EM78P342NSO20 [ELAN]

8-Bit Microprocessor with OTP ROM;
EM78P342NSO20
型号: EM78P342NSO20
厂家: ELAN MICROELECTRONICS CORP    ELAN MICROELECTRONICS CORP
描述:

8-Bit Microprocessor with OTP ROM

OTP只读存储器
文件: 总118页 (文件大小:3292K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EM78P342N  
8-Bit Microprocessor  
with OTP ROM  
Product  
Specification  
DOC. VERSION 1.5  
ELAN MICROELECTRONICS CORP.  
April 2016  
Trademark Acknowledgments:  
IBM is a registered trademark and PS/2 is a trademark of IBM.  
Windows is a trademark of Microsoft Corporation.  
ELAN and ELAN logo  
are trademarks of ELAN Microelectronics Corporation.  
Copyright © 2016 by ELAN Microelectronics Corporation  
All Rights Reserved  
Printed in Taiwan  
The contents of this specification are subject to change without further notice. ELAN Microelectronics assumes no  
responsibility concerning the accuracy, adequacy, or completeness of this specification. ELAN Microelectronics  
makes no commitment to update, or to keep current the information and material contained in this specification.  
Such information and material may change to conform to each confirmed order.  
In no event shall ELAN Microelectronics be made responsible for any claims attributed to errors, omissions, or  
other inaccuracies in the information or material contained in this specification. ELAN Microelectronics shall not  
be liable for direct, indirect, special incidental, or consequential damages arising from the use of such information  
or material.  
The software (if any) described in this specification is furnished under a license or nondisclosure agreement, and  
may be used or copied only in accordance with the terms of such agreement.  
ELAN Microelectronics products are not intended for use in life support appliances, devices, or systems. Use of  
ELAN Microelectronics product in such applications is not supported and is prohibited.  
NO PART OF THIS SPECIFICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY  
ANY MEANS WITHOUT THE EXPRESSED WRITTEN PERMISSION OF ELAN MICROELECTRONICS.  
ELAN MICROELECTRONICS CORPORATION  
Headquarters:  
Hong Kong:  
USA:  
No. 12, Innovation Road 1  
Hsinchu Science Park  
Hsinchu, TAIWAN 308  
Tel: +886 3 563-9977  
Fax: +886 3 563-9966  
webmaster@emc.com.tw  
http://www.emc.com.tw  
Elan (HK) Microelectronics  
Corporation, Ltd.  
Flat A, 19F., World Tech Centre  
95 How Ming Street, Kwun Tong  
Kowloon, HONG KONG  
Tel: +852 2723-3376  
Elan Information  
Technology Group (U.S.A.)  
PO Box 601  
Cupertino, CA 95015  
U.S.A.  
Tel: +1 408 366-8225  
Fax: +1 408 366-8225  
Fax: +852 2723-7780  
Shenzhen:  
Shanghai:  
Elan Microelectronics  
Shenzhen, Ltd.  
Elan Microelectronics  
Shanghai, Ltd.  
8A Floor, Microprofit Building  
Gaoxin South Road 6  
6F, Ke Yuan Building  
No. 5 Bibo Road  
Shenzhen Hi-tech Industrial Park  
South Area, Shenzhen  
CHINA 518057  
Tel: +86 755 2601-0565  
Fax: +86 755 2601-0500  
elan-sz@elanic.com.cn  
Zhangjiang Hi-Tech Park  
Shanghai, CHINA 201203  
Tel: +86 21 5080-3866  
Fax: +86 21 5080-0273  
elan-sh@elanic.com.cn  
Contents  
Contents  
1
2
3
4
General Description ................................................................................................ 1  
Features................................................................................................................... 1  
Pin Assignment ....................................................................................................... 2  
Pin Description........................................................................................................ 3  
4.1 EM78P342ND14/SO14.....................................................................................3  
4.2 EM78P342NSO16A..........................................................................................4  
4.3 EM78P342ND18/SO18.....................................................................................5  
4.4 EM78P342ND20/SO20/SS20 ...........................................................................6  
5
6
Block Diagram......................................................................................................... 7  
Functional Description ........................................................................................... 8  
6.1 Operational Registers .......................................................................................8  
6.1.1 R0 (Indirect Address Register)...........................................................................8  
6.1.2 R1 (Time Clock/Counter).....................................................................................8  
6.1.3 R2 (Program Counter) and Stack........................................................................8  
6.1.3.1 Data Memory Configuration ...............................................................10  
6.1.4 R3 (Status Register)..........................................................................................11  
6.1.5 R4 (RAM Select Register).................................................................................11  
6.1.6 R5 ~ R6 (Port 5 ~ Port 6) ..................................................................................11  
6.1.7 R7 (Port 7).........................................................................................................12  
6.1.8 R8 (AISR: ADC Input Select Register)..............................................................13  
6.1.9 R9 (ADCON: ADC Control Register).................................................................14  
6.1.10 RA (ADOC: ADC Offset Calibration Register)...................................................16  
6.1.11 RB (ADDATA: Converted Value of ADC)...........................................................16  
6.1.12 RC (ADDATA1H: Converted Value of ADC)......................................................16  
6.1.13 RD (ADDATA1L: Converted Value of ADC).......................................................17  
6.1.14 RE (Interrupt Status 2 and Wake-up Control Register).....................................17  
6.1.15 RF (Interrupt Status 2 Register) ........................................................................18  
6.1.16 R10 ~ R3F.........................................................................................................18  
6.2 Special Purpose Registers..............................................................................19  
6.2.1 A (Accumulator).................................................................................................19  
6.2.2 CONT (Control Register)...................................................................................19  
6.2.3 IOC50 ~ IOC70 (I/O Port Control Register) ......................................................20  
6.2.4 IOC80 (Comparator and TCCA Control Register).............................................21  
6.2.5 IOC90 (TCCB and TCCC Control Register)......................................................22  
6.2.6 IOCA0 (IR and TCCC Scale Control Register) .................................................23  
6.2.7 IOCB0 (Pull-down Control Register) .................................................................24  
6.2.8 IOCC0 (Open-drain Control Register)...............................................................24  
6.2.9 IOCD0 (Pull-high Control Register)...................................................................25  
6.2.10 IOCE0 (WDT Control Register and Interrupt Mask Register 2) ........................25  
Product Specification (V1.5) 04.18.2016  
iii  
Contents  
6.2.11 IOCF0 (Interrupt Mask Register).......................................................................26  
6.2.12 IOC51 (TCCA Counter) .....................................................................................27  
6.2.13 IOC61 (TCCB Counter).....................................................................................27  
6.2.14 IOC71 (TCCBH/MSB Counter) .........................................................................27  
6.2.15 IOC81 (TCCC Counter).....................................................................................28  
6.2.16 IOC91 (Low-Time Register) ..............................................................................28  
6.2.17 IOCA1 (High Time Register) .............................................................................29  
6.2.18 IOCB1 High/Low Time Scale Control Register) ................................................29  
6.2.19 IOCC1 (TCC Prescaler Counter) ......................................................................30  
6.2.20 IOCD1 (LVD Control Register) ..........................................................................30  
6.2.21 IOCE1 (Output Sink Select Control Register) ...................................................31  
6.2.22 IOCF1 (Pull-high Control Register) ...................................................................33  
6.3 TCC/WDT and Prescaler ................................................................................33  
6.4 I/O Ports .........................................................................................................35  
6.4.1 Usage of Port 5 Input Change Wake-up/Interrupt Function..............................37  
6.5 Reset and Wake-up ........................................................................................37  
6.5.1 Reset and Wake-up Operation..........................................................................37  
6.5.1.1 Wake-up and Interrupt Modes Operation Summary ..........................40  
6.5.1.2 Register Initial Values after Reset ......................................................46  
6.5.1.3 Controller Reset Block Diagram.........................................................51  
6.5.2 The T and P Status under Status Register........................................................51  
6.6 Interrupt ..........................................................................................................52  
6.7 Analog-To-Digital Converter (ADC) .................................................................54  
6.7.1 ADC Control Register (AISR/R8, ADCON/R9, ADOC/RA) ...............................55  
6.7.1.1 R8 (AISR: ADC Input Select Register)...............................................55  
6.7.1.2 R9 (ADCON: ADC Control Register)..................................................55  
6.7.1.3 RA (ADOC: AD Offset Calibration Register).......................................57  
6.7.2 ADC Data Register (ADDATA/RB, ADDATA1H/RC, ADDATA1L/RD) ..............57  
6.7.3 ADC Sampling Time..........................................................................................58  
6.7.4 AD Conversion Time .........................................................................................58  
6.7.5 ADC Operation during Sleep Mode...................................................................58  
6.7.6 Programming Process/Considerations..............................................................59  
6.7.6.1 Programming Process........................................................................59  
6.7.6.2 Sample Demo Programs....................................................................60  
6.8 Infrared Remote Control Application/PWM Waveform Generation ..................62  
6.8.1 Overview ...........................................................................................................62  
6.8.2 Function Description..........................................................................................63  
6.8.3 Programming the Related Registers.................................................................65  
6.9 Timer/Counter.................................................................................................66  
6.9.1 Overview ...........................................................................................................66  
6.9.2 Function Description..........................................................................................66  
6.9.3 Programming the Related Registers.................................................................68  
iv   
Product Specification (V1.5) 04.18.2016  
Contents  
6.10 Comparator.....................................................................................................68  
6.10.1 External Reference Signal ................................................................................69  
6.10.2 Comparator Outputs..........................................................................................69  
6.10.3 Using Comparator as an Operation Amplifier....................................................70  
6.10.4 Comparator Interrupt.........................................................................................70  
6.10.5 Wake-up from Sleep Mode................................................................................70  
6.11 Oscillator.........................................................................................................71  
6.11.1 Oscillator Modes................................................................................................71  
6.11.2 Crystal Oscillator/Ceramic Resonators (Crystal)...............................................72  
6.11.3 External RC Oscillator Mode.............................................................................75  
6.11.4 Internal RC Oscillator Mode ..............................................................................76  
6.12 Power-on Considerations................................................................................77  
6.12.1 Programmable WDT Time-out Period...............................................................77  
6.12.2 External Power-on Reset Circuit.......................................................................77  
6.12.3 Residual Voltage Protection ..............................................................................78  
6.13 Code Option ...................................................................................................79  
6.13.1 Code Option Register (Word 0).........................................................................79  
6.13.2 Code Option Register (Word 1).........................................................................81  
6.13.3 Customer ID Register (Word 2).........................................................................82  
6.14 Low Voltage Detector/Low Voltage Reset .......................................................83  
6.14.1 Low Voltage Reset ............................................................................................83  
6.14.2 Low Voltage Detector ........................................................................................83  
6.14.2.1 IOCD1 (LVD Control Register)...........................................................83  
6.14.2.2 RE (Interrupt Status 2 and Wake-up Control Register)......................84  
6.14.3 Programming Process.......................................................................................85  
6.15 Instruction Set.................................................................................................86  
7
8
Absolute Maximum Ratings ................................................................................. 88  
DC Electrical Characteristics ............................................................................... 88  
8.1 AD Converter Characteristic ...........................................................................91  
8.2 Comparator (OP) Characteristic......................................................................92  
8.3 Device Characteristics ....................................................................................92  
9
AC Electrical Characteristic ................................................................................. 93  
10 Timing Diagrams ................................................................................................... 94  
Product Specification (V1.5) 04.18.2016  
v  
Contents  
APPENDIX  
A
B
C
Ordering and Manufacturing Information............................................................ 95  
Package Type ........................................................................................................ 96  
Packaging Configuration...................................................................................... 97  
C.1 EM78P342ND14.............................................................................................97  
C.2 EM78P342NSO14 ..........................................................................................98  
C.3 EM78P342NSO16A........................................................................................99  
C.4 EM78P342ND18...........................................................................................100  
C.5 EM78P342NSO18 ........................................................................................101  
C.6 EM78P342ND20...........................................................................................102  
C.7 EM78P342NSO20 ........................................................................................103  
C.8 EM78P342NSS20.........................................................................................104  
D
Quality Assurance and Reliability...................................................................... 105  
D.1 Address Trap Detect.....................................................................................105  
How to Use the ICE 341N.................................................................................... 106  
E
F
Comparison between V-Package and U-Package Versions.............................. 109  
EM78P342N-V Package........................................................................................109  
EM78P342N-U Package .......................................................................................109  
