UPD45128441G5-A80I-9JF [ELPIDA]

Synchronous DRAM, 32MX4, 6ns, MOS, PDSO54, PLASTIC, TSOP2-54;
UPD45128441G5-A80I-9JF
型号: UPD45128441G5-A80I-9JF
厂家: ELPIDA MEMORY    ELPIDA MEMORY
描述:

Synchronous DRAM, 32MX4, 6ns, MOS, PDSO54, PLASTIC, TSOP2-54

动态存储器 光电二极管
文件: 总85页 (文件大小:725K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
MOS INTEGRATED CIRCUIT  
μPD45128441-I, 45128841-I  
128M-bit Synchronous DRAM  
4-bank, LVTTL  
WTR (Wide Temperature Range)  
Description  
The μPD45128441, 45128841 are high-speed 134,217,728-bit synchronous dynamic random-access memories,  
organized as 8,388,608 × 4 × 4, 4,194,304 × 8 × 4 (word × bit × bank), respectively.  
The synchronous DRAMs achieved high-speed data transfer using the pipeline architecture.  
All inputs and outputs are synchronized with the positive edge of the clock.  
The synchronous DRAMs are compatible with Low Voltage TTL (LVTTL).  
These products are packaged in 54-pin TSOP (II).  
Features  
Fully Synchronous Dynamic RAM, with all signals referenced to a positive clock edge  
Pulsed interface  
Possible to assert random column address in every cycle  
Quad internal banks controlled by BA0(A13) and BA1(A12)  
Programmable Wrap sequence (Sequential / Interleave)  
Programmable burst length (1, 2, 4, 8 and full page)  
Programmable /CAS latency (2 and 3)  
Ambient temperature (TA): 40 to + 85°C  
Automatic precharge and controlled precharge  
CBR (Auto) refresh and self refresh  
• ×4, ×8 organization  
Single 3.3 V ± 0.3 V power supply  
LVTTL compatible inputs and outputs  
4,096 refresh cycles / 64 ms  
Burst termination by Burst stop command and Precharge command  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
Not all devices/types available in every country. Please check with local Elpida Memory, Inc. for  
availability and additional information.  
Document No. E0345N10 (Ver. 1.0)  
Date Published February 2003 (K) Japan  
URL: http://www.elpida.com  
This product became EOL in April, 2007.  
©Elpida Memory, Inc. 2003  
Elpida Memory, Inc. is a joint venture DRAM company of NEC Corporation and Hitachi, Ltd.  
μPD45128441-I, 45128841-I  
Ordering Information  
Organization  
Clock frequency  
MHz (MAX.)  
Part number  
Package  
Note  
(word × bit × bank)  
Ambient temperature  
μPD45128441G5-A75I-9JF  
μPD45128441G5-A80I-9JF  
μPD45128441G5-A10I-9JF  
μPD45128841G5-A75I-9JF  
μPD45128841G5-A80I-9JF  
μPD45128841G5-A10I-9JF  
μPD45128441G5-A75LI-9JF  
μPD45128441G5-A80LI-9JF  
μPD45128441G5-A10LI-9JF  
μPD45128841G5-A75LI-9JF  
μPD45128841G5-A80LI-9JF  
μPD45128841G5-A10LI-9JF  
8M × 4 × 4  
4M × 8 × 4  
8M × 4 × 4  
4M × 8 × 4  
133  
125  
100  
133  
125  
100  
133  
125  
100  
133  
125  
100  
54-pin Plastic TSOP (II)  
TA = 40 to + 85°C  
2
Data Sheet E0345N10 (Ver. 1.0)  
μPD45128441-I, 45128841-I  
Part Number  
[ x4, x8 ]  
μ
PD45128841G5 - A75L I  
NEC Memory  
Synchronous DRAM  
Wide temperature  
range  
Memory density  
128 : 128M bits  
I : -40 to + 85°C  
Low Power  
Organization  
4 : x4  
8 : x8  
Minimum cycle time  
75 : 7.5 ns (133 MHz)  
80 : 8 ns (125 MHz)  
10 : 10 ns (100 MHz)  
Number of banks  
4 : 4 banks  
Low voltage  
Interface  
1 : LVTTL  
A : 3.3 V  
±
0.3 V  
Package  
G5 : TSOP (II)  
3
Data Sheet E0345N10 (Ver. 1.0)  
μPD45128441-I, 45128841-I  
Pin Configurations  
/xxx indicates active low signal.  
[μPD45128441]  
54-pin Plastic TSOP (II)  
8M words × 4 bits × 4 banks  
V
NC  
CC  
1
2
3
4
5
6
7
8
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
Vss  
NC  
VssQ  
NC  
DQ3  
VccQ  
NC  
NC  
VssQ  
NC  
DQ2  
VccQ  
NC  
Vss  
NC  
DQM  
CLK  
CKE  
NC  
A11  
A9  
A8  
A7  
A6  
A5  
V
CC  
Q
NC  
DQ0  
V
SS  
Q
NC  
NC  
Q
V
CC  
9
NC  
DQ1  
VSSQ  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
NC  
VCC  
NC  
/WE  
/CAS  
/RAS  
/CS  
BA0(A13)  
BA1(A12)  
A10  
A0  
A1  
A2  
A3  
A4  
Vss  
V
CC  
A0 to A11 Note  
BA0(A13), BA1(A12): Bank select  
: Address inputs  
DQ0 to DQ3  
CLK  
: Data inputs / outputs  
: Clock input  
CKE  
: Clock enable  
/CS  
: Chip select  
/RAS  
/CAS  
/WE  
: Row address strobe  
: Column address strobe  
: Write enable  
DQM  
VCC  
: DQ mask enable  
: Supply voltage  
: Ground  
VSS  
Note A0 to A11  
: Row address inputs  
VCCQ  
VSSQ  
NC  
: Supply voltage for DQ  
: Ground for DQ  
: No connection  
A0 to A9, A11 : Column address inputs  
4
Data Sheet E0345N10 (Ver. 1.0)  
μPD45128441-I, 45128841-I  
[μPD45128841]  
54-pin Plastic TSOP (II)  
4M words × 8 bits × 4 banks  
V
DQ0  
CC  
1
2
3
4
5
6
7
8
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
Vss  
DQ7  
VssQ  
NC  
DQ6  
VccQ  
NC  
DQ5  
VssQ  
NC  
DQ4  
VccQ  
NC  
Vss  
NC  
DQM  
CLK  
CKE  
NC  
A11  
A9  
A8  
V
CC  
Q
NC  
DQ1  
V
SS  
Q
NC  
DQ2  
V
CC  
Q
9
NC  
DQ3  
VSSQ  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
NC  
VCC  
NC  
/WE  
/CAS  
/RAS  
/CS  
BA0(A13)  
BA1(A12)  
A10  
A0  
A1  
A2  
A3  
A7  
A6  
A5  
A4  
V
CC  
Vss  
A0 to A11 Note  
BA0(A13), BA1(A12): Bank select  
: Address inputs  
DQ0 to DQ7  
CLK  
: Data inputs / outputs  
: Clock input  
CKE  
: Clock enable  
/CS  
: Chip select  
/RAS  
/CAS  
/WE  
: Row address strobe  
: Column address strobe  
: Write enable  
DQM  
VCC  
: DQ mask enable  
: Supply voltage  
: Ground  
Note A0 to A11 : Row address inputs  
VSS  
VCCQ  
VSSQ  
NC  
: Supply voltage for DQ  
: Ground for DQ  
: No connection  
A0 to A9 : Column address inputs  
5
Data Sheet E0345N10 (Ver. 1.0)  
μPD45128441-I, 45128841-I  
Block Diagram  
CLK  
Clock  
Generator  
CKE  
Bank D  
Bank C  
Bank B  
Row  
Address  
Address  
Buffer  
&
Refresh  
Counter  
Mode  
Register  
Bank A  
Sense Amplifier  
DQM  
DQ  
/CS  
Column Decoder &  
Latch Circuit  
Column  
Address  
Buffer  
&
Burst  
Counter  
/RAS  
/CAS  
/WE  
Data Control Circuit  
6
Data Sheet E0345N10 (Ver. 1.0)  
μPD45128441-I, 45128841-I  
CONTENTS  
1. Input / Output Pin Function .............................................................................................................. 9  
2. Commands ....................................................................................................................................... 10  
3. Simplified State Diagram ................................................................................................................ 13  
4. Truth Table ....................................................................................................................................... 14  
4.1 Command Truth Table............................................................................................................................. 14  
4.2 DQM Truth Table...................................................................................................................................... 14  
4.3 CKE Truth Table....................................................................................................................................... 14  
4.4 Operative Command Table .................................................................................................................... 15  
4.5 Command Truth Table for CKE ............................................................................................................. 18  
5. Initialization ...................................................................................................................................... 19  
6. Programming the Mode Register ................................................................................................... 20  
7. Mode Register .................................................................................................................................. 21  
7.1 Burst Length and Sequence .................................................................................................................. 22  
8. Address Bits of Bank-Select and Precharge ................................................................................ 23  
9. Precharge ......................................................................................................................................... 24  
10. Auto Precharge ................................................................................................................................ 25  
10.1 Read with Auto Precharge .................................................................................................................. 25  
10.2 Write with Auto Precharge .................................................................................................................. 26  
11. Read / Write Command Interval ..................................................................................................... 27  
11.1 Read to Read Command Interval ........................................................................................................ 27  
11.2 Write to Write Command Interval ....................................................................................................... 27  
11.3 Write to Read Command Interval ....................................................................................................... 28  
11.4 Read to Write Command Interval ....................................................................................................... 29  
12. Burst Termination ........................................................................................................................... 30  
12.1 Burst Stop Command .......................................................................................................................... 30  
12.2 Precharge Termination ........................................................................................................................ 31  
12.2.1 Precharge Termination in READ Cycle .................................................................................... 31  
12.2.2 Precharge Termination in WRITE Cycle .................................................................................. 32  
7
Data Sheet E0345N10 (Ver. 1.0)  
μPD45128441-I, 45128841-I  
13. Electrical Specifications ................................................................................................................. 33  
13.1 AC Parameters for Read Timing ......................................................................................................... 38  
13.2 AC Parameters for Write Timing ......................................................................................................... 40  
13.3 Relationship between Frequency and Latency ................................................................................. 41  
13.4 Mode Register Set ................................................................................................................................ 42  
13.5 Power on Sequence and CBR (Auto) Refresh ................................................................................... 43  
13.6 /CS Function ......................................................................................................................................... 44  
13.7 Clock Suspension during Burst Read (using CKE Function) .......................................................... 45  
13.8 Clock Suspension during Burst Write (using CKE Function) .......................................................... 47  
13.9 Power Down Mode and Clock Mask ................................................................................................... 49  
13.10 CBR (Auto) Refresh ............................................................................................................................. 50  
13.11 Self Refresh (Entry and Exit) ............................................................................................................... 51  
13.12 Random Column Read (Page with Same Bank) ................................................................................ 52  
13.13 Random Column Write (Page with Same Bank) ................................................................................ 54  
13.14 Random Row Read (Ping-Pong Banks) ............................................................................................. 56  
