UPD4516161AG5-A10B-9NF [ELPIDA]

Synchronous DRAM, 1MX16, 7ns, MOS, PDSO50, 0.400 INCH, PLASTIC, TSOP2-50;
UPD4516161AG5-A10B-9NF
型号: UPD4516161AG5-A10B-9NF
厂家: ELPIDA MEMORY    ELPIDA MEMORY
描述:

Synchronous DRAM, 1MX16, 7ns, MOS, PDSO50, 0.400 INCH, PLASTIC, TSOP2-50

动态存储器 光电二极管 内存集成电路
文件: 总88页 (文件大小:1099K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
MOS INTEGRATED CIRCUIT  
µPD4516421A, 4516821A, 4516161A for Rev.P  
16M-bit Synchronous DRAM  
2-banks, LVTTL  
Description  
The µPD4516421A, 4516821A, 4516161A are high-speed 16,777,216-bit synchronous dynamic random-access  
memories, organized as 2,097,152 × 4 × 2, 1,048,576 × 8 × 2, 524,288 × 16 × 2 (word × bit × bank), respectively.  
The synchronous DRAMs achieved high-speed data transfer using the pipeline architecture.  
All inputs and outputs are synchronized with the positive edge of the clock.  
The synchronous DRAMs are compatible with Low Voltage TTL (LVTTL).  
These products are packaged in 44-pin TSOP (II) (× 4, × 8) and 50-pin TSOP (II) (× 16).  
Features  
Fully Synchronous Dynamic RAM, with all signals referenced to a positive clock edge  
Pulsed interface  
Possible to assert random column address in every cycle  
Dual internal banks controlled by A11(Bank Select)  
Byte control (×16) by LDQM and UDQM  
Programmable Wrap sequence (Sequential / Interleave)  
Programmable burst length (1, 2, 4, 8 and full page)  
Programmable /CAS latency (2 and 3)  
Automatic precharge and controlled precharge  
CBR (Auto) refresh and self refresh  
• ×4, ×8, ×16 organization  
Single 3.3 V ± 0.3 V power supply  
LVTTL compatible inputs and outputs  
2,048 refresh cycles / 32 ms  
Burst termination by Burst stop command and Precharge command  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
Not all devices/types available in every country. Please check with local Elpida Memory, Inc. for  
availability and additional information.  
Document No. E0122N10 (Ver.1.0)  
(Previous No. M12939EJ3V0DS00)  
Date Published May 2001 CP (K)  
Elpida Memory, Inc. is a joint venture DRAM company of NEC Corporation and Hitachi, Ltd.  
Printed in Japan  
µPD4516421A, 4516821A, 4516161A for Rev.P  
Ordering Information  
Organization  
Clock frequency  
MHz (MAX.)  
Part number  
Package  
(word × bit × bank)  
µPD4516421AG5-A80-9NF  
µPD4516421AG5-A10-9NF  
µPD4516421AG5-A10B-9NF  
µPD4516421AG5-A12-9NF  
µPD4516821AG5-A80-9NF  
µPD4516821AG5-A10-9NF  
µPD4516821AG5-A10B-9NF  
µPD4516821AG5-A12-9NF  
µPD4516161AG5-A80-9NF  
µPD4516161AG5-A10-9NF  
µPD4516161AG5-A10B-9NF  
µPD4516161AG5-A12-9NF  
µPD4516421AG5-A80L-9NF  
µPD4516421AG5-A10L-9NF  
µPD4516421AG5-A10BL-9NF  
µPD4516421AG5-A12L-9NF  
µPD4516821AG5-A80L-9NF  
µPD4516821AG5-A10L-9NF  
µPD4516821AG5-A10BL-9NF  
µPD4516821AG5-A12L-9NF  
µPD4516161AG5-A80L-9NF  
µPD4516161AG5-A10L-9NF  
µPD4516161AG5-A10BL-9NF  
µPD4516161AG5-A12L-9NF  
2M × 4 × 2  
125  
100  
100  
83  
44-pin Plastic TSOP (II)  
(10.16mm (400))  
1M × 8 × 2  
512K × 16 × 2  
2M × 4 × 2  
125  
100  
100  
83  
44-pin Plastic TSOP (II)  
(10.16mm (400))  
125  
100  
100  
83  
50-pin Plastic TSOP (II)  
(10.16mm (400))  
125  
100  
100  
83  
44-pin Plastic TSOP (II)  
(10.16mm (400))  
1M × 8 × 2  
125  
100  
100  
83  
44-pin Plastic TSOP (II)  
(10.16mm (400))  
512K × 16 × 2  
125  
100  
100  
83  
50-pin Plastic TSOP (II)  
(10.16mm (400))  
2
Data Sheet E0122N10  
µPD4516421A, 4516821A, 4516161A for Rev.P  
Part Number  
[ x4, x8 ]  
µ
PD4516821AG5 - A10L  
Synchronous  
DRAM  
Low Power  
Memory Density  
16 : 16M bits  
Minimum Cycle Time  
80 : 8 ns (125 MHz)  
10 : 10 ns (100 MHz)  
12 : 12 ns (83 MHz)  
Organization  
4 : x4  
8 : x8  
Number of Banks  
RNote( 1 : 1Bank)  
2 : 2Bank  
Low Voltage  
Interface  
A : 3.3  
± 0.3 V  
1 : LVTTL  
Package  
G5 : TSOP(II)  
Version  
[ x16 ]  
161  
Organization  
16 : x16  
Number of Banks  
& Interface  
1 : 2Bank, LVTTL  
3
Data Sheet E0122N10  
µPD4516421A, 4516821A, 4516161A for Rev.P  
Pin Configurations  
/xxx indicates active low signal.  
[µPD4516421A]  
44-pin Plastic TSOP (II) (10.16mm (400))  
2M words × 4 bits × 2 banks  
V
CC  
1
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
V
SS  
NC  
2
NC  
V
SS  
Q
3
VSSQ  
DQ0  
4
DQ3  
V
CC  
Q
5
VCC  
Q
NC  
6
NC  
V
SS  
Q
7
V
SS  
Q
DQ1  
8
DQ2  
V
CC  
Q
9
VCCQ  
NC  
NC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
NC  
NC  
/WE  
/CAS  
/RAS  
/CS  
A11  
A10  
A0  
DQM  
CLK  
CKE  
NC  
A9  
A8  
A7  
A1  
A6  
A2  
A5  
A3  
A4  
V
CC  
V
SS  
A0 to A11 Note  
DQ0 to DQ3  
CLK  
: Address inputs  
: Data inputs / outputs  
: Clock input  
CKE  
: Clock enable  
/CS  
: Chip select  
/RAS  
/CAS  
/WE  
: Row address strobe  
: Column address strobe  
: Write enable  
DQM  
VCC  
: DQ mask enable  
: Supply voltage  
: Ground  
VSS  
Note A0 to A10  
A0 to A9  
: Row address inputs  
: Column address inputs  
: Bank select  
VCCQ  
VSSQ  
NC  
: Supply voltage for DQ  
: Ground for DQ  
: No connection  
A11  
4
Data Sheet E0122N10  
µPD4516421A, 4516821A, 4516161A for Rev.P  
[µPD4516821A]  
44-pin Plastic TSOP (II) (10.16mm (400))  
1M words × 8 bits × 2 banks  
V
CC  
1
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
V
SS  
DQ0  
2
DQ7  
V
SS  
Q
3
VSSQ  
DQ1  
4
DQ6  
V
CC  
Q
5
VCCQ  
DQ2  
6
DQ5  
V
SS  
Q
7
VSSQ  
DQ3  
8
DQ4  
V
CC  
Q
9
VCCQ  
NC  
NC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
NC  
NC  
/WE  
/CAS  
/RAS  
/CS  
A11  
A10  
A0  
DQM  
CLK  
CKE  
NC  
A9  
A8  
A7  
A1  
A6  
A2  
A5  
A3  
A4  
V
CC  
V
SS  
A0 to A11 Note  
DQ0 to DQ7  
CLK  
: Address inputs  
: Data inputs / outputs  
: Clock input  
CKE  
: Clock enable  
/CS  
: Chip select  
/RAS  
/CAS  
/WE  
: Row address strobe  
: Column address strobe  
: Write enable  
DQM  
VCC  
: DQ mask enable  
: Supply voltage  
: Ground  
VSS  
Note A0 to A10 : Row address inputs  
VCCQ  
VSSQ  
NC  
: Supply voltage for DQ  
: Ground for DQ  
: No connection  
A0 to A8 : Column address inputs  
A11  
: Bank select  
5
Data Sheet E0122N10  
µPD4516421A, 4516821A, 4516161A for Rev.P  
[µPD4516161A]  
50-pin Plastic TSOP (II) (10.16mm (400))  
512K words × 16 bits × 2 banks  
V
CC  
1
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
V
SS  
DQ0  
DQ1  
2
DQ15  
DQ14  
3
V
SS  
Q
4
VSSQ  
DQ2  
DQ3  
5
DQ13  
DQ12  
6
V
CC  
Q
7
VCCQ  
DQ4  
DQ5  
8
DQ11  
DQ10  
9
V
SS  
Q
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
VSSQ  
DQ6  
DQ7  
DQ9  
DQ8  
V
CC  
Q
VCCQ  
LDQM  
/WE  
/CAS  
/RAS  
/CS  
A11  
A10  
A0  
NC  
UDQM  
CLK  
CKE  
NC  
A9  
A8  
A7  
A1  
A6  
A2  
A5  
A3  
A4  
V
CC  
V
SS  
A0 to A11 Note  
DQ0 to DQ15  
CLK  
: Address inputs  
: Data inputs / outputs  
: Clock input  
CKE  
: Clock enable  
/CS  
: Chip select  
/RAS  
: Row address strobe  
: Column address strobe  
: Write enable  
/CAS  
/WE  
LDQM  
UDQM  
VCC  
: Lower DQ mask enable  
: Upper DQ mask enable  
: Supply voltage  
VSS  
: Ground  
Note A0 to A10 : Row address inputs  
VCCQ  
: Supply voltage for DQ  
: Ground for DQ  
VSSQ  
A0 to A7 : Column address inputs  
NC  
: No connection  
A11  
: Bank select  
6
Data Sheet E0122N10  
µPD4516421A, 4516821A, 4516161A for Rev.P  
Block Diagram  
CLK  
Clock  
Generator  
CKE  
Bank B  
Row  
Address  
Address  
Buffer  
&
Refresh  
Counter  
Mode  
Register  
Bank A  
Sense Amplifier  
DQM  
/CS  
Column Decoder &  
Column  
Address  
Buffer  
&
Latch Circuit  
/RAS  
/CAS  
/WE  
Burst  
Counter  
Data Control Circuit  
DQ  
7
Data Sheet E0122N10  
µPD4516421A, 4516821A, 4516161A for Rev.P  
CONTENTS  
1. Input / Output Pin Function ............................................................................................................ 10  
2. Commands ....................................................................................................................................... 11  
3. Simplified State Diagram ................................................................................................................. 14  
4. Truth Table ....................................................................................................................................... 15  
4.1 Command Truth Table............................................................................................................................. 15  
4.2 DQM Truth Table...................................................................................................................................... 15  
4.3 CKE Truth Table....................................................................................................................................... 15  
4.4 Operative Command Table .................................................................................................................... 16  
4.5 Command Truth Table for CKE .............................................................................................................. 19  
4.6 Command Truth Table for Two Banks Operation ................................................................................ 20  
5. Initialization ...................................................................................................................................... 22  
6. Programming the Mode Register ................................................................................................... 23  
7. Mode Register .................................................................................................................................. 24  
7.1 Burst Length and Sequence .................................................................................................................. 25  
8. Address Bits of Bank-Select and Precharge ................................................................................. 26  
9. Precharge .......................................................................................................................................... 27  
10. Auto Precharge ................................................................................................................................ 28  
10.1 Read with Auto Precharge .................................................................................................................. 28  
10.2 Write with Auto Precharge .................................................................................................................. 29  
11. Read / Write Command Interval ...................................................................................................... 30  
11.1 Read to Read Command Interval ........................................................................................................ 30  
11.2 Write to Write Command Interval ........................................................................................................ 30  
11.3 Write to Read Command Interval ........................................................................................................ 31  
11.4 Read to Write Command Interval ........................................................................................................ 32  
12. Burst Termination ............................................................................................................................ 33  
12.1 Burst Stop Command .......................................................................................................................... 33  
12.2 Precharge Termination ........................................................................................................................ 34  
12.2.1 Precharge Termination in READ Cycle .................................................................................... 34  
12.2.2 Precharge Termination in WRITE Cycle .................................................................................. 35  
8
Data Sheet E0122N10  
µPD4516421A, 4516821A, 4516161A for Rev.P  
13. Electrical Specifications .................................................................................................................. 36  
13.1 AC Parameters for Read Timing ......................................................................................................... 42  
13.2 AC Parameters for Write Timing ......................................................................................................... 43  
13.3 Relationship between Frequency and Latency ................................................................................. 44  
