HM5425161B [ELPIDA]

256M SSTL_2 interface DDR SDRAM 143 MHz/133 MHz/125 MHz/100 MHz 4-Mword 】 16-bit 】 4-bank/8-Mword 】 8-bit 】 4-bank/ 16-Mword 】 4-bit 】 4-bank; 256M SSTL_2接口DDR SDRAM 143兆赫/ 133兆赫/ 125兆赫/ 100 MHz的4 Mword 】 16位】 4银行/ 8 - Mword 】 8位】 4银行/ 16 Mword 】 4位】 4-银行
HM5425161B
型号: HM5425161B
厂家: ELPIDA MEMORY    ELPIDA MEMORY
描述:

256M SSTL_2 interface DDR SDRAM 143 MHz/133 MHz/125 MHz/100 MHz 4-Mword 】 16-bit 】 4-bank/8-Mword 】 8-bit 】 4-bank/ 16-Mword 】 4-bit 】 4-bank
256M SSTL_2接口DDR SDRAM 143兆赫/ 133兆赫/ 125兆赫/ 100 MHz的4 Mword 】 16位】 4银行/ 8 - Mword 】 8位】 4银行/ 16 Mword 】 4位】 4-银行

动态存储器 双倍数据速率
文件: 总65页 (文件大小:481K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HM5425161B Series  
HM5425801B Series  
HM5425401B Series  
256M SSTL_2 interface DDR SDRAM  
143 MHz/133 MHz/125 MHz/100 MHz  
4-Mword × 16-bit × 4-bank/8-Mword × 8-bit × 4-bank/  
16-Mword × 4-bit × 4-bank  
E0086H20 (Ver. 2.0)  
Jan. 23, 2002  
Description  
The HM5425161B, the HM5425801B and the HM5425401B are the Double Data Rate (DDR) SDRAM  
devices. Read and write operations are performed at the cross points of the CLK and the CLK. This high  
speed data transfer is realized by the 2-bit prefetch piplined architecture. Data strobe (DQS) both for read and  
write are available for high speed and reliable data bus design. By setting extended mode resistor, the on-chip  
Delay Locked Loop (DLL) can be set enable or disable.  
Features  
2.5 V power supply  
SSTL-2 interface for all inputs and outputs  
Clock frequency: 143 MHz/133 MHz/125 MHz/100 MHz (max)  
Data inputs, outputs, and DM are synchronized with DQS  
4 banks can operate simultaneously and independently  
Burst read/write operation  
Programmable burst length: 2/4/8  
Burst read stop capability  
Elpida Memory, Inc. is a joint venture DRAM company of NEC Corporation and Hitachi, Ltd.  
HM5425161B, HM5425801B, HM5425401B Series  
Programmable burst sequence  
Sequential  
Interleave  
Start addressing capability  
Even and Odd  
Programmable CAS latency: 2/2.5  
8192 refresh cycles: 7.8 µs (64 ms/8192 cycles)  
2 variations of refresh  
Auto refresh  
Self refresh  
Ordering Information  
Type No.  
Frequency  
CAS latency  
Package  
HM5425161BTT-75A*1  
HM5425161BTT-75B*2  
HM5425161BTT-10*3  
133 MHz  
133 MHz  
100 MHz  
2.0  
2.5  
2.0  
400-mill 66-pin plastic  
TSOP II  
HM5425801BTT-75A*1  
HM5425801BTT-75B*2  
HM5425801BTT-10*3  
133 MHz  
133 MHz  
100 MHz  
2.0  
2.5  
2.0  
HM5425401BTT-75A*1  
HM5425401BTT-75B*2  
HM5425401BTT-10*3  
133 MHz  
133 MHz  
100 MHz  
2.0  
2.5  
2.0  
Notes: 1. 143 MHz operation at CAS latency = 2.5.  
2. 100 MHz operation at CAS latency = 2.0.  
3. 125 MHz operation at CAS latency = 2.5.  
Data Sheet E0086H20  
2
HM5425161B, HM5425801B, HM5425401B Series  
Pin Arrangement (HM5425161B)  
66-pin TSOP  
VCC  
DQ0  
VCCQ  
DQ1  
DQ2  
VSSQ  
DQ3  
DQ4  
VCCQ  
DQ5  
DQ6  
VSSQ  
DQ7  
NC  
VCCQ  
DQSL  
NC  
VCC  
NC  
DML  
WE  
CAS  
RAS  
CS  
1
2
3
4
5
6
7
8
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
VSS  
DQ15  
VSSQ  
DQ14  
DQ13  
VCCQ  
DQ12  
DQ11  
VSSQ  
DQ10  
DQ9  
VCCQ  
DQ8  
NC  
VSSQ  
DQSU  
NC  
VREF  
VSS  
DMU  
CLK  
CLK  
CKE  
NC  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
NC  
A12  
A11  
A9  
A8  
A7  
A6  
A5  
A4  
BA0  
BA1  
A10(AP)  
A0  
A1  
A2  
A3  
VCC  
VSS  
(Top view)  
Data Sheet E0086H20  
3
HM5425161B, HM5425801B, HM5425401B Series  
Pin Description  
Pin name  
Function  
A0 to A12  
Address input  
Row address A0 to A12  
Column address  
Bank select address  
Data-input/output  
A0 to A8  
BA0, BA1  
DQ0 to DQ15  
DQSU  
DQSL  
CS  
Upper input and output data strobe  
Lower input and output data strobe  
Chip select  
RAS  
Row address strobe command  
Column address strobe command  
Write enable  
CAS  
WE  
DMU  
DML  
CLK  
Upper byte input mask  
Lower byte input mask  
Clock input  
CLK  
Differential clock input  
Clock enable  
CKE  
VREF  
Input reference voltage  
Power for internal circuit  
Ground for internal circuit  
Power for DQ circuit  
VCC  
VSS  
VCCQ  
VSSQ  
Ground for DQ circuit  
No connection  
NC  
Data Sheet E0086H20  
4
HM5425161B, HM5425801B, HM5425401B Series  
Pin Arrangement (HM5425801B)  
66-pin TSOP  
VCC  
DQ0  
VCCQ  
NC  
DQ1  
VSSQ  
NC  
DQ2  
VCCQ  
NC  
DQ3  
VSSQ  
NC  
NC  
VCCQ  
NC  
NC  
VCC  
NC  
1
2
3
4
5
6
7
8
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
VSS  
DQ7  
VSSQ  
NC  
DQ6  
VCCQ  
NC  
DQ5  
VSSQ  
NC  
DQ4  
VCCQ  
NC  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
NC  
VSSQ  
DQS  
NC  
VREF  
VSS  
DM  
CLK  
CLK  
CKE  
NC  
A12  
A11  
A9  
A8  
A7  
A6  
A5  
A4  
VSS  
NC  
WE  
CAS  
RAS  
CS  
NC  
BA0  
BA1  
A10(AP)  
A0  
A1  
A2  
A3  
VCC  
(Top view)  
Data Sheet E0086H20  
5
HM5425161B, HM5425801B, HM5425401B Series  
Pin Description  
Pin name  
Function  
A0 to A12  
Address input  
Row address A0 to A12  
Column address  
Bank select address  
Data-input/output  
A0 to A9  
BA0, BA1  
DQ0 to DQ7  
DQS  
CS  
Input and output data strobe  
Chip select  
RAS  
CAS  
WE  
Row address strobe command  
Column address strobe command  
Write enable  
DM  
Input mask  
CLK  
Clock input  
CLK  
Differential clock input  
Clock enable  
CKE  
VREF  
Input reference voltage  
Power for internal circuit  
Ground for internal circuit  
Power for DQ circuit  
Ground for DQ circuit  
No connection  
VCC  
VSS  
VCCQ  
VSSQ  
NC  
Data Sheet E0086H20  
6
HM5425161B, HM5425801B, HM5425401B Series  
Pin Arrangement (HM5425401B)  
66-pin TSOP  
VCC  
NC  
VCCQ  
NC  
DQ0  
VSSQ  
NC  
NC  
VCCQ  
NC  
DQ1  
VSSQ  
NC  
NC  
VCCQ  
NC  
NC  
VCC  
NC  
NC  
WE  
CAS  
RAS  
CS  
1
2
3
4
5
6
7
8
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
VSS  
NC  
VSSQ  
NC  
DQ3  
VCCQ  
NC  
NC  
VSSQ  
NC  
DQ2  
VCCQ  
NC  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
NC  
VSSQ  
DQS  
NC  
VREF  
VSS  
DM  
CLK  
CLK  
CKE  
NC  
A12  
A11  
A9  
A8  
A7  
A6  
A5  
A4  
VSS  
NC  
BA0  
BA1  
A10(AP)  
A0  
A1  
A2  
A3  
VCC  
(Top view)  
Data Sheet E0086H20  
7
HM5425161B, HM5425801B, HM5425401B Series  
Pin Description  
Pin name  
Function  
A0 to A12  
Address input  
Row address A0 to A12  
Column address  
Bank select address  
Data-input/output  
Output data strobe  
Chip select  
A0 to A9, A11  
BA0, BA1  
DQ0 to DQ3  
DQS  
CS  
RAS  
CAS  
WE  
Row address strobe command  
Column address strobe command  
Write enable  
DM  
Input mask  
CLK  
Clock input  
CLK  
Differential clock input  
Clock enable  
CKE  
VREF  
Input reference voltage  
Power for internal circuit  
Ground for internal circuit  
Power for DQ circuit  
Ground for DQ circuit  
No connection  
VCC  
VSS  
VCCQ  
VSSQ  
NC  
Data Sheet E0086H20  
8
HM5425161B, HM5425801B, HM5425401B Series  
Block Diagram  
Address (A12, BA0, BA1)  
Address register  
AY0 to AY11  
AX0 to AX12  
Row address  
buffer  
BA0, BA1  
Bank  
select  
Refresh  
counter  
Column address  
buffer  
A0 to A12,  
BA0, BA1  
Column address  
counter  
Mode register  
CLK  
Row  
decoder  
Row  
decoder  
Row  
decoder  
Row  
decoder  
CLK  
CKE  
CS  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
RAS  
CAS  
WE  
1
*
1
*
1
*
1
*
DM,  
DMU/DML  
Input  
DQS,  
DQSU/DQSL  
buffer  
Output  
buffer  
DQS  
buffer  
DLL  
2
DQ*  
Notes: 1. 8192 row × 512 column × 16 bit: HM5425161B  
8192 row × 1024 column × 8 bit: HM5425801B  
8192 row × 2048 column × 4 bit: HM5425401B  
2. DQ0 to DQ15: HM5425161B  
DQ0 to DQ7: HM5425801B  
DQ0 to DQ3: HM5425401B  
Data Sheet E0086H20  
9
HM5425161B, HM5425801B, HM5425401B Series  
Pin Functions (1)  
CLK, CLK (input pin): The CLK and the CLK are the master clock inputs. All inputs except DMs, DQSs  
and DQs are referred to the cross point of the CLK rising edge and the VREF level. When a read operation,  
DQSs and DQs are referred to the cross point of the CLK and the CLK. When a write operation, DMs and  
DQs are referred to the cross point of the DQS and the VREF level. DQSs for write operation are referred to  
the cross point of the CLK and the CLK.  
CS (input pin): When CS is Low, commands and data can be input. When CS is High, all inputs are  
ignored. However, internal operations (bank active, burst operations, etc.) are held.  
RAS, CAS, and WE (input pins): These pins define operating commands (read, write, etc.) depending on  
the combinations of their voltage levels. See "Command operation".  
A0 to A12 (input pins): Row address (AX0 to AX12) is determined by the A0 to the A12 level at the cross  
point of the CLK rising edge and the VREF level in a bank active command cycle. Column address (AY0 to  
AY8; the HM5425161B, AY0 to AY9; the HM5425801B, AY0 to AY9, AY11; the HM5425401B) is loaded  
via the A0 to the A9 at the cross point of the CLK rising edge and the VREF level in a read or a write command  
cycle. This column address becomes the starting address of a burst operation.  
A10 (AP) (input pin): A10 defines the precharge mode when a precharge command, a read command or a  
write command is issued. If A10 = High when a precharge command is issued, all banks are precharged. If  
A10 = Low when a precharge command is issued, only the bank that is selected by BA1/BA0 is precharged.  
If A10 = High when read or write command, auto-precharge function is enabled. While A10 = Low, auto-  
precharge function is disabled.  
BA0/BA1 (input pin): BA0/BA1 are bank select signals. The memory array is divided into bank 0, bank 1,  
bank 2 and bank 3. If BA1 = Low and BA0 = Low, bank 0 is selected. If BA1 = High and BA0 = Low, bank  
1 is selected. If BA1 = Low and BA0 = High, bank 2 is selected. If BA1 = High and BA0 = High, bank 3 is  
selected.  
CKE (input pin): CKE controls power down and self-refresh. The power down and the self-refresh  
commands are entered when the CKE is driven Low and exited when it resumes to High.  
The CKE level must be kept for 1 CLK cycle (= tCKEPW) at least, that is, if CKE changes at the cross point of  
the CLK rising edge and the VREF level with proper setup time tIS, by the next CLK rising edge CKE level  
must be kept with proper hold time tIH.  
Data Sheet E0086H20  
10  
HM5425161B, HM5425801B, HM5425401B Series  