vi   
Product Specification (V1.5) 04.18.2016  
Contents  
Specification Revision History  
Doc. Version  
Revision Description  
Date  
1.0  
Initial released version  
2006/12/01  
1. Added EM78P340N 10-pin and EM78P3411N 16-pin package.  
2. Modified the programmable Level Voltage Reset (LVR).  
3. Modified the operating voltage range and frequency range.  
4. Modified the IRC mode Wake-up time.  
1.1  
2007/11/15  
5. Modified some code option bits available.  
6. Added Appendix D: How to use the ICE341N  
Renamed the Product as EM78P342N from EM78P341N,  
EM78P3411N, EM78P342N, EM78P343N  
1.2  
2008/01/24  
1.3  
1.4  
Modified the TCCA, TCCB, and TCCC Timer formula.  
Added LVR specifications  
2008/11/12  
2013/04/17  
1. Modified the package type in Section 2 Features  
2. Added User Application Note  
1.5  
2016/04/18  
3. Modified Appendix A Ordering and Manufacturing Information”  
Item  
EM78P342N  
4.0V, 3.5V, 2.4V  
Level Voltage Reset  
DC ~ 16 MHz, 4.5V  
DC ~ 8 MHz, 3.0V  
DC ~ 4 MHz, 2.1V  
Crystal mode  
Operating frequency range at 0°C~ 70°C  
IRC mode wake-up time  
( Sleep Normal )  
10 s  
Condition: 5V, 4 MHz  
Added a Code Option NRM  
Code Option  
Product Specification (V1.5) 04.18.2016  
vii  
Contents  
User Application Note  
(Before using this chip, take a look at the following description note, it includes important messages.)  
1.  
2.  
3.  
The internal TCC will stop running when in sleep mode. However, during AD conversion, when  
TCC is set to “SLEP” instruction, if the ADWE bit of the RE register is enabled, the TCC will keep  
on running.  
During ADC conversion, do not perform output instruction to maintain precision for all of the pins.  
In order to obtain accurate values, it is necessary to avoid any data transition on the I/O pins  
during AD conversion  
When using operational amplifier:  
(1) The CMPIE (IOCE0.4), CMPWE (RE.2), and CMPIF (RE.4) bits are invalid.  
(2) The comparator interrupt is invalid.  
(3) The comparator wake-up is invalid.  
4.  
The noise rejection function is turned off in the LXT2 and sleep mode  
viii   
Product Specification (V1.5) 04.18.2016  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
1 General Description  
The EM78P342N is an 8-bit microprocessor designed and developed with low-power and high-speed  
CMOS technology. The device has an on-chip 2K13-bit Electrical One Time Programmable Read Only  
Memory (OTP-ROM). It provides a protection bit to prevent intrusion of user’s OTP memory code. Three  
Code option bits are also available to meet user’s requirements.  
With enhanced OTP-ROM features, the EM78P342N provides a convenient way of developing and verifying users  
programs. Moreover, this OTP device offers the advantages of easy and effective program updates, using  
development and programming tools. User can avail of the ELAN Writer to easily program his development code.  
2 Features  
Fast set-up time requires only 0.8ms (VDD: 5V  
Crystal: 4MHz, C1/C2: 30pF) in HXT2 mode and  
10s in IRC mode (VDD: 5V, IRC: 4MHz)  
CPU configuration  
2K13 bits on-chip ROM  
808 bits on-chip registers (SRAM)  
8-level stacks for subroutine nesting  
Four programmable Level Voltage Detector  
(LVD) : 4.5V, 4.0V, 3.3V, 2.2V  
Peripheral configuration  
Easily implemented IR (infrared remote control)  
8-bit real time clock/counter (TCC) with selective  
signal sources, trigger edges, and overflow interrupt  
8-bit real time clock/counter (TCCA, TCCC) and  
16-bit real time clock/counter (TCCB) with  
selective signal sources, trigger edges, and  
overflow interrupt  
Three programmable Level Voltage Reset  
(LVR) : 4.0V, 3.5V, 2.4V  
Less than 1.5 mA at 5V/4 MHz  
Typically 15 A, at 3V/32kHz  
Typically 2 A, during sleep mode  
I/O port configuration  
8-bit Multi-channel Analog-to-Digital Converter  
with 12-bit resolution in Vref mode  
Three bidirectional I/O ports: P5, P6, P7  
18 I/O pins  
Wake-up port : P5  
Four programmable high-sink current I/O pins  
Eight programmable open-drain I/O pins  
Eight programmable pull-down I/O pins  
16 programmable pull-high I/O pins  
External interrupt : P60  
One pair of Comparator or OP  
(Offset Voltage: smaller than 10mV)  
Seven available interrupts  
TCC, TCCA, TCCB, TCCC overflow interrupt  
Input-port status changed interrupt (wake up from  
sleep mode)  
External interrupt  
Operating voltage range:  
ADC completion interrupt  
2.1V~5.5V at 0C~70C (commercial)  
2.3V~5.5V at -40C~85C (industrial)  
IR/PWM period match completion  
Comparator status change interrupt  
Low voltage detect (LVD) interrupt  
Operating frequency range (base on 2 clocks):  
Crystal mode: DC ~ 16 MHz, 4.5V;  
DC ~ 8 MHz, 3V; DC ~ 4 MHz, 2.1V  
ERC mode: DC ~ 16 MHz, 4.5V;  
DC ~ 125ns inst. cycle, 4.5V  
DC ~ 8 MHz, 3V; DC ~ 250ns inst. cycle, 3V  
I RC mode  
Special Features:  
Programmable free running Watchdog Timer  
(4.5 ms : 18 ms)  
Power saving Sleep mode  
Selectable Oscillation mode  
Oscillation mode: 16 MHz, 4 MHz, 1 MHz, 455kHz  
Power-on voltage detector available (1.7V 0.1V)  
High EFT immunity (better performance at 4 MHz  
or below)  
Drift Rate  
Internal RC  
Temperature  
Voltage  
Frequency  
Package Type:  
Process Total  
(-40°C~85°C) (2.3V~5.5V)  
14-pin DIP 300mil  
14-pin SOP 150mil  
16-pin SOP 150mil  
18-pin DIP 300mil  
18-pin SOP 300mil  
20-pin DIP 300mil  
20 pin SOP 300mil  
20 pin SSOP 209mil  
:
:
:
:
:
:
:
:
EM78P342ND14  
EM78P342NSO14  
EM78P342NSO16A  
EM78P342ND18  
EM78P342NSO18  
EM78P342ND20  
EM78P342NSO20  
EM78P342NSS20  
4 MHz  
16 MHz  
1 MHz  
±5%  
±5%  
±5%  
±5%  
±5%  
±5%  
±5%  
±5%  
±4% ±14%  
±4% ±14%  
±4% ±14%  
±4% ±14%  
455kHz  
All the four main frequencies can be trimmed by  
programming with four calibrated bits in the  
ICE341N Simulator. OTP is auto trimmed by ELAN  
Writer.  
NOTE: These are all Green Products which do not contain  
hazardous substances.  
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
1  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
3 Pin Assignment  
P52/ADC2  
P53/ADC3  
P54/TCC/VREF  
P71//RESET  
Vss  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
P51/ADC1  
P52/ADC2  
P53/ADC3  
P54/TCC/VREF  
P71/RESET  
Vss  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
P51/ADC1  
P50/ADC0  
P50/ADC0  
P55/OSCI/ADC6  
P55/OSCI/ADC6  
P70/OSCO/ADC5  
VDD  
P70/OSCO/ADC5  
VDD  
P60//INT  
P67/IR OUT/ADC4  
P66/CIN-  
P60//INT  
P67/IR OUT/ADC4  
P66/CIN-  
P61/TCCA  
P64/CO  
P61/TCCA  
8
P65/CIN+  
Figure 3-1 EM78P342ND14/SO14  
Figure 3-2 EM78P342NSO16A  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
P56  
P52/ADC2  
P53/ADC3  
P54/TCC/VREF  
P71/RESET  
Vss  
P57/ADC7  
P51/ADC1  
P50/ADC0  
P55/OSCI/ADC6  
P70/OSCO/ADC5  
VDD  
P52/ADC2  
P53/ADC3  
P54/TCC/VREF  
P71//RESET  
Vss  
1
2
3
4
5
6
7
8
9
18  
17  
16  
15  
14  
13  
12  
11  
10  
P51/ADC1  
P50/ADC0  
3
P55/OSCI/ADC6  
P70/OSCO/ADC5  
VDD  
4
5
6
P60//INT  
P67/IR OUT/ADC4  
P66/CIN-  
7
P60//INT  
P67/IR OUT/ADC4  
P66/CIN-  
P61/TCCA  
P62/TCCB  
P63/TCCC  
8
P61/TCCA  
P62/TCCB  
P63/TCCC  
P65/CIN+  
9
P65/CIN+  
P64/CO  
10  
P64/CO  
Figure 3-3 EM78P342ND18/SO18  
Figure 3-4 EM78P342ND20/SO20/SS20  
2   
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
4 Pin Description  
4.1 EM78P342ND14/SO14  
Symbol  
Pin No. Type  
Function  
6-bit General purpose input/output pins  
1~3,  
12~14  
Pull-high/Pull-down Function  
P50~P55  
I/O  
Wake up from sleep mode when the pin status changes  
Default value at power-on reset  
4-bit General purpose input/output pins  
Pull-high/Open-drain Function  
P60, P61,  
P66, P67  
6~9  
I/O  
Default value at power-on reset  
2-bit General purpose input/output pins  
P70~P71  
/INT  
11, 4  
6
I/O  
Default value at power-on reset  
When P71 is used as output function, it is an open drain pin  
External interrupt pin triggered by a falling or a rising edge.  