13.4 Mode Register Set ................................................................................................................................ 45  
13.5 Power on Sequence and CBR (Auto) Refresh ................................................................................... 46  
13.6 /CS Function ......................................................................................................................................... 47  
13.7 Clock Suspension during Burst Read (using CKE Function) .......................................................... 48  
13.8 Clock Suspension during Burst Write (using CKE Function) .......................................................... 50  
13.9 Power Down Mode and Clock Mask ................................................................................................... 52  
13.10 CBR (Auto) Refresh .............................................................................................................................. 53  
13.11 Self Refresh (Entry and Exit) ............................................................................................................... 54  
13.12 Random Column Read (Page with Same Bank) ................................................................................ 55  
13.13 Random Column Write (Page with Same Bank) ................................................................................ 57  
13.14 Random Row Read (Ping-Pong Banks) ............................................................................................. 59  
13.15 Random Row Write (Ping-Pong Banks) ............................................................................................. 61  
13.16 Read and Write ..................................................................................................................................... 63  
13.17 Interleaved Column Read Cycle .......................................................................................................... 65  
13.18 Interleaved Column Write Cycle ......................................................................................................... 67  
13.19 Auto Precharge after Read Burst ........................................................................................................ 69  
13.20 Auto Precharge after Write Burst ....................................................................................................... 71  
13.21 Full Page Read Cycle ........................................................................................................................... 73  
13.22 Full Page Write Cycle ........................................................................................................................... 75  
13.23 Byte Write Operation ............................................................................................................................ 77  
13.24 Burst Read and Single Write (Option) ................................................................................................ 78  
13.25 Full Page Random Column Read ........................................................................................................ 79  
13.26 Full Page Random Column Write ....................................................................................................... 80  
13.27 PRE (Precharge) Termination of Burst ............................................................................................... 81  
14. Package Drawings ........................................................................................................................... 83  
15. Recommended Soldering Condition .............................................................................................. 85  
16. Revision History ............................................................................................................................... 86  
9
Data Sheet E0122N10  
µPD4516421A, 4516821A, 4516161A for Rev.P  
1. Input / Output Pin Function  
Pin name  
Input / Output  
Input  
Function  
CLK  
CKE  
CLK is the master clock input. Other inputs signals are referenced to the CLK rising  
edge.  
Input  
CKE determine validity of the next CLK (clock). If CKE is high, the next CLK rising edge  
is valid; otherwise it is invalid. If the CLK rising edge is invalid, the internal clock is not  
issued and the µPD4516xxxA suspends operation.  
When the µPD4516xxxA is not in burst mode and CKE is negated, the device enters  
power down mode. During power down mode, CKE must remain low.  
/CS low starts the command input cycle. When /CS is high, commands are ignored but  
operations continue.  
/CS  
Input  
Input  
Input  
/RAS, /CAS, /WE  
A0 - A10  
/RAS, /CAS and /WE have the same symbols on conventional DRAM but different  
functions. For details, refer to the command table.  
Row Address is determined by A0 - A10 at the CLK (clock) rising edge in the active  
command cycle. It does not depend on the bit organization.  
Column Address is determined by A0 - A9 at the CLK rising edge in the read or write  
command cycle. It depends on the bit organization: A0 - A9 for ×4 device, A0 – A8 for  
×8 device, A0 – A7 for ×16 device.  
A10 defines the precharge mode. When A10 is high in the precharge command cycle,  
both banks are precharged; when A10 is low, only the bank selected by A11 is  
precharged.  
When A10 is high in read or write command cycle, the precharge starts automatically  
after the burst access.  
A11  
Input  
Input  
A11 is the bank select signal. In command cycle, A11 low select bank A and A11 high  
high select bank B.  
DQM, UDQM, LDQM  
DQM controls I/O buffers. In ×16 products, UDQM and LDQM control upper byte and  
lower byte I/O buffers, respectively.  
In read mode, DQM controls the output buffers like a conventional /OE pin.  
DQM high and DQM low turn the output buffers off and on, respectively.  
The DQM latency for the read is two clocks.  
In write mode, DQM controls the word mask. Input data is written to the memory cell if  
DQM is low but not if DQM is high.  
The DQM latency for the write is zero.  
DQ0 - DQ15  
Input / Output  
DQ pins have the same function as I/O pins on a conventional DRAM.  
VCC, VSS, VCCQ, VSSQ  
(Power supply) VCC and VSS are power supply pins for internal circuits. VCCQ and VSSQ are power  
supply pins for the output buffers.  
10  
Data Sheet E0122N10  
µPD4516421A, 4516821A, 4516161A for Rev.P  
2. Commands  
Mode register set command  
Fig.1 Mode register set command  
CLK  
(/CS, /RAS, /CAS, /WE = Low)  
CKE  
/CS  
H
The µPD4516xxxA has a mode register that defines how the device  
operates. In this command, A0 through A11 are the data input pins.  
After power on, the mode register set command must be executed to  
initialize the device.  
/RAS  
/CAS  
/WE  
A11  
The mode register can be set only when both banks are in idle state.  
During 2 CLK (tRSC) following this command, the µPD4516xxxA  
cannot accept any other commands.  
A10  
Add  
Activate command  
Fig.2 Row address strobe and  
bank activate command  
(/CS, /RAS = Low, /CAS, /WE = High)  
CLK  
CKE  
/CS  
H
The µPD4516xxxA has two banks, each with 2,048 rows.  
This command activates the bank selected by BS(A11) and a row  
address selected by A0 through A10.  
/RAS  
/CAS  
/WE  
This command corresponds to a conventional DRAM’s /RAS falling.  
A11  
(Bank select)  
A10  
Add  
Row  
Row  
Precharge command  
Fig.3 Precharge command  
CLK  
(/CS, /RAS, /WE = Low, /CAS = High)  
CKE  
/CS  
H
This command begins precharge operation of the bank selected by  
BS(A11). When A10 is High, both banks are precharged, regardless  
of BS(A11). When A10 is Low, only the bank selected by BS(A11) is  
precharged. BS(A11) low selects bank A and BS(A11) high selects  
bank B.  
/RAS  
/CAS  
/WE  
A11  
(Bank select)  
After this command, the µPD4516xxxA can’t accept the activate  
command to the precharging bank during tRP (precharge to activate  
command period).  
A10  
(Precharge select)  
Add  
This command corresponds to a conventional DRAM’s /RAS rising.  
11  
Data Sheet E0122N10  
µPD4516421A, 4516821A, 4516161A for Rev.P  
Write command  
Fig.4 Column address and write command  
CLK  
(/CS, /CAS, /WE = Low, /RAS = High)  
CKE  
/CS  
H
If the mode register is in the burst write mode, this command sets the  
burst start address given by the column address to begin the burst  
write operation. The first write data in burst mode can input with this  
command with subsequent data on following clocks.  
/RAS  
/CAS  
/WE  
A11  
(Bank select)  
A10  
Add  
Col.  
Read command  
Fig.5 Column address and read command  
CLK  
(/CS, /CAS = Low, /RAS, /WE = High)  
CKE  
/CS  
H
Read data is available after /CAS latency requirements have been  
met. This command sets the burst start address given by the column  
address.  
/RAS  
/CAS  
/WE  
A11  
(Bank select)  
A10  
Add  
Col.  
CBR (auto) refresh command  
Fig.6 CBR (auto) refresh command  
CLK  
(/CS, /RAS, /CAS = Low, /WE, CKE = High)  
CKE  
/CS  
H
This command is a request to begin the CBR (auto) refresh  
operation. The refresh address is generated internally.  
Before executing CBR (auto) refresh, both banks must be  
precharged.  
/RAS  
/CAS  
/WE  
After this cycle, both banks will be in the idle (precharged) state and  
ready for a row activate command.  
A11  
(Bank select)  
A10  
Add  
During tRC period (from refresh command to refresh or activate  
command), the µPD4516xxxA cannot accept any other command.  
12  
Data Sheet E0122N10  
µPD4516421A, 4516821A, 4516161A for Rev.P  
Self refresh entry command  
Fig.7 Self refresh entry command  
CLK  
(/CS, /RAS, /CAS, CKE = Low, /WE = High)  
CKE  
/CS  
After the command execution, self refresh operation continues while  
CKE remains low. When CKE goes high, the µPD4516xxxA exits the  
self refresh mode.  
/RAS  
/CAS  
/WE  
During self refresh mode, refresh interval and refresh operation are  
performed internally, so there is no need for external control.  
Before executing self refresh, both banks must be precharged.  
A11  
(Bank select)  
A10  
Add  
Burst stop command  
Fig.8 Burst stop command in Full Page  
Mode  
(/CS, /WE = Low, /RAS, /CAS = High)  
This command can stop the current burst operation.  
CLK  
CKE  
H
/CS  
/RAS  
/CAS  
/WE  
A11  
(Bank select)  
A10  
Add  
No operation  
Fig.9 No operation  
CLK  
(/CS = Low, /RAS, /CAS, /WE = High)  
CKE  
/CS  
H
This command is not an execution command. No operations begin  
or terminate by this command.  
/RAS  
/CAS  
/WE  
A11  
(Bank select)  
A10  
Add  
13  
Data Sheet E0122N10  
µPD4516421A, 4516821A, 4516161A for Rev.P  
3. Simplified State Diagram  
14  
Data Sheet E0122N10  
µPD4516421A, 4516821A, 4516161A for Rev.P  
4. Truth Table  
4.1 Command Truth Table  
Function  
Symbol  
CKE  
/CS  
/RAS  
/CAS  
/WE  
A11  
A10  
A9 - A0  
n – 1  
H
n
×
×
×
×
×
×
×
×
×
×
×
Device deselect  
No operation  
DESL  
NOP  
H
L
L
L
L
L
L
L
L
L
L
×
H
H
H
H
H
H
L
×
H
H
L
×
H
L
×
×
×
×
×
×
H
Burst stop  
BST  
H
×
×
×
Read  
READ  
READA  
WRIT  
WRITA  
ACT  
H
H
H
L
V
V
V
V
V
V
×
L
V
V
V
V
V
×
Read with auto precharge  
Write  
H
L
H
L
H
L
Write with auto precharge  
Bank activate  
H
L
L
H
V
L
H
H
H
H
L
H
L
Precharge select bank  
Precharge both banks  
Mode register set  
PRE  
H
L
PALL  
MRS  
H
L
L
H
L
×
H
L
L
L
V
Remark H = High level, L = Low level, × = High or Low level (Don't care), V = Valid data input  
4.2 DQM Truth Table  
Function  
Symbol  
CKE  
DQM  
n – 1  
H
n
×
×
×
×
×
×
U
L
Data write / output enable  
ENB  
L
Data mask / output disable  
MASK  
ENBU  
ENBL  
MASKU  
MASKL  
H
H
Upper byte write enable / output enable  
Lower byte write enable / output enable  
Upper byte write inhibit / output disable  
Lower byte write inhibit / output disable  
H
L
×
×
L
H
H
H
×
×
H
H
Remark H = High level, L = Low level, × = High or Low level (Don't care)  
4.3 CKE Truth Table  
Current state  
Function  
Symbol  
CKE  
/CS  
/RAS  
/CAS  
/WE Address  
n – 1  
H
L
n
L
Activating  
Any  
Clock suspend mode entry  
Clock suspend mode  
Clock suspend mode exit  
CBR (auto) refresh command  
Self refresh entry  
×
×
×
L
L
L
H
×
×
×
×
×
L
L
H
×
×
×
×
×
×
L
L
H
×
×
×
×
×
×
×
×
×
×
×
×
×
×
L
Clock suspend  
Idle  
L
H
H
L
×
REF  
H
H
L
H
H
H
×
Idle  
SELF  
Self refresh  
Self refresh exit  
H
H
L
L
Idle  
Power down entry  
Power down exit  
H
L
×
Power down  
H
×
Remark H = High level, L = Low level, × = High or Low level (Don't care)  
15  
Data Sheet E0122N10  
µPD4516421A, 4516821A, 4516161A for Rev.P  
4.4 Operative Command Table Note1  