Pin Functions (2)  
DM, DMU/DML (input pins): DM (the HM5425801B and the HM5425401B), DMU/DML (the  
HM5425161B) are the reference signals of the data input mask function. DMs are sampled at the cross point  
of DQS and VREF. DMU/DML provide the byte mask function. When DMU/DML = High, the data input at  
the same timing are masked while the internal burst counter will be count up. DML controls the lower byte  
(DQ0 to DQ7) and DMU controls the upper byte (DQ8 to DQ15) of write data.  
DQ0 to DQ15 (input and output pins): Data are input to and output from these pins (the DQ0 to the DQ15;  
the HM5425161B, the DQ0 to the DQ7; the HM5425801B, the DQ0 to the DQ3; the HM5425401B).  
DQS, DQSU/DQSL (input and output pin):  
DQS (the HM5425801B and the HM5425401B),  
DQSU/DQSL (the HM5425161B) provide the read data strobes (as output) and the write data strobes (as  
input). DQSL is the lower byte (DQ0 to DQ7) data strobe signal, DQSU is the upper byte (DQ8 to DQ15)  
data strobe signal.  
VCC and VCCQ (power supply pins): 2.5 V is applied. (VCC is for the internal circuit and VCCQ is for the  
output buffer.)  
VSS and VSSQ (power supply pins): Ground is connected. (VSS is for the internal circuit and VSSQ is for the  
output buffer.)  
Data Sheet E0086H20  
11  
HM5425161B, HM5425801B, HM5425401B Series  
Command Operation  
Command Truth Table  
The HM5425161B, the HM5425801B and HM5425401B recognize the following commands specified by the  
CS, RAS, CAS, WE and address pins. All other combinations than those in the table below are illegal.  
CKE  
Command  
Symbol n – 1 n  
CS RAS CAS WE BA1 BA0 AP Address  
Ignore command  
No operation  
DESL  
NOP  
BST  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
H
L
L
L
L
L
L
L
L
L
L
L
L
L
×
×
H
H
L
×
×
×
×
V
V
V
V
V
V
×
×
×
L
L
×
×
×
V
V
V
V
V
V
×
×
×
L
×
×
×
L
H
L
H
V
L
H
×
×
L
L
×
×
×
V
V
V
V
V
×
×
×
×
V
V
H
H
H
H
H
H
L
H
L
Burst stop in read command  
Column address and read command READ  
Read with auto-precharge READA  
Column address and write command WRIT  
Write with auto-precharge WRITA  
Row address strobe and bank active ACTV  
H
H
L
L
L
L
L
H
H
H
L
H
L
Precharge select bank  
Precharge all bank  
Refresh  
PRE  
L
PALL  
REF  
L
L
L
H
H
L
SELF  
MRS  
EMRS  
L
L
Mode register set  
H
H
L
L
L
L
L
H
Notes: 1. H: VIH. L: VIL. ×: VIH or VIL. V: Valid address input  
2. The CKE level must be kept for 1 CLK cycle (= tCKEPW) at least.  
Ignore command [DESL]: When CS is High at the cross point of the CLK rising edge and the VREF level,  
every input are neglected and internal status is held.  
No operation [NOP]: As long as this command is input at the cross point of the CLK rising edge and the  
VREF level, address and data input are neglected and internal status is held.  
Burst stop in read operation [BST]: This command stops a burst read operation, which is not applicable for  
a burst write operation.  
Column address strobe and read command [READ]: This command starts a read operation. The start  
address of the burst read is determined by the column address (AY0 to AY8; the HM5425161B, AY0 to AY9;  
the HM5425801B, AY0 to AY9, AY11; the HM5425401B) and the bank select address (BA). After the  
completion of the read operation, the output buffer becomes High-Z.  
Data Sheet E0086H20  
12  
HM5425161B, HM5425801B, HM5425401B Series  
Read with auto-precharge [READA]: This command starts a read operation. After completion of the read  
operation, precharge is automatically executed.  
Column address strobe and write command [WRIT]: This command starts a write operation. The start  
address of the burst write is determined by the column address (AY0 to AY8; the HM5425161B, AY0 to  
AY9; the HM5425801B, AY0 to AY9, AY11; the HM5425401B) and the bank select address (BA).  
Write with auto-precharge [WRITA]: This command starts a write operation. After completion of the  
write operation, precharge is automatically executed.  
Row address strobe and bank activate [ACTV]: This command activates the bank selected by BA0/BA1  
and determines a row address (AX0 to AX12). When BA1 = BA0 = Low, bank 0 is activated. When BA1 =  
High and BA0 = Low, bank 1 is activated. When BA1 = Low and BA0 = High, bank 2 is activated. When  
BA1 = BA0 = High, bank 3 is activated.  
Precharge selected bank [PRE]: This command starts a pre-charge operation for the bank selected by  
BA0/BA1.  
Precharge all banks [PALL]: This command starts a precharge operation for all banks.  
Refresh [REF/SELF]: This command starts a refresh operation. There are two types of refresh operation,  
one is auto-refresh, and another is self-refresh. For details, refer to the CKE truth table section.  
Mode register set/Extended mode register set [MRS/EMRS]: The DDR SDRAM has the two mode  
registers, the mode register and the extended mode register, to defines how it works. The both mode registers  
are set through the address pins (the A0 to the A12, BA0 to BA1) in the mode register set cycle. For details,  
refer to "Mode register and extended mode register set".  
Data Sheet E0086H20  
13  
HM5425161B, HM5425801B, HM5425401B Series  
CKE Truth Table  
CKE  
Current state Command  
n 1  
H
n
H
L
CS  
L
RAS CAS WE Address Notes  
Idle  
Idle  
Idle  
Auto-refresh command (REF)  
L
L
H
H
H
×
×
×
×
×
×
×
×
×
2
2
Self-refresh entry (SELF)  
Power down entry (PDEN)  
H
L
L
L
H
L
L
H
×
H
×
H
L
H
L
Self refresh  
Power down  
Self refresh exit (SELFX)  
Power down exit (PDEX)  
L
H
H
H
H
H
×
H
×
H
×
L
H
L
L
H
×
H
×
H
×
L
H
Notes: 1. H: VIH. L: VIL. ×: VIH or VIL.  
2. All the banks must be in IDLE before executing this command.  
3. The CKE level must be kept for 1 CLK cycle (= tCKEPW) at least.  
Auto-refresh command [REF]: This command executes auto-refresh. The banks and the ROW addresses  
to be refreshed are internally determined by the internal refresh contoroller. The average refresh cycle is 7.8  
µs. The output buffer becomes High-Z after auto-refresh start. Precharge has been completed automatically  
after the auto-refresh. The ACTV or MRS command can be issued tRFC after the last auto-refresh command.  
Self-refresh entry [SELF]: This command starts self-refresh. The self-refresh operation continues as long  
as CKE is held Low. During the self-refresh operation, all ROW addresses are repeated refreshing by the  
internal refresh contoroller. A self-refresh is terminated by a self-refresh exit command.  
Power down mode entry [PDEN]: tPDEN (= 1 cycle) after the cycle when [PDEN] is issued. The DDR  
SDRAM enters into power-down mode. In power down mode, power consumption is suppressed by  
deactivating the input initial circuit. Power down mode continues while CKE is held Low. No internal  
refresh operation occurs during the power down mode. [PDEN] do not disable DLL.  
Self-refresh exit [SELFX]: This command is executed to exit from self-refresh mode. 10 cycles (= tSNR  
)
after [SELFX], non-read commands can be executed. For read operation, wait for 200 cycles (= tSRD) after  
[SELFX] to adjust Dout timing by DLL. After the exit, within 7.8 µs input auto-refresh command.  
Power down exit [PDEX]: The DDR SDRAM can exit from power down mode tPDEX (1 cycle min.) after the  
cycle when [PDEX] is issued.  
Data Sheet E0086H20  
14  
HM5425161B, HM5425801B, HM5425401B Series  
Function Truth Table  
The following tables show the operations that are performed when each command is issued in each state of  
the DDR SDRAM.  
Function Truth Table (1)  
Current state  
Precharging*2  
CS RAS CAS WE Address  
Command  
DESL  
Operation  
NOP  
Next state  
ldle  
ldle  
H
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
×
×
×
×
×
×
H
H
H
H
L
H
H
L
H
L
NOP  
NOP  
ILLEGAL*12  
BST  
H
L
BA, CA, A10 READ/READA ILLEGAL*12  
L
BA, CA, A10 WRIT/WRITA  
ILLEGAL*12  
ILLEGAL*12  
NOP  
H
H
L
H
L
BA, RA  
ACTV  
L
BA, A10  
PRE, PALL  
ldle  
L
×
×
×
×
×
ILLEGAL  
NOP  
Idle*3  
×
×
×
DESL  
NOP  
BST  
ldle  
ldle  
H
H
H
H
L
H
H
L
H
L
NOP  
ILLEGAL*12  
H
L
BA, CA, A10 READ/READA ILLEGAL*12  
L
BA, CA, A10 WRIT/WRITA  
ILLEGAL*12  
Activating  
NOP  
H
H
L
H
L
BA, RA  
BA, A10  
×
ACTV  
Active  
ldle  
L
PRE, PALL  
REF, SELF  
L
H
Refresh/  
ldle/  
Selfrefresh  
Selfrefresh*13  
L
L
L
L
MODE  
MRS  
Mode register set*13 ldle  
Refresh  
H
×
×
×
×
DESL  
NOP  
ldle  
(auto-refresh)*4  
L
H
L
L
H
H
H
L
H
H
L
H
L
×
×
×
×
×
×
NOP  
BST  
NOP  
ldle  
ILLEGAL  
ILLEGAL  
ILLEGAL  
×
Data Sheet E0086H20  
15  
HM5425161B, HM5425801B, HM5425401B Series  
Function Truth Table (2)  
Current state  
Activating*5  
CS RAS CAS WE Address  
Command  
DESL  
Operation  
NOP  
Next state  
Active  
Active  
H
L
L
L
L
L
L
L
H
L
L
L
×
×
×
×
×
×
H
H
H
H
L
H
H
L
H
L
NOP  
NOP  
ILLEGAL*12  
BST  
H
L
BA, CA, A10 READ/READA ILLEGAL*12  
L
BA, CA, A10 WRIT/WRITA  
ILLEGAL*12  
ILLEGAL*12  
ILLEGAL*12  
ILLEGAL  
NOP  
H
H
L
H
L
BA, RA  
ACTV  
L
BA, A10  
PRE, PALL  
L
×
×
×
×
×
Active*6  
×
×
×
DESL  
NOP  
BST  
Active  
Active  
Active  
H
H
H
H
H
L
H
L
NOP  
ILLEGAL  
H
BA, CA, A10 READ/READA Starting read  
operation  
Read/READ  
A
L
H
L
L
BA, CA, A10 WRIT/WRITA  
Starting write  
operation  
Write  
recovering/  
precharging  
L
L
L
H
L
L
L
L
H
H
L
H
L
BA, RA  
ACTV  
ILLEGAL*12  
Pre-charge  
ILLEGAL  
NOP  
L
BA, A10  
PRE, PALL  
Idle  
L
×
×
Read*7  
×
×
×
×
DESL  
Active  
Active  
Active  
Active  
H
H
H
H
H
L
H
L
×
NOP  
NOP  
×
BST  
BST  
BA, CA, A10  
Interrupting burst  
read operation to  
start new read  
ILLEGAL*14  
H
READ/READA  
BA, CA, A10  
BA, RA  
L
L
L
H
L
L
L
L
H
L
WRIT/WRITA  
ACTV  
ILLEGAL*12  
H
H
Interrupting burst  
read operation to  
start pre-charge  
BA, A10  
PRE, PALL  
Precharging  
L
L
L
×
×
ILLEGAL  
Data Sheet E0086H20  
16  
HM5425161B, HM5425801B, HM5425401B Series  
Function Truth Table (3)  
Current state  
CS RAS CAS WE Address  
Command  
Operation  
Next state  
Read with auto- H  
pre-charge*8  
×
×
×
×
DESL  
NOP  
Precharging  
L
L
L
L
L
L
L
H
H
H
H
L
H
H
L
H
L
×
×
NOP  
BST  
NOP  
ILLEGAL*15  
Precharging  
H
L
BA, CA, A10 READ/READA ILLEGAL*15  
L
BA, CA, A10 WRIT/WRITA  
ILLEGAL*15  
ILLEGAL*12, 15  
ILLEGAL*12, 15  
ILLEGAL  
H
H
L
H
L
BA, RA  
ACTV  
L
BA, A10  
PRE, PALL  
L
×
×
×
Write*9  
H
×
×