13.15 Random Row Write (Ping-Pong Banks) ............................................................................................. 58  
13.16 Read and Write ..................................................................................................................................... 60  
13.17 Interleaved Column Read Cycle ......................................................................................................... 62  
13.18 Interleaved Column Write Cycle ......................................................................................................... 64  
13.19 Auto Precharge after Read Burst ....................................................................................................... 66  
13.20 Auto Precharge after Write Burst ....................................................................................................... 68  
13.21 Full Page Read Cycle ........................................................................................................................... 70  
13.22 Full Page Write Cycle ........................................................................................................................... 72  
13.23 Burst Read and Single Write (Option) ................................................................................................ 74  
13.24 Full Page Random Column Read ....................................................................................................... 76  
13.25 Full Page Random Column Write ....................................................................................................... 78  
13.26 PRE (Precharge) Termination of Burst .............................................................................................. 80  
14. Package Drawing ............................................................................................................................. 82  
15. Recommended Soldering Conditions ........................................................................................... 83  
8
Data Sheet E0345N10 (Ver. 1.0)  
μPD45128441-I, 45128841-I  
1. Input / Output Pin Function  
Pin name  
Input / Output  
Input  
Function  
CLK  
CKE  
CLK is the master clock input. Other inputs signals are referenced to the CLK rising  
edge.  
Input  
CKE determine validity of the next CLK (clock). If CKE is high, the next CLK rising edge  
is valid; otherwise it is invalid. If the CLK rising edge is invalid, the internal clock is not  
issued and the μPD45128xxx suspends operation.  
When the μPD45128xxx is not in burst mode and CKE is negated, the device enters  
power down mode. During power down mode, CKE must remain low.  
/CS low starts the command input cycle. When /CS is high, commands are ignored but  
operations continue.  
/CS  
Input  
Input  
Input  
/RAS, /CAS, /WE  
A0 - A11  
/RAS, /CAS and /WE have the same symbols on conventional DRAM but different  
functions. For details, refer to the command table.  
Row Address is determined by A0 - A11 at the CLK (clock) rising edge in the active  
command cycle. It does not depend on the bit organization.  
Column Address is determined by A0 - A9, A11 at the CLK rising edge in the read or  
write command cycle. It depends on the bit organization: A0 - A9, A11 for ×4 device, A0  
- A9 for ×8 device.  
A10 defines the precharge mode. When A10 is high in the precharge command cycle,  
all banks are precharged; when A10 is low, only the bank selected by BA0(A13) and  
BA1(A12) is precharged.  
When A10 is high in read or write command cycle, the precharge starts automatically  
after the burst access.  
BA0, BA1  
Input  
Input  
BA0(A13) and BA1(A12) are the bank select signal. In command cycle, BA0(A13) and  
BA1(A12) low select bank A, BA0(A13) high and BA1(A12) low select bank B, BA0(A13)  
low and BA1(A12) high select bank C and then BA0(A13) and BA1(A12) high select  
bank D.  
DQM  
DQM controls I/O buffers.  
In read mode, DQM controls the output buffers like a conventional /OE pin.  
DQM high and DQM low turn the output buffers off and on, respectively.  
The DQM latency for the read is two clocks.  
In write mode, DQM controls the word mask. Input data is written to the memory cell if  
DQM is low but not if DQM is high.  
The DQM latency for the write is zero.  
DQ0 - DQ8  
Input / Output  
DQ pins have the same function as I/O pins on a conventional DRAM.  
VCC, VSS, VCCQ, VSSQ  
(Power supply) VCC and VSS are power supply pins for internal circuits. VCCQ and VSSQ are power  
supply pins for the output buffers.  
9
Data Sheet E0345N10 (Ver. 1.0)  
μPD45128441-I, 45128841-I  
2. Commands  
Mode register set command  
Fig.1 Mode register set command  
CLK  
(/CS, /RAS, /CAS, /WE = Low)  
CKE  
H
/CS  
The μPD45128xxx has a mode register that defines how the device  
operates. In this command, A0 through A11, BA0(A13) and BA1(A12)  
are the data input pins. After power on, the mode register set  
command must be executed to initialize the device.  
/RAS  
/CAS  
/WE  
BA0(A13), BA1(A12)  
A10  
The mode register can be set only when all banks are in idle state.  
During 2 CLK (tRSC) following this command, the μPD45128xxx  
cannot accept any other commands.  
Add  
Activate command  
Fig.2 Row address strobe and  
bank activate command  
(/CS, /RAS = Low, /CAS, /WE = High)  
CLK  
CKE  
H
The μPD45128xxx has four banks, each with 4,096 rows.  
This command activates the bank selected by BA0(A13) and  
BA1(A12) and a row address selected by A0 through A11.  
This command corresponds to a conventional DRAM’s /RAS falling.  
/CS  
/RAS  
/CAS  
/WE  
BA0(A13), BA1(A12)  
A10  
Row  
Row  
Add  
Precharge command  
Fig.3 Precharge command  
CLK  
(/CS, /RAS, /WE = Low, /CAS = High)  
CKE  
H
/CS  
/RAS  
This command begins precharge operation of the bank selected by  
BA0(A13) and BA1(A12). When A10 is High, all banks are  
precharged, regardless of BA0(A13) and BA1(A12). When A10 is  
Low, only the bank selected by BA0(A13) and BA1(A12) is  
precharged.  
/CAS  
/WE  
BA0(A13), BA1(A12)  
After this command, the μPD45128xxx can’t accept the activate  
command to the precharging bank during tRP (precharge to activate  
command period).  
A10  
(Precharge select)  
Add  
This command corresponds to a conventional DRAM’s /RAS rising.  
10  
Data Sheet E0345N10 (Ver. 1.0)  
μPD45128441-I, 45128841-I  
Write command  
Fig.4 Column address and write command  
CLK  
(/CS, /CAS, /WE = Low, /RAS = High)  
CKE  
H
/CS  
If the mode register is in the burst write mode, this command sets the  
burst start address given by the column address to begin the burst  
write operation. The first write data in burst mode can input with this  
command with subsequent data on following clocks.  
/RAS  
/CAS  
/WE  
BA0(A13), BA1(A12)  
A10  
Add  
Col.  
Read command  
Fig.5 Column address and read command  
CLK  
(/CS, /CAS = Low, /RAS, /WE = High)  
CKE  
H
/CS  
Read data is available after /CAS latency requirements have been  
met. This command sets the burst start address given by the column  
address.  
/RAS  
/CAS  
/WE  
BA0(A13), BA1(A12)  
A10  
Add  
Col.  
CBR (auto) refresh command  
Fig.6 CBR (auto) refresh command  
CLK  
(/CS, /RAS, /CAS = Low, /WE, CKE = High)  
CKE  
H
/CS  
This command is a request to begin the CBR (auto) refresh  
operation. The refresh address is generated internally.  
Before executing CBR (auto) refresh, all banks must be precharged.  
After this cycle, all banks will be in the idle (precharged) state and  
ready for a row activate command.  
/RAS  
/CAS  
/WE  
BA0(A13), BA1(A12)  
A10  
During tRC period (from refresh command to refresh or activate  
command), the μPD45128xxx cannot accept any other command.  
Add  
11  
Data Sheet E0345N10 (Ver. 1.0)  
μPD45128441-I, 45128841-I  
Self refresh entry command  
Fig.7 Self refresh entry command  
CLK  
(/CS, /RAS, /CAS, CKE = Low, /WE = High)  
CKE  
/CS  
After the command execution, self refresh operation continues while  
CKE remains low. When CKE goes high, the μPD45128xxx exits the  
self refresh mode.  
/RAS  
/CAS  
During self refresh mode, refresh interval and refresh operation are  
performed internally, so there is no need for external control.  
Before executing self refresh, all banks must be precharged.  
/WE  
BA0(A13), BA1(A12)  
A10  
Add  
Burst stop command  
Fig.8 Burst stop command in Full Page Mode  
CLK  
(/CS, /WE = Low, /RAS, /CAS = High)  
This command can stop the current burst operation.  
CKE  
H
/CS  
/RAS  
/CAS  
/WE  
BA0(A13), BA1(A12)  
A10  
Add  
No operation  
Fig.9 No operation  
CLK  
(/CS = Low, /RAS, /CAS, /WE = High)  
CKE  
H
/CS  
This command is not an execution command. No operations begin  
or terminate by this command.  
/RAS  
/CAS  
/WE  
BA0(A13), BA1(A12)  
A10  
Add  
12  
Data Sheet E0345N10 (Ver. 1.0)  
μPD45128441-I, 45128841-I  
3. Simplified State Diagram  
Self  
Refresh  
MRS  
Mode  
Register  
Set  
REF  
CBR (Auto)  
Refresh  
IDLE  
Power  
Down  
CKE  
CKE  
Active  
Power  
Down  
ROW  
ACTIVE  
Write  
Read  
CKE  
Read  
CKE  
WRITE  
WRITE  
READ  
SUSPEND  
READ  
SUSPEND  
Write  
CKE  
CKE  
CKE  
CKE  
CKE  
READA  
SUSPEND  
WRITEA  
WRITEA  
READA  
SUSPEND  
CKE  
Precharge  
POWER  
ON  
Precharge  
Automatic sequence  
Manual input  
13  
Data Sheet E0345N10 (Ver. 1.0)  
μPD45128441-I, 45128841-I  
4. Truth Table  
4.1 Command Truth Table  
Function  
Symbol  
CKE  
/CS  
/RAS  
/CAS  
/WE  
BA1,  
BA0  
×
A10  
A11,  
n – 1  
H
n
×
×
×
×
×
×
×
×
×
×
×
A9 - A0  
Device deselect  
No operation  
DESL  
NOP  
H
L
L
L
L
L
L
L
L
L
L
×
H
H
H
H
H
H
L
×
H
H
L
×
H
L
×
×
×
×
H
×
Burst stop  
BST  
H
×
×
×
Read  
READ  
READA  
WRIT  
WRITA  
ACT  
H
H
H
L
V
L
V
V
V
V
V
×
Read with auto precharge  
Write  
H
L
V
H
L
H
L
V
Write with auto precharge  
Bank activate  
H
L
L
V
H
V
L
H
H
H
H
L
H
L
V
Precharge select bank  
Precharge all banks  
Mode register set  
PRE  
H
L
V
PALL  
MRS  
H
L
L
×
H
L
×
H
L
L
L
V
Remark H = High level, L = Low level, × = High or Low level (Don't care), V = Valid data input  
4.2 DQM Truth Table  
Function  
Symbol  
CKE  
DQM  
n – 1  
H
n
×
×
Data write / output enable  
Data mask / output disable  
ENB  
L
MASK  
H
H
Remark H = High level, L = Low level, × = High or Low level (Don't care)  
4.3 CKE Truth Table  
Current state  
Function  
Symbol  
CKE  
/CS  
/RAS  
/CAS  
/WE Address  
n – 1  
H
L
n
L
Activating  
Any  
Clock suspend mode entry  
Clock suspend mode  
Clock suspend mode exit  
CBR (auto) refresh command  
Self refresh entry  
×
×
×
L
L
L
H
×
H
L
×
×
×
L
L
H
×
×
×
H
×
×
×
L
L
H
×
×
×
H
×
×
×
×
×
×
×
×
×
×
×
×
L
Clock suspend  
Idle  
L
H
H
L
×
REF  
H
H
L
H
H
H
×
Idle  
SELF  
Self refresh  
Self refresh exit  
H
H
L
L
Idle  
Power down entry  
Power down exit  
H
L
×
Power down  
H
H
×
L
H
Remark H = High level, L = Low level, × = High or Low level (Don't care)  
14  
Data Sheet E0345N10 (Ver. 1.0)  
μPD45128441-I, 45128841-I  
4.4 Operative Command Table Note1  
(1/3)  
Current state  
Idle  
/CS /RAS /CAS /WE  
Address  
Command  
DESL  
NOP or BST  
Action  
Nop or power down  
Nop or power down  
Notes  
H
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
×
H
H
H
L
×
H
L
×
×
×
×
2
2
3
3
H
L
BA, CA, A10 READ/READA ILLEGAL  
L
BA, CA, A10 WRIT/WRITA  
ILLEGAL  
H
H
L
H
L
BA, RA  
ACT  
Row activating  
L
BA, A10  
PRE/PALL  
REF/SELF  
MRS  
Nop  
L
H
L
×
CBR (auto) refresh or self refresh  
4
L
L
Op-Code  
Mode register accessing  
Row active  
×
×
×
×
×
DESL  
Nop  
Nop  
H
H
H
L
H
L
×
NOP or BST  
H
L
BA, CA, A10 READ/READA Begin read : Determine AP  
5
5
3
6
L
BA, CA, A10 WRIT/WRITA  
Begin write : Determine AP  
ILLEGAL  
H
H
L
H
L
BA, RA  
ACT  
L
BA, A10  
PRE/PALL  
REF/SELF  
MRS  
Precharge  
L
H
L
×
ILLEGAL  
L
L
Op-Code  
ILLEGAL  
Read  
×
×
×
×
×
×
DESL  
Continue burst to end Row active  
Continue burst to end Row active  
Burst stop Row active  
H
H
H
H
L
H
H
L
H
L
NOP  
BST  
H
L
BA, CA, A10 READ/READA Terminate burst, new read : Determine AP  
7
7, 8  
3
L
BA, CA, A10 WRIT/WRITA  
Terminate burst, start write : Determine AP  
ILLEGAL  
H
H
L
H
L
BA, RA  
ACT  
L
BA, A10  
PRE/PALL  
REF/SELF  
MRS  
Terminate burst, precharging  
ILLEGAL  
L
H
L
×
L
L
Op-Code  
ILLEGAL  
Write  
×
×
×
×
×
×
DESL  
Continue burst to end Write recovering  