(1/3)  
Current state  
Idle  
/CS /RAS /CAS /WE  
Address  
Command  
DESL  
NOP or BST  
Action  
Nop or power down  
Nop or power down  
Notes  
H
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
×
H
H
H
L
×
H
L
×
×
×
×
2
2
3
3
H
L
BA, CA, A10 READ/READA ILLEGAL  
L
BA, CA, A10 WRIT/WRITA  
ILLEGAL  
H
H
L
H
L
BA, RA  
ACT  
Row activating  
L
BA, A10  
PRE/PALL  
REF/SELF  
MRS  
Nop  
L
H
L
×
CBR (auto) refresh or self refresh  
4
L
L
Op-Code  
Mode register accessing  
Row active  
×
×
×
×
×
DESL  
Nop  
Nop  
H
H
H
L
H
L
×
NOP or BST  
H
L
BA, CA, A10 READ/READA Begin read : Determine AP  
5
5
3
6
L
BA, CA, A10 WRIT/WRITA  
Begin write : Determine AP  
ILLEGAL  
H
H
L
H
L
BA, RA  
ACT  
L
BA, A10  
PRE/PALL  
REF/SELF  
MRS  
Precharge  
L
H
L
×
ILLEGAL  
L
L
Op-Code  
ILLEGAL  
Read  
×
×
×
×
×
×
DESL  
Continue burst to end Row active  
Continue burst to end Row active  
Burst stop Row active  
H
H
H
H
L
H
H
L
H
L
NOP  
BST  
H
L
BA, CA, A10 READ/READA Terminate burst, new read : Determine AP  
7
7, 8  
3
L
BA, CA, A10 WRIT/WRITA  
Terminate burst, start write : Determine AP  
ILLEGAL  
H
H
L
H
L
BA, RA  
ACT  
L
BA, A10  
PRE/PALL  
REF/SELF  
MRS  
Terminate burst, precharging  
ILLEGAL  
L
H
L
×
L
L
Op-Code  
ILLEGAL  
Write  
×
×
×
×
×
×
DESL  
Continue burst to end Write recovering  
Continue burst to end Write recovering  
Burst stop Row active  
H
H
H
H
L
H
H
L
H
L
NOP  
BST  
H
L
BA, CA, A10 READ/READA Terminate burst, start read : Determine AP  
7, 8  
7
L
BA, CA, A10 WRIT/WRITA  
Terminate burst, new write : Determine AP  
H
H
L
H
L
BA, RA  
BA, A10  
×
ACT  
ILLEGAL  
3
L
PRE/PALL  
REF/SELF  
MRS  
Terminate burst, precharging  
ILLEGAL  
9
L
H
L
L
L
Op-Code  
ILLEGAL  
16  
Data Sheet E0122N10  
µPD4516421A, 4516821A, 4516161A for Rev.P  
(2/3)  
Current state  
Read with auto  
precharge  
/CS /RAS /CAS /WE  
Address  
Command  
DESL  
Action  
Notes  
H
L
L
L
L
L
L
L
L
×
H
H
H
H
L
×
H
H
L
×
H
L
×
×
×
Continue burst to end Precharging  
Continue burst to end Precharging  
ILLEGAL  
NOP  
BST  
H
L
BA, CA, A10 READ/READA ILLEGAL  
3
3
3
3
L
BA, CA, A10 WRIT/WRITA  
ILLEGAL  
ILLEGAL  
ILLEGAL  
ILLEGAL  
ILLEGAL  
H
H
L
H
L
BA, RA  
BA, A10  
×
ACT  
L
PRE/PALL  
REF/SELF  
MRS  
L
H
L
L
L
Op-Code  
×
Write with auto  
precharge  
H
×
×
×
DESL  
Continue burst to end Write  
recovering with auto precharge  
L
H
H
H
×
×
NOP  
BST  
Continue burst to end Write  
recovering with auto precharge  
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
H
H
H
L
H
L
L
H
L
ILLEGAL  
BA, CA, A10 READ/READA ILLEGAL  
3
3
3
3
L
BA, CA, A10 WRIT/WRITA  
ILLEGAL  
H
H
L
H
L
BA, RA  
ACT  
ILLEGAL  
L
BA, A10  
PRE/PALL  
REF/SELF  
MRS  
ILLEGAL  
L
H
L
×
ILLEGAL  
L
L
Op-Code  
ILLEGAL  
Precharging  
×
×
×
×
×
×
DESL  
Nop Enter idle after tRP  
Nop Enter idle after tRP  
Nop Enter idle after tRP  
H
H
H
H
L
H
H
L
H
L
NOP  
BST  
H
L
BA, CA, A10 READ/READA ILLEGAL  
3
3
3
L
BA, CA, A10 WRIT/WRITA  
ILLEGAL  
H
H
L
H
L
BA, RA  
ACT  
ILLEGAL  
L
BA, A10  
PRE/PALL  
REF/SELF  
MRS  
Nop Enter idle after tRP  
ILLEGAL  
L
H
L
×
L
L
Op-Code  
ILLEGAL  
Row activating  
×
×
×
×
×
×
DESL  
Nop Enter bank active after tRCD  
Nop Enter bank active after tRCD  
ILLEGAL  
H
H
H
H
L
H
H
L
H
L
NOP  
BST  
H
L
BA, CA, A10 READ/READA ILLEGAL  
3
3
L
BA, CA, A10 WRIT/WRITA  
ILLEGAL  
ILLEGAL  
ILLEGAL  
ILLEGAL  
ILLEGAL  
H
H
L
H
L
BA, RA  
BA, A10  
×
ACT  
3, 10  
3
L
PRE/PALL  
REF/SELF  
MRS  
L
H
L
L
L
Op-Code  
17  
Data Sheet E0122N10  
µPD4516421A, 4516821A, 4516161A for Rev.P  
(3/3)  
Current state  
/CS /RAS /CAS /WE  
Address  
Command  
DESL  
Action  
Notes  
Write recovering  
H
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
H
L
L
L
L
H
L
L
L
×
H
H
H
H
L
×
H
H
L
×
H
L
×
×
×
Nop Enter row active after tDPL  
Nop Enter row active after tDPL  
Nop Enter row active after tDPL  
NOP  
BST  
H
L
BA, CA, A10 READ/READA Start read, Determine AP  
8
L
BA, CA, A10 WRIT/WRITA  
New write, Determine AP  
ILLEGAL  
H
H
L
H
L
BA, RA  
ACT  
3
3
L
BA, A10  
PRE/PALL  
REF/SELF  
MRS  
ILLEGAL  
L
H
L
×
ILLEGAL  
L
L
Op-Code  
ILLEGAL  
Write recovering  
×
×
×
H
L
×
×
×
DESL  
Nop Enter precharge after tDPL  
Nop Enter precharge after tDPL  
Nop Enter precharge after tDPL  
with auto precharge  
H
H
H
H
L
H
H
L
NOP  
BST  
H
L
BA, CA, A10 READ/READA ILLEGAL  
3, 8  
3
L
BA, CA, A10 WRIT/WRITA  
ILLEGAL  
H
H
L
H
L
BA, RA  
ACT  
ILLEGAL  
3
L
BA, A10  
PRE/PALL  
REF/SELF  
MRS  
ILLEGAL  
3
L
H
L
×
ILLEGAL  
L
L
Op-Code  
ILLEGAL  
Refreshing  
×
×
×
×
×
×
×
×
H
L
×
×
×
×
×
×
×
×
×
×
DESL  
Nop Enter idle after tRC  
Nop Enter idle after tRC  
ILLEGAL  
H
H
L
H
L
NOP/BST  
READ/WRIT  
ACT/PRE/PALL  
REF/SELF/MRS  
DESL  
H
L
ILLEGAL  
L
ILLEGAL  
Mode register  
accessing  
×
×
Nop Enter idle after tRSC  
Nop Enter idle after tRSC  
ILLEGAL  
H
H
H
H
H
L
NOP  
BST  
×
READ/WRIT  
ILLEGAL  
L
L
×
×
ACT/PRE/PALL/ ILLEGAL  
REF/SELF/MRS  
Notes 1.  
2.  
All entries assume that CKE was active (High level) during the preceding clock cycle.  
If both banks are idle, and CKE is inactive (Low level), µPD4516xxxA will enter Power down mode.  
All input buffers except CKE will be disabled.  
3.  
4.  
Illegal to bank in specified states; Function may be legal in the bank indicated by Bank Address (BA),  
depending on the state of that bank.  
If both banks are idle, and CKE is inactive (Low level), µPD4516xxxA will enter Self refresh mode. All  
input buffers except CKE will be disabled.  
5.  
6.  
7.  
8.  
9.  
Illegal if tRCD is not satisfied.  
Illegal if tRAS is not satisfied.  
Must satisfy burst interrupt condition.  
Must satisfy bus contention, bus turn around, and/or write recovery requirements.  
Must mask preceding data which don't satisfy tDPL.  
10. Illegal if tRRD is not satisfied.  
Remark H = High level, L = Low level, × = High or Low level (Don’t care), V = Valid data  
18  
Data Sheet E0122N10  
µPD4516421A, 4516821A, 4516161A for Rev.P  
4.5 Command Truth Table for CKE  
Current State CKE /CS /RAS /CAS /WE Address  
n – 1  
Action  
Notes  
n
×
Self refresh  
H
L
×
H
L
L
L
×
H
L
L
L
H
L
L
L
×
×
×
H
L
L
L
L
H
L
L
L
L
×
×
×
×
×
×
×
×
×
H
H
L
×
×
H
H
L
×
H
H
L
×
×
×
×
H
L
L
L
×
H
L
L
L
×
×
×
×
×
×
×
×
×
H
L
×
×
×
H
L
×
×
H
L
×
×
×
×
×
×
H
L
L
×
×
H
L
L
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
H
L
×
×
×
H
L
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
INVALID, CLK (n – 1) would exit self refresh  
H
H
H
H
L
Self refresh recovery  
L
Self refresh recovery  
L
ILLEGAL  
L
ILLEGAL  
L
Maintain self refresh  
Self refresh recovery  
H
H
H
H
H
H
H
H
H
L
H
H
H
H
L
Idle after tRC  
Idle after tRC  
ILLEGAL  
ILLEGAL  
ILLEGAL  
L
ILLEGAL  
L
ILLEGAL  
L
ILLEGAL  
Power down  
×
INVALID, CLK (n – 1) would exit power down  
EXIT power down Idle  
Maintain power down mode  
Refer to operations in Operative Command Table  
Refer to operations in Operative Command Table  
Refer to operations in Operative Command Table  
CBR (auto) Refresh  
H
L
×
×
L
Both banks idle  
H
H
H
H
H
H
H
H
H
H
L
H
H
H
H
H
L
×
Op-Code Refer to operations in Operative Command Table  
Refer to operations in Operative Command Table  
Refer to operations in Operative Command Table  
Refer to operations in Operative Command Table  
L
L
L
×
Self refresh  
1
1
1
2
L
Op-Code Refer to operations in Operative Command Table  
×
×
×
×
Power down  
Row active  
H
L
×
Refer to operations in Operative Command Table  
Power down  
×
Any state other than  
listed above  
H
H
L
H
L
Refer to operations in Operative Command Table  
Begin clock suspend next cycle  
Exit clock suspend next cycle  
Maintain clock suspend  
×
×
×
H
L
L
Notes 1. Self refresh can be entered only from the both banks idle state. Power down can be entered only from  
both banks idle or row active state.  
2. Must be legal command as defined in Operative Command Table.  
Remark H = High level, L = Low level, × = High or Low level (Don't care)  
19  
Data Sheet E0122N10  
µPD4516421A, 4516821A, 4516161A for Rev.P  
4.6 Command Truth Table for Two Banks Operation Notes1,2  
/CS /RAS /CAS /WE  
BA  
×
A10 A9-A0  
Action  
From State Note3  
To State Note4  
H
L
L
×
H
H
×
H
H
×
H
L
×
×
×
×
×
×
NOP  
NOP  
BST  
Any  
Any  
Any  
Any  
×
×
(R/W/A)0 (I/A)1  
I0 (I/A)  
A0(I/A)1  
I0(I/A)1  
A1(I/A)0  
I1(I/A)0  
RP1(I/A)0  
RP1A0  
R1(I/A)0  
R1A0  
(R/W/A)1 (I/A)0  
I1 (I/A)0  
L
H
L
H
H
H
H
H
L
H
H
L
CA  
CA  
CA  
CA  
CA  
CA  
CA  
CA  
CA  
CA  
CA  
CA  
CA  
CA  
CA  
CA  
Read  
(R/W/A)1 (I/A)0  
A1(R/W)0  
(R/W/A)1 (I/A)0  
A1(R/W)0  
L
H
H
L
(R/W/A)0 (I/A)1  
A0(R/W)1  
RP0(I/A)1  
RP0A1  
R0(I/A)1  
R0A1  
L
L
(R/W/A)0 (I/A)1  
A0(R/W)1  
L
L
L
H
L
L
H
H
H
H
L
H
H
L
Write  
(R/W/A)1 (I/A)0  
A1(R/W)0  
WP1(I/A)0  
WP1A0  
W1(I/A)0  
W1A0  
(R/W/A)1 (I/A)0  
A1(R/W)0  
L
H
H
L
(R/W/A)0 (I/A)1  
A0(R/W)1  
WP0(I/A)1  
WP0A1  
W0(I/A)1  
W0A1  
L
L
(R/W/A)0 (I/A)1  
A0(R/W)1  
L
L
L
L
L
L
H
H
H
L
H
L
RA  
RA  
H
H
L
Activate Row  
Precharge  
I1Any0  
A1Any0  
A0Any1  
I0I1  
I0Any1  
×
×
×
×
×
×
×
×
(R/W/A/I)0 (I/A)1  
(R/W/A/I)1 (I/A)0  
(R/W/A/I)1 (I/A)0  
(I/A)1 (R/W/A/I)0  
(R/W/A/I)0 (I/A)1  
(I/A)0 (R/W/A/I)1  
I0I1  
×
I1I0  
H
H
L
I1(I/A)0  
I1(R/W/A/I)0  
I0(I/A)1  
I0(R/W/A/I)1  
I0I1  
L
L
L
L
L
L
L
L
L
L
H
L
×
×
Refresh  
Op - Code  
Mode Register Access  
I0I1  
I0I1  
Remark H = High level, L = Low level, × = High or Low level (Don't care)  
BA = Bank Address (A11)  
20  
Data Sheet E0122N10  
µPD4516421A, 4516821A, 4516161A for Rev.P  
Notes 1. State abbreviations  
I = Idle  
A = Row active  
R = Read with No precharge (No precharge is posted)  
W = Write with No precharge (No precharge is posted)  
RP = Read with auto precharge (Precharge is posted)  
WP = Write with auto precharge (Precharge is posted)  
Any = Any State  
X0Y1 = Y1X0 = Bank A is in state “X”, Bank B is in state “Y”  
(X/Y)0Z1 = Z1(X/Y)0 = Bank A is in state “X” or “Y”, Bank B is in state “Z”  
3. If the µPD4516xxxA is in a state other than above listed in the “From State” column, the command is  
illegal.  
4. The states listed under “To” might not be entered on the next clock cycle.  
Timing restrictions apply.  
21  
Data Sheet E0122N10  
µPD4516421A, 4516821A, 4516161A for Rev.P  
5. Initialization  
The synchronous DRAM is initialized in the power-on sequence according to the following.  
(1) To stabilize internal circuits, when power is applied, a 100 µs or longer pause must precede any signal toggling.  
(2) After the pause, both banks must be precharged using the Precharge command (The Precharge all banks  
command is convenient).  
(3) Once the precharge is completed and the minimum tRP is satisfied, the mode register can be programmed. After  
the mode register set cycle, tRSC (2 CLK minimum) pause must be satisfied as well.  
(4) Two or more CBR (Auto) refresh must be performed.  
Remarks 1. The sequence of Mode register programming and Refresh above may be transposed.  
2. CKE and DQM must be held high until the Precharge command is issued to ensure data-bus Hi-Z.  
22  
Data Sheet E0122N10  
µPD4516421A, 4516821A, 4516161A for Rev.P  
6. Programming the Mode Register  
The mode register is programmed by the Mode register set command using address bits A11 through A0 as data  
inputs. The register retains data until it is reprogrammed or the device loses power.  
The mode register has four fields;  
Options  
/CAS latency : A6 through A4  
Wrap type : A3  
: A11 through A7  
Burst length : A2 through A0  
Following mode register programming, no command can be issued before at least 2 CLK have elapsed.  
/CAS Latency  
/CAS latency is the most critical of the parameters being set. It tells the device how many clocks must elapse  
before the data will be available.  
The value is determined by the frequency of the clock and the speed grade of the device. 13.3 Relationship  
between Frequency and Latency shows the relationship of /CAS latency to the clock period and the speed grade of  
the device.  
Burst Length  
Burst Length is the number of words that will be output or input in a read or write cycle. After a read burst is  
completed, the output bus will become Hi-Z.  
The burst length is programmable as 1, 2, 4, 8 or full page.  
Wrap Type (Burst Sequence)  
The wrap type specifies the order in which the burst data will be addressed. This order is programmable as either  
“Sequential” or “Interleave”. The method chosen will depend on the type of CPU in the system.  
Some microprocessor cache systems are optimized for sequential addressing and others for interleaved  
