MC-4R64FKE6D-653 [ELPIDA]

Direct Rambus DRAM RIMM Module 64M-BYTE (32M-WORD x 16-BIT); 直接Rambus DRAM RIMM模块64M字节( 32M -字×16位)
MC-4R64FKE6D-653
型号: MC-4R64FKE6D-653
厂家: ELPIDA MEMORY    ELPIDA MEMORY
描述:

Direct Rambus DRAM RIMM Module 64M-BYTE (32M-WORD x 16-BIT)
直接Rambus DRAM RIMM模块64M字节( 32M -字×16位)

动态存储器
文件: 总14页 (文件大小:135K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
MOS INTEGRATED CIRCUIT  
MC-4R64FKE6D  
Direct Rambus DRAM RIMMTM Module  
64M-BYTE (32M-WORD x 16-BIT)  
Description  
The Direct Rambus RIMM module is a general-purpose high-performance memory module subsystem suitable for  
use in a broad range of applications including computer memory, personal computers, workstations, and other  
applications where high bandwidth and low latency are required.  
MC-4R64FKE6D modules consists of two 288M Direct Rambus DRAM (Direct RDRAM) devices (µPD488588).  
These are extremely high-speed CMOS DRAMs organized as 16M words by 18 bits. The use of Rambus Signaling  
Level (RSL) technology permits 600MHz, 711MHz or 800MHz transfer rates while using conventional system and  
board design technologies.  
Direct RDRAM devices are capable of sustained data transfers at 1.25 ns per two bytes (10 ns per sixteen bytes).  
The architecture of the Direct RDRAM enables the highest sustained bandwidth for multiple, simultaneous,  
randomly addressed memory transactions. The separate control and data buses with independent row and column  
control yield over 95 % bus efficiency. The Direct RDRAM's 32 banks support up to four simultaneous transactions  
per device.  
Features  
184 edge connector pads with 1mm pad spacing  
64 MB Direct RDRAM storage  
Each RDRAM has 32 banks, for 64 banks total on module  
Gold plated contacts  
RDRAMs use Chip Scale Package (CSP)  
Serial Presence Detect support  
Operates from a 2.5 V supply  
Powerdown self refresh modes  
Separate Row and Column buses for higher efficiency  
Over Drive Factor (ODF) support  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
Not all devices/types available in every country. Please check with local Elpida Memory, Inc. for  
availability and additional information.  
Document No. E0092N20 (Ver. 2.0)  
Date Published June 2002 (K) Japan  
URL: http://www.elpida.com  
Elpida Memory,Inc. 2001-2002  
Elpida Memory, Inc. is a joint venture DRAM company of NEC Corporation and Hitachi, Ltd.  
MC-4R64FKE6D  
Order information  
Part number  
Organization I/O Freq. RAS access time  
Package  
Mounted devices  
MHz  
ns  
MC-4R64FKE6D - 845  
MC-4R64FKE6D - 745  
MC-4R64FKE6D - 653  
32M x 16  
800  
711  
600  
45  
45  
53  
184 edge connector pads RIMM 2 pieces of  
with heat spreader  
µPD488588FF  
FBGA (µBGA ) package  
Edge connector : Gold plated  
2
Data Sheet E0092N20 (Ver. 2.0)  
MC-4R64FKE6D  
Module Pad Configuration  
GND  
LDQA8  
GND  
LDQA6  
GND  
LDQA4  
GND  
LDQA2  
GND  
LDQA0  
GND  
LCTMN  
GND  
LCTM  
GND  
NC  
GND  
LROW1  
GND  
LCOL4  
GND  
LCOL2  
GND  
LCOL0  
GND  
LDQB1  
GND  
LDQB3  
GND  
B1  
B2  
GND  
LDQA7  
GND  
LDQA5  
GND  
LDQA3  
GND  
LDQA1  
GND  
LCFM  
GND  
LCFMN  
GND  
NC  
GND  
LROW2  
GND  
LROW0  
GND  
LCOL3  
GND  
LCOL1  
GND  
LDQB0  
GND  
LDQB2  
GND  
A1  
A2  
B3  
A3  
B4  
A4  
B5  
A5  
B6  
A6  
B7  
A7  
B8  
A8  
B9  
A9  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
B23  
B24  
B25  
B26  
B27  
B28  
B29  
B30  
B31  
B32  
B33  
B34  
B35  
B36  
B37  
B38  
B39  
B40  
B41  
B42  
B43  
B44  
B45  
B46  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
A26  
A27  
A28  
A29  
A30  
A31  
A32  
A33  
A34  