×
DESL  
NOP  
BST  
NOP  
Write  
recovering  
L
H
H
H
×
×
NOP  
Write  
recovering  
L
L
H
H
H
L
L
ILLEGAL  
H
BA, CA, A10 READ/READA Interrupting burst  
write operation to  
Read/ReadA  
start read operation.  
L
H
L
L
BA, CA, A10 WRIT/WRITA  
Interrupting burst  
write operation to  
start new write  
operation.  
Write/WriteA  
L
L
L
L
H
H
H
L
BA, RA  
ACTV  
ILLEGAL*12  
BA, A10  
PRE, PALL  
Interrupting write  
operation to start  
pre-charge.  
Idle  
L
L
L
×
×
×
×
ILLEGAL  
NOP  
Write  
H
×
×
DESL  
Active  
recovering*10  
L
L
L
H
H
H
H
H
L
H
L
×
×
NOP  
BST  
NOP  
Active  
ILLEGAL  
H
BA, CA, A10 READ/READA Starting read  
operation.  
Read/ReadA  
L
H
L
L
BA, CA, A10 WRIT/WRITA  
Starting new write  
Write/WriteA  
operation.  
L
L
L
L
L
L
H
H
L
H
L
BA, RA  
BA, A10  
×
ACTV  
ILLEGAL*12  
ILLEGAL*12  
PRE/PALL  
×
ILLEGAL  
Data Sheet E0086H20  
17  
HM5425161B, HM5425801B, HM5425401B Series  
Function Truth Table (4)  
Current state  
CS RAS CAS WE Address  
Command  
Operation  
Next state  
Write with auto-  
pre-charge*11  
H
×
×
×
×
DESL  
NOP  
Precharging  
L
L
L
L
L
L
L
H
H
H
H
L
H
H
L
H
L
×
×
NOP  
BST  
NOP  
Precharging  
ILLEGAL  
H
L
BA, CA, A10 READ/READA ILLEGAL*15  
L
BA, CA, A10 WRIT/WRIT A  
ILLEGAL*15  
ILLEGAL*12, 15  
ILLEGAL*12, 15  
ILLEGAL  
H
H
L
H
L
BA, RA  
BA, A10  
×
ACTV  
L
PRE, PALL  
L
×
Notes: 1. H: VIH. L: VIL. ×: VIH or VIL.  
2. The DDR SDRAM is in "Precharging" state for tRP after precharge command is issued.  
3. The DDR SDRAM reachs "IDLE" state tRP after precharge command is issued.  
4. The DDR SDRAM is in "Refresh" state for tRC after auto-refresh command is issued.  
5. The DDR SDRAM is in "Activating" state for tRCD after ACTV command is issued.  
6. The DDR SDRAM is in "Active" state after "Activating" is completed.  
7. The DDR SDRAM is in "READ" state until burst data have been output and DQ output circuits are  
turned off.  
8. The DDR SDRAM is in "READ with auto-precharge" from READA command until burst data has  
been output and DQ output circuits are turned off.  
9. The DDR SDRAM is in "WRITE" state from WRIT command to the last burst data are input.  
10. The DDR SDRAM is in "Write recovering" for tWR after the last data are input.  
11. The DDR SDRAM is in "Write with auto-precharge" until tWR after the last data has been input.  
12. This command may be issued for other banks, depending on the state of the banks.  
13. All banks must be in "IDLE".  
14. Before executing a write command to stop the preceding burst read operation, BST command must  
be issued.  
15. See Read with Auto-Precharge Enabled, Write with Auto-Precharge Enablesection.  
Data Sheet E0086H20  
18  
HM5425161B, HM5425801B, HM5425401B Series  
Read with Auto-Precharge Enabled, Write with Auto-Precharge Enabled  
The Elpida HM5425401/801/161B series support the concurrent auto precharge feature, a read with auto-  
precharge enabled, or a write with auto-precharge enabled, may be followed by any command to the other  
banks, as long as that command does not interrupt the read or write data transfer, and all other related  
limitations apply (e.g. contention between READ data and WRITE data must be avoided.)  
The minimum delay from a read or write command with auto precharge enabled, to a command to a  
different bank, is summarized below.  
To command (different bank, non- Minimum delay  
From command  
interrupting command)  
Read or Read w/AP  
Write or Write w/AP  
Precharge or Activate  
Read or Read w/AP  
Write or Write w/AP  
Precharge or Activate  
(Concurrent AP supported)  
Units  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
Read w/AP  
BL/2  
CL(rounded up)+ (BL/2)  
1
Write w/AP  
1 + (BL/2) + tWTR  
BL/2  
1
Data Sheet E0086H20  
19  
HM5425161B, HM5425801B, HM5425401B Series  
Simplified State Diagram  
SELF  
REFRESH  
SR ENTRY  
SR EXIT  
*1  
MRS  
REFRESH  
CKEH  
MODE  
REGISTER  
SET  
AUTO  
REFRESH  
IDLE  
CKEL  
IDLE  
POWER  
DOWN  
ACTIVE  
ACTIVE  
POWER  
DOWN  
CKEL  
CKEH  
ROW  
ACTIVE  
BST  
READ  
WRITE  
Write  
WRITE  
WITH  
AP  
READ  
WITH  
AP  
Read  
WRITE  
READ  
READ  
READ  
WITH AP  
WRITE  
WITH AP  
READ  
WITH AP  
PRECHARGE  
WRITEA  
READA  
PRECHARGE PRECHARGE  
POWER  
APPLIED  
POWER  
ON  
PRECHARGE  
PRECHARGE  
Automatic transition after completion of command.  
Transition resulting from command input.  
Note: 1. After the auto-refresh operation, precharge operation is performed automatically  
and enter the IDLE state.  
Data Sheet E0086H20  
20  
HM5425161B, HM5425801B, HM5425401B Series  
Operation of the DDR SDRAM  
Power-up Sequence  
The following sequence is recommended for Power-up.  
(1) Apply power and attempt to maintain CKE at an LVCMOS low state (all other inputs may be undefined).  
Apply VCC before or at the same time as VCCQ  
.
Apply VCCQ before or at the same time as VTT and VREF  
.
(2) Start clock and maintain stable condition for a minimum of 200 µs.  
(3) After the minimum 200 µs of stable power and clock (CLK, CLK), apply NOP and take CKE high.  
(4) Issue precharge all command for the device.  
(5) Issue EMRS to enable DLL.  
(6) Issue a mode register set command (MRS) for "DLL reset" with bit A8 set to high (An additional 200  
cycles of clock input is required to lock the DLL after every DLL reset).  
(7) Issue precharge all command for the device.*1  
(8) Issue 2 or more auto-refresh commands.*1  
(9) Issue a mode register set command to initialize device operation with bit A8 set to low in order to avoid  
resetting the DLL.  
Note: 1. Sequence of (7) and (8) may be reversed.  
Power-up Sequence after CKE Goes High  
(4)  
(5)  
(6)  
(7)  
(8)  
(9)  
Any  
command  
Command  
PALL  
EMRS  
MRS  
PALL  
REF
REF  
MRS  
t
t
t
RC  
2 cycles (min)  
2 cycles (min)  
2 cycles (min)  
2 cycles (min)  
RP  
RC  
DLL enable  
DLL reset  
with A8 = High  
Disable DLL reset  
with A8 = Low  
200 cycles (min)  
Data Sheet E0086H20  
21  
HM5425161B, HM5425801B, HM5425401B Series  
Mode Register and Extended Mode Register Set  
There are two mode registers, the mode register and the extended mode register so as to define the operating  
mode. Parameters are set to both through the A0 to the A12 and BA0, BA1 pins by the mode register set  
command [MRS] or the extended mode register set command [EMRS]. The mode register and the extended  
mode register are set by inputting signal via the A0 to the A12 and BA0, BA1 during mode register set cycles.  
BA0 and BA1 determine which one of the mode register or the extended mode register are set. Prior to a read  
or a write operation, the mode register must be set.  
Remind that no other parameters are shown in the table bellow are allowed to input to the registers.  
Mode Register Set [MRS] (BA0 = 0, BA1 = 0)  
BA0 BA1 A12 A11 A10 A9 A8 A7 A6 A5 A4  
DR LMODE  
A3  
BT  
A2 A1  
BL  
A0  
0
0
0
0
0
0
0
MRS  
A6 A5 A4 CAS Latency  
A8 DLL Reset  
A3 Burst Type  
Burst Length  
BT=0 BT=1  
A2 A1 A0  
2
0
1
1
1
0
0
0
1
No  
0
1
Sequential  
Interleave  
2.5  
2
4
8
2
4
8
0
0
0
0
1
1
1
0
1
Yes  
Extended Mode Register Set [EMRS] (BA0 = 1, BA1 = 0)  
BA0 BA1 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0  
DLL  
1
0
0
0
0
0
0
0
0
0
0
0
0
0
EMRS  
A0 DLL Control  
0
1
DLL Enable  
DLL Disable  
Data Sheet E0086H20  
22  
HM5425161B, HM5425801B, HM5425401B Series  
Burst Operation  
The burst type (BT) and the first three bits of the column address determines the order of a data out.  
Burst length = 2  
Burst length = 4  
Starting Ad. Addressing(decimal)  
Starting Ad. Addressing(decimal)  
A0  
0
Sequence Interleave  
A1  
0
A0 Sequence  
Interleave  
0, 1,  
1, 0,  
0, 1,  
1, 0,  
0
1
0
1
0, 1, 2, 3,  
0, 1, 2, 3,  
1, 0, 3, 2,  
2, 3, 0, 1,  
3, 2, 1, 0,  
1
0
1, 2, 3, 0,  
2, 3, 0, 1,  
1
1
3,  
0, 1, 2,  
Burst length = 8  
Starting Ad.  
Addressing(decimal)  
A2 A1 A0 Sequence  
Interleave  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0, 1, 2, 3, 4, 5, 6, 7,  
1, 2, 3, 4, 5, 6, 7, 0,  
2, 3, 4, 5, 6, 7, 0, 1,  
3, 4, 5, 6, 7, 0, 1, 2,  
4, 5, 6, 7, 0, 1, 2, 3,  
5, 6, 7, 0, 1, 2, 3, 4,  
6, 7, 0, 1, 2, 3, 4, 5,  
7, 0, 1, 2, 3, 4, 5, 6,  
0, 1, 2, 3, 4, 5, 6, 7,  
1, 0, 3, 2, 5, 4, 7, 6,  
2, 3, 0, 1, 6, 7, 4, 5,  
3, 2, 1, 0, 7, 6, 5, 4,  
4, 5, 6, 7, 0, 1, 2, 3,  
5, 4, 7, 6, 1, 0, 3, 2,  
6, 7, 4, 5, 2, 3, 0, 1,  
7, 6, 5, 4, 3, 2, 1, 0,  
Data Sheet E0086H20  
23  
HM5425161B, HM5425801B, HM5425401B Series  
Read/Write Operations  
Bank active: A read or a write operation begins with the bank active command [ACTV]. The bank active  
command determines a bank address (BA0, BA1) and a row address (AX0 to AX12). For the bank and the  
row, a read or a write command can be issued tRCD after the ACTV is issued.  
Read operation: The burst length (BL), the CAS latency (CL) and the burst type (BT) of the mode register  
are referred when a read command is issued. The burst length (BL) determines the length of a sequential  
output data by the read command which can be set to 2, 4, or 8. The starting address of the burst read is  
defined by the column address (AY0 to AY8; the HM5425161B, AY0 to AY9; the HM5425801B, AY0 to  
AY9, AY11; the HM5425401B), the bank select address (BA0, BA1) which are loaded via the A0 to A12 and  
BA0, BA1 pins in the cycle when the read command is issued. The data output timing are characterized by  
CL (2 or 2.5) and tAC. The read burst start CL tCK + t (ns) after the clock rising edge where the read  
AC  
command are latched. The DDR SDRAM output the data strobe through DQS or DQSU/DQSL  
simultaneously with data. tRPRE prior to the first rising edge of the data strobe, the DQS or the DQSU/DQSL  
are driven Low from VTT level. This low period of DQS is referred as read preamble. The burst data are  
output coincidentally at both the rising and falling edge of the data strobe. The DQ pins become High-Z in  
the next cycle after the burst read operation completed. tRPST from the last falling edge of the data strobe, the  
DQS pins become High-Z. This low period of DQS is referred as read postamble.  
Read Operation (Burst Length)  
t0  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
CLK  
CLK  
tRCD  
NOP  
Command  
Address  
NOP  
ACTV  