Continue burst to end Write recovering  
Burst stop Row active  
H
H
H
H
L
H
H
L
H
L
NOP  
BST  
H
L
BA, CA, A10 READ/READA Terminate burst, start read : Determine AP  
7, 8  
7
L
BA, CA, A10 WRIT/WRITA  
Terminate burst, new write : Determine AP  
H
H
L
H
L
BA, RA  
BA, A10  
×
ACT  
ILLEGAL  
3
L
PRE/PALL  
REF/SELF  
MRS  
Terminate burst, precharging  
ILLEGAL  
9
L
H
L
L
L
Op-Code  
ILLEGAL  
15  
Data Sheet E0345N10 (Ver. 1.0)  
μPD45128441-I, 45128841-I  
(2/3)  
Current state  
Read with auto  
precharge  
/CS /RAS /CAS /WE  
Address  
Command  
DESL  
Action  
Notes  
H
L
L
L
L
L
L
L
L
×
H
H
H
H
L
×
H
H
L
×
H
L
×
×
×
Continue burst to end Precharging  
Continue burst to end Precharging  
ILLEGAL  
NOP  
BST  
H
L
BA, CA, A10 READ/READA ILLEGAL  
3
3
3
3
L
BA, CA, A10 WRIT/WRITA  
ILLEGAL  
ILLEGAL  
ILLEGAL  
ILLEGAL  
ILLEGAL  
H
H
L
H
L
BA, RA  
BA, A10  
×
ACT  
L
PRE/PALL  
REF/SELF  
MRS  
L
H
L
L
L
Op-Code  
×
Write with auto  
precharge  
H
×
×
×
DESL  
Continue burst to end Write  
recovering with auto precharge  
L
H
H
H
×
×
NOP  
BST  
Continue burst to end Write  
recovering with auto precharge  
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
H
H
H
L
H
L
L
H
L
ILLEGAL  
BA, CA, A10 READ/READA ILLEGAL  
3
3
3
3
L
BA, CA, A10 WRIT/WRITA  
ILLEGAL  
H
H
L
H
L
BA, RA  
ACT  
ILLEGAL  
L
BA, A10  
PRE/PALL  
REF/SELF  
MRS  
ILLEGAL  
L
H
L
×
ILLEGAL  
L
L
Op-Code  
ILLEGAL  
Precharging  
×
×
×
×
×
×
DESL  
Nop Enter idle after tRP  
Nop Enter idle after tRP  
ILLEGAL  
H
H
H
H
L
H
H
L
H
L
NOP  
BST  
H
L
BA, CA, A10 READ/READA ILLEGAL  
3
3
3
L
BA, CA, A10 WRIT/WRITA  
ILLEGAL  
H
H
L
H
L
BA, RA  
ACT  
ILLEGAL  
L
BA, A10  
PRE/PALL  
REF/SELF  
MRS  
Nop Enter idle after tRP  
ILLEGAL  
L
H
L
×
L
L
Op-Code  
ILLEGAL  
Row activating  
×
×
×
×
×
×
DESL  
Nop Enter bank active after tRCD  
Nop Enter bank active after tRCD  
ILLEGAL  
H
H
H
H
L
H
H
L
H
L
NOP  
BST  
H
L
BA, CA, A10 READ/READA ILLEGAL  
3
3
L
BA, CA, A10 WRIT/WRITA  
ILLEGAL  
ILLEGAL  
ILLEGAL  
ILLEGAL  
ILLEGAL  
H
H
L
H
L
BA, RA  
BA, A10  
×
ACT  
3, 10  
3
L
PRE/PALL  
REF/SELF  
MRS  
L
H
L
L
L
Op-Code  
16  
Data Sheet E0345N10 (Ver. 1.0)  
μPD45128441-I, 45128841-I  
(3/3)  
Current state  
/CS /RAS /CAS /WE  
Address  
Command  
DESL  
Action  
Notes  
Write recovering  
H
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
H
L
L
L
L
H
L
L
L
×
H
H
H
H
L
×
H
H
L
×
H
L
×
×
×
Nop Enter row active after tDPL  
Nop Enter row active after tDPL  
Nop Enter row active after tDPL  
NOP  
BST  
H
L
BA, CA, A10 READ/READA Start read, Determine AP  
8
L
BA, CA, A10 WRIT/WRITA  
New write, Determine AP  
ILLEGAL  
H
H
L
H
L
BA, RA  
ACT  
3
3
L
BA, A10  
PRE/PALL  
REF/SELF  
MRS  
ILLEGAL  
L
H
L
×
ILLEGAL  
L
L
Op-Code  
ILLEGAL  
Write recovering  
×
×
×
×
×
×
DESL  
Nop Enter precharge after tDPL  
Nop Enter precharge after tDPL  
Nop Enter precharge after tDPL  
with auto precharge  
H
H
H
H
L
H
H
L
H
L
NOP  
BST  
H
L
BA, CA, A10 READ/READA ILLEGAL  
3, 8  
3
L
BA, CA, A10 WRIT/WRITA  
ILLEGAL  
H
H
L
H
L
BA, RA  
ACT  
ILLEGAL  
3
L
BA, A10  
PRE/PALL  
REF/SELF  
MRS  
ILLEGAL  
L
H
L
×
ILLEGAL  
L
L
Op-Code  
ILLEGAL  
Refreshing  
×
×
×
×
×
×
×
×
×
×
×
×
×
DESL  
Nop Enter idle after tRC  
Nop Enter idle after tRC  
ILLEGAL  
H
H
L
H
L
×
NOP/BST  
READ/WRIT  
ACT/PRE/PALL  
REF/SELF/MRS  
DESL  
×
H
L
×
ILLEGAL  
L
×
ILLEGAL  
Mode register  
accessing  
×
×
×
Nop Enter idle after tRSC  
Nop Enter idle after tRSC  
ILLEGAL  
H
H
H
H
H
L
H
L
NOP  
BST  
×
READ/WRIT  
ILLEGAL  
L
L
×
×
ACT/PRE/PALL/ ILLEGAL  
REF/SELF/MRS  
Notes 1.  
2.  
All entries assume that CKE was active (High level) during the preceding clock cycle.  
If all banks are idle, and CKE is inactive (Low level), μPD45128xxx will enter Power down mode.  
All input buffers except CKE will be disabled.  
3.  
4.  
Illegal to bank in specified states; Function may be legal in the bank indicated by Bank Address (BA),  
depending on the state of that bank.  
If all banks are idle, and CKE is inactive (Low level), μPD45128xxx will enter Self refresh mode. All input  
buffers except CKE will be disabled.  
5.  
6.  
7.  
8.  
9.  
Illegal if tRCD is not satisfied.  
Illegal if tRAS is not satisfied.  
Must satisfy burst interrupt condition.  
Must satisfy bus contention, bus turn around, and/or write recovery requirements.  
Must mask preceding data which don't satisfy tDPL.  
10. Illegal if tRRD is not satisfied.  
Remark H = High level, L = Low level, × = High or Low level (Don’t care), V = Valid data  
17  
Data Sheet E0345N10 (Ver. 1.0)  
μPD45128441-I, 45128841-I  
4.5 Command Truth Table for CKE  
Current State CKE /CS /RAS /CAS /WE Address  
n – 1  
Action  
Notes  
n
×
Self refresh  
H
L
×
H
L
L
L
×
H
L
L
L
H
L
L
L
×
H
L
×
H
L
L
L
L
H
L
L
L
L
×
×
×
×
×
×
×
×
×
H
H
L
×
×
H
H
L
×
H
H
L
×
×
H
×
×
H
L
L
L
×
H
L
L
L
×
×
×
×
×
×
×
×
×
H
L
×
×
×
H
L
×
×
H
L
×
×
×
H
×
×
×
H
L
L
×
×
H
L
L
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
H
×
×
×
×
H
L
×
×
×
H
L
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
INVALID, CLK (n – 1) would exit self refresh  
Self refresh recovery  
Self refresh recovery  
ILLEGAL  
H
H
H
H
L
L
L
L
ILLEGAL  
L
Maintain self refresh  
Idle after tRC  
Self refresh recovery  
H
H
H
H
H
H
H
H
H
L
H
H
H
H
L
Idle after tRC  
ILLEGAL  
ILLEGAL  
ILLEGAL  
L
ILLEGAL  
L
ILLEGAL  
L
ILLEGAL  
Power down  
All banks idle  
×
INVALID, CLK (n – 1) would exit power down  
EXIT power down Idle  
EXIT power down Idle  
Maintain power down mode  
Refer to operations in Operative Command Table  
Refer to operations in Operative Command Table  
Refer to operations in Operative Command Table  
CBR (auto) Refresh  
H
H
L
×
×
×
L
L
H
H
H
H
H
H
H
H
H
H
L
H
H
H
H
H
L
×
Op-Code Refer to operations in Operative Command Table  
Refer to operations in Operative Command Table  
Refer to operations in Operative Command Table  
Refer to operations in Operative Command Table  
L
L
L
×
Self refresh  
1
1
1
2
L
Op-Code Refer to operations in Operative Command Table  
×
×
×
×
Power down  
Row active  
H
L
×
Refer to operations in Operative Command Table  
Power down  
×
Any state other than  
listed above  
H
H
L
H
L
Refer to operations in Operative Command Table  
Begin clock suspend next cycle  
Exit clock suspend next cycle  
Maintain clock suspend  
×
×
×
H
L
L
Notes 1. Self refresh can be entered only from the all banks idle state. Power down can be entered only from all  
banks idle or row active state.  
2. Must be legal command as defined in Operative Command Table.  
Remark H = High level, L = Low level, × = High or Low level (Don't care)  
18  
Data Sheet E0345N10 (Ver. 1.0)  
μPD45128441-I, 45128841-I  
5. Initialization  
The synchronous DRAM is initialized in the power-on sequence according to the following.  
(1) To stabilize internal circuits, when power is applied, a 100 μs or longer pause must precede any signal toggling.  
(2) After the pause, all banks must be precharged using the Precharge command (The Precharge all banks  
command is convenient).  
(3) Once the precharge is completed and the minimum tRP is satisfied, the mode register can be programmed.  
After the mode register set cycle, tRSC (2 CLK minimum) pause must be satisfied as well.  
(4) Two or more CBR (Auto) refresh must be performed.  
Remarks 1. The sequence of Mode register programming and Refresh above may be transposed.  
2. CKE and DQM must be held high until the Precharge command is issued to ensure data-bus Hi-Z.  
19  
Data Sheet E0345N10 (Ver. 1.0)  
μPD45128441-I, 45128841-I  
6. Programming the Mode Register  
The mode register is programmed by the Mode register set command using address bits A11 through A0, BA0(A13)  
and BA1(A12) as data inputs. The register retains data until it is reprogrammed or the device loses power.  
The mode register has four fields;  
Options  
/CAS latency : A6 through A4  
Wrap type : A3  
: A11 through A7, BA0(A13), BA1(A12)  
Burst length : A2 through A0  
Following mode register programming, no command can be issued before at least 2 CLK have elapsed.  
/CAS Latency  
/CAS latency is the most critical of the parameters being set. It tells the device how many clocks must elapse  
before the data will be available.  
The value is determined by the frequency of the clock and the speed grade of the device. 13.3 Relationship  
between Frequency and Latency shows the relationship of /CAS latency to the clock period and the speed grade of  
the device.  
Burst Length  
Burst Length is the number of words that will be output or input in a read or write cycle. After a read burst is  
completed, the output bus will become Hi-Z.  
The burst length is programmable as 1, 2, 4, 8 or full page.  
Wrap Type (Burst Sequence)  
The wrap type specifies the order in which the burst data will be addressed. This order is programmable as either  
“Sequential” or “Interleave”. The method chosen will depend on the type of CPU in the system.  
Some microprocessor cache systems are optimized for sequential addressing and others for interleaved  
addressing. 7.1 Burst Length and Sequence shows the addressing sequence for each burst length using them.  
Both sequences support bursts of 1, 2, 4 and 8. Additionally, sequence supports the full page length.  
20  
Data Sheet E0345N10 (Ver. 1.0)  
μPD45128441-I, 45128841-I  
7. Mode Register  
BA0 BA1  
(A13) (A12) A11 A10 A9  
A8  
0
A7  
1
A6  
A5  
A4  
A3  
A2  
A1  
A0  
0
0
0
0
0
JEDEC Standard Test Set (refresh counter test)  
BA0 BA1  
(A13) (A12) A11 A10 A9  
A8  
0
A7  
0
A6  
A6  
A5  
A4  
A4  
A3  
A2  
A2  
A1  
BL  
A0  
A0  
x
x
x
x
1
LTMODE  
WT  
Burst Read and Single Write  
(for Write Through Cache)  
BA0 BA1  
(A13) (A12) A11 A10 A9  
A8  
1
A7  
0
A5  
A3  
A1  
Use in future  
BA0 BA1  
(A13) (A12) A11 A10 A9  
A8  
1
A7  
1
A6  
V
A5  
V
A4  
V
A3  
V
A2  
V
A1  
V
A0  
V
x
x
x
x
x
Vender Specific  
V = Valid  
x = Don’t care  
BA0 BA1  
(A13) (A12) A11 A10 A9  
A8  
0
A7  
0
A6  
A5  
A4  
A3  
A2  
A1  
A0  
0
0
0
0
0
LTMODE  
WT  
BL  
Mode Register Set  
Bits2-0  
000  
001  
010  
011  
100  
101  
110  
111  
WT = 0  
WT = 1  
1
1
2
2
4
4
Burst length  
8
8
R
R
R
R
R
R
R
Full page  
0
1
Sequential  
Interleave  
Wrap type  
Bits6-4  
000  
001  
010  
011  
100  
101  
110  
111  
/CAS latency  
R
R
2
3
Latency  
mode  
R
R
R
R
Remark R : Reserved  
Mode Register Set Timing  
CLK  
CKE  
/CS  
/RAS  
/CAS  
/WE  
A0 - A11,  
BA0(13), BA1(A12)  
Mode Register Set  
21  
Data Sheet E0345N10 (Ver. 1.0)  
μPD45128441-I, 45128841-I  
7.1 Burst Length and Sequence  
[Burst of Two]  
Starting address  
Sequential addressing sequence  
(decimal)  
Interleave addressing sequence  
(decimal)  
(column address A0, binary)  
0
1
0, 1  
1, 0  
0, 1  
1, 0  
[Burst of Four]  
Starting address  
Sequential addressing sequence  
(decimal)  
Interleave addressing sequence  
(decimal)  
(column address A1 - A0, binary)  
00  
01  
10  
11  
0, 1, 2, 3  
1, 2, 3, 0  
2, 3, 0, 1  
3, 0, 1, 2  
0, 1, 2, 3  
1, 0, 3, 2  
2, 3, 0, 1  
3, 2, 1, 0  
[Burst of Eight]  
Starting address  
Sequential addressing sequence  
(decimal)  
Interleave addressing sequence  
(decimal)  
(column address A2 - A0, binary)  
000  
001  
010  
011  
100  
101  
110  
111  
0, 1, 2, 3, 4, 5, 6, 7  
1, 2, 3, 4, 5, 6, 7, 0  
2, 3, 4, 5, 6, 7, 0, 1  
3, 4, 5, 6, 7, 0, 1, 2  
4, 5, 6, 7, 0, 1, 2, 3  
5, 6, 7, 0, 1, 2, 3, 4  
6, 7, 0, 1, 2, 3, 4, 5  
7, 0, 1, 2, 3, 4, 5, 6  
0, 1, 2, 3, 4, 5, 6, 7  
1, 0, 3, 2, 5, 4, 7, 6  
2, 3, 0, 1, 6, 7, 4, 5  
3, 2, 1, 0, 7, 6, 5, 4  
4, 5, 6, 7, 0, 1, 2, 3  
5, 4, 7, 6, 1, 0, 3, 2  
6, 7, 4, 5, 2, 3, 0, 1  
7, 6, 5, 4, 3, 2, 1, 0  
Full page burst is an extension of the above tables of sequential addressing, with the length being 2,048 (for 32M ×4  
device) and 1,024 (for 16M ×8 device).  
22  
Data Sheet E0345N10 (Ver. 1.0)  
μPD45128441-I, 45128841-I  
8. Address Bits of Bank-Select and Precharge  
BA1 BA0  
BA1(A12) BA0(A13)  
Result  
Row  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9 A10 A11  
(A12) (A13)  
Select Bank A  
“Activate” command  
0
0
1
1
0
1
0
1
(Activate command)  
Select Bank B  
“Activate” command  
Select Bank C  
“Activate” command  
Select Bank D  
“Activate” command  
BA1 BA0  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9 A10 A11  
