE to data-in delay time  
t
15  
20  
20  
ns  
13  
ODD  
—————————————————————————————————————————  
CBR Refresh with Register Reset  
HM5316123B  
——————————————  
-7  
-8  
-10  
———— ———— ————  
Symbol Min Max Min Max Min Max Unit Notes  
Parameter  
—————————————————————————————————————————  
Split transfer setup time  
t
20  
20  
25  
ns  
STS  
—————————————————————————————————————————  
Split transfer hold time referenced to RAS  
t
70  
80  
100  
ns  
RST  
—————————————————————————————————————————  
Preliminary Data Sheet E0160H10  
25  
HM5316123B Series  
Read Transfer Cycle  
HM5316123B  
——————————————  
-7  
-8  
-10  
———— ———— ————  
Symbol Min Max Min Max Min Max Unit Notes  
Parameter  
—————————————————————————————————————————  
DT hold time referenced to RAS  
t
60 10000 65 10000 80 10000 ns  
RDH  
—————————————————————————————————————————  
DT hold time referenced to CAS  
t
20  
20  
25  
ns  
CDH  
—————————————————————————————————————————  
DT hold time referenced to column address  
t
25  
30  
30  
ns  
ADH  
—————————————————————————————————————————  
DT precharge time  
t
20  
20  
30  
ns  
DTP  
—————————————————————————————————————————  
DT to RAS delay time  
t
60  
70  
80  
ns  
DRD  
—————————————————————————————————————————  
SC to RAS setup time  
t
15  
20  
30  
ns  
SRS  
—————————————————————————————————————————  
1st SC to RAS hold time  
t
70  
80  
100 —  
ns  
SRH  
—————————————————————————————————————————  
1st SC to CAS hold time  
t
25  
25  
25  
ns  
SCH  
—————————————————————————————————————————  
1st SC to column address hold time  
t
40  
45  
50  
ns  
SAH  
—————————————————————————————————————————  
Last SC to DT delay time  
t
5
5
5
ns  
SDD  
—————————————————————————————————————————  
1st SC to DT hold time  
t
10  
13  
15  
ns  
SDH  
—————————————————————————————————————————  
DT to QSF delay time  
t
30  
35  
35  
ns 15  
DQD  
—————————————————————————————————————————  
QSF hold time referenced to DT  
t
5
5
5
ns  
DQH  
—————————————————————————————————————————  
Serial data-in to 1st SC delay time  
t
0
0
0
ns  
SZS  
—————————————————————————————————————————  
Serial clock cycle time  
—————————————————————————————————————————  
SC pulse width  
—————————————————————————————————————————  
SC precharge time  
—————————————————————————————————————————  
SC access time  
—————————————————————————————————————————  
Serial data-out hold time  
—————————————————————————————————————————  
Serial data-in setup time  
—————————————————————————————————————————  
Serial data-in hold time  
t
25  
28  
30  
ns  
SCC  
t
5
10  
10  
ns  
SC  
t
10  
10  
10  
ns  
SCP  
t
20  
23  
25  
ns 15  
SCA  
t
5
5
5
ns  
SOH  
t
0
0
0
ns  
SIS  
t
15  
15  
15  
ns  
SIH  
—————————————————————————————————————————  
RAS to column address delay time  
t
15 35  
15 40  
15 55  
ns  
RAD  
—————————————————————————————————————————  
Column address to RAS lead time  
t
35  
40  
45  
ns  
RAL  
—————————————————————————————————————————  
RAS to QSF delay time  
t
70  
75  
85  
ns 15  
RQD  
—————————————————————————————————————————  
CAS to QSF delay time  
t
35  
35  
35  
ns 15  
CQD  
—————————————————————————————————————————  
Preliminary Data Sheet E0160H10  
26  
HM5316123B Series  
Read Transfer Cycle (cont)  
HM5316123B  
——————————————  
-7  
-8  
-10  
———— ———— ————  
Min Max Min Max Min Max Unit Notes  
Parameter  
Symbol  
—————————————————————————————————————————  
QSF hold time referenced toRAS  
t
20  
20  
25  
ns  
RQH  
—————————————————————————————————————————  
QSF hold time referenced to CAS  
t
5
5
5
ns  
CQH  
—————————————————————————————————————————  
Masked Write Transfer Cycle  
HM5316123B  
——————————————  
-7  
-8  
-10  
———— ———— ————  
Min Max Min Max Min Max Unit Notes  
Parameter  
Symbol  
—————————————————————————————————————————  
SC setup time referenced to RAS  