Row  
READ  
NOP  
Column  
tRPRE  
D0 D1  
BL = 2  
tRPST  
DQS*  
Dout  
D0 D1 D2 D3  
BL = 4  
BL = 8  
D0 D1 D2 D3 D4 D5 D6 D7  
CAS latency = 2  
BL: Burst length  
DQS*:DQS,DUSU/DQSL  
Data Sheet E0086H20  
24  
HM5425161B, HM5425801B, HM5425401B Series  
Read Operation (CAS Latency)  
t0 t0.5 t1 t1.5 t2 t2.5 t3 t3.5 t4 t4.5 t5  
t5.5  
CLK  
CLK  
Read  
NOP  
Command  
tRPRE  
tRPST  
V
DQS  
TT  
CL = 2  
tAC,tDQSCK  
V
V
D0 D1 D2 D3  
TT  
DQ  
tRPRE  
tRPST  
DQS  
TT  
CL = 2.5  
tAC,tDQSCK  
V
TT  
D0 D1 D2 D3  
DQ  
Data Sheet E0086H20  
25  
HM5425161B, HM5425801B, HM5425401B Series  
Write operation: The burst length (BL) and the burst type (BT) of the mode register are referred when a  
write command is issued. The burst length (BL) determines the length of a sequential data input by the write  
command which can be set to 2, 4, or 8. The latency from write command to data input is fixed to 1. The  
starting address of the burst read is defined by the column address (AY0 to AY8; the HM5425161B, AY0 to  
AY9; the HM5425801B, AY0 to AY9, AY11; the HM5425401B), the bank select address (BA0/BA1) which  
are loaded via the A0 to A12, BA0 to BA1 pins in the cycle when the write command is issued. DQS,  
DQSU/DQSL should be input as the strobe for the input-data and DM, DMU/DML as well during burst  
operation. tWPREH prior to the first rising edge of the DQS, the DQSU/DQSL should be set to Low and tWPST  
after the last falling edge of the data strobe can be set to High-Z. The leading low period of DQS is referred  
as write preamble. The last low period of DQS is referred as wrtie postamble.  
Write Operation  
t0  
t1  
t2  
t3 t3.5 t4  
t5  
t6  
t7  
t8  
CLK  
CLK  
tRCD  
NOP  
Command  
Address  
NOP  
ACTV  
Row  
WRITE  
NOP  
Column  
tWPREH  
tWPRES  
in0 in1  
BL = 2  
tWPST  
DQS*  
Din  
in0 in1 in2 in3  
BL = 4  
BL = 8  
in0 in1 in2 in3 in4 in5 in6 in7  
BL: Burst length  
DQS*:DQS,DQSU/DQSL  
Data Sheet E0086H20  
26  
HM5425161B, HM5425801B, HM5425401B Series  
Burst Stop  
Burst stop command during burst read: The burst stop (BST) command is used to stop data output during  
a burst read. The BST command stops the burst read and sets the output buffer to High-Z. tBSTZ (= CL) cycles  
after a BST command issued, the DQ pins become High-Z. The BST command is not supported for the burst  
write operation. Note that bank address is not referred when this command is executed.  
Burst Stop during a Read Operation  
t0 t0.5 t1 t1.5 t2 t2.5 t3 t3.5 t4 t4.5 t5  
t5.5  
CLK  
CLK  
Read  
Command  
BST  
NOP  
tBSTZ  
2 cycles  
DQS  
CL = 2  
D0 D1  
tBSTZ  
DQ  
2.5 cycles  
DQS  
DQ  
CL = 2.5  
D0 D1  
CL: CAS latency  
Data Sheet E0086H20  
27  
HM5425161B, HM5425801B, HM5425401B Series  
Auto Precharge  
Read with auto-precharge: The precharge is automatically performed after completing a read operation.  
The precharge starts tRPD (BL/2) cycle after READA command input. tRAP specification for READA allows a  
read command with auto precharge to be issued to a bank that has been activated (opened) but has not yet  
satisfied the tRAS(min) specification. A column command to the other active bank can be issued at the next  
cycle after the last data output. Read with auto-precharge command does not limit row commands execution  
for other bank. Refer to the ‘Read with Auto-Precharge Enabled, Write with Auto-Precharge Enabled’  
section.  
CLK  
CLK  
tRP (min)  
t
t
(min) = t  
(min)  
RCD  
RPD  
RAP  
2 cycles (= BL/2)  
ACTV  
READA  
NOP  
ACTV  
Command  
DQS,  
DQSU/DQSL  
tAC,tDQSCK  
DQ  
D0 D1 D2 D3  
Note: Internal auto-precharge starts at the timing indicated by " ".  
Data Sheet E0086H20  
28  
HM5425161B, HM5425801B, HM5425401B Series  
Write with auto-precharge: The precharge is automatically performed after completing a burst write  
operation. The precharge operation is started tWPD (= BL/ 2 + 3) cycles after WRITA command issued. tRCD  
for WRITA should be determined so that tRC (ACTV to ACTV) spec. is obeyed when WRITA is issued  
successively after a bank active command, that is tRCD (WRITA) tRC(min.)-t (min.)-tWPD. A column  
RP  
command to the other banks can be issued the next cycle after the internal precharge command issued. Write  
with auto-precharge command does not limit row commands execution for other bank. Refer to the Read  
with Auto-Precharge Enabled, Write with Auto-Precharge Enabledsection  
Burst Write (Burst Length = 4)  
CLK  
CLK  
tRAS (min)  
tRP  
tRCD (min)  
ACTV  
NOP  
WRITA  
NOP  
tWPD  
ACTV  
Command  
BL/2 + 3 cycles  
DM,  
DMU/DML  
DQS,  
DQSU/DQSL  
DQ  
D1 D2 D3 D4  
Burst length = 4  
Note: Internal auto-precharge starts at the timing indicated by " ".  
Data Sheet E0086H20  
29  
HM5425161B, HM5425801B, HM5425401B Series  
Command Intervals  
A Read command to the consecutive Read command Interval  
Destination row of the  
consecutive read command  
Bank  
Row  
address address  
State  
Operation  
1. Same  
Same  
ACTIVE  
The consecutive read can be performed after an interval of no less  
than 1 cycle to interrupt the preceding read operation.  
2. Same  
Different  
Precharge the bank to interrupt the preceding read operation. tRP after  
the precharge command, issue the ACTV command. tRCD after the  
ACTV command, the consecutive read command can be issued. See  
A read command to the consecutive precharge intervalsection.  
3. Different  
Any  
ACTIVE  
IDLE  
The consecutive read can be performed after an interval of no less  
than 1 cycle to interrupt the preceding read operation.  
Precharge the bank without interrupting the preceding read operation.  
t
RP after the precharge command, issue the ACTV command. tRCD after  
the ACTV command, the consecutive read command can be issued.  
READ to READ Command Interval (same ROW address in the same bank)  
t0  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
CLK  
CLK  
Command  
NOP  
ACTV  
Row  
NOP  
READ  
READ  
Column A Column B  
Address  
BA  
Dout  
A0 A1 B0  
B1 B2 B3  
Column = A Column = B  
Read  
Read  
Column = A  
Dout  
Column = B  
Dout  
DQS,  
DQSU/DQSL  
CAS latency = 2  
Burst length = 4  
Bank0  
Bank0  
Active  
Data Sheet E0086H20  
30  
HM5425161B, HM5425801B, HM5425401B Series  
READ to READ Command Interval (different bank)  
t0  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
t9  
CLK  
CLK  
Command  
READ  
READ  
NOP  
ACTV  
Row0  
NOP  
ACTV  
Row1  
NOP  
Column A Column B  
Address  
BA  
Dout  
A0 A1 B0 B1 B2 B3  
Column = A Column = B  
Read  
Read  
Bank0  
Dout  
Bank3  
Dout  
DQS,  
DQSU/DQSL  
CAS latency = 2  
Burst length = 4  
Bank0  
Active  
Bank3  
Active  
Bank0  
Read  
Bank3  
Read  
Data Sheet E0086H20  
31  
HM5425161B, HM5425801B, HM5425401B Series  
A Write command to the consecutive Write command Interval:  
Destination row of the  
consecutive write command  
Bank  
Row  
address address  
State  
Operation  
1. Same  
Same  
ACTIVE  
The consecutive write can be performed after an interval of no less  
than 1 cycle to interrupt the preceding write operation.  
2. Same  
Different  
Precharge the bank to interrupt the preceding write operation. tRP after  
the precharge command, issue the ACTV command. tRCD after the  
ACTV command, the consecutive write command can be issued. See  
A write command to the consecutive precharge intervalsection.  
3. Different  
Any  
ACTIVE  
IDLE  
The consecutive write can be performed after an interval of no less  
than 1 cycle to interrupt the preceding write operation.  
Precharge the bank without interrupting the preceding write operation.  
t
RP after the precharge command, issue the ACTV command. tRCD after  
the ACTV command, the consecutive write command can be issued.  
WRITE to WRITE Command Interval (same ROW address in the same bank)  
t0  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
CLK  
CLK  
Command  
NOP  
ACTV  
Row  
NOP  
WRIT  
WRIT  
Column A Column B  
Address  
BA  
Din  
A0 A1  
B0 B1 B2 B3  
Column = A  
Write  
Column = B  
Write  
DQS,  
DQSU/DQSL  
Bank0  
Active  
Burst length = 4  
Bank0  
Data Sheet E0086H20  
32  
HM5425161B, HM5425801B, HM5425401B Series  
WRITE to WRITE Command Interval (different bank)  
t0  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
t9  
CLK  
CLK  
Command  
WRIT  
WRIT  
NOP  
ACTV  
Row0  
NOP  
ACTV  
Row1  
Column A Column B  
Address  
BA  
Din  
A0 A1 B0 B1 B2 B3  
Bank0  
Write  
Bank3  
Write  
DQS,  
DQSU/DQSL  
Burst length = 4  
Bank0, 3  
Bank0  
Active  
Bank3  
Active  
Data Sheet E0086H20  
33  
HM5425161B, HM5425801B, HM5425401B Series  
A Read command to the consecutive Write command interval with the BST command  
Destination row of the  
consecutive write command  
Bank  
Row  
address address  
State  
Operation  
1. Same  
Same  
ACTIVE  
Issue the BST command. tBSTW (tBSTZ) after the BST command, the  
consecutive write command can be issued.  
2. Same  
Different  
Precharge the bank to interrupt the preceding read operation. tRP after  
the precharge command, issue the ACTV command. tRCD after the  
ACTV command, the consecutive write command can be issued. See  
A read command to the consecutive precharge intervalsection.  
3. Different  
Any  
ACTIVE  
IDLE  
Issue the BST command. tBSTW (tBSTZ) after the BST command, the  
consecutive write command can be issued.  
Precharge the bank independently of the preceding read operation.  
t
RP after the precharge command, issue the ACTV command. tRCD after  
the ACTV command, the consecutive write command can be issued.  
READ to WRITE Command Interval  
t0  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
CLK  
CLK  
Command  
READ  
WRIT  
BST  
NOP  
NOP  
t
(t  
)
BSTZ  
BSTW  
DM,  
DMU/DML  
t
(= CL)  
BSTZ  
DQ  
Q0 Q1  
D0 D1 D2 D3  
High-Z  
DQS,  
DQSU/DQSL  
OUTPUT  
INPUT  
Burst Length = 4  
CAS Latency= 2  
Data Sheet E0086H20  
34  
HM5425161B, HM5425801B, HM5425401B Series  
A Write command to the consecutive Read command interval: To complete the burst operation  
Destination row of the  
consecutive read command  
Bank  
Row  
address address  
State  
Operation  
1. Same  
Same  
ACTIVE  
To complete the burst operation, the consecutive read command  