(A12) (A13)  
BA1(A12) BA0(A13)  
A10  
0
Result  
(Precharge command)  
0
0
1
1
x
0
1
0
1
x
Precharge Bank A  
Precharge Bank B  
Precharge Bank C  
Precharge Bank D  
Precharge All Banks  
0
0
0
1
x : Don’t care  
disables Auto-Precharge  
(End of Burst)  
0
1
enables Auto-Precharge  
(End of Burst)  
BA1 BA0  
Col.  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9 A10  
x
(A12) (A13)  
(/CAS strobes)  
BA1(A12) BA0(A13)  
Result  
enables Read/Write  
commands for Bank A  
0
0
1
1
0
1
0
1
enables Read/Write  
commands for Bank B  
enables Read/Write  
commands for Bank C  
enables Read/Write  
commands for Bank D  
23  
Data Sheet E0345N10 (Ver. 1.0)  
μPD45128441-I, 45128841-I  
9. Precharge  
The precharge command can be issued anytime after tRAS (MIN.) is satisfied.  
Soon after the precharge command is issued, precharge operation performed and the synchronous DRAM enters  
the idle state after tRP is satisfied. The parameter tRP is the time required to perform the precharge.  
The earliest timing in a read cycle that a precharge command can be issued without losing any data in the burst is  
as follows.  
It is depending on the /CAS latency and clock cycle time.  
Burst length=4  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
/CAS latency = 2  
PRE  
Q3  
READ  
Command  
Hi-Z  
DQ  
Q1  
Q2  
Q4  
Q3  
/CAS latency = 3  
Command  
READ  
PRE  
Q2  
Hi-Z  
DQ  
Q1  
Q4  
(tRAS must be satisfied)  
In order to write all data to the memory cell correctly, the asynchronous parameter “tDPL” must be satisfied. The tDPL  
(MIN.) specification defines the earliest time that a precharge command can be issued. Minimum number of clocks is  
calculated by dividing tDPL (MIN.) with clock cycle time.  
In summary, the precharge command can be issued relative to reference clock that indicates the last data word is  
valid. In the following table, minus means clocks before the reference; plus means time after the reference.  
/CAS latency  
Read  
–1  
Write  
2
3
+tDPL (MIN.)  
+tDPL (MIN.)  
–2  
24  
Data Sheet E0345N10 (Ver. 1.0)  
μPD45128441-I, 45128841-I  
10. Auto Precharge  
During a read or write command cycle, A10 controls whether auto precharge is selected. A10 high in the Read or  
Write command (Read with Auto precharge command or Write with Auto precharge command), auto precharge is  
selected and begins automatically.  
The tRAS must be satisfied with a read with auto precharge or a write with auto precharge operation. In addition, the  
next activate command to the bank being precharged cannot be executed until the precharge cycle ends.  
In read cycle, once auto precharge has started, an activate command to the bank can be issued after tRP has been  
satisfied.  
In write cycle, the tDAL must be satisfied to issue the next activate command to the bank being precharged.  
The timing that begins the auto precharge cycle depends on both the /CAS latency programmed into the mode  
register and whether read or write cycle.  
10.1 Read with Auto Precharge  
During a read cycle, the auto precharge begins one clock earlier (/CAS latency of 2) or two clocks earlier (/CAS  
latency of 3) the last data word output.  
Burst length = 4  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
CLK  
/CAS latency = 2  
Auto precharge starts  
Command  
READA B  
Hi-Z  
DQ  
QB1  
QB2  
QB3  
QB4  
/CAS latency = 3  
Auto precharge starts  
Command  
READA B  
Hi-Z  
DQ  
QB1  
QB2  
QB3  
QB4  
(tRAS must be satisfied)  
Remark READA means Read with Auto precharge  
25  
Data Sheet E0345N10 (Ver. 1.0)  
μPD45128441-I, 45128841-I  
10.2 Write with Auto Precharge  
During a write cycle, the auto precharge starts at the timing that is equal to the value of the tDPL (MIN.) after the last  
data word input to the device.  
Burst length = 4  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
/CAS latency = 2  
Auto precharge starts  
Command  
WRITA B  
DB1  
Hi-Z  
DQ  
DB2  
DB3  
DB4  
t
DPL(MIN.)  
/CAS latency = 3  
Auto precharge starts  
Command  
WRITA B  
DB1  
Hi-Z  
DQ  
DB2  
DB3  
DB4  
t
DPL(MIN.)  
(tRAS must be satisfied)  
Remark WRITA means Write with Auto Precharge  
In summary, the auto precharge begins relative to a reference clock that indicates the last data word is valid.  
In the table below, minus means clocks before the reference; plus means after the reference.  
/CAS latency  
Read  
–1  
Write  
2
3
+tDPL (MIN.)  
+tDPL (MIN.)  
–2  
26  
Data Sheet E0345N10 (Ver. 1.0)  
μPD45128441-I, 45128841-I  
11. Read / Write Command Interval  
11.1 Read to Read Command Interval  
During a read cycle, when new Read command is issued, it will be effective after /CAS latency, even if the previous  
read operation does not completed. READ will be interrupted by another READ.  
The interval between the commands is 1 cycle minimum. Each Read command can be issued in every clock  
without any restriction.  
Burst length = 4, /CAS latency = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
CLK  
Command  
READ A  
READ B  
Hi-Z  
DQ  
QA1  
QB1  
QB2  
QB3  
QB4  
1cycle  
11.2 Write to Write Command Interval  
During a write cycle, when a new Write command is issued, the previous burst will terminate and the new burst will  
begin with a new Write command. WRITE will be interrupted by another WRITE.  
The interval between the commands is minimum 1 cycle. Each Write command can be issued in every clock  
without any restriction.  
Burst length = 4, /CAS latency = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
Command  
DQ  
WRITE A WRITE B  
Hi-Z  
DA1  
DB1  
DB2  
DB3  
DB4  
1cycle  
27  
Data Sheet E0345N10 (Ver. 1.0)  
μPD45128441-I, 45128841-I  
11.3 Write to Read Command Interval  
Write command and Read command interval is also 1 cycle.  
Only the write data before Read command will be written.  
The data bus must be Hi-Z at least one cycle prior to the first DOUT.  
Burst length = 4  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
/CAS latency = 2  
Command  
WRITE A  
DA1  
READ B  
Hi-Z  
DQ  
QB1  
QB2  
QB3  
QB4  
/CAS latency = 3  
Command  
WRITE A  
DA1  
READ B  
Hi-Z  
DQ  
QB1  
QB2  
QB3  
QB4  
28  
Data Sheet E0345N10 (Ver. 1.0)  
μPD45128441-I, 45128841-I  
11.4 Read to Write Command Interval  
During a read cycle, READ can be interrupted by WRITE.  
The Read and Write command interval is 1 cycle minimum. There is a restriction to avoid data conflict. The Data  
bus must be Hi-Z using DQM before WRITE.  
Burst length = 4  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
Command  
DQM  
READ WRITE  
Hi-Z  
DQ  
D1  
D2  
D3  
D4  
1cycle  
READ can be interrupted by WRITE. DQM must be High at least 3 clocks prior to the Write command.  
Burst length = 8  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
CLK  
/CAS latency = 2  
Command  
READ  
WRITE  
DQM  
DQ  
Q1  
Q2  
Q3  
D1  
WRITE  
D1  
D2  
D3  
Hi-Z is  
necessary  
/CAS latency = 3  
Command  
READ  
DQM  
DQ  
Q1  
Q2  
D2  
D3  
Hi-Z is  
necessary  
29  
Data Sheet E0345N10 (Ver. 1.0)  
μPD45128441-I, 45128841-I  
12. Burst Termination  
There are two methods to terminate a burst operation other than using a Read or a Write command. One is the  
burst stop command and the other is the precharge command.  
12.1 Burst Stop Command  
During a read cycle, when the burst stop command is issued, the burst read data are terminated and the data bus  
goes to Hi-Z after the /CAS latency from the burst stop command.  
Burst length = X  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
Command  
READ  
BST  
/CAS latency = 2  
Hi-Z  
DQ  
Q1  
Q2  
Q1  
Q3  
/CAS latency = 3  
Hi-Z  
DQ  
Q2  
Q3  
Remark BST: Burst stop command  
During a write cycle, when the burst stop command is issued, the burst write data are terminated and data bus goes  
to Hi-Z at the same clock with the burst stop command.  
Burst length = X  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
Command  
WRITE  
BST  
/CAS latency = 2, 3  
Hi-Z  
DQ  
D1  
D2  
D3  
D4  
Remark BST: Burst stop command  
30  
Data Sheet E0345N10 (Ver. 1.0)  
μPD45128441-I, 45128841-I  
12.2 Precharge Termination  
12.2.1 Precharge Termination in READ Cycle  
During a read cycle, the burst read operation is terminated by a precharge command.  
When the precharge command is issued, the burst read operation is terminated and precharge starts.  
The same bank can be activated again after tRP from the precharge command.  
To issue a precharge command, tRAS must be satisfied.  
When /CAS latency is 2, the read data will remain valid until one clock after the precharge command.  
Burst length = X, /CAS latency = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
Command  
READ  
PRE  
ACT  
Hi-Z  
DQ  
Q1  
Q2  
Q3  
Q4  
tRP  
(tRAS must be satisfied)  
When /CAS latency is 3, the read data will remain valid until two clocks after the precharge command.  
Burst length = X, /CAS latency = 3  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
Command  
READ  
PRE  
ACT  
Hi-Z  
DQ  
Q1  
Q2  
Q3  
Q4  
tRP  
(tRAS must be satisfied)  
31  
Data Sheet E0345N10 (Ver. 1.0)  
μPD45128441-I, 45128841-I  
12.2.2 Precharge Termination in WRITE Cycle  
During a write cycle, the burst write operation is terminated by a precharge command.  
When the precharge command is issued, the burst write operation is terminated and precharge starts.  
The same bank can be activated again after tRP from the precharge command.  
To issue a precharge command, tRAS must be satisfied.  
When /CAS latency is 2, the write data written prior to the precharge command will be correctly stored. However,  
invalid data may be written at the same clock as the precharge command. To prevent this from happening, DQM  
must be high at the same clock as the precharge command. This will mask the invalid data.  
Burst length = X, /CAS latency = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
Command  
WRITE  
PRE  
ACT  
DQM  
DQ  
Hi-Z  
D1  
D2  
D3  
D4  
D5  
tRP  
(tRAS must be satisfied)  
When /CAS latency is 3, the write data written prior to the precharge command will be correctly stored. However,  
invalid data may be written at the same clock as the precharge command. To prevent this from happening, DQM  
must be high at the same clock as the precharge command. This will mask the invalid data.  
Burst length = X, /CAS latency = 3  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
Command  
WRITE  
PRE  
ACT  
DQM  
DQ  
Hi-Z  
D1  
D2  
D3  
D4  
D5  
t
RP  
(tRAS must be satisfied)  
32  
Data Sheet E0345N10 (Ver. 1.0)  
μPD45128441-I, 45128841-I  
13. Electrical Specifications  
All voltages are referenced to VSS (GND).  
After power up, wait more than 100 μs and then, execute Power on sequence and CBR (auto) Refresh before  
proper device operation is achieved.  
Absolute Maximum Ratings  
Parameter  
Voltage on power supply pin relative to GND  
Voltage on any pin relative to GND  
Short circuit output current  
Power dissipation  
Symbol  
Condition  
Rating  
0.5 to +4.6  
0.5 to +4.6  
50  
Unit  
V
VCC, VCCQ  
VT  
IO  
V
mA  
W
PD  
TA  
Tstg  
1
Operating ambient temperature  
Storage temperature  
40 to + 85  
55 to + 125  
°C  
°C  
Caution Exposing the device to stress above those listed in Absolute Maximum Ratings could cause  
permanent damage. The device is not meant to be operated under conditions outside the limits  
described in the operational section of this specification. Exposure to Absolute Maximum  
Rating conditions for extended periods may affect device reliability.  
Recommended Operating Conditions  
Parameter  
Symbol  
VCC, VCCQ  
VIH  
Condition  
MIN.  
3.0  
TYP.  
3.3  
MAX.  
3.6  
Unit  
V
Supply voltage  
High level input voltage  
2.0  
VCC+0.3Note1  
V
Low level input voltage  
VIL  
0.3Note2  
40  
+0.8  
V
Operating ambient temperature  
TA  
85  
°C  
Notes 1. VIH (MAX.) = VCC + 1.5 V (Pulse width 5 ns)  
2. VIL (MIN.) = –1.5 V (Pulse width 5 ns)  
Pin Capacitance (TA = 25 °C, f = 1 MHz)  
Parameter  
Symbol  
CI1  
Condition  
MIN. TYP. MAX. Unit  
Input capacitance  
CLK  
2.5  
2.5  
3.5  
3.8  
pF  
CI2  
A0 - A11, BA0(A13), BA1(A12), CKE,  
/CS, /RAS, /CAS, /WE, DQM  
DQ0 - DQ8  
Data input / output capacitance  
CI/O  
4
6.5  
pF  
33  
Data Sheet E0345N10 (Ver. 1.0)  
μPD45128441-I, 45128841-I  