Defined by CONT <7>  
I
I
I
7-bit channel Analog-to-Digital Converter with 12-bit  
resolution.  
1, 2, 9  
11~14  
ADC0~ADC6  
VREF  
Defined by ADCON (R9)<1:0>  
External reference voltage for ADC  
Defined by ADCON (R9) <7>.  
3
4
If it remains at logic low, the device will be reset  
Wake-up from sleep mode when pin status changes  
Voltage on /RESET must not exceed Vdd during normal  
mode  
/RESET  
I
External Counter input  
TCC, TCCA  
OSCI  
3, 7  
12  
I
I
TCC defined by CONT<5>  
TCCA defined by IOC80 <1>  
Crystal type: Crystal input terminal  
RC type: RC oscillator input pin  
Crystal type: Output terminal for crystal oscillator.  
RC type: Clock output with a duration of one instruction cycle  
time.  
OSCO  
11  
O
External clock signal input.  
VDD  
VSS  
10  
5
Power supply  
Ground  
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
3  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
4.2 EM78P342NSO16A  
Symbol  
Pin No. Type  
Function  
6-bit General purpose input/output pins  
Pull-high/Pull-down Function  
1~3,  
14~16  
P50~P55  
I/O  
Wake up from sleep mode when the pin status changes  
Default value at power-on reset  
6-bit General purpose input/output pins  
Pull-high/Open-drain Function  
6~8,  
9~11  
P60~P61,  
P64~P67  
I/O  
Default value at power-on reset  
2-bit General purpose input/output pins  
P70~P71  
/INT  
13, 4  
6
I/O  
Default value at power-on reset  
When P71 is used as output function, it is an open drain pin  
External interrupt pin triggered by a falling or a rising edge.  
Defined by CONT <7>  
I
I
I
7-bit channel Analog-to-Digital Converter with 12-bit  
resolution.  
1, 2, 11  
13~16  
ADC0~ADC6  
VREF  
Defined by ADCON (R9)<1:0>  
External reference voltage for ADC  
Defined by ADCON (R9) <7>.  
3
-: the input pin of Vin- of the comparator  
“+” : the input pin of Vin+ of the comparator  
Pin CO is the comparator output  
Defined by IOC80 <4:3>  
CIN-  
CIN+  
CO  
I
I
O
10  
9
8
If it remains at logic low, the device will be reset  
Wake-up from sleep mode when pin status changes  
Voltage on /RESET must not exceed Vdd during normal  
mode  
/RESET  
4
I
External Counter input  
TCC, TCCA  
OSCI  
3, 7  
14  
I
I
TCC defined by CONT<5>  
TCCA defined by IOC80 <1>  
Crystal type: Crystal input terminal .  
RC type: RC oscillator input pin  
Crystal type: Output terminal for crystal oscillator.  
RC type: Clock output with a duration of one instruction  
cycle time.  
OSCO  
13  
O
External clock signal input.  
VDD  
VSS  
12  
5
Power supply  
Ground  
4   
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
4.3 EM78P342ND18/SO18  
Symbol  
Pin No. Type  
Function  
6-bit General purpose input/output pins  
1~3,  
16~18  
Pull-high/Pull-down Function  
P50~P55  
I/O  
Wake up from sleep mode when the pin status changes  
Default value at power-on reset  
8-bit General purpose input/output pins  
Pull-high/Open-drain Function  
6~13  
P60~P67  
I/O  
Default value at power-on reset  
2-bit General purpose input/output pins  
P70~P71  
/INT  
15, 4  
6
I/O  
Default value at power-on reset  
When P71 is used as output function, it is an open drain pin  
External interrupt pin triggered by a falling or a rising edge.  
Defined by CONT <7>  
I
I
I
7-bit channel Analog-to-Digital Converter with 12-bit  
resolution.  
1, 2, 13  
15~18  
ADC0~ADC6  
VREF  
Defined by ADCON (R9)<1:0>  
External reference voltage for ADC  
Defined by ADCON (R9) <7>.  
3
-: the input pin of Vin- of the comparator  
“+” : the input pin of Vin+ of the comparator  
Pin CO is the comparator output  
Defined by IOC80 <4:3>  
CIN-  
CIN+  
CO  
I
I
O
12  
11  
10  
If it remains at logic low, the device will be reset  
Wake-up from sleep mode when pin status changes  
Voltage on /RESET must not exceed Vdd during normal  
mode  
/RESET  
4
I
I
External Counter input  
TCC defined by CONT<5>  
TCCA defined by IOC80 <1>  
TCCB defined by IOC90 <5>  
TCCC defined by IOC90 <1>  
TCC, TCCA  
TCCB, TCCC  
3, 7  
8~9  
Crystal type: Crystal input terminal .  
RC type: RC oscillator input pin  
OSCI  
16  
15  
I
Crystal type: Output terminal for crystal oscillator.  
RC type: Clock output with a duration of one instruction  
cycle time.  
OSCO  
O
External clock signal input.  
VDD  
VSS  
14  
5
Power supply  
Ground  
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
5  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
4.4 EM78P342ND20/SO20/SS20  
Symbol  
Pin No. Type  
Function  
8-bit General purpose input/output pins  
Pull-high/Pull-down Function  
1~4,  
17~20  
P50~P57  
I/O  
Wake up from sleep mode when the pin status changes  
Default value at power-on reset  
8-bit General purpose input/output pins  
Pull-high/Open-drain Function  
7~14  
P60~P67  
I/O  
Default value at power-on reset  
2-bit General purpose input/output pins  
P70~P71  
/INT  
16, 5  
7
I/O  
Default value at power-on reset  
When P71 is used as output function, it is an open drain pin  
External interrupt pin triggered by a falling or a rising edge.  
Defined by CONT <7>  
I
I
I
8-bit channel Analog-to-Digital Converter with 12-bit  
resolution.  
2, 3, 14  
16~20  
ADC0~ADC7  
VREF  
Defined by ADCON (R9) <2:0>  
External reference voltage for ADC  
Defined by ADCON (R9) <7>.  
4
-: the input pin of Vin- of the comparator  
“+” : the input pin of Vin+ of the comparator  
Pin CO is the comparator output  
Defined by IOC80 <4:3>  
CIN-  
CIN+  
CO  
I
I
O
13  
12  
11  
If it remains at logic low, the device will be reset  
Wake-up from sleep mode when pin status changes  
Voltage on /RESET must not exceed Vdd during normal  
mode  
/RESET  
5
I
I
External Counter input  
TCC defined by CONT<5>  
TCCA defined by IOC80 <1>  
TCCB defined by IOC90 <5>  
TCCC defined by IOC90 <1>  
TCC, TCCA  
TCCB, TCCC 9~10  
4, 8  
Crystal type: Crystal input terminal  
RC type: RC oscillator input pin  
OSCI  
17  
16  
I
Crystal type: Output terminal for crystal oscillator.  
RC type: Clock output with a duration of one instruction  
cycle time.  
OSCO  
O
External clock signal input.  
VDD  
VSS  
15  
6
Power supply  
Ground  
6   
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
5 Block Diagram  
Start-up  
timer  
Ext.  
OSC. RC  
Int.  
Ext.  
RC  
PC  
ROM  
WDT  
TCCA  
TCCB  
TCCA  
TCCB  
TCCC  
Oscillation  
Generation  
8-level stack  
(13 bit)  
Instruction  
Register  
TCCC  
IR out  
TCC  
P70  
P71  
Reset  
Instruction  
Decoder  
Infrared  
remote  
control  
circuit  
P6  
TCC  
P60  
Mux  
P61  
ALU  
P62  
P63  
P64  
P65  
P66  
P67  
R4  
LVD  
LVR  
RAM  
Interrupt  
control  
register  
R3 (Status  
Reg.)  
P5  
ACC  
P50  
P51  
P52  
P53  
P54  
P55  
P56  
P57  
Interrupt  
circuit  
Comparator  
(CO) or OP  
ADC  
Cin+ Cin- CO  
Ain0~7  
Ext INT  
Figure 5 EM78P342N Block Diagram  
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
7  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
6 Functional Description  
6.1 Operational Registers  
6.1.1 R0 (Indirect Address Register)  
R0 is not a physically implemented register. It is used as an indirect address pointer.  
Any instruction using R0 as a pointer, actually accesses the data pointed by the RAM  
Select Register (R4).  
6.1.2 R1 (Time Clock/Counter)  
Incremented by an external signal edge which is defined by the TE bit (CONT-4)  
through the TCC pin, or by the instruction cycle clock.  
Writable and readable as any other registers.  
The TCC prescaler counter (IOCC1) is assigned to TCC  
The contents of the IOCC1 register is cleared whenever –  
a value is written to the TCC register.  
a value is written to the TCC prescaler bits (Bits 3, 2, 1, 0 of the CONT register)  
there is power-on reset, /RESET, or WDT time out reset.  
6.1.3 R2 (Program Counter) and Stack  
R3  
000H  
003H  
~
Reset Vector  
A10  
A9 A8  
A7  
~
A0  
Hardware Interrupt Vector  
CALL  
RET  
021H  
RETL  
RETI  
0 PAGE0 0000~03FF  
1 PAGE1 0400~07FF  
Stack Level 1  
Stack Level 2  
Stack Level 3  
Stack Level 4  
Stack Level 5  
Stack Level 6  
Stack Level 7  
Stack Level 8  
On-chip Program  
Memory  
7FFH  
Figure 6-1 Program Counter Organization  
R2 and hardware stacks are 11-bit wide. The structure is depicted in the table  
under Section 6.1.3.1 Data Memory Configuration.  
The configuration structure generates 2K13 bits on-chip ROM addresses to the  
relative programming instruction codes. One program page is 1024 words long.  
The contents of R2 are all set to "0"s when a reset condition occurs.  
8   
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
"JMP" instruction allows direct loading of the lower 10 program counter bits. Thus,  
"JMP" allows the PC to jump to any location within a page.  
"CALL" instruction loads the lower 10 bits of the PC and PC+1 are pushed onto the  
stack. Thus, the subroutine entry address can be located anywhere within a page.  
"LJMP" instruction allows direct loading of the program counter bits (A0~A10).  
Therefore, "LJMP" allows the PC to jump to any location within 2K (211).  