addressing. 7.1 Burst Length and Sequence shows the addressing sequence for each burst length using them.  
Both sequences support bursts of 1, 2, 4 and 8. Additionally, sequence supports the full page length.  
23  
Data Sheet E0122N10  
µPD4516421A, 4516821A, 4516161A for Rev.P  
7. Mode Register  
11  
0
10  
0
9
0
8
0
7
1
6
6
6
5
4
4
4
3
2
2
2
1
0
0
0
JEDEC Standard Test Set (refresh counter test)  
11  
10  
9
1
8
0
7
0
5
3
1
×
×
LTMODE  
WT  
BL  
Burst Read and Single Write  
(for Write Through Cache)  
11  
10  
9
8
1
7
0
5
3
1
Use in future  
11  
10  
9
8
1
7
1
6
5
4
3
2
1
0
×
×
×
V
V
V
V
V
V
V
Vender Specific  
V = Valid  
× = Don’t care  
11  
0
10  
0
9
0
8
0
7
0
6
5
4
3
2
1
0
LTMODE  
WT  
BL  
Mode Register Set  
Bits2-0  
000  
001  
010  
011  
100  
101  
110  
111  
WT = 0  
WT = 1  
1
1
2
2
4
4
Burst length  
8
8
R
R
R
R
R
R
R
Full page  
0
1
Sequential  
Interleave  
Wrap type  
Bits6-4  
000  
001  
010  
011  
100  
101  
110  
111  
/CAS latency  
R
R
2
3
Latency  
mode  
R
R
R
R
CLK  
CKE  
/CS  
/RAS  
/CAS  
/WE  
A0 - A11  
Mode Register Write  
24  
Data Sheet E0122N10  
µPD4516421A, 4516821A, 4516161A for Rev.P  
7.1 Burst Length and Sequence  
[Burst of Two]  
Starting address  
Sequential addressing sequence  
Interleave addressing sequence  
(decimal)  
(column address A0, binary)  
(decimal)  
0
1
0, 1  
0, 1  
1, 0  
1, 0  
[Burst of Four]  
Starting address  
Sequential addressing sequence  
(decimal)  
Interleave addressing sequence  
(decimal)  
(column address A1 - A0, binary)  
00  
01  
10  
11  
0, 1, 2, 3  
1, 2, 3, 0  
2, 3, 0, 1  
3, 0, 1, 2  
0, 1, 2, 3  
1, 0, 3, 2  
2, 3, 0, 1  
3, 2, 1, 0  
[Burst of Eight]  
Starting address  
Sequential addressing sequence  
(decimal)  
Interleave addressing sequence  
(decimal)  
(column address A2 - A0, binary)  
000  
001  
010  
011  
100  
101  
110  
111  
0, 1, 2, 3, 4, 5, 6, 7  
1, 2, 3, 4, 5, 6, 7, 0  
2, 3, 4, 5, 6, 7, 0, 1  
3, 4, 5, 6, 7, 0, 1, 2  
4, 5, 6, 7, 0, 1, 2, 3  
5, 6, 7, 0, 1, 2, 3, 4  
6, 7, 0, 1, 2, 3, 4, 5  
7, 0, 1, 2, 3, 4, 5, 6  
0, 1, 2, 3, 4, 5, 6, 7  
1, 0, 3, 2, 5, 4, 7, 6  
2, 3, 0, 1, 6, 7, 4, 5  
3, 2, 1, 0, 7, 6, 5, 4  
4, 5, 6, 7, 0, 1, 2, 3  
5, 4, 7, 6, 1, 0, 3, 2  
6, 7, 4, 5, 2, 3, 0, 1  
7, 6, 5, 4, 3, 2, 1, 0  
Full page burst is an extension of the above tables of sequential addressing, with the length being 512 (for 2M ×8  
device), 1,024 (for 4M ×4 device), and 256 (for 1M ×16 device).  
25  
Data Sheet E0122N10  
µPD4516421A, 4516821A, 4516161A for Rev.P  
8. Address Bits of Bank-Select and Precharge  
Select Bank A  
“Activate” command  
0
1
Row  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A7  
A8  
A8  
A9 A10 A11  
A9 A10 A11  
Select Bank B  
“Activate” command  
(Activate command)  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A10 A11  
Result  
(Precharge command)  
0
0
1
0
1
Precharge Bank A  
Precharge Bank B  
Precharge All Banks  
×
× : Dont care  
disables Auto-Precharge  
(End of Burst)  
0
1
enables Auto-Precharge  
(End of Burst)  
Col.  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9 A10 A11  
(/CAS strobes)  
enables Read/Write  
commands for Bank A  
0
1
enables Read/Write  
commands for Bank B  
Precharge for Bank A  
Precharge for Bank B  
Precharge for Both Banks  
CLK  
CLK  
CLK  
H
H
H
CKE  
CKE  
CKE  
/CS  
/RAS  
/CAS  
/WE  
A10  
/CS  
/RAS  
/CAS  
/WE  
A10  
/CS  
/RAS  
/CAS  
/WE  
A10  
A11  
A11  
A11  
26  
Data Sheet E0122N10  
µPD4516421A, 4516821A, 4516161A for Rev.P  
9. Precharge  
The precharge command can be issued anytime after tRAS (MIN.) is satisfied.  
Soon after the precharge command is issued, precharge operation performed and the synchronous DRAM enters  
the idle state after tRP is satisfied. The parameter tRP is the time required to perform the precharge.  
The earliest timing in a read cycle that a precharge command can be issued without losing any data in the burst is  
as follows.  
It is depending on the /CAS latency and clock cycle time.  
Burst length=4  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
/CAS latency = 2  
PRE  
Q3  
READ  
Command  
Hi-Z  
DQ  
Q1  
Q2  
Q4  
Q3  
/CAS latency = 3  
Command  
READ  
PRE  
Q2  
Hi-Z  
DQ  
Q1  
Q4  
(tRAS must be satisfied)  
In order to write all data to the memory cell correctly, the asynchronous parameter “tDPL” must be satisfied. The tDPL  
(MIN.) specification defines the earliest time that a precharge command can be issued. Minimum number of clocks is  
calculated by dividing tDPL (MIN.) with clock cycle time.  
In summary, the precharge command can be issued relative to reference clock that indicates the last data word is  
valid. In the following table, minus means clocks before the reference; plus means time after the reference.  
/CAS latency  
Read  
–1  
Write  
2
3
+tDPL (MIN.)  
+tDPL (MIN.)  
–2  
27  
Data Sheet E0122N10  
µPD4516421A, 4516821A, 4516161A for Rev.P  
10. Auto Precharge  
During a read or write command cycle, A10 controls whether auto precharge is selected. A10 high in the Read or  
Write command (Read with Auto precharge command or Write with Auto precharge command), auto precharge is  
selected and begins automatically.  
The tRAS must be satisfied with a read with auto precharge or a write with auto precharge operation. In addition, the  
next activate command to the bank being precharged cannot be executed until the precharge cycle ends.  
In read cycle, once auto precharge has started, an activate command to the bank can be issued after tRP has been  
satisfied.  
In write cycle, the tDAL must be satisfied to issue the next activate command to the bank being precharged.  
The timing that begins the auto precharge cycle depends on both the /CAS latency programmed into the mode  
register and whether read or write cycle.  
10.1 Read with Auto Precharge  
During a read cycle, the auto precharge begins one clock earlier (/CAS latency of 2) or two clocks earlier (/CAS  
latency of 3) the last data word output.  
Burst length = 4  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
CLK  
/CAS latency = 2  
Auto precharge starts  
Command  
READA B  
Hi-Z  
DQ  
QB1  
QB2  
QB3  
QB4  
/CAS latency = 3  
Auto precharge starts  
Command  
READA B  
Hi-Z  
DQ  
QB1  
QB2  
QB3  
QB4  
(tRAS must be satisfied)  
Remark READA means Read with Auto precharge  
28  
Data Sheet E0122N10  
µPD4516421A, 4516821A, 4516161A for Rev.P  
10.2 Write with Auto Precharge  
During a write cycle, the auto precharge starts one clock after the last data word input to the device (/CAS latency of  
2 or 3).  
Burst length = 4  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
/CAS latency = 2  
Auto precharge starts  
Command  
WRITA B  
DB1  
Hi-Z  
DQ  
DB2  
DB3  
DB4  
/CAS latency = 3  
Auto precharge starts  
Command  
WRITA B  
DB1  
Hi-Z  
DQ  
DB2  
DB3  
DB4  
(tRAS must be satisfied)  
Remark WRITA means Write with Auto Precharge  
In summary, the auto precharge begins relative to a reference clock that indicates the last data word is valid.  
In the table below, minus means clocks before the reference; plus means after the reference.  
/CAS latency  
Read  
–1  
Write  
+1  
2
3
–2  
+1  
29  
Data Sheet E0122N10  
µPD4516421A, 4516821A, 4516161A for Rev.P  
11. Read / Write Command Interval  
11.1 Read to Read Command Interval  
During a read cycle, when new Read command is issued, it will be effective after /CAS latency, even if the previous  
read operation does not completed. READ will be interrupted by another READ.  
The interval between the commands is 1 cycle minimum. Each Read command can be issued in every clock  
without any restriction.  
Burst length = 4, /CAS latency = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
CLK  
Command  
READ A  
READ B  
Hi-Z  
DQ  
QA1  
QB1  
QB2  
QB3  
QB4  
1cycle  
11.2 Write to Write Command Interval  
During a write cycle, when a new Write command is issued, the previous burst will terminate and the new burst will  
begin with a new Write command. WRITE will be interrupted by another WRITE.  
The interval between the commands is minimum 1 cycle. Each Write command can be issued in every clock  
without any restriction.  
Burst length = 4, /CAS latency = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
Command  
DQ  
WRITE A WRITE B  
Hi-Z  
DA1  
DB1  
DB2  
DB3  
DB4  
1cycle  
30  
Data Sheet E0122N10  
µPD4516421A, 4516821A, 4516161A for Rev.P  
11.3 Write to Read Command Interval  
Write command and Read command interval is also 1 cycle.  
Only the write data before Read command will be written.  
The data bus must be Hi-Z at least one cycle prior to the first DOUT.  
Burst length = 4  
T8  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
/CAS latency = 2  
Command  
WRITE A  
DA1  
READ B  
Hi-Z  
DQ  
QB1  
QB2  
QB3  
QB4  
/CAS latency = 3  
Command  
WRITE A  
DA1  
READ B  
Hi-Z  
DQ  
QB1  
QB2  
QB3  
QB4  
31  
Data Sheet E0122N10  
µPD4516421A, 4516821A, 4516161A for Rev.P  
11.4 Read to Write Command Interval  
During a read cycle, READ can be interrupted by WRITE.  
The Read and Write command interval is 1 cycle minimum. There is a restriction to avoid data conflict. The Data  
bus must be Hi-Z using DQM before WRITE.  
Burst length = 4  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
Command  
DQM  
READ WRITE  
Hi-Z  
DQ  
D1  
D2  
D3  
D4  
1cycle  
READ can be interrupted by WRITE. DQM must be High at least 3 clocks prior to the Write command.  
Burst length = 8  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
CLK  
/CAS latency = 2  
Command  
READ  
WRITE  
DQM  
DQ  
Q1  
Q2  
Q3  
D1  
WRITE  
D1  
D2  
D3  
Hi-Z is  
necessary  
/CAS latency = 3  
Command  
READ  
DQM  
DQ  
Q1  
Q2  
D2  
D3  
Hi-Z is  
necessary  
32  
Data Sheet E0122N10  
µPD4516421A, 4516821A, 4516161A for Rev.P  
12. Burst Termination  
There are two methods to terminate a burst operation other than using a Read or a Write command. One is the  
burst stop command and the other is the precharge command.  
12.1 Burst Stop Command  
During a read cycle, when the burst stop command is issued, the burst read data are terminated and the data bus  
goes to Hi-Z after the /CAS latency from the burst stop command.  
Burst length = X  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
Command  
READ  
BST  
/CAS latency = 2  
Hi-Z  
DQ  
Q1  
Q2  
Q1  
Q3  
/CAS latency = 3  
Hi-Z  
DQ  
Q2  
Q3  
Remark BST: Burst stop command  
During a write cycle, when the burst stop command is issued, the burst write data are terminated and data bus goes  
to Hi-Z at the same clock with the burst stop command.  
Burst length = X  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
Command  
WRITE  
BST  
/CAS latency = 2, 3  
Hi-Z  
DQ  
D1  
D2  
D3  
D4  
Remark BST: Burst stop command  
33  
Data Sheet E0122N10  
µPD4516421A, 4516821A, 4516161A for Rev.P  
12.2 Precharge Termination  
12.2.1 Precharge Termination in READ Cycle  
During a read cycle, the burst read operation is terminated by a precharge command.  
When the precharge command is issued, the burst read operation is terminated and precharge starts.  
The same bank can be activated again after tRP from the precharge command.  
To issue a precharge command, tRAS must be satisfied.  
When /CAS latency is 2, the read data will remain valid until one clock after the precharge command.  
Burst length = X, /CAS latency = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
Command  
READ  
PRE  
ACT  
Hi-Z  
DQ  
Q1  
Q2  
Q3  
Q4  
t
RP  
(tRAS must be satisfied)  
When /CAS latency is 3, the read data will remain valid until two clocks after the precharge command.  
Burst length = X, /CAS latency = 3  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
Command  
READ  
PRE  
ACT  
Hi-Z  
DQ  
Q1  
Q2  
Q3  
Q4  
t
RP  
(tRAS must be satisfied)  
34  
Data Sheet E0122N10  
µPD4516421A, 4516821A, 4516161A for Rev.P  
12.2.2 Precharge Termination in WRITE Cycle  
During a write cycle, the burst write operation is terminated by a precharge command.  
When the precharge command is issued, the burst write operation is terminated and precharge starts.  
The same bank can be activated again after tRP from the precharge command.  
To issue a precharge command, tRAS must be satisfied.  
When /CAS latency is 2, the write data written prior to the precharge command will be correctly stored. However,  
invalid data may be written at the same clock as the precharge command. To prevent this from happening, DQM  
must be high at the same clock as the precharge command. This will mask the invalid data.  