should be performed tWRD (= BL/ 2 + 2) after the write command.  
2. Same  
Different  
Precharge the bank tWPD after the preceding write command. tRP after  
the precharge command, issue the ACTV command. tRCD after the  
ACTV command, the consecutive read command can be issued. See  
‘A read command to the consecutive precharge interval’ section.  
3. Different  
Any  
ACTIVE  
IDLE  
To complete a burst operation, the consecutive read command should  
be performed tWRD (= BL/ 2 + 2) after the write command.  
Precharge the bank independently of the preceding write operation.  
t
RP after the precharge command, issue the ACTV command. tRCD after  
the ACTV command, the consecutive read command can be issued.  
WRITE to READ Command Interval  
t0  
t1  
t2  
t3  
t4  
t5  
t6  
CLK  
CLK  
Command  
WRIT  
NOP  
READ  
NOP  
tWRD (min)  
BL/2 + 2 cycle  
DM,  
DMU/DML  
DQ  
Q2  
D0 D1 D2 D3  
Q0 Q1  
DQS,  
DQSU/DQSL  
INPUT  
OUTPUT  
BL = 4  
CL = 2  
Data Sheet E0086H20  
35  
HM5425161B, HM5425801B, HM5425401B Series  
A Write command to the consecutive Read command interval: To interrupt the write operation  
Destination row of the  
consecutive read command  
Bank  
Row  
address address  
State  
Operation  
1. Same  
Same  
ACTIVE  
DM, DMU/DML must be input 1 cycle prior to the read command input  
to prevent from being written invalid data. In case, the read command  
is input in the next cycle of the write command, DM, DMU/DML is not  
necessary.  
2. Same  
Different  
Any  
*1  
3. Different  
ACTIVE  
DM, DMU/DML must be input 1 cycle prior to the read command input  
to prevent from being written invalid data. In case, the read command  
is input in the next cycle of the write command, DM, DMU/DML is not  
necessary.  
IDLE  
*1  
Note: 1. Precharge must be preceded to read command. Therefore read command can not interrupt the  
write operation in this case.  
WRITE to READ Command Interval (Samebank, same ROW address)  
[WRITE to READ delay = 1 clock cycle]  
t0  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
CLK  
CLK  
Command  
WRIT  
READ  
NOP  
1 cycle  
CL=2  
DM,  
DMU/DML  
High-Z  
High-Z  
DQ  
D0 D1  
Q0 Q1 Q2 Q3  
D2  
DQS,  
DQSU/DQSL  
BL = 4  
CL= 2  
Data masked  
Data Sheet E0086H20  
36  
HM5425161B, HM5425801B, HM5425401B Series  
[WRITE to READ delay = 2 clock cycle]  
t0  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
CLK  
CLK  
Command  
WRIT  
NOP  
READ  
NOP  
2 cycle  
CL=2  
DM,  
DMU/DML  
High-Z  
High-Z  
DQ  
D0 D1  
Q0 Q1 Q2 Q3  
D2 D3  
DQS,  
DQSU/DQSL  
Data masked  
BL = 4  
CL= 2  
[WRITE to READ delay = 3 clock cycle]  
t0  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
CLK  
CLK  
Command  
WRIT  
NOP  
3 cycle  
READ  
NOP  
CL=2  
DM,  
DMU/DML  
DQ  
D0 D1  
Q0 Q1 Q2 Q3  
D2 D3  
DQS,  
DQSU/DQSL  
BL = 4  
CL= 2  
Data masked  
Data Sheet E0086H20  
37  
HM5425161B, HM5425801B, HM5425401B Series  
A Read command to the consecutive Precharge command interval (same bank):  
To output all data: To complete a burst read opeartion and get a burst length of data, the consecutive  
precharge command must be issued tRPD (= BL/ 2 cycles) after the read command is issued.  
READ to PRECHARGE Command Interval (same bank): To output all data  
CAS Latency = 2, Burst Length = 4  
t0  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
CLK  
CLK  
Command  
Dout  
PRE/  
PALL  
NOP  
NOP  
NOP  
READ  
A0 A1 A2 A3  
DQS,  
DQSU/DQSL  
tRPD = BL/2  
CAS Latency = 2.5, Burst Length = 4  
t0  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
CLK  
CLK  
Command  
Dout  
PRE/  
PALL  
NOP  
NOP  
NOP  
READ  
A0 A1  
A2 A3  
DQS,  
DQSU/DQSL  
tRPD = BL/2  
Data Sheet E0086H20  
38  
HM5425161B, HM5425801B, HM5425401B Series  
READ to PRECHARGE Command Interval (same bank): To stop output data  
A burst data output can be interrupted with a precharge command. All DQ pins and DQS pins become High-  
Z tHZP (= CL) after the precharge command.  
CAS Latency = 2, Burst Length = 2, 4, 8  
t0  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
CLK  
CLK  
Command  
Dout  
NOP  
NOP  
PRE/PALL  
READ  
High-Z  
High-Z  
A0 A1  
DQS,  
DQSU/DQSL  
tHZP = CL + 1  
CAS Latency = 2.5, Burst Length = 2, 4, 8  
t0  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
CLK  
CLK  
Command  
Dout  
PRE/PALL  
CL = 2.5  
NOP  
NOP  
READ  
High-Z  
A0 A1  
DQS,  
DQSU/DQSL  
High-Z  
tHZP = CL + 1  
Data Sheet E0086H20  
39  
HM5425161B, HM5425801B, HM5425401B Series  
A Write command to the consecutive Precharge command interval (same bank): The minimum interval  
tWPD ((BL/ 2 + 3) cycles) is necessary between the write command and the precharge command.  
WRITE to PRECHARGE Command Interval (same bank)  
Burst Length = 4  
t0  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
CLK  
CLK  
Command  
PRE/PALL  
WRIT  
NOP  
tWPD  
BL/2 +3 cycles  
NOP  
tWR  
DM,  
DMU/DML  
DQS,  
DQSU/DQSL  
Din  
A0 A1 A2 A3  
Last data input  
Data Sheet E0086H20  
40  
HM5425161B, HM5425801B, HM5425401B Series  
Bank active command interval:  
Destination row of the  
consecutive ACTV command  
Bank  
Row  
address address  
State  
Operation  
1. Same  
Any  
Any  
ACTIVE  
Two successive ACTV commands can be issued at tRC interval. In  
between two successive ACTV operations, precharge command  
should be executed.  
2. Different  
ACTIVE  
IDLE  
Prechage the bank. tRP after the precharge command, the consecutive  
ACTV command can be issued.  
tRRD after an ACTV command, the next ACTV command can be issued.  
Bank Active to Bank Active  
CLK  
CLK  
Command  
ACTV
ACTV  
NOP  
PRE  
NOP  
ACTV  
NOP  
Address  
BA  
ROW: 0  
ROW: 1  
ROW: 0  
Bank0  
Active  
Bank3  
Active  
Bank0  
Precharge  
Bank0  
Active  
tRRD  
tRC  
Mode register set to Bank-active command interval: The interval between setting the mode register and  
executing a bank-active command must be no less than tMRD  
.
CLK  
CLK  
Command  
Address  
MRS  
NOP  
ACTV  
NOP  
CODE  
BS and ROW  
Mode Register Set  
Bank3  
Active  
tMRD  
Data Sheet E0086H20  
41  
HM5425161B, HM5425801B, HM5425401B Series  
DMU/DML Control (HM5425161B)  
DMU can mask upper byte of input data. DML can mask lower byte of input data. By setting DMU/DML to  
Low, data can be written. When DMU/DML is set to High, the corresponding data is not written, and the  
previous data is held. The latency between DMU/DML input and enabling/disabling mask function is 0.  
DM Control (HM5425801B/HM5425401B)  
DM can mask input data. By setting DM to Low, data can be written. When DM is set to High, the  
corresponding data is not written, and the previous data is held. The latency between DM input and  
enabling/disabling mask function is 0.  
t1  
t2  
t3  
t4  
t5  
t6  
DQS,  
DQSU/DQSL  
DQ  
Mask  
Mask  
DM,  
DMU/DML  
Write mask latency = 0  
Data Sheet E0086H20  
42  
HM5425161B, HM5425801B, HM5425401B Series  
Absolute Maximum Ratings  
Parameter  
Symbol  
VCC, VCCQ  
Vti  
Value  
Unit  
V
Note  
Supply voltage relative to VSS  
Voltage on inputs pin relative to Vss  
Voltage on I/O pins relative to VSS  
Short circuit output current  
Power dissipation  
1.0 to +3.6  
1.0 to +3.6  
0.5 to +3.6  
50  
V
VTio  
Iout  
V
mA  
W
PT  
1.0  
Operating temperature  
Storage temperature  
Topr  
Tstg  
0 to +70  
55 to +125  
°C  
°C  
DC Operating Conditions (Ta = 0 to +70˚C)  
Parameter  
Symbol  
VCC, VCCQ  
VSS, VSSQ  
VREF(DC)  
VTT  
Min  
2.3  
0
Typ  
2.5  
0
Max  
2.7  
0
Unit  
Notes  
Supply voltage  
V
V
V
V
V
V
V
1, 2  
Input reference voltage  
Termination voltage  
DC Input high voltage  
DC Input low voltage  
0.5×VCCQ0.05 0.5×VCCQ  
0.5×VCCQ+0.05  
VREF+0.04  
VCCQ+0.3  
1
VREF0.04  
VREF+0.15  
0.3  
VREF  
1
VIH(DC)  
VIL(DC)  
VIN (DC)  
1, 3, 8  
1, 4, 8  
5
VREF0.15  
VCCQ + 0.3  
DC Input signal voltage  
(CLK, /CLK)  
0.3  
DC differential input voltage  
(CLK, /CLK)  
VID (DC)  
0.36  
VCCQ + 0.6  
V
6, 7  
Notes: 1. All parameters are referred to VSS, when measured.  
2. VCCQ must be lower than or equal to VCC.  
3. VIH is allowed to exceed VCC up to 3.6 V for the period shorter than or equal to 5 ns.  
4. VIL is allowed to outreach below VSS down to 1.0 V for the period shorter than or equal to 5 ns.  
5. VIN (dc) specifies the allowable dc execution of each differential input.  
6. VID (dc) specifies the input differential voltage required for switching.  
7. VIH (CLK) min assumed over VREF + 0.15 V, VIL(CLK) max assumed under VREF 0.15 V.  
8. VIH (DC) and VIL (DC) are levels to maintain the current logic state.  
Data Sheet E0086H20  
43  
HM5425161B, HM5425801B, HM5425401B Series  
DC Characteristics 1 (Ta = 0 to +70˚C, VCC, VCCQ = 2.5 V ± 0.2 V, VSS, VSSQ = 0 V)  
Parameter  
Symbol  
ILI  
Min  
2  
Max  
2
Unit  
µA  
µA  
V
Test conditions  
VCC Vin VSS  
Notes  
Input leakage current  
Output leakage current  
Output high voltage  
Output low voltage  
ILO  
5  
5
VCCQ Vout VSSQ  
IOH (max) = 15.2 mA  
IOL (min) = 15.2 mA  
VOH  
1.95  
VOL  
0.35  
V
Data Sheet E0086H20  
44  
HM5425161B, HM5425801B, HM5425401B Series  
Data Driver Output Characteristic Curves  
1. The full variation in driver pulldown current from minimum to maximum temperature and voltage will lie  
within the outer bounding lines of the V-I curve of the figure Pull-down Characteristics.  
150  
Maximum  
125  
Typical High  
100  
75  
Typical Low  
50  
Minimum  
25  
0
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
2.2 2.4 2.6 2.8  
VOUT to VSSQ (V)  
Pull-down Characteristics  
2. The full variation in driver pullup current from minimum to maximum temperature and voltage will lie  
within the outer bounding lines of the V-I curve of the figure Pull-up Characteristics.  
0
Minimum  
-25  
-50  
Typical Low  
Typical High  
-75  
-100  
-125  
-150  
Maximum  
-175  
-200  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
2.2 2.4 2.6 2.8  
VDDQ to VOUT (V)  
Pull-up Characteristics  
5. The full variation in the ratio of the maximum to minimum pullup and pulldown current will not exceed  
1.7 for device drain to source voltages from 0.1 to 1.0.  
6. The full variation in the ratio of the typical IBIS pullup to typical IBIS pulldown current should be unity  