A35  
A36  
A37  
A38  
A39  
A40  
A41  
A42  
A43  
A44  
A45  
A46  
LDQB4  
GND  
LDQB6  
GND  
LDQB8  
GND  
LCMD  
LDQB5  
GND  
LDQB7  
GND  
LSCK  
V
CMOS  
V
CMOS  
SOUT  
CMOS  
NC  
SIN  
CMOS  
V
V
NC  
GND  
NC  
GND  
NC  
V
V
DD  
V
V
DD  
DD  
DD  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
LCFM, LCFMN,  
Side B  
Side A  
RCFM, RCFMN : Clock from master  
LCTM, LCTMN,  
RCTM, RCTMN : Clock to master  
LCMD, RCMD : Serial Command Pad  
LROW2 - LROW0,  
B47  
B48  
B49  
B50  
B51  
B52  
B53  
B54  
B55  
B56  
B57  
B58  
B59  
B60  
B61  
B62  
B63  
B64  
B65  
B66  
B67  
B68  
B69  
B70  
B71  
B72  
B73  
B74  
B75  
B76  
B77  
B78  
B79  
B80  
B81  
B82  
B83  
B84  
B85  
B86  
B87  
B88  
B89  
B90  
B91  
B92  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
REF  
GND  
SCL  
VDD  
SDA  
SVDD  
SWP  
VDD  
RSCK  
GND  
RDQB7  
GND  
RDQB5  
GND  
RDQB3  
GND  
RDQB1  
GND  
RCOL0  
GND  
RCOL2  
GND  
RCOL4  
GND  
RROW1  
GND  
NC  
GND  
RCTM  
GND  
RCTMN  
GND  
RDQA0  
GND  
RDQA2  
GND  
RDQA4  
GND  
RDQA6  
GND  
RDQA8  
GND  
A47  
A48  
A49  
A50  
A51  
A52  
A53  
A54  
A55  
A56  
A57  
A58  
A59  
A60  
A61  
A62  
A63  
A64  
A65  
A66  
A67  
A68  
A69  
A70  
A71  
A72  
A73  
A74  
A75  
A76  
A77  
A78  
A79  
A80  
A81  
A82  
A83  
A84  
A85  
A86  
A87  
A88  
A89  
A90  
A91  
A92  
V
REF  
V
RROW2 - RROW0 : Row bus  
LCOL4 - LCOL0,  
GND  
SA0  
V
DD  
SA1  
SVDD  
SA2  
RCOL4 - RCOL0 : Column bus  
LDQA8 - LDQA0,  
V
DD  
RCMD  
GND  
RDQA8 - RDQA0 : Data bus A  
LDQB8 - LDQB0,  
RDQB8  
GND  
RDQB6  
GND  
RDQB4  
GND  
RDQB2  
GND  
RDQB0  
GND  
RCOL1  
GND  
RCOL3  
GND  
RROW0  
GND  
RROW2  
GND  
NC  
GND  
RCFMN  
GND  
RCFM  
GND  
RDQA1  
GND  
RDQA3  
GND  
RDQB8 - RDQB0 : Data bus B  
LSCK, RSCK : Clock input  
SA0 - SA2  
SCL, SDA  
: Serial Presence Detect Address  
: Serial Presence Detect Clock  
SIN, SOUT : Serial I/O  
SVDD  
SWP  
VCMOS  
VDD  
: SPD Voltage  
: Serial Presence Detect Write Protect  
: Supply voltage for serial pads  
: Supply voltage  
VREF  
GND  
NC  
: Logic threshold  
: Ground reference  
RDQA5  
GND  
RDQA7  
GND  
: These pads are not connected  
3
Data Sheet E0092N20 (Ver. 2.0)  
MC-4R64FKE6D  
Module Pad Names  
Pad  
A1  
Signal Name  
Pad  
B1  
Signal Name  
GND  
Pad  
A47  
A48  
A49  
A50  
A51  
A52  
A53  
A54  
A55  
A56  
A57  
A58  
A59  
A60  
A61  
A62  
A63  
A64  
A65  
A66  
A67  
A68  
A69  
A70  
A71  
A72  
A73  
A74  
A75  
A76  
A77  
A78  
A79  
A80  
A81  
A82  
A83  
A84  
A85  
A86  
A87  
A88  
A89  
A90  
A91  
A92  
Signal Name  
NC  
Pad  
B47  
B48  
B49  
B50  
B51  
B52  
B53  
B54  
B55  
B56  
B57  
B58  
B59  
B60  
B61  
B62  
B63  
B64  
B65  
B66  
B67  
B68  
B69  
B70  
B71  
B72  
B73  
B74  
B75  
B76  
B77  
B78  
B79  
B80  
B81  
B82  
B83  
B84  
B85  
B86  
B87  
B88  
B89  
B90  
B91  
B92  
Signal Name  
NC  
GND  
LDQA8  
GND  
A2  
B2  
LDQA7  
GND  
NC  
NC  
A3  
B3  
NC  
NC  
A4  
LDQA6  
GND  
B4  
LDQA5  
GND  
NC  
NC  
A5  
B5  
VREF  
VREF  
A6  
LDQA4  
GND  
B6  
LDQA3  
GND  
GND  
GND  
A7  
B7  
SCL  
SA0  
A8  
LDQA2  
GND  
B8  
LDQA1  
GND  
VDD  
VDD  
A9  
B9  
SDA  
SA1  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
A26  
A27  
A28  
A29  
A30  
A31  
A32  
A33  
A34  
A35  
A36  
A37  
A38  
A39  
A40  
A41  
A42  
A43  
A44  
A45  
A46  
LDQA0  
GND  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
B23  
B24  
B25  
B26  
B27  
B28  
B29  
B30  
B31  
B32  
B33  
B34  
B35  
B36  
B37  
B38  
B39  
B40  
B41  
B42  
B43  
B44  
B45  
B46  
LCFM  
GND  
SVDD  