Burst length = X, /CAS latency = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
Command  
WRITE  
PRE  
ACT  
DQM  
DQ  
Hi-Z  
D1  
D2  
D3  
D4  
D5  
t
RP  
(tRAS must be satisfied)  
When /CAS latency is 3, the write data written prior to the precharge command will be correctly stored. However,  
invalid data may be written at the same clock as the precharge command. To prevent this from happening, DQM  
must be high at the same clock as the precharge command. This will mask the invalid data.  
Burst length = X, /CAS latency = 3  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
Command  
WRITE  
PRE  
ACT  
DQM  
DQ  
Hi-Z  
D1  
D2  
D3  
D4  
D5  
t
RP  
(tRAS must be satisfied)  
35  
Data Sheet E0122N10  
µPD4516421A, 4516821A, 4516161A for Rev.P  
13. Electrical Specifications  
All voltages are referenced to VSS (GND).  
After power up, wait more than 100 µs and then, execute Power on sequence and CBR (auto) Refresh before  
proper device operation is achieved.  
Absolute Maximum Ratings  
Parameter  
Voltage on power supply pin relative to GND  
Voltage on any pin relative to GND  
Short circuit output current  
Power dissipation  
Symbol  
Condition  
Rating  
0.5 to +4.6  
0.5 to +4.6  
50  
Unit  
V
VCC, VCCQ  
VT  
IO  
V
mA  
W
PD  
TA  
Tstg  
1
Operating ambient temperature  
Storage temperature  
0 to 70  
°C  
°C  
55 to + 125  
Caution Exposing the device to stress above those listed in Absolute Maximum Ratings could cause  
permanent damage. The device is not meant to be operated under conditions outside the limits  
described in the operational section of this specification. Exposure to Absolute Maximum  
Rating conditions for extended periods may affect device reliability.  
Recommended Operating Conditions  
Parameter  
Symbol  
VCC, VCCQ  
VIH  
Condition  
MIN.  
3.0  
TYP.  
3.3  
MAX.  
3.6  
Unit  
V
Supply voltage  
High level input voltage  
2.0  
VCC+0.3Note1  
V
Low level input voltage  
VIL  
0.3Note2  
0
+0.8  
V
Operating ambient temperature  
TA  
70  
°C  
Notes 1. VIH (MAX.) = VCC + 2.0 V (Pulse width 3 ns)  
2. VIL (MIN.) = –2.0 V (Pulse width 3 ns)  
Pin Capacitance (TA = 25 °C, f = 1 MHz)  
Parameter  
Symbol  
CI1  
Condition  
MIN. TYP. MAX. Unit  
Input capacitance  
A0 - A11  
2.5  
2.5  
4
4
pF  
CI2  
CLK, CKE, /CS, /RAS, /CAS, /WE,  
DQM, UDQM, LDQM  
DQ0 - DQ15  
Data input / output capacitance  
CI/O  
4
6
pF  
36  
Data Sheet E0122N10  
µPD4516421A, 4516821A, 4516161A for Rev.P  
DC Characteristics 1 (Recommended Operating Conditions unless otherwise noted)  
Parameter  
Symbol  
Test condition  
/CAS Grade  
latency  
Maximum  
×8  
Unit Notes  
×4  
100  
100  
85  
×16  
110  
110  
95  
Operating current  
ICC1  
Burst length = 1,  
CL = 2  
CL = 3  
-80  
-10  
105  
105  
90  
mA  
1
tRC tRC (MIN.), Io = 0 mA,  
One bank active  
-10B  
-12  
85  
90  
95  
-80  
110  
110  
90  
115  
115  
95  
120  
120  
100  
100  
3
-10  
-10B  
-12  
90  
95  
Precharge standby current  
in power down mode  
ICC2P  
CKE VIL (MAX.), tCK = 15 ns  
3
3
mA  
mA  
ICC2PS CKE VIL (MAX.), tCK = ∞  
2
2
2
Precharge standby current  
in non power down mode  
ICC2N  
CKE VIH (MIN.), tCK = 15 ns, /CS VIH (MIN.),  
25  
25  
25  
Input signals are changed one time during 30 ns.  
ICC2NS CKE VIH (MIN.), tCK = ,  
6
6
6
Input signals are stable.  
Active standby current  
in power down mode  
ICC3P  
ICC3PS CKE VIL (MAX.), tCK = ∞  
ICC3N  
CKE VIL (MAX.), tCK = 15 ns  
3
2
3
2
3
2
mA  
mA  
Active standby current  
CKE VIH (MIN.), tCK = 15 ns, /CS VIH (MIN.),  
28  
12  
28  
12  
30  
15  
in non power down mode  
Input signals are changed one time during 30 ns.  
ICC3NS CKE VIH (MIN.), tCK = ,  
Input signals are stable.  
Operating current  
(Burst mode)  
ICC4  
ICC5  
ICC6  
tCK tCK (MIN.), Io = 0 mA,  
CL = 2  
CL = 3  
CL = 2  
CL = 3  
-80  
-10  
95  
75  
75  
65  
110  
90  
90  
80  
90  
90  
90  
90  
90  
90  
90  
90  
1
105  
85  
110  
90  
mA  
2
Both banks active  
-10B  
-12  
85  
90  
75  
80  
-80  
120  
100  
100  
90  
125  
105  
105  
95  
-10  
-10B  
-12  
CBR (auto) refresh current  
tRC = 100 ns,  
tCK = MIN.  
-80  
90  
90  
mA  
3
-10  
90  
90  
-10B  
-12  
90  
90  
90  
90  
-80  
90  
90  
-10  
90  
90  
-10B  
-12  
90  
90  
90  
90  
Self refresh current  
CKE 0.2 V  
-**  
1
1
mA  
-**L  
250  
250  
250  
µA  
37  
Data Sheet E0122N10  
µPD4516421A, 4516821A, 4516161A for Rev.P  
Notes 1. ICC1 depends on output loading and cycle rates. Specified values are obtained with the output open. In  
addition to this, ICC1 is measured condition that addresses are changed only one time during tCK (MIN.).  
2. ICC4 depends on output loading and cycle rates. Specified values are obtained with the output open. In  
addition to this, ICC4 is measured on condition that addresses are changed only one time during tCK (MIN.).  
3. ICC5 is measured on condition that addresses are changed only one time during tCK (MIN.).  
DC Characteristics 2 (Recommended Operating Conditions unless otherwise noted)  
Parameter  
Symbol  
II (L)  
Test condition  
MIN.  
TYP.  
MAX.  
+1.0  
Unit  
Note  
Input leakage current  
0 VI VCCQ, VCCQ = VCC  
All other pins not under test = 0 V  
0 VO VCCQ, DOUT is disabled  
IO = 4 mA  
1.0  
µA  
Output leakage current  
High level output voltage  
Low level output voltage  
IO (L)  
VOH  
VOL  
1.5  
+1.5  
0.4  
µA  
V
2.4  
IO = +4 mA  
V
38  
Data Sheet E0122N10  
µPD4516421A, 4516821A, 4516161A for Rev.P  
AC Characteristics (Recommended Operating Conditions unless otherwise noted)  
Test Conditions  
Parameter  
Value  
2.0 / 0.8  
1.4  
Unit  
V
AC high level input voltage / low level input voltage  
Input timing measurement reference level  
Transition time (Input rise and fall time)  
V
1
ns  
V
Output timing measurement reference level  
1.4  
t
CK  
t
CH  
t
CL  
2.0 V  
CLK  
1.4 V  
0.8 V  
t
Setup  
t
Hold  
2.0 V  
1.4 V  
0.8 V  
Input  
t
AC  
t
OH  
Output  
39  
Data Sheet E0122N10  
µPD4516421A, 4516821A, 4516161A for Rev.P  
Synchronous Characteristics  
Parameter  
Symbol  
-80  
-10  
-10B  
-12  
Unit Note  
MIN. MAX. MIN. MAX. MIN. MAX. MIN. MAX.  
Clock cycle time  
/CAS latency = 3 tCK3  
/CAS latency = 2 tCK2  
8
10  
13  
10  
13  
12  
15  
ns  
ns  
(125 MHz)  
(100 MHz)  
(100 MHz)  
(83 MHz)  
10  
(100 MHz)  
(77 MHz)  
(77 MHz)  
(67 MHz)  
Access time from CLK  
/CAS latency = 3 tAC3  
6
6
6
8
7
8
8
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
1
/CAS latency = 2 tAC2  
CLK high level width  
CLK low level width  
tCH  
tCL  
tOH  
tLZ  
3
3
3
0
3
3
2
1
2
1
2
1
3
3
3
0
3
3
2
1
2
1
2
1
3.5  
3.5  
3
4
4
Data-out hold time  
3
1
Data-out low-impedance time  
0
0
Data-out high-impedance time /CAS latency = 3 tHZ3  
/CAS latency = 2 tHZ2  
6
6
6
8
3
7
8
3
8
8
3
3
Data-in setup time  
Data-in hold time  
tDS  
tDH  
2.5  
1
3
1.5  
3
Address setup time  
Address hold time  
CKE setup time  
tAS  
2.5  
1
tAH  
1.5  
3
tCKS  
tCKH  
tCKSP  
tCMS  
2.5  
1
CKE hold time  
1.5  
CKE setup time (Power down exit)  
2
2
2
2
2.5  
2.5  
3
3
ns  
ns  
Command (/CS, /RAS, /CAS, /WE, DQM)  
setup time  
Command (/CS, /RAS, /CAS, /WE, DQM)  
hold time  
tCMH  
1
1
1
1.5  
ns  
Note 1. Output load  
1.4 V  
50 Ω  
Z = 50 Ω  
Output  
50 pF  
40  
Data Sheet E0122N10  
µPD4516421A, 4516821A, 4516161A for Rev.P  
Asynchronous Characteristics  
Parameter  
Symbol  
-80  
-10  
-10B  
-12  
Unit Note  
MIN. MAX. MIN. MAX. MIN. MAX. MIN. MAX.  
REF to REF/ACT command period  
ACT to PRE command period  
tRC  
tRAS  
tRP  
70  
48  
20  
20  
16  
8
70  
50  
20  
20  
20  
10  
90  
60  
26  
26  
20  
10  
90  
60  
30  
30  
24  
12  
ns  
ns  
ns  
ns  
ns  
ns  
120,000  
120,000  
120,000  
120,000  
PRE to ACT command period  
Delay time ACT to READ/WRITE command  
ACT (one) to ACT (another) command period  
Data-in to PRE command period  
tRCD  
tRRD  
tDPL  
Data-in to ACT (REF)  
command period  
/CAS latency = 3 tDAL3 1CLK  
1CLK  
+20  
1CLK  
+26  
1CLK  
+30  
ns  
ns  
+20  
/CAS latency = 2 tDAL2 1CLK  
+20  
1CLK  
+20  
1CLK  
+26  
1CLK  
+30  
(Auto precharge)  
Mode register set cycle time  
Transition time  
tRSC  
tT  
2
2
1
2
1
2
1
CLK  
ns  
0.5  
30  
32  
64  
30  
32  
64  
30  
32  
64  
30  
32  
64  
Refresh time  
-**  
tREF  
ms  
(2,048 refresh cycles)  
-**L  
41  
Data Sheet E0122N10  
13.1 AC Parameters for Read Timing (Burst Length = 2, /CAS Latency = 2)  
T0  
tCK  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
CLK  
tCH  
tCL  
Auto precharge  
Start for Bank B  
CKE  
/CS  
tCKS  
tCKH  
tCMS tCMH  
/RAS  
/CAS  
µ
µ
/WE  
A11  
A10  
ADD  
tAS tAH  
L
DQM  
DQ  
tAC  
tAC  
tHZ  
Hi-Z  
tRCD  
tLZ  
tOH  
tOH  
tRAS  
tRP  
tRRD  
tRC  
Bank A  
Activate  
Command  
Bank A  
Read  
Command  
Bank A  
Precharge  
Command Command  
Bank B  
Activate  
Bank B  
Read Command  
with Auto precharge  
Bank A  
Activate  
Command  
13.2 AC Parameters for Write Timing (Burst Length = 4, /CAS Latency = 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
Auto Precharge  
Start for Bank A  
Auto Precharge  
Start for Bank B  
t
CKH  
t
CKS  
t
CMS CMH  
t
/RAS  
/CAS  
/WE  
A11  
µ
µ
A10  
ADD  
DQM  
DQ  
t
AS  
t
AH  
t
DS  
t
DH  
L
Hi-Z  
t
RCD  
t
RRD  
t
DAL  
t
DPL  
t
RP  
t
RC  
µPD4516421A, 4516821A, 4516161A for Rev.P  
13.3 Relationship between Frequency and Latency  
Speed version  
Clock cycle time [ns]  
-80  
-10  
-10B  
-12  
8
125  
3
10  
100  
2
10  
100  
3
13  
77  
2
10  
100  
3
13  
77  
2
12  
83  
3
15  
67  
2
Frequency [MHz]  
/CAS latency  
[tRCD]  
3
2
2
2
3
2
3
2
/RAS latency (/CAS latency + [tRCD])  
6
4
5
4
6
4
6
4
[tRC]  
9
7
7
6
9
7
8
6
[tRAS]  
[tRRD]  
[tRP]  
6
5
5
4
6
5
5
4
2
2
2
2
2
2
2
2
3
2
2
2
3
2
3
2
[tDPL]  
[tDAL]  
[tRSC]  
1
1
1
1
1
1
1
1
4
3
3
3
4
3
4
3
2
2
2
2
2
2
2
2
44  
Data Sheet E0122N10  
13.4 Mode Register Set (Burst Length = 4, /CAS Latency = 2)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
t
RSC  
H
2CLK (MIN.)  
/RAS  
/CAS  
/WE  
A11  
µ
µ
A10  
ADDRESS KEY  
ADD  
DQM  
DQ  
Hi-Z  
All Banks  
Precharge  
Command  
Register  
Write  
Command  
Activate  
Command  
is valid  
t
RP  
13.5 Power On Sequence and CBR (Auto) Refresh  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
Clock signal is necessary  
High level is necessary  
t
RSC  
2 refresh cycles are necessary  
/RAS  
/CAS  
/WE  
A11  
µ
µ
A10  
ADDRESS KEY  
ADD  
DQM  
DQ  
High level is necessary  
Hi-Z  
All Banks  
Precharge  
Command  
is necessary  
Register  
Write  
Command  
is necessary  
Refresh  
Command  
is necessary  
Refresh  
Command  
is necessary  
Activate  
Command  
t
RP  
t
RC  
t
RC  
13.6 /CS Function (at 100 MHz, Burst Length = 4, /CAS Latency = 3)  
Only /CS signal needs to be issued at minimum rate  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
H
/RAS  
/CAS  
/WE  
A11  
µ
µ
L
A10  
RAa  
ADD  
DQM  
DQ  
RAa  
CAa  
CAb  
L
QAa1 QAa2 QAa3 QAa4  
DAb1 DAb2 DAb3 DAb4  
Activate  
Command  
for Bank A  
Read  
Command  
for Bank A  
Write  
Command  
for Bank A  
Precharge  
Command  
for Bank A  
13.7 Clock Suspension during Burst Read (using CKE Function) (1/2) (Burst Length = 4, /CAS Latency = 2)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
/RAS  
/CAS  
/WE  
A11  
µ
µ
A10  
RAa  
RAa  
ADD  
DQM  
DQ  
CAa  
L
QAa1 QAa2  
QAa3  
QAa4  
Activate  
Command  
for Bank A  
Read  
Command  
for Bank A  
1-CLOCK  
SUSPENDED  
2-CLOCK  
SUSPENDED  
3-CLOCK  
SUSPENDED  
Hi-Z  
(turn off)  
at end of burst  
Clock Suspension during Burst Read (using CKE Function) (2/2) (Burst Length = 4, /CAS Latency = 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
/RAS  
/CAS  
/WE  
A11  
µ
µ
A10  
RAa  
RAa  
ADD  
DQM  
DQ  
CAa  
L
QAa1 QAa2  
QAa3  
QAa4  
Activate  
Command  
for Bank A  
Read  
Command  
for Bank A  
1-CLOCK  
SUSPENDED  
2-CLOCK  
SUSPENDED  
3-CLOCK  
SUSPENDED  
Hi-Z  
(turn off)  
at end of burst  
13.8 Clock Suspension during Burst Write (using CKE Function) (1/2) (Burst Length = 4, /CAS Latency = 2)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
/RAS  
/CAS  
/WE  
A11  
µ
µ
A10  
RAa  
RAa  
ADD  
DQM  
DQ  
CAa  
L
DAa1  
Write  
DAa2  
DAa3  
DAa4  
Activate  
Command  
for Bank A  
Command  
for Bank A  
1-CLOCK  
SUSPENDED  
2-CLOCK  
SUSPENDED  
3-CLOCK  
SUSPENDED  
Clock Suspension during Burst Write (using CKE Function) (2/2) (Burst Length = 4, /CAS Latency = 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
/RAS  
/CAS  
/WE  
A11  
µ
µ
RAa  
RAa  
A10  
CAa  
ADD  
DQM  
DQ  
L
DAa1  
DAa2  