±10%, for device drain to source voltages from 0.1 to 1.0. This specification is a design objective only.  
7. These characteristics obey the SSTL_2 class II standard.  
Data Sheet E0086H20  
45  
HM5425161B, HM5425801B, HM5425401B Series  
Data Driver Output Characteristic V-I data points  
Evaluation Conditions  
Typical: Ta = 25°C, VCCQ = 2.5 V  
Minimum: Ta = 70°C, VCCQ = 2.3 V  
Maximum: Ta = 0°C, VCCQ = 2.7 V  
Pull-down current (mA)  
Pull-up current (mA)  
Typical  
Voltage (V) Low  
Typical  
High  
Typical  
Minimum Maximum Low  
Typical  
High  
Minimum Maximum  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
6.0  
6.8  
4.6  
9.6  
6.1  
7.6  
4.6  
10.0  
12.2  
18.1  
24.1  
29.8  
34.6  
39.4  
43.7  
47.5  
51.3  
54.1  
56.2  
57.9  
59.3  
60.1  
60.5  
61.0  
61.5  
62.0  
62.5  
62.9  
63.3  
63.8  
64.1  
64.6  
64.8  
65.0  
13.5  
20.1  
26.6  
33.0  
39.1  
44.2  
49.8  
55.2  
60.3  
65.2  
69.9  
74.2  
78.4  
82.3  
85.9  
89.1  
92.2  
95.3  
97.2  
99.1  
100.9  
101.9  
102.8  
103.8  
104.6  
105.4  
9.2  
18.2  
12.2  
18.1  
24.0  
29.8  
34.3  
38.1  
41.1  
43.8  
46.0  
47.8  
49.2  
50.0  
50.5  
50.7  
51.0  
51.1  
51.3  
51.5  
51.6  
51.8  
52.0  
52.2  
52.3  
52.5  
52.7  
52.8  
14.5  
21.2  
27.7  
34.1  
40.5  
46.9  
53.1  
59.4  
65.5  
71.6  
77.6  
83.6  
89.7  
95.5  
101.3  
107.1  
112.4  
118.7  
124.0  
129.3  
134.6  
139.9  
145.2  
150.5  
155.3  
160.1  
9.2  
20.0  
13.8  
18.4  
23.0  
27.7  
32.2  
36.8  
39.6  
42.6  
44.8  
46.2  
47.1  
47.4  
47.7  
48.0  
48.4  
48.9  
49.1  
49.4  
49.6  
49.8  
49.9  
50.0  
50.2  
50.4  
50.5  
26.0  
13.8  
18.4  
23.0  
27.7  
32.2  
36.0  
38.2  
38.7  
39.0  
39.2  
39.4  
39.6  
39.9  
40.1  
40.2  
40.3  
40.4  
40.5  
40.6  
40.7  
40.8  
40.9  
41.0  
41.1  
41.2  
29.8  
33.9  
38.8  
41.8  
46.8  
49.4  
54.4  
56.8  
61.8  
63.2  
69.5  
69.9  
77.3  
76.3  
85.2  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2
82.5  
93.0  
88.3  
100.6  
108.1  
115.5  
123.0  
130.4  
136.7  
144.2  
150.5  
156.9  
163.2  
169.6  
176.0  
181.3  
187.6  
192.9  
198.2  
93.8  
99.1  
103.8  
108.4  
112.1  
115.9  
119.6  
123.3  
126.5  
129.5  
132.4  
135.0  
137.3  
139.2  
140.8  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
Data Sheet E0086H20  
46  
HM5425161B, HM5425801B, HM5425401B Series  
DC Characteristics 2*1 (Ta = 0 to +70˚C, VCC, VCCQ = 2.5 V ± 0.2 V, VSS, VSSQ = 0 V)  
Max  
Parameter  
Symbol  
I/O  
-75A  
-75B  
-10  
Unit  
Operating current (ACTV- ICC0  
PRE)  
100  
95  
80  
mA  
Operating current (ACTV- ICC1  
READ-PRE)  
155  
18  
145  
15  
130  
12  
mA  
mA  
Idle power down standby ICC2P  
current  
Idle standby current  
ICC2N  
ICC3P  
40  
25  
35  
20  
30  
15  
mA  
mA  
Active power down  
standby current  
Active standby current  
ICC3N  
ICC4R  
50  
45  
40  
mA  
mA  
Operating current  
(Burst read operation)  
× 4, × 8 225  
× 16 255  
215  
245  
205  
235  
Operating current  
(Burst write operation)  
ICC4W  
× 4, × 8 205  
195  
230  
185  
220  
mA  
× 16  
240  
205  
3
Auto Refresh current  
Self refresh current  
Random read current  
ICC5  
ICC6  
ICC7A  
200  
3
180  
3
mA  
mA  
mA  
× 4, × 8 330  
× 16 360  
320  
350  
310  
340  
Notes: 1. These ICC data are measured under condition that DQ pins are not connected.  
Data Sheet E0086H20  
47  
HM5425161B, HM5425801B, HM5425401B Series  
ICC Measurement Condition  
Parameter  
Symbol Condition  
ICC0 One Bank ; CKE VIH(min), tRC = tRC (min); tCK = tCK (min);  
Operating current  
(ACTV-PRE)  
DQ, DM and DQS inputs changing twice per clock cycle; address  
and control inputs changing once per clock cycle  
Operating current  
(ACTV-READ-PRE)  
ICC1  
One Bank; CKE VIH(min); Burst = 2; tRC = tRC (min); CL = 2.5; tCK  
= tCK (min); Iout = 0 mA; address and control inputs changing once  
per clock cycle  
Idle power down standby  
current  
ICC2P  
ICC2N  
All banks idle; power down mode; CKE VIL(max); tCK = tCK (min).  
Vin = VREF for DQ, DQS and DM  
Idle standby current  
All banks idle; CS VIH (min); CKE VIH (min); tCK = tCK (min);  
Address and other control inputs changing once per clock cycle.  
Vin VIH(min) or Vin VIL(max) for DQ, DQS and DM.  
Active power down standby ICC3P  
current  
One bank active; power down mode; CKE VIL (max); tCK = tCK  
(min)  
Active standby current  
ICC3N  
One bank; Active Precharge; CS VIH (min); CKE VIH (min); tRC =  
tRAS (max); tCK = tCK (min); DQ,DM and DQS inputs changing twice  
per clock cycle; address and other control inputs changing once  
per clock cycle  
Operating current  
(Burst read operation)  
ICC4R  
One bank active ; CKE VIH(min); Burst = 2; Reads; Continuous  
burst; address and control inputs changing once per clock cycle;  
CL = 2.5; tCK = tCK (min); Iout = 0 mA;  
Operating current  
(Burst write operation)  
ICC4W  
One bank active; CKE VIH(min); Burst = 2; Writes; Continuous  
burst; address and control inputs changing once per clock cycle;  
CL = 2.5; tCK = tCK (min); DQ, DM and DQS inputs changing twice  
per clock cycle  
Auto refresh current  
Self refresh current  
Random read current  
ICC5  
ICC6  
ICC7A  
tRC = tRFC (min); Vin VIL(max) or VIH(min)  
CKE 0.2 V, Vin 0.2V or VCCQ0.2V  
4 banks active read with activate every 2 clocks, AP (Auto  
Precharge) read every 2 clocks, BL = 4, tRCD =3, Iout = 0 mA,  
100% DQ, DM and DQS inputs changing twice per clock cycle;  
100% addresses changing once per clock cycle.  
Data Sheet E0086H20  
48  
HM5425161B, HM5425801B, HM5425401B Series  
Capacitance (Ta = 25°C, VCC, VCCQ = 2.5 V ± 0.2 V)  
Parameter  
Symbol  
Min  
2
Max  
3
Unit  
pF  
Notes  
Input capacitance (CLK, CLK)  
CI1  
1
1
Input capacitance (input only pins; including CKE CI2  
2
3
pF  
but not including CLK, CLK)  
Input/output capacitance (DQ, DM, DQS)  
Delta input /output capacitance (DQ, DM, DQS) CIOD  
Delta input capacitance (CLK, CLK only) CID  
CIO  
4
5
pF  
pF  
pF  
1, 2  
1
0.5  
0.25  
1
Notes: 1. These parameters are measured on conditions: f = 100 MHz, Vout = VCCQ/2, Vout = 0.2 V.  
2. Dout circuits are disabled.  
Data Sheet E0086H20  
49  
HM5425161B, HM5425801B, HM5425401B Series  
AC Characteristics (Ta = 0 to +70˚C, VCC, VCCQ = 2.5 V ± 0.2 V, VSS, VSSQ = 0 V)  
HM5425161B/HM542581B/HM5425401B  
-75A  
-75B  
Min  
-10  
Parameter  
Symbol Min  
Max  
Max  
Min  
Max  
Unit Notes  
Clock cycle time  
(CAS latency = 2)  
tCK  
tCK  
7.5  
7
12  
10  
12  
10  
12  
ns  
ns  
tCK  
tCK  
tCK  
10  
(CAS latency = 2.5)  
12  
7.5  
12  
8
12  
Input clock high level time tCH  
0.45  
0.45  
0.55  
0.55  
0.45  
0.45  
0.55  
0.55  
0.45  
0.45  
0.55  
0.55  
Input clock low level time  
CLK half period  
tCL  
tHP  
min  
min  
min  
(tCH, tCL)  
(tCH, tCL)  
(tCH, tCL)  
CLK to DQS skew  
DATA to CLK skew  
Dout to DQS skew  
tDQSCK  
tAC  
tDQSQ  
tQH  
0.75  
0.75  
0.75  
0.75  
0.5  
0.75  
0.75  
0.75  
0.75  
0.5  
0.8  
0.8  
0.8  
0.6  
ns  
ns  
ns  
tCK  
2, 11  
2, 11  
3
0.8  
DQ/DQS output skew  
hold time  
tHP tQHS  
tHP tQHS  
tHP tQHS  
Data hold skew factor  
Dout/DQS valid window  
DQS valid window  
tQHS  
tDV  
0.75  
0.75  
1.0  
ns  
tCK  
tCK  
tCK  
tCK  
ns  
0.35  
0.35  
0.9  
0.35  
0.35  
0.9  
0.35  
0.35  
0.9  
tDQSV  
tRPRE  
tRPST  
DQS read preamble  
DQS read postamble  
1.1  
0.6  
0.75  
1.1  
0.6  
0.75  
1.1  
0.6  
0.8  
0.4  
0.4  
0.4  
Dout-High impedance delay tHZ  
0.75  
0.75  
0.8  
5, 11  
from CLK/CLK  
Dout-Low impedance delay tLZ  
from CLK/CLK  
0.75  
1.75  
0.5  
0.75  
0.75  
1.75  
0.5  
0.75  
0.8  
2
0.8  
ns  
ns  
ns  
ns  
ns  
tCK  
tCK  
6, 11  
DQ and DM input pulse  
width  
tDIPW  
7
8
8
Data and data mask to data tDS  
strobe setup time  
0.6  
0.6  
0
Data and data mask to data tDH  
strobe hold time  
0.5  
0.5  
Clock to DQS write  
preamble setup time  
tWPRES  
tWPREH  
tWPST  
0
0
Clock to DQS write  
preamble hold time  
0.25  
0.4  
0.25  
0.4  
0.25  
0.4  
DQS last edge to High-Z  
0.6  
0.6  
0.6  
9
time (DQS write postamble)  
Data Sheet E0086H20  
50  
HM5425161B, HM5425801B, HM5425401B Series  
HM5425161B/HM5425801B/HM5425401B  
-75A  
-75B  
Min  
-10  
Parameter  
Symbol Min  
Max  
Max  
Min  
0.75  
Max  
Unit Notes  
Clock to the DQS first rising  
edge for write delay  
tDQSS  
0.72  
1.28  
0.72  
1.28  
1.25  
tCK  
DQS falling edge to CLK setup tDSS  
time  
0.2  
0.2  
0.2  
0.35  
0.35  
0.9  
0.9  
20  
0.2  
0.2  
0.35  
0.35  
1.1  
1.1  
20  
tCK  
tCK  
tCK  
tCK  
DQS falling edge hold time to tDSH  
CLK  
0.2  
DQS high pulse width  
(DQS write)  
tDQSH  
tDQSL  
tIS  
0.35  
0.35  
0.9  
DQS low pulse width  
(DQS write)  
Input command and address  
setup time  
ns  
ns  
ns  
8
8
Input command and address  
hold time  
tIH  
0.9  
RAS to READ (with auto  
precharge)  
tRAP  
20  
Active command period  
tRC  
65  
75  
65  
75  
70  
80  
ns  
ns  
Auto refresh to active/Auto  
refresh command cycle  
tRFC  
Active to Precharge command tRAS  
period  
45  
20  
120000 45  
120000 50  
120000 ns  
Active to column command  
period  
tRCD  
20  
20  
ns  
Write recovery time  
tWR  
15  
35  
15  
35  
15  
40  
ns  
ns  
Auto precharge write recovery tDAL  
and precharge time  
Precharge to active command tRP  
period  
20  
15  
20  
15  
20  
15  
ns  
ns  
µs  
Active to active command  
period  
tRRD  
Average periodic refresh  
interval  
tREF  
7.8  
7.8  
7.8  
Data Sheet E0086H20  
51  
HM5425161B, HM5425801B, HM5425401B Series  
Notes: 1. On all AC measurements, we assume the test conditions shown in the next page. For timing  
parameter definitions, see Timing Waveformssection.  
2. This parameter defines the signal transition delay from the cross point of CLK and CLK. The signal  
transition is defined to occur when the signal level crossing VTT.  
3. The timing reference level is VTT.  
4. Output valid window is defined to be the period between two successive transition of data out or  
DQS (read) signals. The signal transition is defined to occur when the signal level crossing VTT.  
5. tHZ is defined as Dout transition delay from Low-Z to High-Z at the end of read burst operation. The  