SVDD  
SWP  
SA2  
LCTMN  
GND  
LCFMN  
GND  
VDD  
VDD  
RSCK  
GND  
RCMD  
GND  
LCTM  
GND  
NC  
GND  
RDQB7  
GND  
RDQB8  
GND  
NC  
LROW2  
GND  
GND  
RDQB5  
GND  
RDQB6  
GND  
LROW1  
GND  
LROW0  
GND  
RDQB3  
GND  
RDQB4  
GND  
LCOL4  
GND  
LCOL3  
GND  
RDQB1  
GND  
RDQB2  
GND  
LCOL2  
GND  
LCOL1  
GND  
RCOL0  
GND  
RDQB0  
GND  
LCOL0  
GND  
LDQB0  
GND  
RCOL2  
GND  
RCOL1  
GND  
LDQB1  
GND  
LDQB2  
GND  
RCOL4  
GND  
RCOL3  
GND  
LDQB3  
GND  
LDQB4  
GND  
RROW1  
GND  
RROW0  
GND  
LDQB5  
GND  
LDQB6  
GND  
NC  
RROW2  
GND  
LDQB7  
GND  
LDQB8  
GND  
GND  
RCTM  
GND  
NC  
LSCK  
VCMOS  
SOUT  
VCMOS  
NC  
LCMD  
VCMOS  
SIN  
GND  
RCTMN  
GND  
RCFMN  
GND  
VCMOS  
NC  
RDQA0  
GND  
RCFM  
GND  
GND  
GND  
RDQA2  
GND  
RDQA1  
GND  
NC  
NC  
VDD  
VDD  
RDQA4  
GND  
RDQA3  
GND  
VDD  
VDD  
NC  
NC  
RDQA6  
GND  
RDQA5  
GND  
NC  
NC  
NC  
NC  
RDQA8  
GND  
RDQA7  
GND  
NC  
NC  
4
Data Sheet E0092N20 (Ver. 2.0)  
MC-4R64FKE6D  
Module Connector Pad Description  
(1/2)  
Signal  
I/O  
Type  
Description  
GND  
Ground reference for RDRAM core and interface. 72 PCB connector pads.  
LCFM  
I
RSL  
Clock from master. Interface clock used for receiving RSL signals from the  
Channel. Positive polarity.  
LCFMN  
I
RSL  
VCMOS  
RSL  
Clock from master. Interface clock used for receiving RSL signals from the  
Channel. Negative polarity.  
LCMD  
I
Serial Command used to read from and write to the control registers. Also used  
for power management.  
LCOL4..LCOL0  
LCTM  
I
I
Column bus. 5-bit bus containing control and address information for column  
accesses.  
RSL  
Clock to master. Interface clock used for transmitting RSL signals to the  
Channel. Positive polarity.  
LCTMN  
I
RSL  
Clock to master. Interface clock used for transmitting RSL signals to the  
Channel. Negative polarity.  
LDQA8..LDQA0  
LDQB8..LDQB0  
I/O  
I/O  
RSL  
Data bus A. A 9-bit bus carrying a byte of read or write data between the Channel  
and the RDRAM. LDQA8 is non-functional on modules with x16 RDRAM devices.  
Data bus B. A 9-bit bus carrying a byte of read or write data between the Channel  
and the RDRAM. LDQB8 is non-functional on modules with x16 RDRAM devices.  
Row bus. 3-bit bus containing control and address information for row accesses.  
RSL  
LROW2..LROW0  
LSCK  
I
I
RSL  
VCMOS  
Serial clock input. Clock source used to read from and write to the RDRAM  
control registers.  
NC  
These pads are not connected. These 24 connector pads are reserved for future  
use.  
RCFM  
I
RSL  
RSL  
VCMOS  
RSL  
RSL  
RSL  
RSL  
RSL  
RSL  
Clock from master. Interface clock used for receiving RSL signals from the  
Channel. Positive polarity.  
RCFMN  
I
Clock from master. Interface clock used for receiving RSL signals from the  
Channel. Negative polarity.  
RCMD  
I
Serial Command Input used to read from and write to the control registers. Also  
used for power management.  
RCOL4..RCOL0  
RCTM  
I
Column bus. 5-bit bus containing control and address information for column  
accesses.  
I
I
Clock to master. Interface clock used for transmitting RSL signals to the  
Channel. Positive polarity.  
RCTMN  
Clock to master. Interface clock used for transmitting RSL signals to the  
Channel. Negative polarity.  
RDQA8..RDQA0  
RDQB8..RDQB0  
RROW2..RROW0  
I/O  
I/O  
I
Data bus A. A 9-bit bus carrying a byte of read or write data between the Channel  
and the RDRAM. RDQA8 is non-functional on modules with x16 RDRAM devices.  
Data bus B. A 9-bit bus carrying a byte of read or write data between the Channel  