DC Characteristics 1 (Recommended Operating Conditions unless otherwise noted)  
Parameter  
Symbol  
Test condition  
/CAS Grade  
latency  
Maximum  
×4  
Unit  
mA  
Notes  
1
×8  
100  
100  
100  
105  
100  
100  
1
Operating current  
ICC1  
Burst length = 1,  
CL = 2 -A75  
-A80  
100  
100  
100  
105  
100  
100  
1
tRC tRC (MIN.), Io = 0 mA,  
One bank active  
-A10  
CL = 3 -A75  
-A80  
-A10  
Precharge standby current  
in power down mode  
ICC2P  
CKE VIL (MAX.), tCK = 15 ns  
mA  
mA  
ICC2PS CKE VIL (MAX.), tCK = ∞  
CKE VIH (MIN.), tCK = 15 ns, /CS VIH (MIN.),  
1
1
Precharge standby current  
in non power down mode  
ICC2N  
20  
20  
Input signals are changed one time during 30 ns.  
ICC2NS CKE VIH (MIN.), tCK = ,  
8
8
Input signals are stable.  
Active standby current  
in power down mode  
Active standby current  
in non power down mode  
ICC3P  
ICC3PS CKE VIL (MAX.), tCK = ∞  
ICC3N CKE VIH (MIN.), tCK = 15 ns, /CS VIH (MIN.),  
CKE VIL (MAX.), tCK = 15 ns  
5
4
5
4
mA  
mA  
30  
30  
Input signals are changed one time during 30 ns.  
ICC3NS CKE VIH (MIN.), tCK = ,  
20  
20  
Input signals are stable.  
Operating current  
(Burst mode)  
ICC4  
ICC5  
ICC6  
tCK tCK (MIN.), Io = 0 mA,  
CL = 2 -A75  
-A80  
105  
105  
85  
120  
120  
95  
mA  
2
All banks active  
-A10  
CL = 3 -A75  
-A80  
140  
130  
110  
230  
230  
230  
240  
230  
230  
2
155  
145  
125  
230  
230  
230  
240  
230  
230  
2
-A10  
CBR (auto) refresh current  
tRC tRC (MIN.)  
CL = 2 -A75  
-A80  
mA  
3
-A10  
CL = 3 -A75  
-A80  
-A10  
Self refresh current  
CKE 0.2 V  
-**  
mA  
mA  
-**L  
0.8  
0.8  
Notes 1. ICC1 depends on output loading and cycle rates. Specified values are obtained with the output open. In  
addition to this, ICC1 is measured condition that addresses are changed only one time during tCK (MIN.).  
2. ICC4 depends on output loading and cycle rates. Specified values are obtained with the output open. In  
addition to this, ICC4 is measured condition that addresses are changed only one time during tCK (MIN.).  
3. ICC5 is measured on condition that addresses are changed only one time during tCK (MIN.).  
34  
Data Sheet E0345N10 (Ver. 1.0)  
μPD45128441-I, 45128841-I  
DC Characteristics 2 (Recommended Operating Conditions unless otherwise noted)  
Parameter  
Symbol  
Test condition  
MIN.  
TYP.  
MAX.  
+1.0  
Unit  
Note  
Input leakage current  
II (L)  
0 VI VCCQ, VCCQ = VCC  
1.0  
μA  
All other pins not under test = 0 V  
Output leakage current  
High level output voltage  
Low level output voltage  
IO (L)  
VOH  
VOL  
0 VO VCCQ, DOUT is disabled  
IO = 4 mA  
1.5  
+1.5  
0.4  
μA  
V
2.4  
IO = +4 mA  
V
AC Characteristics (Recommended Operating Conditions unless otherwise noted)  
Test Conditions  
Parameter  
Value  
2.4 / 0.4  
1.4  
Unit  
AC high level input voltage / low level input voltage  
Input timing measurement reference level  
Transition time (Input rise and fall time)  
Output timing measurement reference level  
V
V
1
ns  
V
1.4  
tCK  
tCH  
tCL  
2.4 V  
CLK  
1.4 V  
0.4 V  
tSETUP  
tHOLD  
2.4 V  
1.4 V  
0.4 V  
Input  
tAC  
tOH  
Output  
35  
Data Sheet E0345N10 (Ver. 1.0)  
μPD45128441-I, 45128841-I  
Synchronous Characteristics  
Parameter  
Symbol  
-A75  
MAX.  
-A80  
MAX.  
-A10  
MAX.  
Unit  
Note  
MIN.  
7.5  
MIN.  
8
MIN.  
10  
Clock cycle time  
/CAS latency = 3 tCK3  
/CAS latency = 2 tCK2  
(133 MHz)  
(100 MHz)  
5.4  
(125 MHz)  
(100 MHz) ns  
10  
10  
(100 MHz)  
13  
(77 MHz)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Access time from CLK  
/CAS latency = 3 tAC3  
6
6
6
7
1
1
/CAS latency = 2 tAC2  
6
CLK high level width  
CLK low level width  
tCH  
tCL  
tOH  
tLZ  
2.5  
2.5  
2.7  
0
3
3
3
3
Data-out hold time  
2.7  
0
2.7  
0
1
Data-out low-impedance time  
Data-out high-impedance time /CAS latency = 3 tHZ3  
/CAS latency = 2 tHZ2  
2.7  
2.7  
1.5  
0.8  
1.5  
0.8  
1.5  
0.8  
1.5  
1.5  
5.4  
6
2.7  
2.7  
2
6
6
2.7  
2.7  
2
6
7
Data-in setup time  
Data-in hold time  
tDS  
tDH  
1
1
Address setup time  
Address hold time  
CKE setup time  
tAS  
2
2
tAH  
1
1
tCKS  
tCKH  
tCKSP  
tCMS  
2
2
CKE hold time  
1
1
CKE setup time (Power down exit)  
2
2
Command (/CS, /RAS, /CAS, /WE, DQM)  
setup time  
2
2
Command (/CS, /RAS, /CAS, /WE, DQM)  
hold time  
tCMH  
0.8  
1
1
ns  
Note 1. Output load  
Z = 50Ω  
Output  
50 pF  
36  
Data Sheet E0345N10 (Ver. 1.0)  
μPD45128441-I, 45128841-I  
Asynchronous Characteristics  
Parameter  
Symbol  
-A75  
-A80  
-A10  
Unit  
Note  
MIN.  
MAX.  
MIN.  
MAX.  
MIN.  
MAX.  
ACT to REF/ACT command period (operation)  
REF to REF/ACT command period (refresh)  
ACT to PRE command period  
tRC  
tRC1  
tRAS  
tRP  
67.5  
67.5  
45  
70  
70  
48  
20  
20  
16  
15  
70  
70  
50  
20  
20  
20  
15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
120,000  
120,000  
120,000  
PRE to ACT command period  
20  
Delay time ACT to READ/WRITE command  
ACT (one) to ACT (another) command period  
Data-in to PRE command period  
tRCD  
tRRD  
tDPL  
20  
15  
15  
Data-in to ACT (REF)  
command period  
(Auto precharge)  
/CAS latency = 3 tDAL3  
1CLK  
+22.5  
1CLK  
+20  
1CLK  
+20  
1CLK  
+20  
2
1CLK  
+20  
1CLK  
+20  
2
1
/CAS latency = 2 tDAL2  
ns  
Mode register set cycle time  
Transition time  
tRSC  
tT  
2
CLK  
ns  
0.5  
30  
64  
0.5  
30  
64  
1
30  
64  
Refresh time (4,096 refresh cycles)  
tREF  
ms  
Note 1. The –A75 grade device can satisfy the tDAL3 spec of 1CLK+20 ns for up to and including 125MHz operation.  
37  
Data Sheet E0345N10 (Ver. 1.0)  
13.1 AC Parameters for Read Timing (Manual Precharge, Burst Length = 4, /CAS Latency = 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
t
CK  
CLK  
tCH  
tCL  
CKE  
/CS  
tCKH  
tCKS  
tCMS  
tCMH  
/RAS  
/CAS  
/WE  
BA0  
BA1  
A10  
ADD  
DQM  
DQ  
μ
tAS  
tAH  
L
tAC  
tAC  
tAC  
tAC  
tHZ  
Hi-Z  
tLZ  
tOH  
tOH  
tOH  
tOH  
t
RCD  
tRAS  
tRP  
tRC  
Activate  
Command  
for Bank A  
Read  
Command  
for Bank A  
Precharge  
Command  
for Bank A  
Activate  
Command  
for Bank A  
AC Parameters for Read Timing (Auto Precharge, Burst Length = 4, /CAS Latency = 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
t
CK  
CLK  
tCH  
tCL  
CKE  
/CS  
Auto Precharge  
Start for Bank C  
tCKH  
tCKS  
tCMS  
tCMH  
/RAS  
/CAS  
/WE  
BA0  
BA1  
A10  
ADD  
DQM  
DQ  
μ
tAS  
tAH  
L
t
AC  
t
AC  
t
AC  
t
AC  
t
HZ  
Hi-Z  
t
RCD  
t
LZ  
t
OH  
t
OH  
t
OH  
t
OH  
tRAS  
tRRD  
tRC  
Activate  
Command  
for Bank C  
Read with  
Auto Precharge  
Command  
Activate  
Command  
for Bank D  
Activate  
Command  
for Bank C  
for Bank C  
13.2 AC Parameters for Write Timing (Burst Length = 4, /CAS Latency = 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
Auto Precharge  
Start for Bank C  
tCKH  
tCKS  
tCMS  
tCMH  
/RAS  
/CAS  
/WE  
BA0  
BA1  
A10  
ADD  
DQM  
DQ  
μ
tAS  
tAH  
L
tDS  
tDH  
Hi-Z  
tRCD  
tDAL  
tRC  
tRRD  
t
RCD  
t
DPL  
t
RP  
tRAS  
tRC  
Write with  
Auto Precharge  
Command  
Activate  
Command  
for Bank C  
Activate  
Command  
for Bank B  
Write  
Command  
for Bank B  
Activate Precharge  
Command Command  
for Bank C for Bank B  
Activate  
Command  
for Bank B  
for Bank C  
μPD45128441-I, 45128841-I  
13.3 Relationship between Frequency and Latency  
Speed version  
Clock cycle time [ns]  
-75  
-80  
-10  
7.5  
133  
3
10  
100  
2
8
125  
3
10  
100  
2
10  
100  
3
13  
77  
2
Frequency [MHz]  
/CAS latency  
[tRCD]  
3
2
3
2
2
2
/RAS latency (/CAS latency + [tRCD])  
6
4
6
4
5
4
[tRC]  
9
7
9
7
7
6
[tRC1]  
[tRAS]  
[tRRD]  
[tRP]  
9
7
9
7
8
6
6
5
6
5
5
4
2
2
2
2
2
2
3
2
3
2
2
2
[tDPL]  
[tDAL]  
[tRSC]  
2
2
2
2
2
2
4
3
4
3
3
3
2
2
2
2
2
2
41  
Data Sheet E0345N10 (Ver. 1.0)  
13.4 Mode Register Set (Burst Length = 4, /CAS Latency = 2)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
H
t
RSC  
2 CLK (MIN.)  
/RAS  
/CAS  
/WE  
BA0  
BA1  
A10  
ADDRESS KEY  
μ
ADD  
DQM  
DQ  
Hi-Z  
Precharge  
All Banks  
Command  
Mode  
Register Set  
Command  
Activate  
Command  
is valid  
t
RP  
13.5 Power On Sequence and CBR (Auto) Refresh  
CLK  
Clock cycle is necessary  
CKE  
t
RSC  
High level is necessary  
2 refresh cycles are necessary  
/CS  
/RAS  
/CAS  
/WE  
BA0  
BA1  
A10  
ADD  
DQM  
DQ  
ADDRESS KEY  
μ
High level is necessary  
Hi-Z  
Precharge  
All Banks  
Command  
is necessary  
Mode  
Register Set  
Command  
CBR (Auto)  
Refresh  
Command  
CBR (Auto)  
Refresh  
Command  
is necessary  
Activate  
Command  
is necessary is necessary  
t
RP  
t
RC1  
t
RC1  
13.6 /CS Function (Burst Length = 4, /CAS Latency = 3)  
Only /CS signal needs to be issued at minimum rate  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
H
/RAS  
/CAS  
/WE  
BA0  
L
L
BA1  
A10  
ADD  
DQM  
DQ  
RAa  
μ
RAa  
CAa  
CAb  
L
Hi-Z  
QAa1 QAa2 QAa3 QAa4  
DAb1 DAb2 DAb3 DAb4  
Activate  
Command  
for Bank A  
Read  
Command  
for Bank A  
Write  
Command  
for Bank A  
Precharge  
Command  
for Bank A  
13.7 Clock Suspension during Burst Read (using CKE Function) (1/2) (Burst Length = 4, /CAS Latency = 2)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
/RAS  
/CAS  
/WE  
BA0  
BA1  
A10  
ADD  
DQM  
DQ  
RAa  
RAa  
μ
CAa  
L
Hi-Z  
QAa1 QAa2  
QAa3  
QAa4  
Activate  
Command  
for Bank A  
Read  
Command  
for Bank A  
1-CLOCK  
SUSPENDED  
2-CLOCK  
SUSPENDED  
3-CLOCK  
SUSPENDED  
Hi-Z (turn off)  
at the end of burst  
Clock Suspension during Burst Read (using CKE Function) (2/2) (Burst Length = 4, /CAS Latency = 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
/RAS  
/CAS  
/WE  
BA0  
BA1  
A10  
ADD  
DQM  
DQ  
RAa  
RAa  
μ
CAa  
L
Hi-Z  
QAa1 QAa2  
QAa3  
QAa4  
Activate  
Read  
1-CLOCK  
2-CLOCK  
3-CLOCK  
Hi-Z (turn off)  
Command  
for Bank A  
Command  
for Bank A  
SUSPENDED  
SUSPENDED  
SUSPENDED  
at the end of burst  
13.8 Clock Suspension during Burst Write (using CKE Function) (1/2) (Burst Length = 4, /CAS Latency = 2)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
/RAS  
/CAS  
/WE  
BA0  
BA1  
A10  
ADD  
DQM  
DQ  
RAa  
RAa  
μ
CAa  
L
Hi-Z  
DAa1  
DAa2  
DAa3  
DAa4  
Activate  
Command  
for Bank A  
Write  
Command  
for Bank A  
1-CLOCK  
SUSPENDED  
2-CLOCK  
SUSPENDED  
3-CLOCK  
SUSPENDED  
Clock Suspension during Burst Write (using CKE Function) (2/2) (Burst Length = 4, /CAS Latency = 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
/RAS  
/CAS  
/WE  
BA0  
BA1  
A10  
ADD  
DQM  
DQ  
RAa  
RAa  
μ
CAa  
L
Hi-Z  
DAa1  
DAa2  
DAa3  
DAa4  
Activate  
Command  
for Bank A  
Write  
1-CLOCK  
2-CLOCK  
SUSPENDED  
3-CLOCK  
SUSPENDED  
Command SUSPENDED  
for Bank A  
13.9 Power Down Mode and Clock Mask (Burst Length = 4, /CAS Latency = 2)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
tCKSP  
tCKSP  
CKE  
/CS  
VALID  
/RAS  
/CAS  
/WE  
BA0  
BA1  
A10  
RAa  
RAa  
ADD  
DQM  
CAa  
μ
L
Hi-Z  
QAa1 QAa2 QAa3  
QAa4  
DQ  
Activate  
Command  
for Bank A  
Read  
Command  
for Bank A  
Precharge  
Command  
for Bank A  
Power Down  
Mode Entry  
Power Down  
Mode Entry  
Power Down  
Mode Exit  
Clock Mask  
Start  
Clock Mask  
End  
Power Down  
Mode Exit  
ACTIVE STANDBY  
PRECHARGE STANDBY  
13.10 CBR (Auto) Refresh  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
Tn  
Tn + 1 Tn + 2 Tn + 3 Tn + 4 Tn + 5 Tn + 6  
Tm Tm + 1 Tm + 2 Tm + 3 Tm + 4 Tm + 5 Tm + 6 Tm + 7  
CLK  
CKE  
H
/CS  
/RAS  
/CAS  
/WE  
BA0  
BA1  
A10  
ADD  
DQM  
DQ  
μ
L
Hi-Z  
Q1  
Precharge CBR (Auto) Refresh  
Command  
CBR (Auto) Refresh  
Activate  
Command  
Read  
Command  
(if necessary)  
tRP  
t
RC1  
tRC1  
13.11 Self Refresh (Entry and Exit)  
T0  
T1  
T2  
T3  
T4  
Tn  
Tn + 1 Tn + 2  
Tm Tm + 1  
Tk  
Tk + 1 Tk + 2 Tk + 3 Tk + 4  
CLK  
CKE  
/CS  
/RAS  
/CAS  
/WE  
BA0  
BA1  
A10  
ADD  
DQM  
DQ  
μ
L
Hi-Z  
Precharge  
Command  
Self Refresh  
Entry  
Self Refresh  
Exit  
Self Refresh Self Refresh  
Activate  
Command  
Entry  
Exit  
(if necessary)  
(or Activate Command)  
Next Clock  
Enable  
Next Clock  
Enable  
tRP  
tRC1  
tRC1  
13.12 Random Column Read (Page with Same Bank) (1/2) (Burst Length = 4, /CAS Latency = 2)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
H
/RAS  
/CAS  
/WE  
BA0  
BA1  
A10  
ADD  