"LCALL" instruction loads the program counter bits (A0 ~A10), and PC+1 is pushed  
onto the stack. Thus, the subroutine entry address can be located anywhere within  
2K (211)  
"RET" ("RETL k", "RETI") instruction loads the program counter with the contents  
of the top of the stack.  
"ADD R2, A" allows a relative address to be added to the current PC, and the ninth  
and above bits of the PC will be incremented progressively.  
"MOV R2, A" allows loading of an address from the "A" register to the lower 8 bits of  
the PC, and the ninth and tenth bits (A8 ~ A9) of the PC will remain unchanged.  
Any instruction (except “ADD R2,A”) that is written to R2 (e.g., "MOV R2, A", "BC  
R2, 6", etc.) will cause the ninth bit and the tenth bit (A8 ~ A9) of the PC to remain  
unchanged.  
All instructions are single instruction cycle (fclk/2) except “LCALLand LJMP”  
instructions. The LCALLand LJMPinstructions need two instruction cycles.  
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
9  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
6.1.3.1 Data Memory Configuration  
Address  
R Page Registers  
IOCX0 Page Registers  
IOCX1 Page Registers  
Reserve  
R0  
R1  
R2  
R3  
R4  
R5  
R6  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
(Indirect Addressing Register)  
(Timer Clock Counter)  
(Program Counter)  
(Status Register)  
(RAM Select Register)  
(Port 5)  
Reserve  
Reserve  
Reserve  
Reserve  
Reserve  
Reserve  
Reserve  
Reserve  
Reserve  
IOC50  
IOC60  
IOC70  
IOC80  
IOC90  
IOC51  
(I/O Port Control Register)  
(I/O Port Control Register)  
(I/O Port Control Register)  
(TCCA Counter)  
IOC61 (TCCB LSB Counter)  
(Port 6)  
(TCCB HSB Counter)  
(TCCC Counter)  
R7  
R8  
R9  
RA  
RB  
RC  
(Port 7)  
IOC71  
IOC81  
IOC91  
IOCA1  
IOCB1  
IOCC1  
(Comparator and TCCA  
Control Register)  
(ADC Input Select Register  
(ADC Control Register)  
(TCCB and TCCC  
Control Register)  
(IR and TCCC Scale  
Control Register)  
(Low-Time Register)  
(High-Time Register)  
(ADC Offset Calibration  
Register)  
IOCA0  
IOCB0  
IOCC0  
IOCD0  
IOCE0  
(Pull-down Control  
Register)  
(High-Time and Low-Time  
Scale Control Register)  
(Converted value  
AD11~AD4 of ADC)  
(Converted value  
AD11~AD8 of ADC)  
(Converted value  
AD7~AD0 of ADC)  
(Open-drain Control  
Register)  
(TCC Prescaler Control)  
(Pull-high Control Register)  
IOCD1 (LVD Control Register)  
RD  
RE  
(WDT Control Register and  
Interrupt Mask Register 2)  
(Interrupt Status 2 and  
Wake-up Control Register  
(High Output Sink Current)  
(Pull-high Control Register)  
IOCE1  
IOCF1  
RF (Interrupt Status Register 1)  
IOCF0  
(Interrupt Mask Register 1)  
10  
General Registers  
1F  
20  
Bank 0  
Bank 1  
3F  
10   
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
6.1.4 R3 (Status Register)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RST  
IOCS  
-
T
P
Z
DC  
C
Bit 7 (RST): Bit of reset type  
Set to “1” if wake-up from sleep on pin change, comparator status  
change, or AD conversion completed. Set to “0” if wake-up from other  
reset types.  
Bit 6 (IOCS): Select the Segment of IO control register  
0 = Segment 0 (IOC50 ~ IOCF0) selected  
1 = Segment 1 (IOC51 ~ IOCC1) selected  
Bit 5:  
Not used (reserved)  
Bit 4 (T):  
Time-out bit. Set to “1” by the "SLEP" and "WDTC" commands or during  
power on, and reset to “0” by WDT time-out (for more details see Section  
6.5.2, The T and P Status under Status Register).  
Bit 3 (P):  
Bit 2 (Z):  
Power-down bit. Set to “1” during power-on or by a "WDTC" command  
and reset to “0” by a "SLEP" command (see Section 6.5.2, The T and P  
Status under Status Register for more details).  
Zero flag. Set to "1" if the result of an arithmetic or logic operation is  
zero.  
Bit 1 (DC): Auxiliary carry flag  
Bit 0 (C): Carry flag  
6.1.5 R4 (RAM Select Register)  
Bit 7:  
Bit 6:  
Set to “0” all the time  
Used to select Bank 0 or Bank 1 of the register  
Bits 5~0:  
Used to select a register (Address: 00~0F, 10~3F) in indirect addressing  
mode.  
See table under Section 6.1.3.1 Data Memory Configuration.  
6.1.6 R5 ~ R6 (Port 5 ~ Port 6)  
R5 and R6 are I/O registers.  
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
11  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
6.1.7 R7 (Port 7)  
Bit  
7
6
5
4
3
2
1
0
EM78P342N  
ICE341N  
0’  
C3  
0’  
C2  
0’  
C1  
0’  
C0  
0’  
0’  
I/O  
I/O  
I/O  
I/O  
RCM1 RCM0  
Note: 1. R7 is an I/O register.  
2. For the EM78P342N, only the lower two bits of R7 are available.  
Bit 7 ~ Bit 2:  
[With EM78P342N]:  
Unimplemented, read as ‘0’.  
[With Simulator (C3~C0, RCM1, and RCM0)]: IRC calibration bits in IRC oscillator  
mode. In IRC oscillator mode of ICE341N simulator, these  
are the IRC mode selection bits and IRC calibration bits.  
Bit 7 ~ Bit 4 (C3 ~ C0): Calibrator of internal RC mode  
C3  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
C2  
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
C1  
0
0
1
1
0
0
1
1
1
1
0
0
1
1
0
0
C0  
0
1
0
1
0
1
0
1
1
0
1
0
1
0
1
0
Frequency (MHz)  
(1-36%) F  
(1-31.5%) F  
(1-27%) F  
(1-22.5%) F  
(1-18%) F  
(1-13.5%) F  
(1-9%) F  
(1-4.5%) F  
F (default)  
(1+4.5%) F  
(1+9%) F  
(1+135%) F  
(1+18%) F  
(1+22.5%) F  
(1+27%) F  
(1+31.5%) F  
Note: 1. Frequency values shown are theoretical and taken from an instance of a high frequency  
mode. Hence, they are shown for reference only. Definite values depend on the actual  
process.  
2. Similar way of calculation is also applicable for low frequency mode.  
Bit 3 and Bit 2 (RCM1, RCM0): IRC mode selection bits  
RCM 1  
RCM 0  
Frequency (MHz)  
1
1
0
0
1
0
1
0
4 (default)  
16  
1
455kHz  
12   
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
6.1.8 R8 (AISR: ADC Input Select Register)  
The AISR register individually defines the I/O Port as analog input or as digital I/O.  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADE7  
ADE6  
ADE5  
ADE4  
ADE3  
ADE2  
ADE1  
ADE0  
Bit 7 (ADE7): AD converter enable bit of P57 pin  
0 = Disable ADC7, P57 functions as I/O pin  
1 = Enable ADC7 to function as analog input pin  
Bit 6 (ADE6): AD converter enable bit of P55 pin  
0 = Disable ADC6, P55 functions as I/O pin  
1 = Enable ADC6 to function as analog input pin  
Bit 5 (ADE5): AD converter enable bit of P70 pin  
0 = Disable ADC5, P70 functions as I/O pin  
1 = Enable ADC5 to function as analog input pin  
Bit 4 (ADE4): AD converter enable bit of P67 pin  
0 = Disable ADC4, P67 functions as I/O pin  
1 = Enable ADC4 to function as analog input pin  
Bit 3 (ADE3): AD converter enable bit of P53 pin  
0 = Disable ADC3, P53 functions as I/O pin  
1 = Enable ADC3 to function as analog input pin  
Bit 2 (ADE2): AD converter enable bit of P52 pin  
0 = Disable ADC2, P52 functions as I/O pin  
1 = Enable ADC2 to function as analog input pin  
Bit 1 (ADE1): AD converter enable bit of P51 pin  
0 = Disable ADC1, P51 functions as I/O pin  
1 = Enable ADC1 to function as analog input pin  
Bit 0 (ADE0): AD converter enable bit of P50 pin  
0 = Disable ADC0, P50 functions as I/O pin  
1 = Enable ADC0 to function as analog input pin  
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
13  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
NOTE  
The P55/OSCI/ADC6 pin cannot be applied to OSCI and ADC6 at the same time.  
If P55/OSCI/ADC6 functions as OSCI oscillator input pin, then ADE6 bit for R8 must  
be 0and ADIS2~0 do not select 110. The P55/OSCI/ADC6 pin priority is as follows:  
P55/OSCI/ADC6 Pin Priority  
High  
OSCI  
Medium  
ADC6  
Low  
P55  
The P70/OSCO/ADC5 pin cannot be applied to OSCO and ADC5 at the same time.  
If P70/OSCO/ADC5 acts as OSCO oscillator input pin, then ADE5 bit for R8 must be 0”  
and ADIS2~0 do not select 101. The P70/OSCO/ADC5 pin priority is as follows:  
P70/OSCO/ADC5 Pin Priority  
High  
Medium  
ADC5  
Low  
P70  
OSCO  
The P67/IR OUT/ADC4 pin cannot be applied to IR OUT and ADC4 at the same time.  
If P67/IR OUT/ADC4 functions as ADC4 analog input pin, then IROUTE bit for IOCA0  
must be 0..  
If P67/IR OUT/ADC4 functions as IR OUT analog input pin, then ADE4 bit for R8 must  
be 0and ADIS2~0 do not select 100.  
The P67/IR OUT/ADC4 pin priority is as follows:  
P67/IR OUT/ADC4 Pin Priority  
High  
Medium  
IR OUT  
Low  
P67  
ADC4  
6.1.9 R9 (ADCON: ADC Control Register)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
VREFS  
CKR1  
CKR0  
ADRUN  
ADPD  
ADIS2  
ADIS1  
ADIS0  
Bit 7 (VREFS): The input source of Vref of the ADC  
0 : The Vref of the ADC is connected to Vdd (default value), and the  
VREF/TCC/P54 pin carries out the function of P54.  
1 : The Vref of the ADC is connected to VREF/TCC/P54  
14   
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
NOTE  
The P54/TCC/VREF pin cannot be applied to TCC and VREF at the same time. If  
P54/TCC/VREF functions as VREF analog input pin, then CONT Bit 5 “TS” must  
be 0.”  