t
15  
20  
30  
ns  
SRS  
—————————————————————————————————————————  
RAS to SC delay time  
t
20  
25  
25  
ns  
SRD  
—————————————————————————————————————————  
Serial output buffer turn-off time  
t
10 30  
10 35  
10 50  
ns  
SRZ  
referenced to RAS  
—————————————————————————————————————————  
RAS to serial data-in delay time  
t
30  
35  
50  
ns  
SID  
—————————————————————————————————————————  
RAS to QSF delay time  
t
70  
75  
85  
ns  
15  
RQD  
—————————————————————————————————————————  
CAS to QSF delay time  
t
35  
35  
35  
ns  
15  
CQD  
—————————————————————————————————————————  
QSF hold time referenced to RAS  
t
20  
20  
25  
ns  
RQH  
—————————————————————————————————————————  
QSF hold time referenced to CAS  
t
5
5
5
ns  
CQH  
—————————————————————————————————————————  
Serial clock cycle time  
t
25  
28  
30  
ns  
SCC  
—————————————————————————————————————————  
SC pulse width  
t
5
10  
10  
ns  
SC  
—————————————————————————————————————————  
SC precharge time  
t
10  
10  
10  
ns  
SCP  
—————————————————————————————————————————  
SC access time  
t
20  
23  
25  
ns  
15  
SCA  
—————————————————————————————————————————  
Serial data-out hold time  
t
5
5
5
ns  
SOH  
—————————————————————————————————————————  
Serial data-in setup time  
t
0
0
0
ns  
SIS  
—————————————————————————————————————————  
Serial data-in hold time  
t
15  
15  
15  
ns  
SIH  
—————————————————————————————————————————  
Preliminary Data Sheet E0160H10  
27  
HM5316123B Series  
Split Read Transfer Cycle, Masked Split Write Transfer Cycle  
HM5316123B  
——————————————  
-7  
-8  
-10  
———— ———— ————  
Symbol Min Max Min Max Min Max Unit Notes  
Parameter  
—————————————————————————————————————————  
Split transfer setup time  
t
20  
20  
25  
ns  
STS  
—————————————————————————————————————————  
Split transfer hold time referenced to RAS  
t
70  
80  
100 —  
ns  
RST  
—————————————————————————————————————————  
Split transfer hold time referenced to CAS  
t
20  
20  
25  
ns  
CST  
—————————————————————————————————————————  
Split transfer hold time referenced  
t
35  
40  
45  
ns  
AST  
to column address  
—————————————————————————————————————————  
SC to QSF delay time  
t
30  
30  
30  
ns  
15  
SQD  
—————————————————————————————————————————  
QSF hold time referenced to SC  
t
5
5
5
ns  
SQH  
—————————————————————————————————————————  
Serial clock cycle time  
t
25  
28  
30  
ns  
SCC  
—————————————————————————————————————————  
SC pulse width  
t
5
10  
10  
ns  
SC  
—————————————————————————————————————————  
SC precharge time  
t
10  
10  
10  
ns  
SCP  
—————————————————————————————————————————  
SC access time  
t
20  
23  
25  
ns  
15  
SCA  
—————————————————————————————————————————  
Serial data-out hold time  
t
5
5
5
ns  
SOH  
—————————————————————————————————————————  
Serial data-in setup time  
t
0
0
0
ns  
SIS  
—————————————————————————————————————————  
Serial data-in hold time  
t
15  
15  
15  
ns  
SIH  
—————————————————————————————————————————  
RAS to column address delay time  
t
15 35  
15 40  
15 55  
ns  
RAD  
—————————————————————————————————————————  
Column address to RAS lead time  
t
35  
40  
45  
ns  
RAL  
—————————————————————————————————————————  
Preliminary Data Sheet E0160H10  
28  
HM5316123B Series  
Serial Read Cycle, Serial Write Cycle  
HM5316123B  
——————————————  
-7  
-8  
-10  
———— ———— ————  
Symbol Min Max Min Max Min Max Unit Notes  
Parameter  
—————————————————————————————————————————  
Serial clock cycle time  
t
25  
28  
30  
ns  
SCC  
—————————————————————————————————————————  
SC pulse width  
t
5
10  
10  
ns  
SC  
—————————————————————————————————————————  
SC precharge width  
t
10  
10  
10  
ns  
SCP  
—————————————————————————————————————————  
Access time from SC  
t
20  
23  
25  
ns  
15  
SCA  
—————————————————————————————————————————  