DQM  
DQ  
RAd  
RAa  
RAa  
μ
CAa  
CAb  
CAc  
RAd  
CAd  
L
Hi-Z  
QAa1 QAa2 QAa3 QAa4 QAb1 QAb2 QAc1 QAc2 QAc3 QAc4  
QAd1 QAd2 QAd3  
Activate  
Command  
for Bank A  
Read  
Command  
for Bank A  
Read  
Command  
for Bank A  
Read  
Command  
for Bank A  
Precharge  
Command  
for Bank A  
Activate  
Command  
for Bank A  
Read  
Command  
for Bank A  
Random Column Read (Page with Same Bank) (2/2) (Burst Length = 4, /CAS Latency = 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
H
/RAS  
/CAS  
/WE  
BA0  
BA1  
A10  
ADD  
DQM  
DQ  
RAa  
RAa  
μ
RAa  
CAa  
CAb  
CAc  
RAa  
CAa  
L
Hi-Z  
QAa1 QAa2 QAa3 QAa4 QAb1 QAb2 QAc1 QAc2 QAc3 QAc4  
Read  
Command  
for Bank A  
Activate  
Command  
for Bank A  
Read  
Command  
for Bank A  
Read  
Command  
for Bank A  
Precharge  
Command  
for Bank A  
Activate  
Command  
for Bank A  
Read  
Command  
for Bank A  
13.13 Random Column Write (Page with Same Bank) (1/2) (Burst Length = 4, /CAS Latency = 2)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
H
/RAS  
/CAS  
/WE  
BA0  
BA1  
A10  
ADD  
DQM  
DQ  
RDd  
RDa  
RDa  
μ
CDa  
CDb  
CDc  
RDd  
CDd  
L
Hi-Z  
DDa1 DDa2 DDa3 DDa4 DDb1 DDb2 DDc1 DDc2 DDc3 DDc4  
DDd1 DDd2 DDd3 DDd4  
Activate  
Command  
for Bank D  
Write  
Command  
for Bank D  
Write  
Command  
for Bank D  
Write  
Command  
for Bank D  
Precharge  
Command  
for Bank D  
Activate  
Command  
for Bank D  
Write  
Command  
for Bank D  
Random Column Write (Page with Same Bank) (2/2) (Burst Length = 4, /CAS Latency = 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
H
/RAS  
/CAS  
/WE  
BA0  
BA1  
A10  
ADD  
DQM  
DQ  
RDd  
RDa  
μ
RDa  
CDa  
CDb  
CDc  
RDd  
CDd  
L
Hi-Z  
DDa1 DDa2 DDa3 DDa4 DDb1 DDb2 DDc1 DDc2 DDc3 DDc4  
DDd1 DDd2  
Activate  
Command  
for Bank D  
Write  
Command  
for Bank D  
Write  
Command  
for Bank D  
Write  
Command  
for Bank D  
Precharge  
Command  
for Bank D  
Activate  
Command  
for Bank D  
Write  
Command  
for Bank D  
13.14 Random Row Read (Ping-Pong Banks) (1/2) (Burst Length = 8, /CAS Latency = 2)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
H
/RAS  
/CAS  
/WE  
BA0  
BA1  
A10  
ADD  
DQM  
DQ  
RBa  
RBa  
RDb  
RDa  
RDa  
μ
CDa  
CBa  
RDb  
CDb  
L
Hi-Z  
QDa1 QDa2 QDa3 QDa4 QDa5 QDa6 QDa7 QDa8 QBa1 QBa2 QBa3 QBa4 QBa5 QBa6 QBa7 QBa8  
Activate  
Command  
for Bank D  
Read  
Command  
for Bank D  
Activate  
Command  
for Bank B  
Read  
Command  
for Bank B  
Activate  
Command  
for Bank D  
Read  
Command  
for Bank D  
Precharge  
Command  
for Bank D  
Random Row Read (Ping-Pong Banks) (2/2) (Burst Length = 8, /CAS Latency = 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
H
/RAS  
/CAS  
/WE  
BA0  
BA1  
A10  
ADD  
DQM  
DQ  
RAa  
RAa  
RBb  
RBa  
RBa  
μ
CBa  
CAa  
RBb  
CBb  
L
Hi-Z  
QBa1 QBa2 QBa3 QBa4 QBa5 QBa6 QBa7 QBa8 QAa1 QAa2 QAa3 QAa4 QAa5 QAa6 QAa7  
Activate  
Command  
for Bank B  
Read  
Command  
for Bank B  
Activate  
Command  
for Bank A  
Read  
Command  
for Bank A  
Precharge  
Command  
for Bank B  
Activate  
Command  
for Bank B  
Read  
Command  
for Bank B  
Precharge  
Command  
for Bank A  
13.15 Random Row Write (Ping-Pong Banks) (1/2) (Burst Length = 8, /CAS Latency = 2)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
H
/RAS  
/CAS  
/WE  
BA0  
BA1  
A10  
ADD  
DQM  
DQ  
RDa  
RDa  
RAb  
RAb  
RAa  
RAa  
μ
CAa  
CDa  
CAb  
L
Hi-Z  
DAa1 DAa2 DAa3 DAa4 DAa5 DAa6 DAa7 DAa8 DDa1 DDa2 DDa3 DDa4 DDa5 DDa6 DDa7 DDa8 DAb1 DAb2 DAb3  
Activate  
Command  
for Bank A  
Write  
Command  
for Bank A  
Activate  
Command  
for Bank D  
Write  
Command  
for Bank D  
Activate  
Command  
for Bank A  
Write  
Command  
for Bank A  
Precharge  
Command  
for Bank A  
Precharge  
Command  
for Bank D  
Random Row Write (Ping-Pong Banks) (2/2) (Burst Length = 8, /CAS Latency = 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
H
/RAS  
/CAS  
/WE  
BA0  
BA1  
A10  
RDa  
RDa  
RAb  
RAa  
RAa  
μ
ADD  
CAa  
CDa  
RAb  
CAb  
L
DQM  
Hi-Z  
DAa1 DAa2 DAa3 DAa4 DAa5 DAa6 DAa7 DAa8 DDa1 DDa2 DDa3 DDa4 DDa5 DDa6 DDa7 DDa8 DAb1 DAb2  
DQ  
Activate  
Command  
for Bank A  
Write  
Command  
for Bank A  
Activate  
Command  
for Bank D  
Write  
Command  
for Bank D  
Precharge  
Command  
for Bank A  
Activate  
Command  
for Bank A  
Write  
Command  
for Bank A  
Precharge  
Command  
for Bank D  
13.16 Read and Write (1/2) (Burst Length = 4, /CAS Latency = 2)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
H
/RAS  
/CAS  
/WE  
BA0  
BA1  
A10  
RAa  
RAa  
μ
ADD  
CAa  
CAb  
Write Latency = 0  
CAc  
DQM  
DQ  
L
Word Masking  
Hi-Z  
QAa1 QAa2 QAa3 QAa4  
DAb1 DAb2  
DAb4  
QAc1 QAc2  
QAc4  
Activate  
Command  
for Bank A  
Read  
Command  
for Bank A  
Write  
Command  
for Bank A  
Read  
Command  
for Bank A  
Hi-Z at the end of wrap function  
0-Clock Latency  
2-Clock Latency  
Read and Write (2/2) (Burst Length = 4, /CAS Latency = 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
H
/RAS  
/CAS  
/WE  
BA0  
BA1  
A10  
RAa  
RAa  
μ
ADD  
CAa  
CAb  
Write Latency = 0  
CAc  
DQM  
DQ  
L
Word Masking  
Hi-Z  
QAa1 QAa2 QAa3 QAa4  
DAb1 DAb2  
DAb4  
QAc1 QAc2  
Activate  
Read  
Write  
Read  
Command  
for Bank A  
Command  
for Bank A  
Command  
for Bank A  
Command  
for Bank A  
Hi-Z at the end of wrap function  
0-Clock Latency  
2-Clock Latency  
13.17 Interleaved Column Read Cycle (1/2) (Burst Length = 4, /CAS Latency = 2)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
H
/RAS  
/CAS  
/WE  
BA0  
BA1  
A10  
RAa  
RAa  
RDa  
RDa  
μ
ADD  
CAa  
CDa  
CDb  
CDc  
CAb  
CDd  
DQM  
DQ  
L
Hi-Z  
Aa1  
Aa2  
Aa3  
Aa4  
Da1  
Da2  
Db1  
Db2  
Dc1  
Dc2  
Ab1  
Ab2  
Dd1  
Dd2  
Dd3  
Dd4  
Activate  
Command  
for Bank A  
Read  
Command  
for Bank A  
Read  
Command  
for Bank D  
Read  
Command  
for Bank D  
Read  
Command  
for Bank D  
Read  
Command  
for Bank A  
Read  
Command  
for Bank D  
Activate  
Command  
for bank D  
Precharge  
Command  
for Bank A  
Precharge  
Command  
for Bank D  
Interleaved Column Read Cycle (2/2) (Burst Length = 4, /CAS Latency = 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
H
/RAS  
/CAS  
/WE  
BA0  
BA1  
A10  
RAa  
RAa  
RDa  
RDa  
μ
ADD  
CAa  
CDa  
CDb  
CAb  
CDc  
DQM  
DQ  
L
Hi-Z  
Aa1  
Aa2  
Aa3  
Aa4  
Da1  
Da2  
Db1  
Db2  
Dc1  
Dc2  
Ab1  
Ab2  
Ab3  
Ab4  
Activate  
Command  
for Bank A  
Read  
Command  
for Bank A  
Read  
Command  
for Bank D  
Read  
Command  
for Bank D  
Read  
Command  
for Bank D  
Read  
Command  
for Bank A  
Precharge  
Command  
for Bank D  
Precharge  
Command  
for Bank A  
Activate  
Command  
for Bank D  
13.18 Interleaved Column Write Cycle (1/2) (Burst Length = 4, /CAS Latency = 2)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
H
/RAS  
/CAS  
/WE  
BA0  
BA1  
A10  
ADD  
RAa  
RAa  
RBa  
RBa  
μ
CAa  
Aa1  
CBa  
Ba1  
CBb  
Bb1  
CBc  
Bc1  
CAb  
Ab1  
CBd  
DQM  
DQ  
L
Hi-Z  
Aa2  
Aa3  
Aa4  
Ba2  
Bb2  
Bc2  
Ab2  
Bd1  
Bd2  
Bd3  
Bd4  
Activate  
Command  
for Bank A  
Write  
Command  
for Bank A  
Activate  
Command  
for Bank B  
Write  
Command  
for Bank B  
Write  
Command  
for Bank B  
Write  
Command  
for Bank B  
Write  
Command  
for Bank A for Bank B for Bank A  
Write  
Precharge  
Command Command  
Precharge  
Command  
for Bank B  
Interleaved Column Write Cycle (2/2) (Burst Length = 4, /CAS Latency = 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
H
/RAS  
/CAS  
/WE  
BA0  
BA1  
A10  
ADD  
RAa  
RAa  
RBa  
RBa  
μ
CAa  
Aa1  
CBa  
Ba1  
CBb  
Bb1  
CAb  
CBd  
CBc  
DQM  
DQ  
L
Hi-Z  
Aa2  
Aa3  
Aa4  
Ba2  
Bb2  
Bc1  
Bc2  
Ab1  
Ab2  
Bd1  
Bd2  
Bd3  
Bd4  
Activate  
Write  
Write  
Write  
Write  
Write  
Write  
Command  
for Bank A  
Command  
for Bank A  
Command  
for Bank B  
Command  
for Bank B  
Command  
for Bank B  
Command  
for Bank A  
Command  
for Bank B  
Activate  
Command  
for Bank B  
Precharge  
Command  
for Bank A  
Precharge  
Command  
for Bank B  
13.19 Auto Precharge after Read Burst (1/2) (Burst Length = 4, /CAS Latency = 2)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
H
/RAS  
/CAS  
/WE  
BA0  
BA1  
A10  
RAa  
RAa  
RDa  
RDa  
RDb  
RAc  
μ
ADD  
CAa  
CDa  
CAb  
RDb  
CDb  
RAc  
CAc  
DQM  
DQ  
L
Hi-Z  
Activate  
Command  
for Bank A  
Activate  
Command  
for Bank A  
Activate  
Command  
for Bank D  
Activate  
Command  
for Bank D  
Read  
Command  
for Bank A  
Read with  
Auto Precharge  
Command  
Read with  
Auto Precharge  
Command  
Read with  
Auto Precharge  
Command  
Read with  
Auto Precharge  
Command  
for Bank D  
for Bank A  
for Bank D  
for Bank A  
Auto Precharge  
Start for Bank A  
Auto Precharge  
Start for Bank D  
Auto Precharge  
Start for Bank D  
Auto Precharge after Read Burst (2/2) (Burst Length = 4, /CAS Latency = 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
H
/RAS  
/CAS  
/WE  
BA0  
BA1  
A10  
ADD  
DQM  
DQ  
RAa  
RAa  
RDa  
RDb  
μ
CAa RDa  
CDa  
CAb  
RDb  
CDb  
L
Hi-Z  
Activate  
Command  
for Bank A  
Activate  
Command  
for Bank D  
Read with  
Auto Precharge  
Command  
Activate  
Command  
for Bank D  
Read with  
Auto Precharge  
Command  
Read  
Command  
for Bank A  
Read with  
Auto Precharge  
Command  
for Bank A  
for Bank D  
Auto Precharge  
Start for Bank D  
Auto Precharge  
Start for Bank A  
for Bank D  
13.20 Auto Precharge after Write Burst (1/2) (Burst Length = 4, /CAS Latency = 2)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
H
/RAS  
/CAS  
/WE  
BA0  
BA1  
A10  
RAa  
RAa  
RDa  
RDa  
RDb  
RAc  
ADD  
CAa  
CDa  
CAb  
RDb  
CDb  
RAc  
CAc  
μ
DQM  
DQ  
L
Hi-Z  
Activate  
Command  
for Bank A  
Activate  
Command  
for Bank D  
Activate  
Command  
for Bank D  
Activate  
Command  
for Bank A  
Write  
Command  
for Bank A  
Write with  
Auto Precharge  
Command  
Write with  
Auto Precharge  
Command  
Write with  
Auto Precharge  
Command  
Write with  
Auto Precharge  
Command  
for Bank D  
for Bank D  
for Bank A  
for Bank A  
Auto Precharge  
Start for Bank D  
Auto Precharge  
Start for Bank A  
Auto Precharge  
Start for Bank D  
Auto Precharge after Write Burst (2/2) (Burst Length = 4, /CAS Latency = 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
H
/RAS  
/CAS  
/WE  
BA0  
BA1  
A10  
ADD  
DQM  
DQ  
RAa  
RAa  
RDa  
RDb  
CAa RDa  
CDa  
CAb  
RDb  
CDb  
μ
L
Hi-Z  
Activate  
Command  
for Bank A  
Activate  
Command  
for Bank D  
Write with  
Auto Precharge  
Command  
Activate  
Command  
for bank D  
Write with  
Auto Precharge  
Command  
for Bank A  
Write  
Command  
for Bank A  
Write with  
Auto Precharge  
Command  
for Bank D  
Auto Precharge  
Start for Bank D  
Auto Precharge  
Start for Bank A  
for Bank D  
13.21 Full Page Read Cycle (1/2) (/CAS Latency = 2)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
Tn  
Tn + 1 Tn + 2 Tn + 3 Tn + 4 Tn + 5 Tn + 6 Tn + 7 Tn + 8 Tn + 9 Tn + 10 Tn + 11 Tn + 12 Tn + 13  
CLK  
CKE  
/CS  
H
/RAS  
/CAS  
/WE  
BA0  
BA1  
A10  
ADD  
RAa  
RDa  
RDa  
RDb  
μ
RAa  
CAa  
CDa  
RDb  
DQM  
DQ  
L
Hi-Z  
Aa  
Aa+1 Aa+2 Aa+m-2 Aa+m-1 Aa  
Aa+1  
Da  
Da+1 Da+2 Da+3 Da+4 Da+5 Da+6  
Activate  
Command  
for Bank A  
Read  
Command  
for Bank A  
Activate  
Command  
for Bank D  
Read  
Command  
for Bank D  
Precharge  
Command  
for Bank D  
Activate  
Command  
for Bank D  
Burst Stop Command  
Note: m is Full page burst length.  
Full Page Read Cycle (2/2) (/CAS latency = 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
Tn  
Tn + 1 Tn + 2 Tn + 3 Tn + 4 Tn + 5 Tn + 6 Tn + 7 Tn + 8 Tn + 9 Tn + 10 Tn + 11 Tn + 12  
CLK  
CKE  
/CS  
H
/RAS  
/CAS  
/WE  
BA0  
BA1  
A10  
ADD  
RAa  
RAa  
RDa  
RDa  
RDb  
μ
CAa  
CDa  
RDb  
L
DQM  
DQ  
Hi-Z  
Aa+m-3  
Aa  
Aa+1  
Aa+m-2 Aa+m-1 Aa  
Aa+1  
Da  
Da+1 Da+2 Da+3 Da+4 Da+5  
Activate  
Command  
for Bank A  
Read  
Command  
for Bank A  
Activate  
Command  
for Bank D  
Read  
Command  
for Bank D  
Precharge  
Command  
for Bank D  
Activate  
Command  
for Bank D  
Burst Stop Command  
Note: m is Full page burst length.  
13.22 Full Page Write Cycle (1/2) (/CAS latency = 2)  
T0  
T1  
T2  
T3  
T4  
T5  
Tn  
Tn + 1 Tn + 2 Tn + 3 Tn + 4 Tn + 5 Tn + 6 Tn + 7 Tn + 8 Tn + 9 Tn + 10 Tn + 11 Tn + 12 Tn + 13 Tn + 14 Tn + 15  
CLK  
CKE  
/CS  
H