and the RDRAM. RDQB8 is non-functional on modules with x16 RDRAM devices.  
Row bus. 3-bit bus containing control and address information for row accesses.  
5
Data Sheet E0092N20 (Ver. 2.0)  
MC-4R64FKE6D  
(2/2)  
Signal  
I/O  
I
Type  
Description  
RSCK  
VCMOS  
Serial clock input. Clock source used to read from and write to the RDRAM  
control registers.  
SA0  
SA1  
SA2  
SCL  
SDA  
SIN  
I
SVDD  
SVDD  
SVDD  
SVDD  
SVDD  
VCMOS  
Serial Presence Detect Address 0.  
I
I
Serial Presence Detect Address 1.  
Serial Presence Detect Address 2.  
Serial Presence Detect Clock.  
I
I/O  
I/O  
Serial Presence Detect Data (Open Collector I/O).  
Serial I/O for reading from and writing to the control registers. Attaches to SIO0  
of the first RDRAM on the module.  
SOUT  
I/O  
VCMOS  
Serial I/O for reading from and writing to the control registers. Attaches to SIO1  
of the last RDRAM on the module.  
SVDD  
SWP  
I
SPD Voltage. Used for signals SCL, SDA, SWP, SA0, SA1 and SA2.  
SVDD  
Serial Presence Detect Write Protect (active high). When low, the SPD can be  
written as well as read.  
VCMOS  
VDD  
CMOS I/O Voltage. Used for signals CMD, SCK, SIN, SOUT.  
Supply voltage for the RDRAM core and interface logic.  
Logic threshold reference voltage for RSL signals.  
VREF  
6
Data Sheet E0092N20 (Ver. 2.0)  
MC-4R64FKE6D  
Block Diagram  
SIO 0  
SIO 1  
SCK  
U1  
CMD  
V
REF  
SIO 0  
SIO 1  
SCK  
U2  
CMD  
V
REF  
SVDD  
V
CC  
SCL  
SCL  
SDA  
A2  
SDA  
U0  
SWP  
WP  
A0  
A1  
47kΩ  
SA0 SA1 SA2  
SERIAL PD  
Remarks 1. Rambus Channel signals form a loop through the RIMM module, with the exception of the SIO chain.  
2. See Serial Presence Detection Specification for information on the SPD device and its contents.  
7
Data Sheet E0092N20 (Ver. 2.0)  
MC-4R64FKE6D  
Electrical Specification  
Absolute Maximum Ratings  
Symbol  
Parameter  
MIN.  
0.3  
0.5  
50  
MAX.  
VDD + 0.3  
VDD + 1.0  
+100  
Unit  
V
VI,ABS  
Voltage applied to any RSL or CMOS signal pad with respect to GND  
Voltage on VDD with respect to GND  
VDD,ABS  
TSTORE  
V
Storage temperature  
°C  
Caution Exposing the device to stress above those listed in Absolute Maximum Ratings could cause  
permanent damage. The device is not meant to be operated under conditions outside the limits  
described in the operational section of this specification. Exposure to Absolute Maximum Rating  
conditions for extended periods may affect device reliability.  
DC Recommended Electrical Conditions  
Symbol  
VDD  
Parameter and conditions  
Supply voltage  
MIN.  
2.50 0.13  
2.5 0.13  
1.8 0.1  
1.4 0.2  
VREF 0.5  
VREF + 0.2  
0.3  
MAX.  
2.50 + 0.13  
2.5 + 0.25  
1.8 + 0.2  
1.4 + 0.2  
VREF 0.2  
VREF + 0.5  
0.5VCMOS 0.25  
VCMOS + 0.3  
0.3  
Unit  
V
VCMOS  
CMOS I/O power supply at pad  
2.5V controllers  
1.8V controllers  
V
VREF  
Reference voltage  
V
V
VIL  
RSL input low voltage  
VIH  
RSL input high voltage  
V
VIL,CMOS  
VIH,CMOS  
VOL,CMOS  
VOH,CMOS  
IREF  
CMOS input low voltage  
V
CMOS input high voltage  
0.5VCMOS+0.25  
V
CMOS output low voltage, IOL,CMOS = 1 mA  
CMOS output high voltage, IOH,CMOS = 0.25 mA  
VREF current, VREF,MAX  
V
VCMOS 0.3  
20.0  
V
+20.0  
µA  
µA  
µA  
ISCK,CMD  
ISIN,SOUT  
CMOS input leakage current, (0 VCMOS VDD)  
CMOS input leakage current, (0 VCMOS VDD)  
20.0  
+20.0  
10.0  
+10.0  
8
Data Sheet E0092N20 (Ver. 2.0)  
MC-4R64FKE6D  
AC Electrical Specifications  
Symbol  
Parameter and Conditions  
MIN.  
25.2  
23.8  
TYP.  
28.0  
28.0  
MAX.  
30.8  
32.2  
1.28  
Unit  
Z
Module Impedance of RSL signals  