Access time from SE  
t
17  
20  
25  
ns  
15  
SEA  
—————————————————————————————————————————  
Serial data-out hold time  
t
5
5
5
ns  
SOH  
—————————————————————————————————————————  
Serial output buffer turn-off time  
t
15  
20  
20  
ns  
5,17  
SHZ  
referenced to SE  
—————————————————————————————————————————  
SE to serial output in low-Z  
t
0
0
0
ns  
5,17  
SLZ  
—————————————————————————————————————————  
Serial data-in setup time  
t
0
0
0
ns  
SIS  
—————————————————————————————————————————  
Serial data-in hold time  
t
15  
15  
15  
ns  
SIH  
—————————————————————————————————————————  
Serial write enable setup time  
t
0
0
0
ns  
SWS  
—————————————————————————————————————————  
Serial wrtie enable hold time  
t
15  
15  
15  
ns  
SWH  
—————————————————————————————————————————  
Serial write disable setup time  
t
0
0
0
ns  
SWIS  
—————————————————————————————————————————  
Serial write disable hold time  
t
15  
15  
15  
ns  
SWIH  
—————————————————————————————————————————  
Preliminary Data Sheet E0160H10  
29  
HM5316123B Series  
Notes: 1. AC measurements assume t = 5 ns.  
T
2. When t  
> t  
(max) and t  
> t (max), access time is specified by t  
or t .  
AA  
RCD  
RCD  
RAD  
RAD  
CAC  
3. V (min) and V (max) are reference levels for measuring timing of input signals. Transition  
IH  
IL  
time t is measured between V and V .  
IH  
IL  
T
4. Data input must be floating before output buffer is turned on. In read cycle, read-modify-write  
cycle and delayed write cycle, either t (min) or t (min) must be satisfied.  
DZC  
DZO  
5. t  
(max), t  
(max), t  
(max) and t  
(min) are defined as the time at which the  
OFF1  
OFF2  
SHZ  
SLZ  
output acheives the open circuit condition (V  
– 100 mV, V  
+ 100 mV). This parameter is  
OH  
OL  
sampled and not 100% tested.  
6. Assume that t  
< t  
(max) and t  
< t  
(max). If t  
or t  
is greater than the  
RAD  
RCD  
RCD  
RAD  
RAD  
RCD  
maximum recommended value shown in this table, t  
exceeds the value shown.  
RAC  
7. Measured with a load circuit equivalent to 1 TTL loads and 50 pF.  
8. When t  
9. When t  
10. If either t  
11. When t  
> t  
< t  
(max) and t  
(max) and t  
< t  
> t  
(max), access time is specified by t  
(max), access time is specified by t  
.
RCD  
RCD  
RAD  
RAD  
CAC  
AA  
.
RCD  
RCD  
RAD  
RAD  
or t  
is satisfied, operation is guaranteed.  
RCH  
RRH  
> t  
(min), the cycle is an early write cycle, and I/O pins remain in an open  
WCS  
WCS  
circuit (high impedance) condition.  
12. These parameters are specified by the later falling edge of CAS or WEU and WEL.  
13. Either t  
(min) or t  
(min) must be satisfied because output buffer must be turned off by  
CDD  
ODD  
CAS or OE prior to applying data to the device when output buffer is on.  
14. When t > t (min) and t > t (min) in read-modify-write cycle, the data of the  
AWD  
AWD  
CWD  
CWD  
selected address outputs to an I/O pin and input data is written into the selected address. t  
ODD  
(min) must be satisfied because output buffer must be turned off by OE prior to applying data to  
the device.  
15. Measured with a load circuit equivalent to 1 TTL loads and 30 pF.  
16. After power-up, pause for 100 µs or more and execute at least 8 initialization cycle (normal  
memory cycle or refresh cycle), then start operation. Hitachi recommends that least 8  
initialization cycle is the CBRR for internal register reset. This CBRR need not t  
and t  
.
STS  
RST  
17. When t  
and t  
are measured in the same V  
and Ta condition and tr and tf of SE are  
SHZ  
SLZ  
SHZ  
CC  
less than 5 ns, t  
< t  
+5 ns. This parameter is sampled and not 100% tested.  
SLZ  
18. When both WEU and WEL go low at the same time, all 16-bits data are written into the device,  
WEU and WEL cannot be staggered within the same write cycles.  