/RAS  
/CAS  
/WE  
BA0  
BA1  
A10  
ADD  
RAa  
RAa  
RDa  
RDa  
RDb  
μ
CAa  
Aa  
CDa  
Da  
RDb  
DQM  
DQ  
L
Hi-Z  
Aa+m-2  
Aa+1 Aa+2  
Aa+m-1 Aa  
Aa+1  
Da+1 Da+2 Da+3 Da+4 Da+5  
Precharge  
Command  
for Bank D  
Write  
Command  
for Bank D  
Activate  
Command  
for Bank A  
Write  
Command  
for Bank A  
Activate  
Command  
for Bank D  
Activate  
Command  
for Bank D  
Burst Stop Command  
Note: m is Full page burst length.  
Full Page Write Cycle (2/2) (/CAS Latency = 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
Tn  
Tn + 1 Tn + 2 Tn + 3 Tn + 4 Tn + 5 Tn + 6 Tn + 7 Tn + 8 Tn + 9 Tn + 10 Tn + 11 Tn + 12 Tn + 13  
CLK  
CKE  
/CS  
H
/RAS  
/CAS  
/WE  
BA0  
BA1  
A10  
ADD  
RAa  
RAa  
RDa  
RDa  
RDb  
μ
CAa  
Aa  
CDa  
Da  
RDb  
DQM  
DQ  
L
Hi-Z  
Aa+1 Aa+2 Aa+3 Aa+m-1 Aa  
Aa+1  
Da+1 Da+2 Da+3 Da+4 Da+5  
Write  
Command  
for Bank D  
Precharge  
Command  
for Bank D  
Activate  
Command  
for Bank A  
Write  
Command  
for Bank A  
Activate  
Command  
for Bank D  
Activate  
Command  
for Bank D  
Burst Stop Command  
Burst is not completed  
in the Full Page Mode  
Note: m is Full page burst length.  
13.23 Burst Read and Single Write (Option) (Burst Length = 4, /CAS Latency = 2)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
H
/RAS  
/CAS  
/WE  
BA0  
BA1  
A10  
μ
ADD  
DQM  
DQ  
Hi-Z  
Qa1  
Qa2  
Qa3  
Qa4  
D1  
Qb1  
Qb2  
Qb4  
D2  
Activate  
Command  
for Bank D  
Read  
Command  
for Bank D  
Single  
Write  
Command  
for Bank D  
Single  
Write  
Command  
for Bank D  
Read  
Command  
for Bank D  
Single  
Write  
Command  
for Bank D  
Burst Read and Single Write (Option) (Burst Length = 4, /CAS Latency = 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
H
/RAS  
/CAS  
/WE  
BA0  
BA1  
A10  
μ
ADD  
DQM  
DQ  
Hi-Z  
Qa1  
Qa2  
Qa3  
Qa4  
D1  
Qb1  
Qb2  
Qb4  
Activate  
Command  
for Bank D  
Read  
Command  
for Bank D  
Single  
Write  
Command  
for Bank D  
Single  
Write  
Command  
for Bank D  
Read  
Command  
for Bank D  
13.24 Full Page Random Column Read (Burst Length = Full Page, /CAS Latency = 2)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
H
/RAS  
/CAS  
/WE  
BA0  
BA1  
A10  
ADD  
DQM  
DQ  
RAa  
RAa  
RDa  
RDa  
CAa  
CDa  
CAb  
CDb  
CDc  
CAc  
μ
L
Hi-Z  
QAa1 QDa1 QAb1 QAb2 QDb1 QDb2 QAc1 QAc2 QAc3 QDc1 QDc2 QDc3  
Activate  
Command  
for Bank D  
Activate  
Command  
for Bank A  
Precharge  
Command  
for Bank D  
Read  
Command  
for Bank A  
Read  
Command  
for Bank D  
Read  
Command  
for Bank A  
Read  
Command  
for Bank D  
Read  
Command  
for Bank A  
(PRE Termination of Burst)  
Read  
Command  
for Bank D  
Full Page Random Column Read (Burst Length = Full Page, /CAS Latency = 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
H
/RAS  
/CAS  
/WE  
BA0  
BA1  
A10  
ADD  
DQM  
DQ  
RAa  
RAa  
RDa  
RDa  
CAa  
CDa  
CAb  
CDb  
CDc  
CAc  
μ
L
Hi-Z  
Hi-Z  
QAa1 QDa1 QAb1 QAb2 QDb1 QDb2 QAc1 QAc2 QAc3 QDc1 QDc2 QDc3  
Activate  
Command  
for Bank D  
Activate  
Command  
for Bank A  
Precharge  
Command  
for Bank D  
Read  
Command  
for Bank A  
Read  
Command  
for Bank D  
Read  
Command  
for Bank A  
Read  
Command  
for Bank D  
Read  
Command  
for Bank A  
(PRE Termination of Burst)  
Read  
Command  
for Bank D  
13.25 Full Page Random Column Write (Burst Length = Full Page, /CAS Latency = 2)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
H
/RAS  
/CAS  
/WE  
BA0  
BA1  
A10  
ADD  
DQM  
DQ  
RAa  
RAa  
RDa  
RDa  
CAa  
CDa  
CAb  
CDb  
CDc  
CAc  
μ
L
Hi-Z  
DAa1 DDa1 DAb1 DAb2 DDb1 DDb2 DAc1 DAc2 DAc3 DDc1 DDc2 DDc3 DDc4  
Activate  
Command  
for Bank A  
Activate  
Command  
for Bank D  
Precharge  
Command  
for Bank D  
(PRE Termination of Burst)  
Write  
Command  
for Bank A  
Write  
Command  
for Bank A  
Write  
Command  
for Bank D  
Write  
Command  
for Bank A  
Write  
Command  
for Bank D  
Write  
Command  
for Bank D  
Full Page Random Column Write (Burst Length = Full Page, /CAS Latency = 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
H
/RAS  
/CAS  
/WE  
BA0  
BA1  
A10  
ADD  
DQM  
DQ  
RAa  
RAa  
RDa  
RDa  
CAa  
CDa  
CAb  
CDb  
CDc  
CAc  
μ
L
Hi-Z  
DAa1 DDa1 DAb1 DAb2 DDb1 DDb2 DAc1 DAc2 DAc3 DDc1 DDc2 DDc3 DDc4  
Activate  
Command  
for Bank A  
Activate  
Command  
for Bank D  
Precharge  
Command  
for Bank D  
(PRE Termination of Burst)  
Write  
Command  
for Bank A  
Write  
Command  
for Bank A  
Write  
Command  
for Bank D  
Write  
Command  
for Bank A  
Write  
Command  
for Bank D  
Write  
Command  
for Bank D  
13.26 PRE (Precharge) Termination of Burst (1/2) (Burst Length = 8, /CAS Latency = 2)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
H
/RAS  
/CAS  
/WE  
BA0  
BA1  
A10  
ADD  
DQM  
DQ  
RAa  
RAa  
RAb  
RAb  
RAc  
RAc  
CAa  
CAb  
μ
Write  
Masking  
L
Hi-Z  
Hi-Z  
DAa1 DAa2 DAa3 DAa4 DAa5  
QAb1 QAb2 QAb3 QAb4 QAb5  
Activate  
Write  
Read  
Activate  
Command  
for Bank A  
Command  
for Bank A  
Command  
for Bank A  
Command  
for Bank A  
Precharge  
Command  
for Bank A  
Activate  
Command  
for Bank A  
Precharge  
Command  
for Bank A  
PRE Termination  
of Burst  
PRE Termination  
of Burst  
tRCD  
tDPL  
tRP  
tRAS  
tRAS  
PRE (Precharge) Termination of Burst (2/2) (Burst Length = 8, /CAS Latency = 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
H
/RAS  
/CAS  
/WE  
BA0  
BA1  
A10  
ADD  
DQM  
DQ  
RAa  
RAa  
RAb  
RAc  
CAa  
RAb  
CAb  
RAc  
μ
L
Write  
Masking  
Hi-Z  
Hi-Z  
DAa1 DAa2 DAa3 DAa4 DAa5  
QAb1 QAb2 QAb3 QAb4  
Write  
Command  
for Bank A  
Read  
Command  
for Bank A  
Activate  
Command  
for Bank A  
Activate  
Command  
for Bank A  
Precharge  
Command  
PRE Termination  
for Bank A  
Activate  
Command  
for Bank A  
Precharge  
Command  
for Bank A  
PRE Termination  
of Burst  
of Burst  
t
RCD  
t
DPL  
t
RP  
t
RAS  
t
RAS  
μPD45128441-I, 45128841-I  
14. Package Drawing  
54-pin Plastic TSOP (II)  
Unit: mm  
22.22 ± 0.10  
A
54  
28  
PIN#1 ID  
1
27  
B
0.80  
0.16  
0.25 to 0.40  
0.91 max.  
M
S A B  
0.80  
Nom  
0.25  
0 to 8°  
S
0.10  
S
0.60 ± 0.15  
Note: Dimension "A" does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or  
gate burrs shall not exceed 0.20mm per side.  
ECA-TS2-0016-01  
82  
Data Sheet E0345N10 (Ver. 1.0)  
μPD45128441-I, 45128841-I  
15. Recommended Soldering Conditions  
Please consult with our sales offices for soldering conditions of the μPD45128xxx.  
Type of Surface Mount Device  
μPD45128xxxG5 : 54-pin Plastic TSOP (II)  
83  
Data Sheet E0345N10 (Ver. 1.0)  
μPD45128441-I, 45128841-I  
NOTES FOR CMOS DEVICES  
PRECAUTION AGAINST ESD FOR MOS DEVICES  
1
Exposing the MOS devices to a strong electric field can cause destruction of the gate  
oxide and ultimately degrade the MOS devices operation. Steps must be taken to stop  
generation of static electricity as much as possible, and quickly dissipate it, when once  
it has occurred. Environmental control must be adequate. When it is dry, humidifier  
should be used. It is recommended to avoid using insulators that easily build static  
electricity. MOS devices must be stored and transported in an anti-static container,  
static shielding bag or conductive material. All test and measurement tools including  
work bench and floor should be grounded. The operator should be grounded using  
wrist strap. MOS devices must not be touched with bare hands. Similar precautions  
need to be taken for PW boards with semiconductor MOS devices on it.  
2
HANDLING OF UNUSED INPUT PINS FOR CMOS DEVICES  
No connection for CMOS devices input pins can be a cause of malfunction. If no  
connection is provided to the input pins, it is possible that an internal input level may be  
generated due to noise, etc., hence causing malfunction. CMOS devices behave  
differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed  
high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected  
to VDD or GND with a resistor, if it is considered to have a possibility of being an output  
pin. The unused pins must be handled in accordance with the related specifications.  
3
STATUS BEFORE INITIALIZATION OF MOS DEVICES  
Power-on does not necessarily define initial status of MOS devices. Production process  
of MOS does not define the initial operation status of the device. Immediately after the  
power source is turned ON, the MOS devices with reset function have not yet been  
initialized. Hence, power-on does not guarantee output pin levels, I/O settings or  
contents of registers. MOS devices are not initialized until the reset signal is received.  
Reset operation must be executed immediately after power-on for MOS devices having  
reset function.  
CME0107  
84  
Data Sheet E0345N10 (Ver. 1.0)  
μPD45128441-I, 45128841-I  
The information in this document is subject to change without notice. Before using this document, confirm that this is the latest version.  
No part of this document may be copied or reproduced in any form or by any means without the prior  
written consent of Elpida Memory, Inc.  
Elpida Memory, Inc. does not assume any liability for infringement of any intellectual property rights  
(including but not limited to patents, copyrights, and circuit layout licenses) of Elpida Memory, Inc. or  
third parties by or arising from the use of the products or information listed in this document. No license,  
express, implied or otherwise, is granted under any patents, copyrights or other intellectual property  
rights of Elpida Memory, Inc. or others.  
Descriptions of circuits, software and other related information in this document are provided for  
illustrative purposes in semiconductor product operation and application examples. The incorporation of  
these circuits, software and information in the design of the customer's equipment shall be done under  
the full responsibility of the customer. Elpida Memory, Inc. assumes no responsibility for any losses  
incurred by customers or third parties arising from the use of these circuits, software and information.  
[Product applications]  
Elpida Memory, Inc. makes every attempt to ensure that its products are of high quality and reliability.  
However, users are instructed to contact Elpida Memory's sales office before using the product in  
aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment,  
medical equipment for life support, or other such application in which especially high quality and  
reliability is demanded or where its failure or malfunction may directly threaten human life or cause risk  
of bodily injury.  
[Product usage]  
Design your application so that the product is used within the ranges and conditions guaranteed by  
Elpida Memory, Inc., including the maximum ratings, operating supply voltage range, heat radiation  
characteristics, installation conditions and other related characteristics. Elpida Memory, Inc. bears no  
responsibility for failure or damage when the product is used beyond the guaranteed ranges and  
conditions. Even within the guaranteed ranges and conditions, consider normally foreseeable failure  
rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so  
that the equipment incorporating Elpida Memory, Inc. products does not cause bodily injury, fire or other  
consequential damage due to the operation of the Elpida Memory, Inc. product.  
[Usage environment]  
This product is not designed to be resistant to electromagnetic waves or radiation. This product must be  
used in a non-condensing environment.  
If you export the products or technology described in this document that are controlled by the Foreign  
Exchange and Foreign Trade Law of Japan, you must follow the necessary procedures in accordance  
with the relevant laws and regulations of Japan. Also, if you export products/technology controlled by  
U.S. export control regulations, or another country's export control laws or regulations, you must follow  
the necessary procedures in accordance with such laws or regulations.  
If these products/technology are sold, leased, or transferred to a third party, or a third party is granted  
license to use these products, that third party must be made aware that they are responsible for  
compliance with the relevant laws and regulations.  
M01E0107  