Module Impedance of SCK and CMD signals  
TPD  
Average clock delay from finger to finger of all RSL clock nets  
(CTM, CTMN,CFM, and CFMN)  
ns  
TPD  
Propagation delay variation of RSL signals with respect to TPD Note1,2  
21  
+21  
ps  
ps  
TPD-CMOS  
Propagation delay variation of SCK signal with respect to an average clock  
delay Note1  
250  
+250  
TPD- SCK,CMD Propagation delay variation of CMD signal with respect to SCK signal  
200  
+200  
12.0  
12.0  
10.5  
2.0  
ps  
%
Vα/VIN  
VXF/VIN  
VXB/VIN  
RDC  
Attenuation Limit  
-845  
-745  
-653  
-845  
-745  
-653  
-845  
-745  
-653  
-845  
-745  
-653  
Forward crosstalk coefficient  
%
%
(300ps input rise time 20% - 80%)  
2.0  
2.0  
Backward crosstalk coefficient  
1.5  
(300ps input rise time 20% - 80%)  
1.5  
1.5  
DC Resistance Limit  
0.6  
0.6  
0.6  
Notes 1. TPD or Average clock delay is defined as the average delay from finger to finger of all RSL clock nets (CTM,  
CTMN, CFM, and CFMN).  
2. If the RIMM module meets the following specification, then it is compliant to the specification.  
If the RIMM module does not meet these specifications, then the specification can be adjusted by the  
“Adjusted TPD Specification” table.  
Adjusted TPD Specification  
Symbol  
Parameter and conditions  
Adjusted MIN./MAX.  
Absolute  
Unit  
ps  
MIN.  
30  
MAX.  
+30  
TPD  
Propagation delay variation of RSL signals with respect to TPD +/[17+(18*N*Z0)] Note  
Note N = Number of RDRAM devices installed on the RIMM module.  
Z0 = delta Z0% = (MAX. Z0 MIN. Z0) / (MIN. Z0)  
(MAX. Z0 and MIN. Z0 are obtained from the loaded (high impedance) impedance coupons of all RSL layers  
on the module.)  
9
Data Sheet E0092N20 (Ver. 2.0)  
MC-4R64FKE6D  
RIMM Module Current Profile  
RIMM module power conditions Note1  
IDD  
MAX.  
634.2  
584.2  
524.2  
720  
Unit  
mA  
One RDRAM in Read Note2, balance in NAP mode  
One RDRAM in Read Note2, balance in Standby mode  
One RDRAM in Read Note2, balance in Active mode  
One RDRAM in Write, balance in NAP mode  
One RDRAM in Write, balance in Standby mode  
One RDRAM in Write, balance in Active mode  
IDD1  
IDD2  
IDD3  
IDD4  
IDD5  
IDD6  
-845  
-745  
-653  
-845  
-745  
-653  
-845  
-745  
-653  
-845  
-745  
-653  
-845  
-745  
-653  
-845  
-745  
-653  
mA  
mA  
mA  
mA  
mA  
660  
590  
765  
705  
635  
724.2  
674.2  
624.2  
810  
750  
690  
855  
795  
735  
Notes 1. Actual power will depend on individual RDRAM component specifications, memory controller and usage  
patterns. Power does not include Refresh Current.  
2. I/O current is a function of the % of 1’s, to add I/O power for 50 % 1’s for a x16 need to add 257 mA or 290  
mA for x18 ECC module for the following : VDD = 2.5 V, VTERM = 1.8 V, VREF = 1.4 V and VDIL = VREF 0.5 V.  
10  
Data Sheet E0092N20 (Ver. 2.0)  
MC-4R64FKE6D  
Package Drawings  
184 EDGE CONNECTOR PADS RIMM (SOCKET TYPE) (1/2)  
EEPROM  
A (AREA B)  
R
288 M Direct RDRAM  
M1 (AREA B)  
P
S
A
O
N
M
Q
M2 (AREA A)  
L
T
B
K
H
I
J
G
D
B
E
F
C
A1 (AREA A)  
ITEM MILLIMETERS  
A
133.35 TYP.  
133.35±0.13  
55.175  
A1  
B
B1  
C
1.00±0.10  
11.50  
detail of A part  
detail of B part  
C1  
C1  
D
3.00±0.10  
45.00  
32.00  
E
W
R1.00  
R1.00  
45.00  
F
5.675  
G
H
I
47.625  
25.40  
Y
B1  
Z
47.625  
J
X
6.35  
K
1.00 TYP.  
34.925±0.13  
15.145  
L
M
M1  
M2  
N
O
P
19.78  
29.21  
17.78  
4.00±0.10  
R 2.00  
Q
R
S
3.00±0.10  
φ
2.44  
T
1.27±0.10  
0.80±0.05  
2.99  
W
X
Y
Z
0.30  
2.00±0.10  
ECA-TS2-0023-02  
11  
Data Sheet E0092N20 (Ver. 2.0)  
MC-4R64FKE6D  
184 EDGE CONNECTOR PADS RIMM (SOCKET TYPE) (2/2)  