19. After power-up, QSF output may be High-Z, so 1 sc cycle is needed to be Low-Z it.  
20. DSF2 pin is open pin, but Hitachi recommends it is fixed low in all operation for the addition  
mode in future.  
Preliminary Data Sheet E0160H10  
30  
HM5316123B Series  
*21  
Timing Waveforms  
Read Cycle  
tRC  
t RAS  
tRP  
RAS  
CAS  
tCRP  
t CSH  
tRSH  
tCAS  
tRCD  
tRAL  
tCAH  
t RAD  
t RAH  
tCAL  
t ASR  
Row  
tASC  
Column  
tRCS  
Address  
tRRH  
tRCH  
WEL  
tCAC  
tAA  
tRAC  
tCDD  
tOFF1  
I/O 0 to I/O 7  
(Output)  
Valid Dout  
tOAC  
tDZC  
tOFF2  
I/O 0 to I/O 7  
(Input)  
tDZO  
tRCS  
tRRH  
tRCH  
WEU  
tCAC  
tCDD  
tAA  
tOFF1  
Valid Dout  
tOFF2  
tRAC  
I/O 8 to I/O 15  
(Output)  
tOAC  
tDZC  
I/O 8 to I/O 15  
(Input)  
tDZO  
tDTS  
tDTH  
DT/OE  
tRFH  
tFSC  
tFSR  
tCFH  
DSF1  
Note: 21.  
V
or V  
IL  
IH  
Invalid Dout  
Preliminary Data Sheet E0160H10  
31  
HM5316123B Series  
Fast page Mode Read Cycle  
tRC  
tRASP  
tRP  
RAS  
tPC  
tCSH  
tRCD  
tRSH  
tCAS  
tCRP  
tCAS  
tCP  
tRAL  
tCP  
tCAS  
CAS  
tRAD  
tCAL  
tCAH  
tCAL  
tCAH  
tCAL  
tCAH  
tASR  
tASC  
tASC  
tRAH  
Row  
tASC  
Address  
WEU, WEL  
Column  
Column  
Column  
tRRH  
tRCS  
tRCH  
tRCS  
tRCH  
tRCS  
t
RCH  
tRAC  
tOFF1  
tAA  
tACP  
tCAC  
tAA  
tACP  
tCAC  
tOFF1  
tAA  
tCAC  
tOFF1  
Valid  
Dout  
Valid  
Dout  
I/O  
(Output)  
Valid Dout  
tCDD  
tOAC  
tCDD  
tDZC  
tDZC  
tDZC  
tCDD  
tOFF2  
tOAC  
tOFF2  
tOAC  
I/O  
(Input)  
tDZO  
tDTH  
tDTS  
DT/OE  
tRFH  
tCFH  
tCFH  
tFSR  
tFSC  
tCFH tFSC  
tFSC  
DSF1  
Preliminary Data Sheet E0160H10  
32  
HM5316123B Series  
Write Cycle  
The write cycle state table as shown below is  
applied to early write, delayed write, page mode  
write, and read-modify write.  
Write Cycle State Table  
RAS  
CAS RAS  
RAS  
CAS  
—————————————————————————  
DSF1 DSF1 WEU, WEL I/O  
I/O  
—————————————————————————  
MNEU  
Cycle  
W1  
W2  
W3  
W4  
W5  
——————————————————————————————————————————  
RWM  
Write mask (new/old)  
0
0
0
Write mask*1 Valid data  
Write DQs to I/Os  
——————————————————————————————————————————  
BWM  
Write mask (new/old)  
0
1
0
Write mask*2 Column mask*2  
Block write  
——————————————————————————————————————————  
RW  
Normal write (no mask)  
0
0
1
H or L*1  
Valid data  
——————————————————————————————————————————  
BW  
Block write (no mask)  
0
1
1
H or L*2  
Column mask*2  
——————————————————————————————————————————  
LMR*4  
Load write mask resister  
1
0
1
H or L  
Write mask data*3  
——————————————————————————————————————————  
LCR*4  
Load color resister  
1
1
1
H or L  
Color data  
——————————————————————————————————————————  
Notes: 1.  
I/O data/RAS  
Mode  
New mask mode Mask  
WEU, WEL  
Either Low  
Persistent  
mask mode  
H or L  
(mask register used)  
H or L  
Both High  
No mask  
I/O Mask Data (In new mask mode)  
Low: Mask  
High: Non Mask  
In persistent mask mode, I/O don't care  
2. Reference Figure 2 Use of Block Write.  
3. I/O Write Mask Data  
Low: Mask  
High: Non Mask  
4. Column Address: H or L  
Preliminary Data Sheet E0160H10  
33  
HM5316123B Series  
Early Write Cycle  
tRC  
tRAS  
tRP  
RAS  
CAS  
tCRP  
tCSH  
tRSH  
tCAS  
tRCD  
tASR  
tRAH  
tASC  
Column  
(CASU/CASL)  
tCAH  
Address  
Row  
tWS  
tWH  
tWCS  
tWCH  
W3  
WEL  
High-Z  
I/O 0 to I/O7  
(Output)  
tMH  
tMS  
tDH  
tDS  
I/O 0 to I/O 7  
(Input)  
W4  
W3  
W5  
tWCS  
tWS  
tWH  
tWCH  
WEU  
High-Z  
I/O 8 to I/O 15  
(Output)  
tMH  
tMS  
tDH  
tDS  
I/O 8 to I/O 15  
(Input)  
W4  
W5  
tDTS  
tDTH  
DT/OE  
tFSR  
W1  
tRFH  
tCFH  
tFSC  
W2  
DSF1  
W1 to W5: See write cycle state table for the logic states.  
Preliminary Data Sheet E0160H10  
34  
HM5316123B Series  
Delayed Write Cycle  
tRC  
tRAS  
tRP  
RAS  
tCRP  
tCSH  
tRSH  
tRCD  
tCAS  
CAS  
tASR tRAH  
Row  
tASC  
Column  
(CASU, CASL)  
tCAH  
Address  
tRWL  
tWP  
tWS  