DAa3  
DAa4  
Activate  
Command  
for Bank A  
1-CLOCK  
SUSPENDED  
2-CLOCK  
SUSPENDED  
3-CLOCK  
SUSPENDED  
Write  
command  
for Bank A  
13.9 Power Down Mode and Clock Mask (Burst Length = 4, /CAS Latency = 2)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
t
CKSP  
t
CKSP  
VALID  
/RAS  
/CAS  
/WE  
A11  
µ
µ
A10  
RAa  
RAa  
ADD  
DQM  
DQ  
CAa  
L
QAa1 QAa2 QAa3  
QAa4  
Activate  
Command  
for Bank A  
Read  
Command  
for Bank A  
Precharge  
Command  
Power Down  
Mode Entry  
Power Down  
Mode Entry  
Power Down  
Mode Exit  
Clock Mask  
Start  
Clock Mask  
End  
Power Down  
Mode Exit  
ACTIVE STANDBY  
PRECHARGE STANDBY  
13.10 CBR (Auto) Refresh  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
H
/RAS  
/CAS  
/WE  
A11  
µ
µ
A10  
ADD  
DOQM  
DQ  
L
Q1  
Precharge  
Command  
if necessary  
CBR refresh  
CBR refresh  
Activate  
Command  
Read  
Command  
t
RP  
t
RC  
t
RC  
13.11 Self Refresh (Entry and Exit)  
T0  
T1  
T2  
T3  
T4  
T7  
T8  
T9  
T10  
T11  
T12  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
/RAS  
/CAS  
/WE  
A11  
µ
µ
A10  
ADD  
DOQM  
DQ  
L
Precharge  
Command  
if necessary  
Self refresh  
entry  
Self refresh  
Exit  
Self refresh  
entry  
Self refresh  
Exit  
Activate  
Command  
or  
(Activate  
Command)  
Next  
clock  
enable  
Next clock  
enable  
t
RC  
t
RP  
t
RC  
13.12 Random Column Read (Page with Same Bank) (1/2) (Burst Length = 4, /CAS Latency = 2)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
H
/RAS  
/CAS  
/WE  
A11  
µ
µ
A10  
RAa  
RAa  
RAd  
RAd  
ADD  
DQM  
DQ  
CAa  
CAb  
CAc  
CAd  
L
QAa1 QAa2 QAa3 QAa4 QAb1 QAb2 QAc1 QAc2 QAc3 QAc4  
QAd1 QAd2 QAd3  
Activate  
Command  
for Bank A  
Read  
Command  
for Bank A  
Read  
Command  
for Bank A  
Read  
Command  
for Bank A  
Precharge  
Command  
for Bank A  
Activate  
Command  
for Bank A  
Read  
Command  
for Bank A  
Random Column Read (Page with Same Bank) (2/2) (Burst Length = 4, /CAS Latency = 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
H
/RAS  
/CAS  
/WE  
A11  
µ
µ
A10  
RAa  
RAa  
RAa  
ADD  
DQM  
DQ  
RAa  
CAa  
CAb  
CAc  
CAa  
L
QAa1 QAa2 QAa3 QAa4 QAb1 QAb2 QAc1 QAc2 QAc3 QAc4  
Activate Command  
for Bank A  
Read Command  
for Bank A  
Read Command  
for Bank A  
Precharge Command  
for Bank A  
Activate Command  
for Bank A  
Read Command  
for Bank A  
Read Command  
for Bank A  
13.13 Random Column Write (Page with Same Bank) (1/2) (Burst Length = 4, /CAS Latency = 2)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
H
/RAS  
/CAS  
/WE  
A11  
µ
µ
A10  
RBa  
RBa  
RBd  
RBd  
ADD  
DQM  
DQ  
CBa  
CBb  
CBc  
CBd  
L
DBa1 DBa2 DBa3 DBa4 DBb1 DBb2 DBc1 DBc2 DBc3 DBc4  
DBd1 DBd2 DBd3 DBd4  
Activate  
Command  
for Bank B  
Write  
Command  
for Bank B  
Write  
Command  
for Bank B  
Write  
Command  
for Bank B  
Precharge  
Command  
for Bank B  
Activate  
Command  
for Bank B  
Write  
Command  
for Bank B  
Random Column Write (Page with Same Bank) (2/2) (Burst Length = 4, /CAS Latency = 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
H
/RAS  
/CAS  
/WE  
A11  
µ
µ
A10  
RBa  
RBd  
RBd  
ADD  
DQM  
DQ  
RBa  
CBa  
CBb  
CBc  
CBd  
L
DBa1 DBa2 DBa3 DBa4 DBb1 DBb2 DBc1 DBc2 DBc3 DBc4  
DBd1 DBd2  
Activate Command  
for Bank B  
Write Command  
for Bank B  
Write Command  
for Bank B  
Precharge Command  
for Bank B  
Activate Command  
for Bank B  
Write Command  
for BankB  
Write Command  
for Bank B  
13.14 Random Row Read (Ping-Pong Banks) (1/2) (Burst Length = 8, /CAS Latency = 2)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
H
/RAS  
/CAS  
/WE  
A11  
µ
µ
A10  
RBa  
RBa  
RAa  
RAa  
RBb  
RBb  
ADD  
DQM  
DQ  
CBa  
CAa  
CBb  
L
QBa1 QBa2 QBa3 QBa4 QBa5 QBa6 QBa7 QBa8 QAa1 QAa2 QAa3 QAa4 QAa5 QAa6 QAa7 QAa8  
Activate  
Command  
for Bank B  
Read  
Command  
for Bank B  
Activate  
Command  
for Bank A  
Read  
Command  
for Bank A  
Activate  
Command  
for Bank B  
Read  
Command  
for Bank B  
Precharge  
Command  
for Bank B  
t
RCD  
t
RP  
Random Row Read (Ping-Pong Banks) (2/2) (Burst Length = 8, /CAS Latency = 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
H
/RAS  
/CAS  
/WE  
A11  
µ
µ
A10  
RBa  
RBa  
RAa  
RAa  
RBb  
RBb  
ADD  
DOQM  
DQ  
CBa  
CAa  
CBb  
L
QBa1 QBa2 QBa3 QBa4 QBa5 QBa6 QBa7 QBa8 QAa1 QAa2 QAa3 QAa4 QAa5 QAa6 QAa7  
Activate  
Command  
for Bank B  
Read  
Command  
for Bank B  
Activate  
Command  
for Bank A  
Read  
Command  
for Bank A  
Precharge  
Command  
for Bank B  
Activate  
Command  
for Bank B  
Read  
Precharge  
Command Command  
for Bank B for Bank A  
t
RCD  
t
RP  
13.15 Random Row Write (Ping-Pong Banks) (1/2) (Burst Length = 8, /CAS Latency = 2)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
H
/RAS  
/CAS  
/WE  
A11  
µ
µ
A10  
RAa  
RAa  
RBa  
RBa  
RAb  
RAb  
ADD  
DQM  
DQ  
CAa  
CBa  
CAb  
L
DAa1 DAa2 DAa3 DAa4 DAa5 DAa6 DAa7 DAa8 DBa1 DBa2 DBa3 DBa4 DBa5 DBa6 DBa7 DBa8 DAb1 DAb2 DAb3  
Activate  
Command  
for Bank A  
Write  
Command  
for Bank A  
Activate  
Command  
for Bank B  
Write  
Command  
for Bank B  
Activate  
Command  
for Bank A  
Write  
Command  
for Bank A  
Precharge  
Precharge  
Command  
for Bank A  
Command  
for Bank B  
t
RCD  
t
DPL  
t
RP  
t
DPL  
Random Row Write (Ping-Pong Banks) (2/2) (Burst Length = 8, /CAS Latency = 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
H
/CS  
/RAS  
/CAS  
/WE  
A11  
µ
µ
RAa  
RBa  
RAb  
A10  
RAa  
CAa  
RBa  
CBa  
RAb  
CAb  
ADD  
DQM  
DQ  
L
DAa1 DAa2 DAa3 DAa4 DAa5 DAa6 DAa7 DAa8 DBa1 DBa2 DBa3 DBa4 DBa5 DBa6 DBa7 DBa8 DAb1 DAb2  
Activate  
Command  
for Bank A  
Write  
Command  
for Bank A  
Activate  
Command  
for Bank B  
Write  
Command  
for Bank B  
Activate  
Command  
for Bank A  
Write  
Command  
for Bank A  
Precharge  
Precharge  
Command  
for Bank A  
Command  
for Bank B  
tRCD  
tDPL  
tRP  
tDPL  
13.16 Read and Write (1/2) (Burst Length = 4, /CAS Latency = 2)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
H
/RAS  
/CAS  
/WE  
A11  
µ
µ
A10  
RAa  
RAa  
ADD  
DQM  
DQ  
CAa  
CAb  
Write latency = 0  
CAc  
Word Masking  
QAa1 QAa2 QAa3 QAa4  
DAb1 DAb2  
DAb4  
QAc1 QAc2  
QAc4  
Hi-Z  
Activate  
Command  
for Bank A  
Read  
Command  
for Bank A  
Write  
Command  
for Bank A  
Read  
Command  
for Bank A  
Hi-Z at the end of wrap function  
0-clock latency  
2-clock latency  
Read and Write (2/2) (Burst Length = 4, /CAS Latency = 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
H
/RAS  
/CAS  
/WE  
A11  
µ
µ
A10  
RAa  
RAa  
ADD  
DQM  
DQ  
CAa  
CAb  
Write latency = 0  
CAc  
Word Masking  
QAa1 QAa2 QAa3 QAa4  
DAb1 DAb2  
DAb4  
QAc1 QAc2  
Hi-Z  
Activate  
Command  
for Bank A  
Read  
Command  
for Bank A  
Write  
Command  
for Bank A  
Read  
Command  
for Bank A  
Hi-Z at the end of wrap function  
0-clock latency  
2-clock latency  
13.17 Interleaved Column Read Cycle (1/2) (Burst Length = 4, /CAS Latency = 2)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
H
/RAS  
/CAS  
/WE  
A11  
µ
µ
A10  
RAa  
RAa  
RBa  
RBa  
ADD  
DQM  
DQ  
CAa  
CBa  
CBb  
CBc  
CAb  
CBd  
L
Aa1  
Aa2  
Aa3  
Aa4  
Ba1  
Ba2  
Bb1  
Bb2  
Bc1  
Bc2  
Ab1  
Ab2  
Bd1  
Bd2  
Bd3  
Bd4  
Activate  
Command  
for Bank A  
Read  
Command  
for Bank A  
Read  
Command  
for Bank B  
Read  
Command  
for Bank B  
Read  
Command  
for Bank B  
Read  
Command  
for Bank A  
Read  
Command  
for Bank B  
Activate  
Command  
for Bank B  
Precharge  
Command  
for Bank A  
Precharge  
Command  
for Bank B  
t
RCD  
t
RRD  
Interleaved Column Read Cycle (2/2) (Burst Length = 4, /CAS Latency = 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
H
/RAS  
/CAS  
/WE  
A11  
µ
µ
A10  
RAa  
RAa  
RBa  
RBa  
ADD  
DQM  
DQ  
CAa  
CBa  
CBb  
CBc  
CAb  
L
Aa1  
Aa2  
Aa3  
Aa4  
Ba1  
Ba2  
Bb1  
Bb2  
Bc1  
Bc2  
Ab1  
Ab2  
Ab3  
Ab4  
Activate  
Command  
for Bank A  
Read  
Command  
for Bank A  
Read  
Command  
for Bank B  
Read  
Command  
for Bank B  
Read  
Command  
for Bank B  
Read  
Command  
for Bank A  
Activate  
Command  
for Bank B  
Precharge  
Command  
for Bank B  
Precharge  
Command  
for Bank A  
t
RCD  
t
RRD  
13.18 Interleaved Column Write Cycle (1/2) (Burst Length = 4, /CAS Latency = 2)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
H
/RAS  
/CAS  
/WE  
A11  
µ
µ
A10  
RAa  
RAa  
RBa  
RBa  
ADD  
DQM  
DQ  
CAa  
CBa  
CBb  
CBc  
Bc1  
CAb  
Ab1  
CBd  
Bd1  
L
Aa1  
Aa2  
Aa3  
Aa4  
Ba1  
Ba2  
Bb1  
Bb2  
Bc2  
Ab2  
Bd2  
Bd3  
Bd4  
Activate  
Command  
for Bank A  
Write  
Command  
for Bank A  
Write  
Command  
for Bank B  
Write  
Command  
for Bank B  
Write  
Command  
for Bank B  
Write  
Command  
for Bank A  
Write  
Command  
for Bank B  
Precharge  
Command  
for Bank B  
Activate  
Command  
for Bank B  
Precharge  
Command  
for Bank A  
t
RCD  
t
RRD  
t
DPL  
t
DPL  
Interleaved Column Write Cycle (2/2) (Burst Length = 4, /CAS Latency = 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
H
/RAS  
/CAS  
/WE  
A11  
µ
µ
A10  
RAa  
RAa  
RBa  
RBa  
ADD  
DQM  
DQ  
CAa  
CBa  
CBb  
Bb1  
CBc  
Bc1  
CAb  
Ab1  
CBd  
Bd1  
L
Aa1  
Aa2  
Aa3  
Aa4  
Ba1  
Ba2  
Bb2  
Bc2  
Ab2  
Bd2  
Bd3  
Bd4  
Activate  
Command  
for Bank A  
Write  
Command  
for Bank A  
Write  
Command  
for Bank B  
Write  
Command  
for Bank B  
Write  
Command  
for Bank B  
Write  
Command  
for Bank A  
Write  
Command  
for Bank B  
Activate  
Command  
for Bank B  
Precharge  
Command  
for Bank B  
Precharge  
Command  
for Bank A  
t
RCD  
t
RRD  
t
DPL  
t
DPL  
13.19 Auto Precharge after Read Burst (1/2) (Burst Length = 4, /CAS Latency = 2)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
H
/RAS  
/CAS  
/WE  
A11  
µ
µ
A10  
RAa  
RAa  
RBa  
RBa  
RBb  
RBb  
RAc  
RAc  
ADD  
DQM  
DQ  
CAa  
CBa  
CAb  
CBb  
CAc  
L
Hi-Z  
Activate Command  
for Bank A  
Activate  
Command  
for Bank B  
Activate  
Command  
for Bank B  
Activate  
Command  
for Bank A  
Bank A  
Read Command  
with  
Bank A  
Bank B  
Read Command with  
Auto Precharge  
Read Command without  
Auto Precharge  
Auto Precharge  
Bank B  
Bank A  
Read Command  
with  
Auto Precharge  
Start for Bank B  
Auto Precharge  
Start for Bank A  
Auto Precharge  
Start for Bank B  
Read Command  
with  
Auto Precharge  
Auto Precharge  
Auto Precharge after Read Burst (2/2) (Burst Length = 4, /CAS Latency = 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
H
/RAS  
/CAS  
/WE  
A11  
µ
µ
A10  
RAa  
RAa  
RBa  
RBa  
RBb  
RBb  
ADD  
DQM  
DQ  
CAa  
CBa  
CAb  
CBb  
L
Hi-Z  
Activate Command  
for Bank A  
Activate  
Command  
for Bank B  
Bank A  
Read Command with  
Auto Precharge  
Bank B  
Read Command with  
Auto Precharge  
Auto  
Precharge  
Start for  
Bank A  
Bank A  
Read Command without  
Auto Precharge  
Bank B  
Read Command with  
Auto Precharge  
Auto Precharge  
Start for Bank B  
Activate Command  
for Bank B  
13.20 Auto Precharge after Write Burst (1/2) (Burst Length = 4, /CAS Latency = 2)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
H
/RAS  
/CAS  
/WE  
A11  
µ
µ
A10  
RAa  
RAa  
RBa  
RBa  
RBb  
RBb  
RAc  
RAc  
ADD  
DQM  
DQ  
CAa  
CBa  
CAb  
CBb  
CAc  
L
Hi-Z  
Activate Command  
for Bank A  
Activate  
Command  
for Bank B  
Activate  
Command  
for Bank B  
Activate  
Command  
for Bank A  
Bank A  
Write Command without  
Auto Precharge  
Bank B  
Write Command with  
Auto Precharge  
Bank A  
Write Command  
with  
Bank B  
Write Command  
with  
Bank A  
Write Command  
with  
Auto Precharge  
Auto Precharge  
Auto Precharge  
Auto Precharge  
Start for Bank B  
Auto Precharge  
Start for Bank A  
Auto Precharge  
Start for Bank B  
Auto Precharge after Write Burst (2/2) (Burst Length = 4, /CAS Latency = 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
H
/RAS  
/CAS  
/WE  
A11  
µ
µ
A10  
RAa  
RAa  
RBa  
RBa  
RBb  
RBb  
ADD  
DQM  
DQ  
CAa  
CBa  
CAb  
CBb  
L
Hi-Z  
Activate Command  
for Bank A  
Activate  
Command  
for Bank B  
Bank A  
Write Command  
with  
Activate  
Command  
for Bank B  
Bank B  
Write Command  
with  
Auto Precharge  
Bank A  
Bank B  
Write Command without  
Auto Precharge  
Write Command with  
Auto Precharge  
Auto Precharge  
Auto Precharge  
Start for Bank B  
Auto Precharge  
Start for Bank A  
13.21 Full Page Read Cycle (1/2) (/CAS Latency = 2)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
H
/RAS  
/CAS  
/WE  
A11  
µ
µ
A10  
RAa  
RAa  
RBa  
RBa  
RBb  
ADD  
DQM  
DQ  
CAa  
CBa  
RBb  
L
Hi-Z  
Aa  
Aa+1 Aa+2 Aa–2 Aa–1  
Aa  
Aa+1  
Ba  