A
B
E
F
G
H
C
D
C
Pad A1  
Pad A92  
DESCRIPTION  
PCB length  
ITEM  
MIN.  
TYP.  
MAX.  
UNIT  
mm  
A
B
C
D
E
F
133.22 133.35 133.48  
PCB height  
34.795 34.925 35.055  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
Center-center pad width from pad A1 to A46,  
A47 to A92, B1 to B46 or B47 to B92  
44.95  
45.00  
55.175  
17.78  
1.27  
-
45.05  
-
Spacing from PCB left edge to connector key notch  
-
Spacing from contact pad PCB edge  
to side edge retainer notch  
PCB thickness  
-
-
1.17  
1.37  
3.09  
4.46  
Heat spreader thickness from PCB surface (one side) to  
heat spreader top surface  
G
H
-
-
RIMM thickness  
-
ECA-TS2-0023-02  
12  
Data Sheet E0092N20 (Ver. 2.0)  
MC-4R64FKE6D  
CAUTION FOR HANDLING MEMORY MODULES  
When handling or inserting memory modules, be sure not to touch any components on the modules, such as  
the memory ICs, chip capacitors and chip resistors. It is necessary to avoid undue mechanical stress on  
these components to prevent damaging them.  
In particular, do not push module cover or drop the modules in order to protect from mechanical defects,  
which would be electrical defects.  
When re-packing memory modules, be sure the modules are not touching each other.  
Modules in contact with other modules may cause excessive mechanical stress, which may damage the  
modules.  
MDE0202  
NOTES FOR CMOS DEVICES  
PRECAUTION AGAINST ESD FOR MOS DEVICES  
1
Exposing the MOS devices to a strong electric field can cause destruction of the gate  
oxide and ultimately degrade the MOS devices operation. Steps must be taken to stop  
generation of static electricity as much as possible, and quickly dissipate it, when once  
it has occurred. Environmental control must be adequate. When it is dry, humidifier  
should be used. It is recommended to avoid using insulators that easily build static  
electricity. MOS devices must be stored and transported in an anti-static container,  
static shielding bag or conductive material. All test and measurement tools including  
work bench and floor should be grounded. The operator should be grounded using  
wrist strap. MOS devices must not be touched with bare hands. Similar precautions  
need to be taken for PW boards with semiconductor MOS devices on it.  
2
HANDLING OF UNUSED INPUT PINS FOR CMOS DEVICES  
No connection for CMOS devices input pins can be a cause of malfunction. If no  
connection is provided to the input pins, it is possible that an internal input level may be  
generated due to noise, etc., hence causing malfunction. CMOS devices behave  
differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed  
high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected  
to VDD or GND with a resistor, if it is considered to have a possibility of being an output  
pin. The unused pins must be handled in accordance with the related specifications.  
3
STATUS BEFORE INITIALIZATION OF MOS DEVICES  
Power-on does not necessarily define initial status of MOS devices. Production process  
of MOS does not define the initial operation status of the device. Immediately after the  
power source is turned ON, the MOS devices with reset function have not yet been  
initialized. Hence, power-on does not guarantee output pin levels, I/O settings or  
contents of registers. MOS devices are not initialized until the reset signal is received.  
Reset operation must be executed immediately after power-on for MOS devices having  
reset function.  
CME0107  
13  
Data Sheet E0092N20 (Ver. 2.0)  
MC-4R64FKE6D  
Rambus, RDRAM and the Rambus logo are registered trademarks of Rambus Inc.  