tWH  
tCWL  
W3  
WEL  
I/O 0 to I/O 7  
(Output)  
tDH  
W5  
tDS  
tMS  
tMH  
tDZC  
I/O 0 to I/O 7  
(Input)  
W4  
W3  
tRWL  
tWP  
tWS  
tWH  
CWL  
WEU  
I/O 8 to I/O 15  
(Output)  
tDH  
tDS  
tMS  
tMH  
tDZC  
I/O 8 to I/O 15  
(Input)  
W5  
tOEH  
W4  
tOFF2  
tODD  
tDTH  
tDTS  
DT/OE  
tRFH  
tFSR  
tCFH  
tFSC  
W2  
W1  
DSF1  
W1 to W5: See write cycle state table for the logic states  
Preliminary Data Sheet E0160H10  
35  
HM5316123B Series  
Fast page Mode Write Cycle (Early Write)  
tRC  
tRP  
tRASP  
RAS  
tCSH  
tPC  
tRSH  
tCAS  
tCP  
tCRP  
tCP  
tRCD  
tCAS  
tCAH  
tCAS  
tCAH  
CAS  
(CASU, CASL)  
tASR  
tRAH t  
ASC  
tASC  
tASC  
tCAH  
Address  
Row  
tWH  
Column  
Column  
tWCS  
Column  
tWCS  
tWS  
tWCS  
tWCH  
tWCH  
tWCH  
WEU, WEL  
W3  
tMS tMH tDS  
High-Z  
I/O  
(Output)  
tDH  
tDH  
tDH  
tDS  
tDS  
I/O  
(Input)  
W4  
W5  
W5  
W5  
tDTS  
tDTH  
DT/OE  
tRFH  
tFSC  
tFSR  
tCFH  
tFSC  
tCFH  
tFSC  
tCFH  
W1  
W2  
W2  
W2  
DSF1  
W1 to W5: See write cycle state table for the logic states  
Fast page Mode Write Cycle (Delayed Write)  
tRC  
tRP  
tRASP  
RAS  
tCSH  
tPC  
tRSH  
tCAS  
tCP  
tCRP  
tRCD  
tASC  
tCP  
tCAS  
tCAH  
tCAS  
tCAH  
CAS  
tASR  
tRAH  
Row  
tWS tWH  
W3  
tMH  
W4  
tASC  
tASC  
Column  
(CASU, CASL)  
tCAH  
Address  
Column  
Column  
tRWL  
tWP  
tCWL  
tWP  
tCWL  
tWP  
tCWL  
WEU, WEL  
High-Z  
I/O  
(Output)  
tMS  
tDS  
tDS  
tDS tDH  
W5  
tDH  
tDH  
I/O  
(Input)  
W5  
W5  
tOEH  
tDTS  
DT/OE  
tRFH  
tFSC tCFH  
W2  
tFSC tCFH  
W2  
tFSC  
W2  
tCFH  
tFSR  
DSF1  
W1  
W1 to W5: See write cycle state table for the logic states  
Preliminary Data Sheet E0160H10  
36  
HM5316123B Series  
Read Modify Write Cycle  
tRWC  
tRWS  
tRP  
RAS  
tCRP  
tRCD  
CAS  
(CASU, CASL)  
tRAD  
tRAH  
tASR  
tCAH  
Column  
tASC  
Address  
Row  
tAWD  
tCWD  
tRWL  
tCWL  
tWP  
tWS  
tWH  
W3  
tRCS  
tCAC  
tAA  
tRAC  
WEL  
I/O 0 to I/O 7  
(Output)  
Valid Dout  
tDS  
tOAC  
tDH  
W5  
tMS  
tMH  
W4  
tDZC  
I/O 0 to I/O 7  
(Input)  
tOFF2  
tODD  
tRWL  
tCWL  
tWP  
tWS  
tWH  
W3  
tRCS  
tCWD  
tCAC  
tAA  
WEU  
tRAC  
I/O 8 to I/O 15  
(Output)  
Valid Dout  
tDS  
tOAC  
tDH  
W5  
tMS  
tMH  
tDZC  
I/O 8 to I/O 15  
(Input)  
W4  
tDZO  
tDTS  
tDTH  
tOEH  
tODD  
DT/OE  
tRFH  
tFSC  
W2  
tFSR  
tCFH  
DSF1  
W1  
W1 to W5: See write cycle state table for the logic states  
Preliminary Data Sheet E0160H10  
37  
HM5316123B Series  
RAS-Only Refresh Cycle  
tRC  
tRP  
tRAS  
RAS  
tRPC  
tCRP  
CAS  
tASR  
tRAH  
Row  
Address  
tOFF1  
I/O  
(Output)  
tCDD  
tOFF2  
I/O  
(Input)  
tODD  
tDTS  
tDTH  
DT/OE  
tFSR tRFH  
DSF1  
WE: H or L  
CAS-Before-RAS refresh Cycle  
tRC  
tRP  
tRP  
tRAS  
RAS  
tRPC  
tCP  
tCSR  
tRPC  
Inhibit Falling Transition  
tCSR  
tCHR  
CAS  
Address  
tWS  
tWH  
WEU, WEL  
tOFF1  
High-Z  
I/O  
(Output)  
DT/OE  
tFSR  
tRFH  
DSF1  
SC : H or L  
Preliminary Data Sheet E0160H10  
38  
HM5316123B Series  
Hidden Refresh Cycle  
tRC  
tRC  
tRAS  
tRAS  
tRP  
tRP  
RAS  
CAS  
tCRP  
tRCD  
tRSH  
tCHR  
tRAD  
tRAH  
tRAL  
tASC  
Column  
tRCS  
tASR  
Row  
tCAH  
Address  
tWH  
tRRH  
tWS  
tCAC  
WEU, WEL  
tAA  
tRAC  
tOFF1  
I/O  
(Output)  
Valid Dout  
tDZC  
tOAC  
tOFF2  
I/O  
(Input)  
tDZO  
tDTH  
tDTS  
tFSR  
DT/OE  
tRFH  
tFSR  
tRFH  
tCFH  
tFSC  
DSF1  
Preliminary Data Sheet E0160H10  
39  
HM5316123B Series  
CAS-Before-RAS Set Cycle (CBRS)  
tRC  
tRAS  
tRP  
tRP  
RAS  
tRPC  
tCSR  
tCHR  
tCRP  
Inhibit falling transition  
CAS  
tASR tRAH  
Address  
(A2-A6)  
Stop Address  
tWS tWH  
WEU, WEL  
High-Z  
I/O  
(Output)  
I/O  
(Input)  
DT/OE  
tFSR  
tRFH  
DSF1  
A0, A1, A7 : Don't care  
SC: Dont care  
CAS-Before-RAS Reset Cycle (CBRR)  
tRC  
tRP  
tRAS  
tRP  
RAS  
tRPC  
tCSR  
tCHR  
tCRP  
Inhibit falling transition  
CAS  
Address  
tWS  
tWH  