The VREF/TCC/P54 Pin Priority is as follows:  
P54/TCC/VREF Pin Priority  
High  
Medium  
TCC  
Low  
P54  
VREF  
Bit 6 and Bit 5 (CKR1 and CKR0): The prescaler of ADC oscillator clock rate  
00 = 1 : 16 (default value)  
01 = 1 : 4  
10 = 1 : 64  
11 = 1 : 8  
CPUS  
CKR1 : CKR0  
Operation Mode  
Fosc/16  
Max. Operation Frequency  
1
1
1
1
0
00  
01  
10  
11  
  
4 MHz  
1 MHz  
16 MHz  
2 MHz  
Fosc/4  
Fosc/64  
Fosc/8  
Internal RC  
Bit 4 (ADRUN): ADC starts to RUN.  
0 : Reset upon completion of the conversion. This bit cannot be  
reset through software  
1: an AD conversion is started. This bit can be set by software  
Bit 3 (ADPD): ADC Power-down mode  
0 : Switch off the resistor reference to save power even while the  
CPU is operating.  
1 : ADC is operating  
Bit 2 ~ Bit 0 (ADIS2 ~ADIS0): Analog Input Select  
000 = ADIN0/P50  
001 = ADIN1/P51  
010 = ADIN2/P52  
011 = ADIN3/P53  
100 = ADIN4/P67  
101 = ADIN5/P70  
110 = ADIN6/P55  
111 = ADIN7/P57  
These bits can only be changed when the ADIF bit and the ADRUN bit are both low.  
See Section 6.1.14, RE (Interrupt Status 2 and Wake-up Control Register).  
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
15  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
6.1.10 RA (ADOC: ADC Offset Calibration Register)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CALI  
SIGN  
VOF[2]  
VOF[1]  
VOF[0]  
0”  
0”  
0”  
Bit 7 (CALI):  
Bit 6 (SIGN):  
Calibration enable bit for ADC offset  
0 = disable Calibration  
1 = enable Calibration  
Polarity bit of offset voltage  
0 = Negative voltage  
1 = Positive voltage  
Bit 5 ~ Bit 3 (VOF[2] ~ VOF[0]): Offset voltage bits  
EM78P342N  
0LSB  
VOF[2]  
VOF[1]  
VOF[0]  
ICE341  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0LSB  
2LSB  
4LSB  
6LSB  
8LSB  
10LSB  
12LSB  
14LSB  
2LSB  
4LSB  
6LSB  
8LSB  
10LSB  
12LSB  
14LSB  
Bit 2 ~ Bit 0:  
Unimplemented, read as ‘0’  
6.1.11 RB (ADDATA: Converted Value of ADC)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
AD11  
AD10  
AD9  
AD8  
AD7  
AD6  
AD5  
AD4  
When the AD conversion is completed, the result is loaded into the ADDATA. The  
ADRUN bit is cleared and the ADIF is set. See Section 6.1.14, RE (Interrupt Status 2  
and Wake-up Control Register).  
RB is read only.  
6.1.12 RC (ADDATA1H: Converted Value of ADC)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0”  
0”  
0”  
0”  
AD11  
AD10  
AD9  
AD8  
When the AD conversion is completed, the result is loaded into the ADDATA1H. The  
ADRUN bit is cleared and the ADIF is set. See Section 6.1.14, RE (Interrupt Status 2  
and Wake-up Control Register).  
RC is read only.  
16   
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
6.1.13 RD (ADDATA1L: Converted Value of ADC)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
AD7  
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
AD0  
When the AD conversion is completed, the result is loaded into the ADDATA1L. The  
ADRUN bit is cleared and the ADIF is set. See Section 6.1.14, RE (Interrupt Status 2  
and Wake-up Control Register).  
RD is read only  
6.1.14 RE (Interrupt Status 2 and Wake-up Control Register)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
/LVD  
LVDIF  
ADIF  
CMPIF  
ADWE  
CMPWE  
ICWE  
LVDWE  
Note: 1. RE <5, 4> can be cleared by instruction but cannot be set.  
2. IOCE0 is the interrupt mask register.  
3. Reading RE will result to “logic AND” of the RE and IOCE0.  
Bit 7 (/LVD):  
Low voltage Detector state. This is a read only bit. When the VDD  
pin voltage is lower than LVD voltage interrupt level (selected by  
LVD1 and LVD0), this bit will be cleared.  
0 : low voltage is detected  
1 : low voltage is not detected or LVD function is disabled  
Bit 6 (LVDIF):  
Bit 5 (ADIF):  
Low Voltage Detector Interrupt Flag  
LVDIF is reset to 0by software.  
Interrupt flag for analog to digital conversion. Set when AD  
conversion is completed. Reset by software.  
0 : no interrupt occurs  
1 : with interrupt request  
Bit 4 (CMPIF): Comparator Interrupt Flag. Set when a change occurs in the  
Comparator output. Reset by software.  
0 : no interrupt occurs  
1 : with interrupt request  
Bit 3 (ADWE): ADC wake-up enable bit  
0 : Disable ADC wake-up  
1 : Enable ADC wake-up  
When AD Conversion enters sleep/idle mode, this bit must beset to “Enable.  
Bit 2 (CMPWE): Comparator wake-up enable bit  
0 : Disable Comparator wake-up  
1 : Enable Comparator wake-up  
When Comparator enters sleep/idle mode, this bit must be set to “Enable.  
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
17  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
Bit 1 (ICWE):  
Port 5 input change to wake-up status enable bit  
0 : Disable Port 5 input change to wake-up status  
1 : Enable Port 5 input change to wake-up status  
When Port 5 change enters sleep/idle mode, this bit must be set to “Enable.  
Bit 0 (LVDWE): Low Voltage Detect wake-up enable bit  
0 : Disable Low Voltage Detect wake-up  
1 : Enable Low Voltage Detect wake-up  
When the Low Voltage Detect is used to enter an interrupt vector or to  
wake-up the IC from sleep/idle with Low Voltage Detect running, the  
LVDWE bit must be set to “Enable.  
6.1.15 RF (Interrupt Status 1 Register)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
LPWTIF  
HPWTIF  
TCCCIF  
TCCBIF  
TCCAIF  
EXIF  
ICIF  
TCIF  
Note: 1. “1” means there is interrupt request, “0”  
2. RF can be cleared by instruction but cannot be set.  
3. IOCF0 is the interrupt mask register.  
4. Reading RF will result to “logic AND” of the RF and IOCF0  
Bit 7 (LPWTIF): Internal low-pulse width timer underflow interrupt flag for IR/PWM  
function. Reset by software.  
Bit 6 (HPWTIF): Internal high-pulse width timer underflow interrupt flag for IR/PWM  
function. Reset by software.  
Bit 5 (TCCCIF): TCCC overflow interrupt flag. Set when TCCC overflows. Reset by  
software.  
Bit 4 (TCCBIF): TCCB overflow interrupt flag. Set when TCCB overflows. Reset by  
software.  
Bit 3 (TCCAIF): TCCA overflow interrupt flag. Set when TCCA overflows. Reset by  
software.  
Bit 2 (EXIF):  
Bit 1 (ICIF):  
Bit 0 (TCIF):  
External interrupt flag. Set by falling edge on /INT pin. Reset by  
software.  
Port 5 input status change interrupt flag. Set when Port 5 input  
changes. Reset by software.  
TCC overflow interrupt flag. Set when TCC overflows. Reset by  
software.  
6.1.16 R10 ~ R3F  
All of these are 8-bit general-purpose registers.  
18   
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
6.2 Special Purpose Registers  
6.2.1 A (Accumulator)  
Internal data transfer operation, or instruction operand holding usually involves the  
temporary storage function of the Accumulator, which is not an addressable register.  
6.2.2 CONT (Control Register)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTE  
INT  
TS  
TE  
PSTE  
PST2  
PST1  
PST0  
Note: The CONT register is both readable and writable.  
Bit 6 is read only.  
Bit 7 (INTE):  
INT signal edge  
0 : interrupt occurs at the rising edge of the INT pin  
1 : interrupt occurs at the falling edge of the INT pin  
Bit 6 (INT):  
Interrupt enable flag  
0 : masked by DISI or hardware interrupt  
1 : enabled by the ENI/RETI instructions  
This bit is readable only.  
Bit 5 (TS):  
Bit 4 (TE):  
TCC signal source  
0 : internal instruction cycle clock. If P54 is used as I/O pin  
1 : transition on the TCC pin  
TCC signal edge  
0 : increment if the transition from low to high takes place on the  
TCC pin  
1 : increment if the transition from high to low takes place on the  
TCC pin.  
Bit 3 (PSTE):  
Prescaler enable bit for TCC  
0 = prescaler disable bit. TCC rate is 1:1.  
1 = prescaler enable bit. TCC rate is set as Bit 2 ~ Bit 0.  
Bit 2 ~ Bit 0 (PST2 ~ PST0): TCC prescaler bits  
PST2  
PST1  
PST0  
TCC Rate  
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1:2  
1:4  
1:8  
1:16  
1:32  
1:64  
1:128  
1
1
1
1:256  
Note: Tcc time-out period [1/Fosc x prescaler x (256 Tcc cnt) x 1  
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
19  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
6.2.3 IOC50 ~ IOC70 (I/O Port Control Register)  
"0" defines the relative I/O pin as output  
"1" sets the relative I/O pin into high impedance  
Under 14 Pin :  
IOC50<7, 6>, IOC60<5, 4, 3, 2 > : These bits must be set to “0” all the time,  
Other bits are readable and writable.  
IOC70 registers are all readable and writable.  
Under 16 Pin :  
IOC50<7, 6>, IOC60<3, 2 > : These bits must be set to “0” all the time.  
Other bits are readable and writable.  
IOC70 registers are all readable and writable.  
Under 18 Pin :  
IOC50<7, 6 > : These bits must be set to “0” all the time.  
Other bits are readable and writable.  
IOC60, IOC70 registers are all readable and writable.  
Under 20 Pin :  
IOC50, IOC60, IOC70 registers are all readable and writable.  
20   
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
6.2.4 IOC80 (Comparator and TCCA Control Register)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CMPOUT  
COS1  
COS0  
TCCAEN TCCATS TCCATE  
Note: Bits 4~0 of the IOC80 register are both readable and writable.  
Bit 5 of the IOC80 register is read only.  
Bit 7 and Bit 6: Not used  
Bit 5 (CMPOUT): Result of the comparator output. This bit is readable only.  
Bit 4 and Bit 3 (COS1 and COS0): Comparator/OP Select bits  
COS1  
COS0  
Functional Description  
0
0
0
1
Comparator and OP are not used. P64, P65, and P66 are normal I/O pin  
P65 and P66 are Comparator input pins and P64 is normal I/O pin  
P65 and P66 are Comparator input pins and P64 is Comparator output  
pin (CO)  
1
1
0
1
Used as OP and P64 is OP output pin (CO)  
Bit 2 (TCCAEN): TCCA enable bit  
0 = Disable TCCA  
1 = Enable TCCA  
Bit 1 (TCCATS):  
Bit 0 (TCCATE):  
TCCA signal source  
0 = Internal clock (Fosc). P61 is a bidirectional I/O pin.  