RIMM, SO-RIMM, RaSer and QRSL are trademarks of Rambus Inc.  
µBGA is a registered trademark of Tessera, Inc  
The information in this document is subject to change without notice. Before using this document, confirm that this is the latest version.  
No part of this document may be copied or reproduced in any form or by any means without the prior  
written consent of Elpida Memory, Inc.  
Elpida Memory, Inc. does not assume any liability for infringement of any intellectual property rights  
(including but not limited to patents, copyrights, and circuit layout licenses) of Elpida Memory, Inc. or  
third parties by or arising from the use of the products or information listed in this document. No license,  
express, implied or otherwise, is granted under any patents, copyrights or other intellectual property  
rights of Elpida Memory, Inc. or others.  
Descriptions of circuits, software and other related information in this document are provided for  
illustrative purposes in semiconductor product operation and application examples. The incorporation of  
these circuits, software and information in the design of the customer's equipment shall be done under  
the full responsibility of the customer. Elpida Memory, Inc. assumes no responsibility for any losses  
incurred by customers or third parties arising from the use of these circuits, software and information.  
[Product applications]  
Elpida Memory, Inc. makes every attempt to ensure that its products are of high quality and reliability.  
However, users are instructed to contact Elpida Memory's sales office before using the product in  
aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment,  
medical equipment for life support, or other such application in which especially high quality and  
reliability is demanded or where its failure or malfunction may directly threaten human life or cause risk  
of bodily injury.  
[Product usage]  
Design your application so that the product is used within the ranges and conditions guaranteed by  
Elpida Memory, Inc., including the maximum ratings, operating supply voltage range, heat radiation  
characteristics, installation conditions and other related characteristics. Elpida Memory, Inc. bears no  
responsibility for failure or damage when the product is used beyond the guaranteed ranges and  
conditions. Even within the guaranteed ranges and conditions, consider normally foreseeable failure  
rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so  
that the equipment incorporating Elpida Memory, Inc. products does not cause bodily injury, fire or other  
consequential damage due to the operation of the Elpida Memory, Inc. product.  
[Usage environment]  
This product is not designed to be resistant to electromagnetic waves or radiation. This product must be  
used in a non-condensing environment.  
If you export the products or technology described in this document that are controlled by the Foreign  
Exchange and Foreign Trade Law of Japan, you must follow the necessary procedures in accordance  
with the relevant laws and regulations of Japan. Also, if you export products/technology controlled by  
U.S. export control regulations, or another country's export control laws or regulations, you must follow  
the necessary procedures in accordance with such laws or regulations.  
If these products/technology are sold, leased, or transferred to a third party, or a third party is granted  
license to use these products, that third party must be made aware that they are responsible for  
compliance with the relevant laws and regulations.  
M01E0107  