WEU, WEL  
High-Z  
I/O  
(Output)  
I/O  
(Input)  
DT/OE  
tFSR  
tRFH  
tRST  
Bj-2  
Note: 1. Bi, Bj initiate the boundary addresses.  
DSF1  
tSTS  
Bi*1  
SC  
Bj-1  
Bj*1  
Preliminary Data Sheet E0160H10  
40  
HM5316123B Series  
Flash Write Cycle  
tRC  
tRAS  
tRP  
RAS  
tCRP  
tRCD  
tRAH  
CAS  
tASR  
Row  
tWS  
Address  
tWH  
WEU, WEL  
tCDD  
tOFF1  
tOFF2  
High-Z  
I/O  
(Output)  
tMS  
tMH  
tODD  
I/O  
(Input)  
Mask Data  
tDTH  
tDTS  
DT/OE  
tFSR  
tRFH  
DSF1  
Preliminary Data Sheet E0160H10  
41  
HM5316123B Series  
Register Read Cycle (Mask data, Color data)  
tRC  
tRAS  
tRP  
tCRP  
RAS  
tCSH  
tCAS  
tRCD  
tRSH  
CAS  
tASR tRAH  
Row  
Address  
tRRH  
tCDO  
tWS tWH  
tRCS  
tRCH  
WEU, WEL  
tCAC  
tRAC  
tOFF1  
Valid Out  
tOFF2  
I/O  
(Output)  
tDZC  
tOAC  
tODD  
I/O  
(Input)  
tDZO  
tDTH  
tDTS  
DT/OE  
tFSC  
tFSR tRFH  
tCFH  
DSF1  
*1  
Note: 1. State of DSF1 at falling edge of CAS  
State  
0
1
Accessed Mask data Color data  
data (LMR) (LCR)  
Preliminary Data Sheet E0160H10  
42  
HM5316123B Series  
Read Transfer Cycle-1  
tRC  
tRP  
tRAS  
RAS  
tCRP  
tCSH  
tRCD  
tRSH  
tCAS  
CAS  
tRAD  
tRAH  
tRAL  
tASR  
Row  
tCAH  
tASC  
SAM Start  
Address  
Address  
tWS  
tWH  
WEU, WEL  
High-Z  
I/O  
(Output)  
tCDH  
tADH  
tRDH  
tDRD  
tDTS  
tDTP  
DT/OE  
tRFH  
tSCC  
tFSR  
DSF1  
tSCC  
tSCC  
tSCP  
tSCC  
tSDH  
tSDD  
tSC  
SC  
tSCA  
tSCA  
tSOH  
tSCA  
tSOH  
Valid Sout  
tSCA  
tSOH  
tSOH  
tSOH  
Valid Sout  
Previous Row  
Valid Sout  
Valid Sout  
Valid Sout  
SI/O  
(Output)  
New Row  
High-Z  
SI/O  
(Input)  
tDQD  
tDQH  
QSF  
SAM Address MSB  
Preliminary Data Sheet E0160H10  
43  
HM5316123B Series  
Read Transfer Cycle-2  
tRC  
tRAS  
tRP  
RAS  
tCSH  
tCRP  
tRSH  
tCAS  
tRCD  
CAS  
tRAD  
tRAH  
tRAL  
tASR  
tASC  
tCAH  
SAM Start  
Address  
Address  
Row  
tWH  
tWS  
WEU, WEL  
High-Z  
I/O  
(Output)  
tDRD  
tDTS  
tDTH  
tDTP  
DT/OE  
tRFH  
tFSR  
DSF1  
tSRS  
tSC  
tSDH  
tSCP  
tSCC  
tSAH  
tSCP  
tSC  
Inhibit Rising Transition  
SC  
tSCA  
tSCA  
tSCH  
tSOH  
Valid Sout  
tSRH  
SI/O  
(Output)  
tSIS  
tSIH  
tSZS  
Valid  
Sin  
SI/O  
(Input)  
tDQD  
tCQD  
tCQH  
tRQD  
tRQH  
tDQH  
SAM Address MSB  
QSF  
Preliminary Data Sheet E0160H10  
44  
HM5316123B Series  
Masked Write Transfer Cycle  
tRC  
tRAS  
tRP  
RAS  
CAS  
tCRP  
tCSH  
tCAS  
tRSH  
tRCD  
tASR tRAH  
tASC  
tCAH  
SAM Start  
Address  
Address  
Row  
tWS tWH  
WEU, WEL  
High-Z  
I/O  
(Output)  
tDTS tDTH  
DT/OE  
tFSR tRFH  
DSF1  
tSRD  
tSRS  
tSC  
tSCC  
tSCP tSC tSCP  
Inhibit Rising Transition  
tSID  
SC  
tSRZ  
tSCA  
Valid  
tSOH  
SI/O  
(Output)  
Valid  
tSIS tSIH  
tSIS tSIH  
High-Z  
SI/O  
(Input)  
Valid Sin  
Valid Sin  
tCQD  
tCQH  
tRQD  
tRQH  
SAM Address MSB  
tMS tMH  
QSF  
I/O  
(Input)  
*1  
I/O Mask Data  
Note: 1. I/O mask data (In new mask mode)  
Low: Mask  
High: Non mask  
I/O: Don't care in persistent mask mode.  
Preliminary Data Sheet E0160H10  
45  
HM5316123B Series  
Split Read Transfer Cycle  
t
RC  
t
t
RP  
RAS  
RAS  
t
CSH  
t
t
RSH  
t
RCD  
CRP  
t
CRP  
t
CAS  
CAS  
t
RAD  
t
RAL  
t
t
ASR  
RAH  
t
t
CAH  
ASC  
*3  
SAM Start  
Address Yi  
Address  
Row  
t
t
WH  
WS  
WEU, WEL  
t
OFF1  
High-Z  
I/O  
(Output)  
t
t
DTH  
DTS  
DT/OE  
t
RFH  
t
FSR  
DSF1  
t
CST  
t
AST  
t
RST  
t
SCC  
t
t
t
SC  
SCP  
STS  
SC  
*2  
*2  
*1  
Bi  
t
Ym  
Ym + 1  
Ym + 2  
Bj – 2  
Bj – 1  
Bj  
Yi  
t
SCA  
t
SCA  
t
SOH  
SOH  
SI/O  
(Output)  
Valid  
Sout  
Valid  
Sout  
Valid  
Sout  
Valid  
Sout  
Valid  
Sout  
Valid Sout  
SI/O  
(Input)  
High-Z  
t
t
SQD  
SQD  
t
SQH  
t
SQH  
QSF  
SAM Address MSB  
Notes: 1. Ym is the SAM start address in before SRT.  
2. Bi, Bj initiate the boundary address.  
3. A7 : H or L  
SAM start address can't set on the boundary address.  
Preliminary Data Sheet E0160H10  