timing reference is cross point of CLK and CLK. This parameter is not referred to a specific Dout  
voltage level, but specify when the device output stops driving.  
6. tLZ is defined as Dout transition delay from High-Z to Low-Z at the beginning of read operation. This  
parameter is not referred to a specific Dout voltage level, but specify when the device output begins  
driving.  
7. Input valid windows is defined to be the period between two successive transition of data input or  
DQS (write) signals. The signal transition is defined to occur when the signal level crossing VREF  
.
8. The timing reference level is VREF  
.
9. The transition from Low-Z to High-Z is defined to occur when the device output stops driving. A  
specific reference voltage to judge this transition is not given.  
10. tCK max is determined by the lock range of the DLL. Beyond this lock range, the DLL operation is  
not assured.  
11. tCK = min when these parameters are measured. Otherwise, absolute minimum value of these  
values are 10% of tCK.  
12. VCC is assumed to be 2.5 V ± 0.2 V. VCC power supply variation per cycle expected to be less than  
0.4 V/400 cycle.  
Data Sheet E0086H20  
52  
HM5425161B, HM5425801B, HM5425401B Series  
Test Conditions  
Parameter  
Symbol  
VREF(AC)  
VTT (AC)  
VIH (AC)  
VIL (AC)  
Min  
Typ  
Max  
Unit  
Input reference voltage  
Termination voltage  
AC input high voltage  
AC input low voltage  
0.5×VCCQ0.05  
VREF(AC) 0.04  
VREF (AC) + 0.31  
0.5 × VCCQ  
0.5×VCCQ+0.05  
V
VREF(AC)  
VREF (AC) + 0.04 V  
V
VREF (AC) 0.31 V  
VCCQ + 0.6 V  
AC differential input voltage (CLK, VID (AC)  
0.7  
CLK)  
AC differential cross point voltage VX (AC)  
(CLK, CLK)  
0.5 × VCCQ 0.2  
0.5 × VCCQ  
0.5 × VCCQ + 0.2 V  
V/ns  
Input signal slew rate  
SLEW  
1
tCK  
VCC  
CLK  
VREF (AC)  
VX(AC)  
VSS  
VID(AC)  
CLK  
tCL  
tCH  
VCC  
VREF  
VIH  
VIL  
VSS  
t  
SLEW = (VIH (AC) VIL (AC))/t  
VTT  
Measurement point  
DQ  
RT = 50 Ω  
CL = 30 pF  
Data Sheet E0086H20  
53  
HM5425161B, HM5425801B, HM5425401B Series  
Timing Parameter Measured in Clock Cycle  
Number of clock cycle  
Parameter  
Symbol  
tWPD  
Min  
Max  
Write to pre-charge command delay (same bank)  
Read to pre-charge command delay (same bank)  
Write to read command delay (to input all data)  
3 + BL/2  
BL/2  
tRPD  
tWRD  
2 + BL/2  
2
Burst stop command to write command delay  
tBSTW  
(CAS latency = 2)  
(CAS latency = 2.5)  
tBSTW  
tBSTZ  
3
2
Burst stop command to DQ High-Z  
(CAS latency = 2)  
(CAS latency = 2.5)  
tBSTZ  
2.5  
Read command to write command delay (to output all data) tRWD  
2 + BL/2  
(CAS latency = 2)  
(CAS latency = 2.5)  
tRWD  
tHZP  
3 + BL/2  
2
Pre-charge command to High-Z  
(CAS latency = 2)  
(CAS latency = 2.5)  
tHZP  
2.5  
1
Write command to data in latency  
Auto precharge write recovery and precharge time  
Write recovery  
tWCD  
tDAL  
5
tWR  
2
DM to data in latency  
tDMD  
tMRD  
tSNR  
tSRD  
tPDEN  
tPDEX  
tCKEPW  
0
Register set command to active or register set command  
Self refresh exit to non-read command  
Self refresh exit to read command  
Power down entry  
2
10  
200  
1
Power down exit to command input  
CKE minimum pulse width  
1
1
Data Sheet E0086H20  
54  
HM5425161B, HM5425801B, HM5425401B Series  
Timing Waveforms  
Command and Addresses Input Timing Definition  
CLK  
CLK  
tIS  
tIH  
Command  
(RAS, CAS,  
WE, CS)  
V
V
REF  
tIS  
tIH  
Address  
REF  
Read Timing Definition  
tCK  
CLK  
CLK  
tCL  
tRPRE  
tCH  
tDQSCK  
tDQSCK  
tDQSCK  
tDQSCK  
tDQSCK  
tDQSCK tRPST  
DQS  
tDQSQ  
tDQSQ  
tAC  
tQH  
tAC  
tQH  
tAC  
tLZ  
tAC  
tHZ  
DQ  
(Dout)  
tDQSQ  
tDQSQ  
tQH  
tQH  
tQH  
Data Sheet E0086H20  
55  
HM5425161B, HM5425801B, HM5425401B Series  
Write Timing Definition  
tCK  
CLK  
CLK  
tDQSS  
tDSS  
tDSH  
tDSS  
VREF  
VREF  
VREF  
DQS  
tDQSL  
tDQSH  
tWPST  
tWPRES  
tWPREH  
DQ  
(Din)  
tDIPW  
tDS  
tDH  
DM  
tDS  
tDH  
tDIPW  
tDIPW  
Data Sheet E0086H20  
56  
HM5425161B, HM5425801B, HM5425401B Series  
Read Cycle  
tCK  
tCH tCL  
CLK  
CLK  
tRC  
VIH  
CKE  
tRAS  
tRP  
tRCD  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
CS  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
RAS  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
CAS  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
WE  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
BA  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
A10  
tIS tIH  
tIS tIH  
tIS tIH  
Address  
DM,  
DMU/DML  
tRPRE tDQSV DQSV  
t
tRPST  
High-Z  
DQS,  
DQSU/DQSL  
tDV tDV  
High-Z  
DQ (output)  
Bank 0  
Active  
Bank 0  
Read  
Bank 0  
Precharge  
CAS latency = 2  
Burst length = 4  
Bank0 Access  
= VIH or VIL  
Data Sheet E0086H20  
57  
HM5425161B, HM5425801B, HM5425401B Series  
Write Cycle  
tCK  
tCH  
tCL  
CLK  
CLK  
tRC  
VIH  
CKE  
tRAS  
tRP  
tRCD  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
CS  
tIS tIH  
tIS tIH  
RAS  
CAS  
WE  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
tIS  
tIH  
tIS tIH  
tIS tIH  
tIS tIH  
BA  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
A10  
tIS tIH  
tIS tIH  
tIS tIH  
Address  
tDQSS  
tDQSL  
tWPST  
DQS,  
DQSU/DQSL  
(input)  
tDQSL  
tDS  
tDH  
tDS  
DM,  
DMU/DML  
tDS  
tDH  
DQ (input)  
tWR  
tDH  
CAS latency = 2  
Burst length = 4  
Bank0 Access  
= VIH or VIL  
Bank 0  
Active  
Bank 0  
Write  
Bank 0  
Precharge  
Data Sheet E0086H20  
58  
HM5425161B, HM5425801B, HM5425401B Series  
Mode Register Set Cycle  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13 14  
15  
CLK  
CLK  
VIH  
CKE  
CS  
RAS  
CAS  
WE  
BA  
code  
code  
Address  
C: b  
R: b  
valid  
DM,  
DMU/DML  
High-Z  
High-Z  
DQS,  
DQSU/DQSL  
b
DQ (output)  
tMRD  
tRP  
Bank 3  
Read  
Bank 3  
Precharge  
Mode  
register  
set  
Bank 3  
Active  
CAS latency = 2  
Burst length = 4  
= VIH or VIL  
Precharge  
If needed  
Data Sheet E0086H20  
59  
HM5425161B, HM5425801B, HM5425401B Series  
Read/Write Cycle  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
CKE  
VIH  
CS  
RAS  
CAS  
WE  
BA  
Address  
R:a  
C:b''  
C:a R:b  
C:b  
DM,  
DMU/DML  
DQS,  
DQSU/DQSL  
a
b’’  
DQ (output)  
DQ (input)  
High-Z  
b
tRWD  
tWRD  
Bank 0  
Active  
Bank 0 Bank 3  
Read Active  
Bank 3  
Write  
Bank 3  
Read  
Read cycle  
CAS latency = 2  
Burst lenght = 4  
=VIH or VIL  
Data Sheet E0086H20  
60  
HM5425161B, HM5425801B, HM5425401B Series  
Auto Refresh Cycle  
CLK  
CLK  
VIH  
CKE  
CS  
RAS  
CAS  
WE  
BA  
Address  
A10=1  
R: b  
C: b  
DM,  
DMU/DML  
DQS  
DQSU/DQSL  
b
DQ (output)  
High-Z  
DQ (input)  
tRP  
tRFC  
Precharge  
If needed  
Auto  
Refresh  
Bank 0  
Active  
Bank 0  
Read  
CAS latency = 2  
Burst length = 4  
= VIH or VIL  
Data Sheet E0086H20  
61  
HM5425161B, HM5425801B, HM5425401B Series  
Self Refresh Cycle  
CLK  
CLK  
tIS  
tIH  
CKE  
CKE = low  
tCKEPW  
CS  
RAS  
CAS  
WE  
BA  
Address  
A10=1  
R: b  
C: b  
DM,  
DMU/DML  
DQS  
DQSU/DQSL  
DQ (output)  
DQ (input)  
High-Z  
tSNR  
tSRD  
tRP  
Precharge  
If needed  
Self  
refresh  
entry  
Self refresh  
exit  
Bank 0  
Active  
Bank 0  
Read  
CAS latency = 2.5  
Burst length = 4  
= VIH or VIL  
Data Sheet E0086H20  
62  
HM5425161B, HM5425801B, HM5425401B Series  
Power Down Mode  
CLK  
CLK  
tIS  
tIH  
CKE = low  
CKE  
tCKEPW  
CS  
RAS  
CAS  
WE  
BA  
Address  
A10=1  
R: b  
R: c  
DM,  
DMU/DML  
QS,  
QSU/QSL  
DQ (output)  
DQ (input)  
High-Z  
tRP  
tPDEX  
Power Bank 0  
tPDEN  
Precharge  
If needed  
Power down  
entry  
Bank 0  
Read  
down  
exit  
Active  
CAS latency = 2.5  
Burst lenght = 4  
=VIH or VIL  
Data Sheet E0086H20  
63  
HM5425161B, HM5425801B, HM5425401B Series  
Package Dimensions  
HM5425161BTT/HM5425801BTT/HM5425401BTT Series  
Unit: mm  
*1  
22.22 ± 0.10  
A
66  
34  
PIN#1 ID  
1
0.17 to 0.32  
0.91 max.  
33  
B
B
0.65  
M
S
S A  
0.13  
0.80  
Nom  
0.25  
0 to 8°  
0.10  
S
0.60 ± 0.15  
Note: This dimension does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or  
gate burrs shall not exceed 0.20mm per side.  
ECA-TS2-0029-01  
Data Sheet E0086H20  
64  
HM5425161B, HM5425801B, HM5425401B Series  
Cautions  
1. Elpida Memory, Inc. neither warrants nor grants licenses of any rights of Elpida Memory, Inc.s or any  
third partys patent, copyright, trademark, or other intellectual property rights for information contained in  
this document. Elpida Memory, Inc. bears no responsibility for problems that may arise with third partys  
rights, including intellectual property rights, in connection with use of the information contained in this  
document.  
2. Products and product specifications may be subject to change without notice. Confirm that you have  
received the latest product standards or specifications before final design, purchase or use.  
3. Elpida Memory, Inc. makes every attempt to ensure that its products are of high quality and reliability.  
However, contact Elpida Memory, Inc. before using the product in an application that demands especially  
high quality and reliability or where its failure or malfunction may directly threaten human life or cause  
risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation,  
traffic, safety equipment or medical equipment for life support.  
4. Design your application so that the product is used within the ranges guaranteed by Elpida Memory, Inc.  
particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation  
conditions and other characteristics. Elpida Memory, Inc. bears no responsibility for failure or damage  
when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally  
foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as  
fail-safes, so that the equipment incorporating Elpida Memory, Inc. product does not cause bodily injury,  
fire or other consequential damage due to operation of the Elpida Memory, Inc. product.  
5. This product is not designed to be radiation resistant.  
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without  
written approval from Elpida Memory, Inc..  
7. Contact Elpida Memory, Inc. for any questions regarding this document or Elpida Memory, Inc.  
semiconductor products.  
© Hitachi, Ltd., 2000  
Data Sheet E0086H20  
65  