1 = Transit through the TCCA pin  
TCCA signal edge  
0 = Increment if transition from low to high takes place on the  
TCCA pin  
1 = Increment if transition from high to low takes place on the  
TCCA pin  
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
21  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
6.2.5 IOC90 (TCCB and TCCC Control Register)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TCCBHE TCCBEN TCCBTS TCCBTE  
TCCCEN TCCCTS TCCCTE  
Bit 7 (TCCBHE): Control bit is used to enable the most significant byte of the counter  
0 : Disable the most significant byte of TCCBH (default value)  
TCCB is an 8-bit counter.  
1 : Enable the most significant byte of TCCBH  
TCCB is a 16-bit counter.  
Bit 6 (TCCBEN): TCCB enable bit  
0 : Disable TCCB  
1 : Enable TCCB  
Bit 5 (TCCBTS) TCCB signal source  
0 : Internal clock (Fosc). P62 is a bi-directional I/O pin.  
1 : Transit through the TCCB/P62 pin  
Bit 4 (TCCBTE): TCCB signal edge  
0 : increment if the transition from low to high takes place on the  
TCCB pin  
1 : increment if the transition from high to low takes place on the  
TCCB pin  
Bit 3:  
Not used  
Bit 2 (TCCCEN): TCCC enable bit  
0 : Disable TCCC  
1 : Enable TCCC  
Bit 1 (TCCCTS) TCCC signal source  
0 : Internal clock (Fosc). P63 is a bidirectional I/O pin.  
1 : Transit through the TCCC/P63 pin  
Bit 0 (TCCCTE): TCCC signal edge  
0 : Increment if the transition from low to high takes place on the  
TCCC pin  
1 : Increment if the transition from high to low takes place on the  
TCCC pin  
22   
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
6.2.6 IOCA0 (IR and TCCC Scale Control Register)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TCCCSE TCCCS2 TCCCS1 TCCCS0  
IRE  
HF  
LGP  
IROUTE  
Bit 7 (TCCCSE): Scale enable bit for TCCC  
An 8-bit counter is provided as scale for TCCC and IR-Mode. When  
in IR-Mode, TCCC counter scale uses the low-time segments of the  
pulse generated by Fcarrier frequency modulation (see Figure 6-11  
in Section 6.8.2, Functional Description).  
0 : scale disable bit, TCCC rate is 1:1  
1 : scale enable bit, TCCC rate is set as Bit 6 ~ Bit 4  
Bit 6 ~ Bit 4 (TCCCS2 ~ TCCCS0): TCCC scale bits  
The TCCCS2 ~ TCCCS0 bits of the IOCA0 register are used to  
determine the scale ratio of TCCC as shown below:  
TCCCS2  
TCCCS1  
TCCCS0  
TCCC Rate  
1:2  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1:4  
1:8  
1:16  
1:32  
1:64  
1:128  
1:256  
Bit 3 (IRE):  
Infrared Remote Enable bit  
0 : Disable IRE, i.e., disable H/W Modulator Function. The IROUT  
pin is fixed at a high level and the TCCC is an Up Counter.  
1 : Enable IRE, i.e., enable H/W Modulator Function. Pin 67 is  
defined as IROUT. If HF=1, the TCCC counter scale uses the  
low-time segments of the pulse generated by the Fcarrier  
frequency modulation (see Figure 6-11 in Section 6.8.2,  
Functional Description). When HF=0, the TCCC is an Up  
Counter  
Bit 2 (HF):  
High Frequency bit  
0 : PWM application. IROUT waveform is achieved base on the  
high-pulse width timer and low-pulse width timer which  
determine the high time width and low time width respectively.  
1 : IR application mode. The low-time segments of the pulse  
generated by the Fcarrier frequency modulation (see Figure 6-11  
in Section 6.8.2, Functional Description)  
Bit 1 (LGP):  
Long Pulse  
0 :The high-time and low-time registers are valid  
1 :The high-time register is ignored. A single pulse is generated.  
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
23  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
Bit 0 (IROUTE): Control bit used to define the P67 (IROUT) pin function  
0 : P67 defined as bi-directional I/O pin  
1 : P67 defined as IROUT. Under this condition, the I/O control bit  
of P67 (Bit 7 of IOC60) must be set to 0”  
6.2.7 IOCB0 (Pull-down Control Register)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
/PD57  
/PD56  
/PD55  
/PD54  
/PD53  
/PD52  
/PD51  
/PD50  
The IOCB0 register is both readable and writable.  
Bit 7 (/PD57): Control bit used to enable internal pull-down of the P57 pin.  
0: Enable internal pull-down  
1 : Disable internal pull-down  
Bit 6 (/PD56): Control bit used to enable internal pull-down of the P56 pin.  
Bit 5 (/PD55): Control bit used to enable internal pull-down of the P55 pin.  
Bit 4 (/PD54): Control bit used to enable internal pull-down of the P54 pin.  
Bit 3 (/PD53): Control bit used to enable internal pull-down of the P53 pin.  
Bit 2 (/PD52): Control bit used to enable internal pull-down of the P52 pin.  
Bit 1 (/PD51): Control bit used to enable internal pull-down of the P51 pin.  
Bit 0 (/PD50): Control bit used to enable internal pull-down of the P50 pin.  
6.2.8 IOCC0 (Open-drain Control Register)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
/OD67  
/OD66  
/OD65  
/OD64  
/OD63  
/OD62  
/OD61  
/OD60  
The IOCC0 register is both readable and writable.  
Bit 7 (/OD67): Control bit used to enable open-drain output of the P67 pin.  
0 : Enable open-drain output  
1 : Disable open-drain output  
Bit 6 (/OD66): Control bit used to enable open-drain output of the P66 pin.  
Bit 5 (/OD65): Control bit used to enable open-drain output of the P65 pin.  
Bit 4 (/OD64): Control bit used to enable open-drain output of the P64 pin.  
Bit 3 (/OD63): Control bit used to enable open-drain output of the P63 pin.  
Bit 2 (/OD62): Control bit used to enable open-drain output of the P62 pin.  
Bit 1 (/OD61): Control bit used to enable open-drain output of the P61 pin.  
Bit 0 (/OD60): Control bit used to enable open-drain output of the P60 pin.  
24   
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
6.2.9 IOCD0 (Pull-high Control Register)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
/PH57  
/PH56  
/PH55  
/PH54  
/PH53  
/PH52  
/PH51  
/PH50  
The IOCD0 register is both readable and writable.  
Bit 7 (/PH57): Control bit used to enable internal pull-high of the P57 pin.  
0 = Enable internal pull-high  
1 = Disable internal pull-high  
Bit 6 (/PH56): Control bit used to enable internal pull-high of the P56 pin.  
Bit 5 (/PH55): Control bit used to enable internal pull-high of the P55 pin.  
Bit 4 (/PH54): Control bit used to enable internal pull-high of the P54 pin.  
Bit 3 (/PH53): Control bit used to enable internal pull-high of the P53 pin.  
Bit 2 (/PH52): Control bit used to enable internal pull-high of the P52 pin.  
Bit 1 (/PH51): Control bit used to enable internal pull-high of the P51 pin.  
Bit 0 (/PH50): Control bit used to enable internal pull-high of the P50 pin.  
6.2.10 IOCE0 (WDT Control Register and Interrupt Mask Register 2)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
WDTE  
EIS  
ADIE  
CMPIE  
PSWE  
PSW2  
PSW1  
PSW0  
Bit 7 (WDTE): Control bit used to enable Watchdog Timer  
0 : Disable WDT  
1 : Enable WDT  
WDTE is both readable and writable.  
Bit 6 (EIS):  
Control bit used to define the function of the P60 (/INT) pin  
0 : P60, bidirectional I/O pin  
1 : /INT, external interrupt pin. In this case, the I/O control bit of P60  
(Bit 0 of IOC60) must be set to "1".  
NOTE  
When EIS is "0", the path of /INT is masked. When EIS is "1", the status of the /INT  
pin can also be read by way of reading Port 6 (R6). Refer to Figure 6-3 (I/O Port and  
I/O Control Register Circuit for P60 (/INT)) under Section 6.4 (I/O Ports).  
EIS is both readable and writable.  
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
25  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
Bit 5 (ADIE): ADIF interrupt enable bit  
0 : disable ADIF interrupt  
1 : enable ADIF interrupt  
Bit 4 (CMPIE): CMPIF interrupt enable bit.  
0 : disable CMPIF interrupt  
1 : enable CMPIF interrupt  
Bit 3 (PSWE): Prescaler enable bit for WDT  
0 : prescaler disable bit, WDT rate is 1:1  
1 : prescaler enable bit, WDT rate is set as Bit 2 ~ Bit 0  
Bit 2 ~ Bit 0 (PSW2 ~ PSW0): WDT prescaler bits  
PSW2  
PSW1  
PSW0  
WDT Rate  
1:2  
0
0
0
0
0
0
1
1
1
1
0
1
1
0
0
1
1
1
0
1
0
1
0
1
1:4  
1:8  
1:16  
1:32  
1:64  
1:128  
1:256  
6.2.11 IOCF0 (Interrupt Mask Register)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
LPWTIE HPWTIE TCCCIE  
TCCBIE  
TCCAIE  
EXIE  
ICIE  
TCIE  
Note: The IOCF0 register is both readable and writable.  
Individual interrupt is enabled by setting to “1” its associated control bit in the IOCF0 and  
in IOCEO Bits 4 and 5.  
Global interrupt is enabled by the ENI instruction and is disabled by the DISI instruction.  
Refer to Figure 6-7 Interrupt Input Circuit under Section 6 Interrupt.  
Bit 7 (LPWTIE): LPWTIF interrupt enable bit  
0 : Disable LPWTIF interrupt  
1 : Enable LPWTIF interrupt  
Bit 6 (HPWTIE): HPWTIF interrupt enable bit  
0 : Disable HPWTIF interrupt  
1 : Enable HPWTIF interrupt  
Bit 5 (TCCCIE): TCCCIF interrupt enable bit  
0 : Disable TCCCIF interrupt  
1 : Enable TCCCIF interrupt  
26   
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
Bit 4 (TCCBIE): TCCBIF interrupt enable bit  
0 : Disable TCCBIF interrupt  
1 : Enable TCCBIF interrupt  
Bit 3 (TCCAIE): TCCAIF interrupt enable bit  
0 : Disable TCCAIF interrupt  
1 : Enable TCCAIF interrupt  
Bit 2 (EXIE):  
Bit 1 (ICIE):  
Bit 0 (TCIE):  
EXIF interrupt enable bit  
0 : Disable EXIF interrupt  
1 : Enable EXIF interrupt  
ICIF interrupt enable bit  
0 : Disable ICIF interrupt  
1 : Enable ICIF interrupt  
TCIF interrupt enable bit.  