Ba+1 Ba+2 Ba+3 Ba+4 Ba+5 Ba+6  
Read  
Command  
for Bank B  
Precharge  
Command  
for Bank B  
Activate  
Command  
for Bank A  
Read  
Command  
for Bank A  
Activate  
Command  
for Bank B  
Activate  
Command  
for Bank B  
Burst stop  
Command  
Full Page Read Cycle (2/2) (/CAS latency = 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
H
/RAS  
/CAS  
/WE  
A11  
µ
µ
A10  
RAa  
RAa  
RBa  
RBa  
RBb  
ADD  
DQM  
DQ  
CAa  
CBa  
RBb  
L
Hi-Z  
Aa  
Aa+1  
Aa–3 Aa–2 Aa–1  
Aa  
Aa+1  
Ba  
Ba+1 Ba+2 Ba+3 Ba+4 Ba+5  
Read  
Command  
for Bank B  
Activate  
Command  
for Bank A  
Read  
Command  
for Bank A  
Activate  
Command  
for Bank B  
Precharge  
Command  
for Bank B  
Activate  
Command  
for Bank B  
Burst stop  
Command  
13.22 Full Page Write Cycle (1/2) (/CAS latency = 2)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
H
/RAS  
/CAS  
/WE  
A11  
µ
µ
A10  
RAa  
RAa  
RBa  
RBa  
RBb  
ADD  
DQM  
DQ  
CAa  
Aa  
CBa  
RBb  
L
Hi-Z  
Aa+1 Aa+2  
Aa–2 Aa–1  
Aa  
Aa+1  
Ba  
Ba+1 Ba+2 Ba+3 Ba+4 Ba+5  
Write  
Command  
for Bank B  
Precharge  
Command  
for Bank B  
Activate  
Command  
for Bank A  
Write  
Command  
for Bank A  
Activate  
Command  
for Bank B  
Activate  
Command  
for Bank B  
Burst stop  
Command  
Full Page Write Cycle (2/2) (/CAS Latency = 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
H
/RAS  
/CAS  
/WE  
A11  
µ
µ
A10  
RAa  
RAa  
RBa  
RBa  
RBb  
RBb  
ADD  
DQM  
DQ  
CAa  
Aa  
CBa  
Ba  
L
Hi-Z  
Aa+1 Aa+2 Aa+3 Aa–1  
Aa  
Aa+1  
Ba+1 Ba+2 Ba+3 Ba+4  
Write  
Command  
for Bank B  
Precharge  
Command  
for Bank B  
Activate  
Command  
for Bank A  
Write  
Command  
for Bank A  
Activate  
Command  
for Bank B  
Activate  
Command  
for Bank B  
Burst stop  
Command  
13.23 Byte Write Operation (Burst Length = 4, /CAS Latency = 2)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
H
/CS  
/RAS  
/CAS  
µ
µ
/WE  
A11  
A10  
ADD  
LDQM  
UDQM  
DQ lower  
DQ upper  
Activate  
Command  
Read  
Command  
U-byte  
not Read  
L-byte  
not Read  
L-byte  
not Write  
U-byte  
not Write  
L-byte  
not Read  
L-byte  
not Read  
L-byte  
not Write  
13.24 Burst Read and Single Write (Option) (Burst Length = 4, /CAS Latency = 2)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
H
/CS  
/RAS  
/CAS  
µ
µ
/WE  
A11  
A10  
ADD  
LDQM  
UDQM  
DQ lower  
DQ upper  
Activate  
Command  
Read  
Command  
Single  
Write  
Single  
Write  
Read  
Command  
Single  
Write  
Command  
Command  
Command  
13.25 Full Page Random Column Read (Burst Length = Full Page, /CAS Latency = 2)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
H
/RAS  
/CAS  
/WE  
A11  
µ
µ
A10  
RAa  
RAa  
RBa  
RBa  
ADD  
DQM  
DQ  
CAa  
CBa  
CAb  
CBb  
CAc  
CBc  
t
RCD  
t
RRD  
t
RCD  
L
Hi-Z  
QAa1 QBa1 QAb1 QAb2 QBb1 QBb2 QAc1 QAc2 QAc3 QBc1 QBc2 QBc3  
Activate  
Command  
for Bank A  
Activate  
Command  
for Bank B  
Precharge Command  
for Bank B  
(PRE Termination)  
Read  
Command  
for Bank A  
Read  
Command  
for Bank B  
Read  
Command  
for Bank A  
Read  
Command  
for Bank B  
Read  
Command  
for Bank A  
Read  
Command  
for Bank B  
13.26 Full Page Random Column Write (Burst Length = Full Page, /CAS Latency = 2)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
/CS  
H
/RAS  
/CAS  
/WE  
A11  
µ
µ
A10  
RAa  
RAa  
RBa  
RBa  
ADD  
DQM  
DQ  
CAa  
CBa  
CAb  
CBb  
CAc  
CBc  
t
RCD  
t
RRD  
t
RCD  
L
DAa1 DBa1 DAb1 DAb2 DBb1 DBb2 DAc1 DAc2 DAc3 DBc1 DBc2 DBc3 DBc4  
Activate  
Command  
for Bank A  
Activate  
Command  
for Bank B  
Precharge Command  
for Bank B  
(PRE Termination)  
Write  
Write  
Command  
for Bank A  
Write  
Command  
for Bank B  
Write  
Command  
for Bank A  
Write  
Command  
for Bank B  
Command  
for Bank A  
Write  
Command  
for Bank B  
13.27 PRE (Precharge) Termination of Burst (1/2) (Burst Length = 8, /CAS Latency = 2)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
H
/CS  
/RAS  
/CAS  
/WE  
A11  
µ
µ
RAa  
RAa  
RAb  
RAb  
A10  
CAa  
CAb  
ADD  
DQM  
DQ  
L
Write  
Masking  
Hi-Z  
DAa1 DAa2 DAa3 DAa4 DAa5  
QAb1 QAb2 QAb3 QAb4 QAb5  
Activate  
Command  
for Bank A  
Write  
Command  
for Bank A  
Read  
Command  
for Bank A  
Precharge  
Command  
for Bank A  
Activate  
Command  
for Bank A  
Precharge  
Command  
for Bank A  
PRE Command  
Termination  
PRE Command  
Termination  
t
RCD  
t
DPL  
t
RP  
t
RAS  
t
RAS  
PRE (Precharge) Termination of Burst (2/2) (Burst Length = 8, /CAS Latency = 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
CLK  
CKE  
H
/CS  
/RAS  
/CAS  
/WE  
A11  
µ
µ
RAa  
RAa  
RAb  
A10  
CAa  
RAb  
CAb  
ADD  
DQM  
DQ  
L
Write  
Masking  
Hi-Z  
DAa1 DAa2 DAa3 DAa4 DAa5  
QAb1 QAb2 QAb3 QAb4  
Activate  
Command  
for Bank A  
Write  
Command  
for Bank A  
Read  
Command  
for Bank A  
Bank A  
Precharge Command  
Activate  
Command  
for Bank A  
Bank A  
Precharge Command  
PRE Command  
Termination  
PRE Command  
Termination  
t
RCD  
t
DPL  
t
RP  
t
RAS  
t
RAS  
µPD4516421A, 4516821A, 4516161A for Rev.P  
14. Package Drawings  
44-PIN PLASTIC TSOP(II) (10.16 mm (400))  
44  
23  
detail of lead end  
S
T
R
L
Q
1
22  
U
2
A
H
I
J
S
G
N
S
C
B
K
M
D
M
NOTES  
1. Each lead centerline is located within 0.13 mm of  
ITEM MILLIMETERS  
A
B
C
18.32±0.04  
0.905 MAX.  
0.8 (T.P.)  
its true position (T.P.) at maximum material condition.  
2. Dimension "A" does not include mold flash, protrusions or gate  
burrs. Mold flash, protrusions or gate burrs shall not exceed  
0.15mm per side.  
+0.08  
0.32  
D
0.07  
G
H
I
1.0±0.05  
11.76±0.2  
10.11±0.04  
0.825±0.2  
J
+0.025  
0.145  
K
0.015  
L
M
N
Q
0.5  
0.13  
0.10  
0.1±0.05  
+5°  
3°  
R
3°  
S
T
1.2 MAX.  
0.25 (T.P.)  
U
0.60±0.15  
S44G5-80-9NF-1  
83  
Data Sheet E0122N10  
µPD4516421A, 4516821A, 4516161A for Rev.P  
50-PIN PLASTIC TSOP(II) (10.16 mm (400))  
50  
26  
detail of lead end  
S
T
R
L
Q
1
25  
U
2
A
H
I
J
S
G
N
S
C
B
K
M
D
M
NOTES  
1. Each lead centerline is located within 0.13 mm of  
its true position (T.P.) at maximum material condition.  
ITEM MILLIMETERS  
A
B
C
20.86±0.04  
1.0 MAX.  
0.8 (T.P.)  
2. Dimension Adoes not include mold flash, protrusions or gate  
burrs. Mold flash, protrusions or gate burrs shall not exceed  
0.15mm per side.  
+0.08  
0.32  
D
0.07  
G
H
I
1.0±0.05  
11.76±0.2  
10.11±0.04  
0.825±0.2  
J
+0.025  
0.145  
K
0.015  
L
M
N
Q
0.5  
0.13  
0.10  
0.1±0.05  
+5°  
3°  
R
3°  
S
T
1.2 MAX.  
0.25 (T.P.)  
U
0.60±0.15  
S50G5-80-9NF-1  
84  
Data Sheet E0122N10  
µPD4516421A, 4516821A, 4516161A for Rev.P  
15. Recommended Soldering Condition  
Please consult with our sales offices for soldering conditions of the µPD4516xxxA.  
Type of Surface Mount Device  
µPD4516421AG5-9NF : 44-pin Plastic TSOP (II) (10.16mm (400))  
µPD4516821AG5-9NF : 44-pin Plastic TSOP (II) (10.16mm (400))  
µPD4516161AG5-9NF : 50-pin Plastic TSOP (II) (10.16mm (400))  
85  
Data Sheet E0122N10  
µPD4516421A, 4516821A, 4516161A for Rev.P  
16. Revision History  
Edition /  
Date  
Page  
Description  
This  
Previous  
edition  
Type of  
Location  
edition  
revision  
NEC Corporation (M12939E)  
3rd edition /  
Apr. 1998  
Elpida Memory, Inc. (E0122N)  
1st edition /  
May. 2001  
Republished by Elpida Memory, Inc.  
86  
Data Sheet E0122N10  
µPD4516421A, 4516821A, 4516161A for Rev.P  
NOTES FOR CMOS DEVICES  
1
PRECAUTION AGAINST ESD FOR SEMICONDUCTORS  
Note:  
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and  
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity  
as much as possible, and quickly dissipate it once, when it has occurred. Environmental control  
must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using  
insulators that easily build static electricity. Semiconductor devices must be stored and transported  
in an anti-static container, static shielding bag or conductive material. All test and measurement  
tools including work bench and floor should be grounded. The operator should be grounded using  
wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need  
to be taken for PW boards with semiconductor devices on it.  
2
HANDLING OF UNUSED INPUT PINS FOR CMOS  
Note:  
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided  
to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence  
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels  
of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused  
pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of  
being an output pin. All handling related to the unused pins must be judged device by device and  
related specifications governing the devices.  
3
STATUS BEFORE INITIALIZATION OF MOS DEVICES  
Note:  
Power-on does not necessarily define initial status of MOS device. Production process of MOS  
does not define the initial operation status of the device. Immediately after the power source is  
turned ON, the devices with reset function have not yet been initialized. Hence, power-on does  
not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the  
reset signal is received. Reset operation must be executed immediately after power-on for devices  
having reset function.  
87  
Data Sheet E0122N10  
µPD4516421A, 4516821A, 4516161A for Rev.P  
No part of this document may be copied or reproduced in any form or by any means without the prior  
written consent of Elpida Memory, Inc.  
Elpida Memory, Inc. does not assume any liability for infringement of any intellectual property rights  
(including but not limited to patents, copyrights, and circuit layout licenses) of Elpida Memory, Inc. or  
third parties by or arising from the use of the products or information listed in this document. No license,  
express, implied or otherwise, is granted under any patents, copyrights or other intellectual property  
rights of Elpida Memory, Inc. or others.  
Descriptions of circuits, software and other related information in this document are provided for  
illustrative purposes in semiconductor product operation and application examples. The incorporation of  
these circuits, software and information in the design of the customer's equipment shall be done under  
the full responsibility of the customer. Elpida Memory, Inc. assumes no responsibility for any losses  
incurred by customers or third parties arising from the use of these circuits, software and information.  
[Product applications]  
Elpida Memory, Inc. makes every attempt to ensure that its products are of high quality and reliability.  
However, users are instructed to contact Elpida Memory's sales office before using the product in  
aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment,  
medical equipment for life support, or other such application in which especially high quality and  
reliability is demanded or where its failure or malfunction may directly threaten human life or cause risk  
of bodily injury.  
[Product usage]  
Design your application so that the product is used within the ranges and conditions guaranteed by  
Elpida Memory, Inc., including the maximum ratings, operating supply voltage range, heat radiation  
characteristics, installation conditions and other related characteristics. Elpida Memory, Inc. bears no  
responsibility for failure or damage when the product is used beyond the guaranteed ranges and  
conditions. Even within the guaranteed ranges and conditions, consider normally foreseeable failure  
rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so  
that the equipment incorporating Elpida Memory, Inc. products does not cause bodily injury, fire or other  
consequential damage due to the operation of the Elpida Memory, Inc. product.  
[Usage environment]  
This product is not designed to be resistant to electromagnetic waves or radiation. This product must be  
used in a non-condensing environment.  
If you export the products or technology described in this document that are controlled by the Foreign  
Exchange and Foreign Trade Law of Japan, you must follow the necessary procedures in accordance  
with the relevant laws and regulations of Japan. Also, if you export products/technology controlled by  
U.S. export control regulations, or another country's export control laws or regulations, you must follow  
the necessary procedures in accordance with such laws or regulations.  
If these products/technology are sold, leased, or transferred to a third party, or a third party is granted  
license to use these products, that third party must be made aware that they are responsible for  
compliance with the relevant laws and regulations.  
M02 01. 2  