相关型号:

MC-4R64FKE6D-745

Direct Rambus DRAM RIMM Module 64M-BYTE (32M-WORD x 16-BIT)
ELPIDA

MC-4R64FKE6D-840

Direct Rambus DRAM RIMM Module 64M-BYTE (32M-WORD x 16-BIT)
ELPIDA

MC-4R64FKE6D-845

Direct Rambus DRAM RIMM Module 64M-BYTE (32M-WORD x 16-BIT)
ELPIDA

MC-4R64FKE8D

Direct Rambus DRAM RIMM Module 64M-BYTE (32M-WORD x 18-BIT)
ELPIDA

MC-4R64FKE8D-653

Direct Rambus DRAM RIMM Module 64M-BYTE (32M-WORD x 18-BIT)
ELPIDA

MC-4R64FKE8D-745

Direct Rambus DRAM RIMM Module 64M-BYTE (32M-WORD x 18-BIT)
ELPIDA

MC-4R64FKE8D-840

Direct Rambus DRAM RIMM Module 64M-BYTE (32M-WORD x 18-BIT)
ELPIDA

MC-4R64FKE8D-845

Direct Rambus DRAM RIMM Module 64M-BYTE (32M-WORD x 18-BIT)
ELPIDA

MC-4R64FKE8S

Direct Rambus DRAM SO-RIMM Module
ELPIDA

MC-4R64FKE8S-653

Rambus DRAM Module, 32MX18, 53ns, CMOS, SORIMM-160
ELPIDA

MC-4R64FKE8S-840

Direct Rambus DRAM SO-RIMM Module
ELPIDA

MC-4R64FKE8S-845

Direct Rambus DRAM SO-RIMM Module
ELPIDA