0 := Disable TCIF interrupt  
1 : Enable TCIF interrupt  
6.2.12 IOC51 (TCCA Counter)  
The IOC51 (TCCA) is an 8-bit clock counter. It is also an Up Counter and it can be  
read, written to, and cleared on any reset condition.  
1
TCCA Timeout period  
256 TCCA cnt 1  
FOSC  
6.2.13 IOC61 (TCCB Counter)  
The IOC61 (TCCB) is an 8-bit clock counter for the least significant byte of TCCBX  
(TCCB). It is also an Up Counter, and it can be read, written to, and cleared on any  
reset condition.  
6.2.14 IOC71 (TCCBH/MSB Counter)  
The IOC71 (TCCBH/MSB) is an 8-bit clock counter for the most significant byte of  
TCCBX (TCCBH). It can be read, written to, and cleared on any reset condition.  
When TCCBHE (IOC90) is “0,” then TCCBH is disabled. When TCCBHE is”1,” then  
TCCB is a 16-bit counter.  
When TCCBH is disabled:  
1
TCCB Timeout period  
When TCCBH is enabled:  
256 TCCB cnt 1  
FOSC  
1
TCCB Timeout period   
65536   
TCCBH 256 TCCB cnt  
1  
FOSC  
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
27  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
6.2.15 IOC81 (TCCC Counter)  
IOC81 (TCCC) is an 8-bit clock counter that can be extended to 16-bit counter. It can  
be read, written to and cleared on any reset condition.  
If HF (Bit 2 of IOCA0) = 1 and IRE (Bit 3 of IOCA0) = 1, TCCC counter scale uses the  
low-time segments of the pulse generated by the Fcarrier frequency modulation (see  
Figure 6-11 in Section 6.8.2, Function Description). Then the TCCC value will be  
TCCC predicted value.  
When HF = 0 or IRE = 0, the TCCC is an Up Counter.  
In TCCC Up-counter mode:  
1
TCCC Timeout period  
Scaler  
IOCA0  
256 TCCC cnt 1  
FOSC  
When HF = 1 and IRE = 1, TCCC counter scale uses the low-time segments of the  
pulse generated by the Fcarrier frequency modulation.  
In IR mode:  
FT  
Fcarrier  
2
1Decimal TCCC Counter Value  
IOC81  
TCCC Scale  
IOCA0  
 
FOSC  
where FT   
1
6.2.16 IOC91 (Low-Time Register)  
The 8-bit Low-time register controls the active or Low segment of the pulse.  
The decimal value of its contents determines the number of oscillator cycles and verifies  
that the IR OUT pin is active. The active period of IR OUT can be calculated as follows:  
1Decimal Low Time Value  
IOC91  
Low Time Scale  
IOCB1  
Low Time Width   
FT  
FOSC  
where FT   
1
When an interrupt is generated by a Low time down counter underflow (when enabled),  
the next instruction will be fetched from Address 015H (Low time).  
28   
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
6.2.17 IOCA1 (High Time Register)  
The 8-bit High-time register controls the inactive or High period of the pulse.  
The decimal value of its contents determines the number of oscillator cycles and  
verifies that the IR OUT pin is inactive. The inactive period of IR OUT can be calculated  
as follows:  
1Decimal High Time Value  
IOCA1  
High Time Scale  
IOCB1  
High Time Width   
FT  
FOSC  
where FT   
1
When an interrupt is generated by the High time down counter underflow (when  
enabled), the next instruction will be fetched from Address 012H (High time).  
6.2.18 IOCB1 High/Low Time Scale Control Register)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
HTSE  
HTS2  
HTS1  
HTS0  
LTSE  
LTS2  
LTS1  
LTS0  
Bit 7 (HTSE): High-time scale enable bit  
0 : scale disable bit, High-time rate is 1:1  
1 : scale enable bit, High-time rate is set at Bit 6~Bit 4.  
Bit 6 ~ Bit 4 (HTS2 ~ HTS0): High-time scale bits:  
HTS2  
HTS1  
HTS0  
High-time Rate  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1:2  
1:4  
1:8  
1:16  
1:32  
1:64  
1:128  
1:256  
Bit 3 (LTSE): Low-time scale enable bit.  
0 : Scale disable bit, Low-time rate is 1:1  
1 : Scale enable bit, Low-time rate is set at Bit 2~Bit 0.  
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
29  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
Bit 2 ~ Bit 0 (LTS2 ~ LTS0): Low-time scale bits:  
LTS2  
LTS1  
LTS0  
Low-time Rate  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1:2  
1:4  
1:8  
1:16  
1:32  
1:64  
1:128  
1:256  
6.2.19 IOCC1 (TCC Prescaler Counter)  
TCC prescaler counter can be read and written to:  
TCC  
Rate  
1:2  
PST2 PST1 PST0 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
-
-
-
-
-
-
-
-
-
-
-
V
V
V
V
V
V
V
V
-
-
V
V
V
V
V
V
V
1:4  
-
-
-
-
-
V
V
V
V
V
V
1:8  
-
-
-
-
V
V
V
V
V
1:16  
1:32  
1:64  
1:128  
1:256  
-
-
-
V
V
V
V
-
-
V
V
V
-
V
V
V
V = valid value  
The TCC prescaler counter is assigned to TCC (R1).  
The contents of the IOCC1 register are cleared when one of the following occurs:  
a value is written to the TCC register  
a value is written to the TCC prescaler bits (Bits 3, 2, 1, 0 of CONT)  
power-on reset, /RESET  
WDT time out reset  
6.2.20 IOCD1 (LVD Control Register)  
Bit  
EM78P342N  
ICE341N  
7
6
5
4
3
2
1
0
LVDIE LVDEN  
LVD1  
LVD1  
LVD0  
LVD0  
TYPE1 TYPE0 LVR1  
LVR0 LVDIE LVDEN  
Bits 7~6 (Type 1 ~ Type 0): Type selection for EM78P342N.  
Type 1, Type 0  
MCU Type  
11  
EM78P342N-20Pin (Default)  
EM78P342N-18Pin or  
EM78P342N-16Pin  
EM78P342N-14Pin  
Not used  
10  
01  
00  
30   
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
Bits 5~4 (LVR1 ~ LVR0): Low Voltage Reset Enable bits.  
LVR1, LVR0  
VDD Reset Level  
VDD Release Level  
11  
10  
01  
00  
NA (Power-on Reset)  
2.4V  
3.5V  
4.0V  
2.6V  
3.7V  
4.2V  
Note: The IOCD1 < 3 > register is both readable and writable.  
Individual interrupt is enabled by setting to “1” its associated control bit in the IOCD1 < 4 >.  
Global interrupt is enabled by the ENI instruction and is disabled by the DISI instruction.  
Refer to Figure 6-8 Interrupt Input Circuit under Section 6.6 Interrupt.  
Bit 3 (LVDIE): Low voltage Detector interrupt enable bit.  
0 : Disable Low voltage Detector interrupt.  
1 : Enable Low voltage Detector interrupt.  
When the detect low level voltage is used to enter an interrupt vector or  
enter next instruction, the LVDIE bit must be set to “Enable.  
Bit 2 (LVDEN): Low Voltage Detector enable bit  
0 : Low voltage detector disable  
1 : Low voltage detector enable  
Bits 1~0 (LVD1:0): Low Voltage Detector level bits.  
LVDEN  
LVD1, LVD0  
LVD Voltage Interrupt Level  
Vdd 2.2V  
Vdd 2.2V  
Vdd 3.3V  
Vdd 3.3V  
Vdd 4.0V  
Vdd 4.0V  
Vdd 4.5V  
Vdd 4.5V  
NA  
/LVD  
0
1
0
1
0
1
0
1
0
1
11  
1
1
10  
01  
1
0
00  
XX  
6.2.21 IOCE1 (Output Sink Select Control Register)  
Bit  
EM78P342N  
ICE341N  
7
6
5
4
3
2
1
0
-
TIMERSC CPUS  
IDLE  
IDLE  
HS3  
HS3  
HS2  
HS2  
HS1  
HS1  
HS0  
HS0  
WDTPS TIMERSC CPUS  
Bit 7 (WDTPS):  
WDT time-out period selection bit.  
0 : 4.5 ms  
1 : 18 ms  
Bit 6 (TIMERSC): TCC, TCCA, TCCB, TCCC clock sources select 0/1 Fs/Fm*  
Fs: sub frequency for WDT internal RC time base 15kHz ± 30%  
Fm: main-oscillator clock  
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
31  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
Bit 5 (CPUS):  
CPU Oscillator Source Select  
0 : sub-oscillator (fs)  
1 : main oscillator (fosc)  
When CPUS=0, the CPU oscillator select sub-oscillator and the  
main oscillator is stopped.  
Bit 4 (IDLE):  
Idle Mode Enable Bit. From SLEP instruction, this bit will determine  
as to which mode to go.  
0 : Idle=”0”+SLEP instruction sleep mode  
1 : Idle=”1”+SLEP instruction idle mode  
CPU Operation Mode  
RESET  
Normal Mode  
fosc:oscillation  
fs: oscillation  
Wake up  
wake up  
CPU: using fosc  
CPUS="0"  
CPUS="1"  
IDLE="0"  
+SLEP  
IDLE="1"  
+SLEP  
IDLE="1  
"+SLEP  
Wake up  
SLEEP Mode  
Green Mode  
fosc:stop  
IDLE Mode  
fosc:stop  
fs: stop  
fosc:stop  
fs: oscillation  
fs: oscillation  
IDLE="0"  
+ SLEP  
CPU: stop  
CPU: using fs  
CPU: stop  
wake up  
Figure 6-2 CPU Operation Mode  
Bit 3 (HS3): Output Sink current Select for P63  
Bit 2 (HS2): Output Sink current Select for P62.  
Bit 1 (HS1): Output Sink current Select for P61.  
Bit 0 (HS0): Output Sink current Select for P60.  
HSx  
0
VDD = 5V, Sink Current  
20 mA (in 0.3VDD)  
1
70 mA (in 0.3VDD)  
32   
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
6.2.22 IOCF1 (Pull-high Control Register)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
/PH67  
/PH66  
/PH65  
/PH64  
/PH63  
/PH62  
/PH61  
/PH60  
Note: The IOCD0 register is both readable and writable.  
Bit 7 (/PH67): Control bit used to enable pull-high of the P67 pin.  
0 = Enable internal pull-high  
1 = Disable internal pull-high  
Bit 6 (/PH66): Control bit used to enable internal pull-high of the P66 pin.  
Bit 5 (/PH65): Control bit used to enable internal pull-high of the P65 pin.  
Bit 4 (/PH64): Control bit used to enable internal pull-high of the P64 pin.  