46  
HM5316123B Series  
Masked Split Write Transfer Cycle  
tRC  
tRAS  
tRP  
RAS  
CAS  
tCSH  
tCAS  
tRSH  
tRCD  
tASR tRAH tASC tCAH  
*4  
SAM Start  
Address Yi  
Row  
Address  
tWS tWH  
WEU, WEL  
tOFF1  
High-Z  
I/O  
(Output)  
tDTS tDTH  
DT/OE  
tFSR tRFH  
DSF1  
tCST  
tAST  
tRST  
tSCC  
tSC tSCP  
tSTS  
SC  
Bi*2  
Ym*1  
Ym+1  
Ym+2  
Bj-2  
Bj-1  
Bj*2  
Yi  
SI/O  
(Output)  
tSIH  
tSIS tSIH  
tSIS tSIH  
tSIS  
SI/O  
(Input)  
Valid  
Sin  
Valid  
Sin  
Valid  
Sin  
Valid  
Sin  
Valid  
Sin  
Valid  
Sin  
tSQD  
tSQH  
Valid  
Sin  
tSQD  
tSQH  
SAM Address MSB  
QSF  
tCDD tMS tMH  
I/O  
(Input)  
*3  
I/O Mask Data  
Notes: 1. Ym is the SAM start address in before SRWT.  
2. Bi, Bj initiate the boundary address.  
3. I/O Mask data (In new mask mode)  
Low: Mask  
High: Non mask  
I/O: Don't care in persistent mask mode.  
4. A7: H or L  
SAM start address can't set on the boundary address.  
Preliminary Data Sheet E0160H10  
47  
HM5316123B Series  
Serial Read Cycle  
SE  
tSCC  
tSCC  
tSCC  
tSCP  
tSC  
tSCA  
tSCP  
tSC  
tSCP  
tSC  
tSC  
SC  
tSCA  
tSOH  
tSEA  
tSCA  
tSLZ  
tSHZ  
tSOH  
Valid  
Sout  
SI/O  
(Output)  
Valid Sout  
Valid Sout  
Valid Sout  
Sereal Write Cycle  
tSWH  
tSWIS tSWIH  
tSWS  
SE  
tSCC  
tSCC  
tSCC  
tSC  
tSC  
tSC  
tSCP  
tSCP  
tSC  
tSCP  
SC  
tSIS tSIH  
Valid Sin  
tSIS  
tSIH  
tSIS  
tSIH  
SI/O  
(Input)  
Valid Sin  
Valid Sin  
Preliminary Data Sheet E0160H10  
48  
HM5316123B Series  
Package Dimensions  
HM5316123BF Series (FP-64DS)  
Unit: mm  
26.2  
27.0 Max  
64  
33  
1
32  
13.8 ± 0.2  
1.10 Max  
0 – 10°  
0.50 +00..2350  
+0.08  
0.30  
–0.02  
M
0.16  
0.80  
0.10  
Preliminary Data Sheet E0160H10  
49  
HM5316123B Series  
Cautions  
1. Elpida Memory, Inc. neither warrants nor grants licenses of any rights of Elpida Memory, Inc.’s or any  
third party’s patent, copyright, trademark, or other intellectual property rights for information  
contained in this document. Elpida Memory, Inc. bears no responsibility for problems that may arise  
with third party’s rights, including intellectual property rights, in connection with use of the  
information contained in this document.  
2. Products and product specifications may be subject to change without notice. Confirm that you have  
received the latest product standards or specifications before final design, purchase or use.  
3. Elpida Memory, Inc. makes every attempt to ensure that its products are of high quality and reliability.  
However, contact Elpida Memory, Inc. before using the product in an application that demands  
especially high quality and reliability or where its failure or malfunction may directly threaten human  
life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control,  
transportation, traffic, safety equipment or medical equipment for life support.  
4. Design your application so that the product is used within the ranges guaranteed by Elpida Memory,  
Inc. particularly for maximum rating, operating supply voltage range, heat radiation characteristics,  
installation conditions and other characteristics. Elpida Memory, Inc. bears no responsibility for  
failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges,  
consider normally foreseeable failure rates or failure modes in semiconductor devices and employ  
systemic measures such as fail-safes, so that the equipment incorporating Elpida Memory, Inc.  
product does not cause bodily injury, fire or other consequential damage due to operation of the  
Elpida Memory, Inc. product.  
5. This product is not designed to be radiation resistant.  
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without  
written approval from Elpida Memory, Inc..  
7. Contact Elpida Memory, Inc. for any questions regarding this document or Elpida Memory, Inc.  
semiconductor products.  
Preliminary Data Sheet E0160H10  
50  