相关型号:

UPD45128441G5-A80L-9JF

128M-bit Synchronous DRAM 4-bank, LVTTL
ELPIDA

UPD45128441G5-A80L-9JF

32MX4 SYNCHRONOUS DRAM, 6ns, PDSO54, 0.400 INCH, PLASTIC, TSOP2-54
NEC

UPD45128441G5-A80LT-9JF

SDRAM|4X8MX4|CMOS|TSOP|54PIN|PLASTIC
ETC

UPD45128441G5-A80T-9JF

SDRAM|4X8MX4|CMOS|TSOP|54PIN|PLASTIC
ETC

UPD45128841

128M-bit Synchronous DRAM 4-bank, LVTTL
NEC

UPD45128841G5-A10

128M-bit Synchronous DRAM 4-bank, LVTTL
NEC

UPD45128841G5-A10-9JF

128M-bit Synchronous DRAM 4-bank, LVTTL
ELPIDA

UPD45128841G5-A10-9JF

128M-bit Synchronous DRAM 4-bank, LVTTL
NEC

UPD45128841G5-A10B

128M-bit Synchronous DRAM 4-bank, LVTTL
NEC

UPD45128841G5-A10B-9JF

128M-bit Synchronous DRAM 4-bank, LVTTL
NEC

UPD45128841G5-A10BL-9JF

Synchronous DRAM, 16MX8, 7ns, CMOS, PDSO54, 0.400 INCH, PLASTIC, TSOP2-54
ELPIDA

UPD45128841G5-A10BL-9JF

Synchronous DRAM, 16MX8, 7ns, CMOS, PDSO54, 0.400 INCH, PLASTIC, TSOP2-54
NEC