相关型号:

UPD4516161AG5-A10L-9NF

Synchronous DRAM, 1MX16, 6ns, MOS, PDSO50, 0.400 INCH, PLASTIC, TSOP2-50
NEC

UPD4516161AG5-A12-9NF

Synchronous DRAM, 1MX16, 8ns, MOS, PDSO50, 0.400 INCH, PLASTIC, TSOP2-50
NEC

UPD4516161AG5-A12L-9NF

Synchronous DRAM, 1MX16, 8ns, MOS, PDSO50, 0.400 INCH, PLASTIC, TSOP2-50
NEC

UPD4516161AG5-A80L-9NF

Synchronous DRAM, 1MX16, 6ns, MOS, PDSO50, 0.400 INCH, PLASTIC, TSOP2-50
NEC

UPD4516161G5-A10

Synchronous DRAM, 1MX16, CMOS, PDSO50, 0.400 INCH, PLASTIC, TSOP2-50
ELPIDA

UPD4516161G5-A13

Synchronous DRAM, 1MX16, CMOS, PDSO50, 0.400 INCH, PLASTIC, TSOP2-50
ELPIDA

UPD4516161G5-A15

Synchronous DRAM, 1MX16, CMOS, PDSO50, 0.400 INCH, PLASTIC, TSOP2-50
ELPIDA