相关型号:

HM5316123BF-8

131,072-word x 16-bit Multiport CMOS Video RAM
ELPIDA

HM5316123F-10

Video DRAM, 128KX16, 100ns, CMOS, PDSO64, PLASTIC, SSOP-64
HITACHI

HM5316123F-7

Video DRAM, 128KX16, 70ns, CMOS, PDSO64, PLASTIC, SSOP-64
HITACHI

HM5316123F-8

Video DRAM, 128KX16, 80ns, CMOS, PDSO64, PLASTIC, SSOP-64
HITACHI

HM5316124F-10

Video DRAM, 128KX16, 100ns, CMOS, PDSO64, PLASTIC, SSOP-64
HITACHI

HM5316124F-8

Video DRAM, 128KX16, 80ns, CMOS, PDSO64, PLASTIC, SSOP-64
HITACHI

HM5318

Low Quiescent Current_Low Dropout CMOS Voltage Regulator
HMSEMI

HM5321

Low Quiescent Current_Low Dropout CMOS Voltage Regulator
HMSEMI

HM5325

Low Quiescent Current_Low Dropout CMOS Voltage Regulator
HMSEMI

HM5327

Low Quiescent Current_Low Dropout CMOS Voltage Regulator
HMSEMI

HM5327M5

High Speed Current_Low Dropout CMOS Voltage Regulator HM53XXM5 Series 500mA (With Enable control)
HMSEMI

HM5328

Low Quiescent Current_Low Dropout CMOS Voltage Regulator
HMSEMI