相关型号:

HM5425161B/801B/401B

Series 256M SSTL-2 Interface DDR SDRAM 143 MHz/133 MHz/125
ETC

HM5425161BTT-10

256M SSTL_2 interface DDR SDRAM 143 MHz/133 MHz/125 MHz/100 MHz 4-Mword 】 16-bit 】 4-bank/8-Mword 】 8-bit 】 4-bank/ 16-Mword 】 4-bit 】 4-bank
ELPIDA

HM5425161BTT-75A

256M SSTL_2 interface DDR SDRAM 143 MHz/133 MHz/125 MHz/100 MHz 4-Mword 】 16-bit 】 4-bank/8-Mword 】 8-bit 】 4-bank/ 16-Mword 】 4-bit 】 4-bank
ELPIDA

HM5425161BTT-75B

256M SSTL_2 interface DDR SDRAM 143 MHz/133 MHz/125 MHz/100 MHz 4-Mword 】 16-bit 】 4-bank/8-Mword 】 8-bit 】 4-bank/ 16-Mword 】 4-bit 】 4-bank
ELPIDA

HM5425401B

256M SSTL_2 interface DDR SDRAM 143 MHz/133 MHz/125 MHz/100 MHz 4-Mword 】 16-bit 】 4-bank/8-Mword 】 8-bit 】 4-bank/ 16-Mword 】 4-bit 】 4-bank
ELPIDA

HM5425401BTT-10

256M SSTL_2 interface DDR SDRAM 143 MHz/133 MHz/125 MHz/100 MHz 4-Mword 】 16-bit 】 4-bank/8-Mword 】 8-bit 】 4-bank/ 16-Mword 】 4-bit 】 4-bank
ELPIDA

HM5425401BTT-75A

256M SSTL_2 interface DDR SDRAM 143 MHz/133 MHz/125 MHz/100 MHz 4-Mword 】 16-bit 】 4-bank/8-Mword 】 8-bit 】 4-bank/ 16-Mword 】 4-bit 】 4-bank
ELPIDA

HM5425401BTT-75B

256M SSTL_2 interface DDR SDRAM 143 MHz/133 MHz/125 MHz/100 MHz 4-Mword 】 16-bit 】 4-bank/8-Mword 】 8-bit 】 4-bank/ 16-Mword 】 4-bit 】 4-bank
ELPIDA

HM5425801B

256M SSTL_2 interface DDR SDRAM 143 MHz/133 MHz/125 MHz/100 MHz 4-Mword 】 16-bit 】 4-bank/8-Mword 】 8-bit 】 4-bank/ 16-Mword 】 4-bit 】 4-bank
ELPIDA

HM5425801BTT-10

256M SSTL_2 interface DDR SDRAM 143 MHz/133 MHz/125 MHz/100 MHz 4-Mword 】 16-bit 】 4-bank/8-Mword 】 8-bit 】 4-bank/ 16-Mword 】 4-bit 】 4-bank
ELPIDA

HM5425801BTT-75A

256M SSTL_2 interface DDR SDRAM 143 MHz/133 MHz/125 MHz/100 MHz 4-Mword 】 16-bit 】 4-bank/8-Mword 】 8-bit 】 4-bank/ 16-Mword 】 4-bit 】 4-bank
ELPIDA

HM5425801BTT-75B

256M SSTL_2 interface DDR SDRAM 143 MHz/133 MHz/125 MHz/100 MHz 4-Mword 】 16-bit 】 4-bank/8-Mword 】 8-bit 】 4-bank/ 16-Mword 】 4-bit 】 4-bank
ELPIDA