Bit 3 (/PH63): Control bit used to enable internal pull-high of the P63 pin.  
Bit 2 (/PH62): Control bit used to enable internal pull-high of the P62 pin.  
Bit 1 (/PH61): Control bit used to enable internal pull-high of the P61 pin.  
Bit 0 (/PH60): Control bit used to enable internal pull-high of the P60 pin.  
6.3 TCC/WDT and Prescaler  
There are two 8-bit counters available as prescalers that can be extended to 16-bit  
counter for the TCC and WDT respectively. The PST2 ~ PST0 bits of the CONT  
register are used to determine the ratio of the TCC prescaler, and the PSW2 ~ PSW0  
bits of the IOCE0 register are used to determine the prescaler of WDT. The prescaler  
counter is cleared by the instructions each time such instructions are written into TCC.  
The WDT and prescaler will be cleared by the “WDTC” and “SLEP” instructions. Figure  
6-3 depicts the block diagram of TCC/WDT.  
TCC (R1) is an 8-bit timer/counter. The TCC clock source can be internal clock (Fosc) or  
external signal input (edge selectable from the TCC pin). If TCC signal source is from an  
internal clock, the TCC will be incremented by 1 at every falling edge or rising edge of the  
TCC pin. The TCC pin input time length (kept at High or Low level) must be greater than  
1CLK. CLK=Fosc/2 or CLK=Fosc/4 is dependent on the Code Option bit <CLKS> = 0 or 1.  
NOTE  
The internal TCC will stop running when in sleep mode. However, during AD  
conversion, when TCC is set to “SLEPinstruction, if the ADWE bit of the RE register is  
enabled, the TCC will keep on running.  
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
33  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
The Watchdog Timer is a free running on-chip RC oscillator. The WDT will keep on  
running even when the oscillator driver has been turned off (i.e., in sleep mode).  
During normal operation or in sleep mode, a WDT time-out (if enabled) will cause the  
device to reset. The WDT can be enabled or disabled any time during normal mode  
through software programming. Refer to WDTE bit of IOCE0 register (Section 6.2.10  
IOCE0 (WDT Control and Interrupt Mask Registers 2). With no prescaler, the WDT  
time-out period is approximately 18ms1 or 4.5ms2.  
Fosc/2  
Data Bus  
0
8-Bit Counter (IOCC1)  
MUX  
TCC Pin  
1
8 to 1 MUX  
Prescaler  
TCC (R1)  
TE (CONT)  
TS (CONT)  
TCC overflow  
interrupt  
PST2~0  
(CONT)  
WDT  
8-Bit counter  
8 to 1 MUX  
Prescaler  
WDTE  
(IOCE0)  
PSW2~0  
(IOCE0)  
WDT Time out  
Figure 6-3 TCC and WDT Block Diagram  
1
2
VDD=5V, WDT time-out period = 16.5ms ± 30%  
VDD=3V, WDT time-out period = 18ms ± 30%  
VDD=5V, WDT time-out period = 4.2ms ± 30%  
VDD=3V, WDT time-out period = 4.5ms ± 30%  
34   
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
6.4 I/O Ports  
The I/O registers (Port 5, Port 6, and Port 7) are bidirectional tri-state I/O ports. Port 5  
is pulled-high and pulled-down internally by software. Likewise, P6 has its open-drain  
output set through software. Port 5 features an input status changed interrupt (or  
wake-up) function. Each I/O pin can be defined as an "input" or "output" pin by the I/O  
control register (IOC5 ~ IOC7). The I/O registers and I/O control registers are both  
readable and writable. The I/O interface circuits for Port 5, Port 6, and Port 7 are  
illustrated in Figures 6-4, 6-5, 6-6, and 6-7.  
PCRD  
P
R
Q
D
CLK  
PCWR  
_
C
L
Q
P
R
PORT  
D
IOD  
Q
CLK  
PDWR  
_
C
L
Q
PDRD  
M
U
X
0
1
Note: Pull-high and Open-drain are not shown in the figure.  
Figure 6-4 I/O Port and I/O Control Register Circuit for Port 6 and Port 7  
PCRD  
P
R
Q
D
_
Q
PCWR  
PDWR  
CLK  
C
L
IOD  
P
R
Q
PORT  
D
_
Q
CLK  
C
L
Bit 6 of IOCE0  
P
D
Q
R
0
1
M
U
X
_
Q
CLK  
C
L
PDRD  
INT  
Note: Pull-high and Open-drain are not shown in the figure.  
Figure 6-5 I/O Port and I/O Control Register Circuit for P60 (/INT)  
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
35  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
PCRD  
P
R
Q
D
CLK  
PCWR  
_
C
L
Q
P50 ~ P57  
PORT  
P
R
Q
D
IOD  
CLK  
_
PDWR  
C
L
Q
M
U
X
0
1
PDRD  
TI n  
P
R
D
Q
CLK  
_
C
L
Q
Note: Pull-high (down) and Open-drain are not shown in the figure.  
Figure 6-6 I/O Port and I/O Control Register Circuit for Ports 50~57  
IOCF.1  
RF.1  
TI 0  
TI 1  
TI 8  
Figure 6-7 Port 5 Block Diagram with Input Change Interrupt/Wake-up  
36   
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
6.4.1 Usage of Port 5 Input Change Wake-up/Interrupt Function  
(1) Wake-up  
(a) Before Sleep  
(2) Wake-up and Interrupt  
(a) Before Sleep  
1. Disable WDT  
1. Disable WDT  
2. Read I/O Port 5 (MOV R5,R5)  
3. Execute "ENI" or "DISI"  
2. Read I/O Port 5 (MOV R5,R5)  
3. Execute "ENI" or "DISI"  
4. Enable wake-up bit (Set RE  
ICWE =1)  
4. Enable wake-up bit (Set RE ICWE =1)  
5. Execute "SLEP" instruction  
(b) After wake-up  
5. Enable interrupt (Set IOCF ICIE =1)  
6. Execute "SLEP" instruction  
(b) After wake-up  
Next instruction  
1. IF "ENI" Interrupt vector (008H)  
2. IF "DISI" Next instruction  
(3) Interrupt  
(a) Before Port 5 pin change  
1. Read I/O Port 5 (MOV R5,R5)  
2. Execute "ENI" or "DISI"  
3. Enable interrupt (Set IOCF ICIE =1)  
(b) After Port 5 pin changed (interrupt)  
1. IF "ENI" Interrupt vector (006H)  
2. IF "DISI" Next instruction  
6.5 Reset and Wake-up  
6.5.1 Reset and Wake-up Operation  
A reset is initiated by one of the following events:  
1. Power-on reset  
2. /RESET pin input "low"  
3. WDT time-out (if enabled)  
The device is kept in reset condition for a period of approximately 18ms3 (except in LXT  
mode) after the reset is detected. When in LXT2 mode, the reset time is 500 ms. Two  
choices (18ms3 or 4.5ms4) are available for WDT-time out period. Once a reset occurs,  
the following functions are performed (the initial Address is 000h):  
The oscillator continues running, or will be started (if in sleep mode).  
The Program Counter (R2) is set to all "0".  
3
4
VDD=5V, Setup time period = 16.5ms ± 30%.  
VDD=3V, Setup time period = 18ms ± 30%.  
VDD=5V, Setup time period = 4.2ms ± 30%.  
VDD=3V, Setup time period = 4.5ms ± 30%.  
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
37  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
All I/O port pins are configured as input mode (high-impedance state)  
The Watchdog Timer and prescaler are cleared  
When power is switched on, the upper three bits of R3 is cleared  
The IOCB0 register bits are set to all "1"  
The IOCC0 register bits are set to all "1"  
The IOCD0 register bits are set to all "1"  
Bits 7, 5, and 4 of the IOCE0 register are cleared  
Bits 5 and 4 of the RE register are cleared  
RF and IOCF0 registers are cleared  
Executing the “SLEP” instruction will assert the sleep (power down) mode (When  
IDLE=0.). While entering into sleep mode, the Oscillator, TCC, TCCA, TCCB, and  
TCCC are stopped. The WDT (if enabled) is cleared but keeps on running.  
During AD conversion, when “SLEPinstruction is set; the Oscillator, TCC, TCCA,  
TCCB, and TCCC keep on running. The WDT (if enabled) is cleared but keeps on  
running.  
The controller can be awakened by:  
Case 1 External reset input on /RESET pin  
Case 2 WDT time-out (if enabled)  
Case 3 Port 5 input status changes (if ICWE is enabled)  
Case 4 Comparator output status changes (if CMPWE is enabled)  
Case 5 AD conversion completed (if ADWE is enabled)  
Case 6 Low Voltage Detector (if LVDWE is enabled)  
The first two cases (1 and 2) will cause the EM78P342N to reset. The T and P flags of  
R3 can be used to determine the source of the reset (wake-up). Cases 3, 4, 5 and 6 are  
considered the continuation of program execution and the global interrupt ("ENI" or  
"DISI" being executed) determines whether or not the controller branches to the  
interrupt vector following wake-up. If ENI is executed before SLEP, the instruction will  
begin to execute from Address 0x06 (Case 3), 00F (Case 4), 0x0C (Case 5) and 021  
(Case 6) after wake-up. If DISI is executed before SLEP, the execution will restart from  
the instruction next to SLEP after wake-up.  
Only one of Cases 2 to 6 can be enabled before entering into sleep mode. That is:  
Case [a] If WDT is enabled before SLEP, all of the RE bit is disabled. Hence, the  
EM78P342N can be awakened only with Case 1 or Case 2. Refer to the  
section on Interrupt (Section 6.6) for further details.  
Case [b] If Port 5 Input Status Change is used to wake up the EM78P342N and the  
ICWE bit of the RE register is enabled before SLEP, and WDT must be  
disabled. Hence, the EM78P342N can be awakened only with Case 3.  
Wake-up time is dependent on the oscillator mode. In RC mode, Wake-up  
time is 10s (for stable oscillators). In HXT2 (4 MHz) mode, Wake-up time is  
800s (for stable oscillators), and in LXT2 mode, Wake-up time is 2 ~ 3s.  
38   
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
Case [c] If the Comparator output status change is used to wake-up the EM78P342N  
and the CMPWE bit of the RE register is enabled before SLEP, WDT must be  
disabled by software. Hence, the EM78P342N can be awakened only with  
Case 4. Wake-up time is dependent on the oscillator mode. In RC mode,  
Wake-up time is 10s (for stable oscillators). In HXT2 (4 MHz) mode,  
Wake-up time is 800s (for stable oscillators), and in LXT2 mode, Wake-up  
time is 2s ~ 3s.  
Case [d] If AD conversion completed is used to wake-up the EM78P342N and ADWE  
bit of RE register is enabled before SLEP, WDT must be disabled by  
software. Hence, the EM78P342N can be awakened only with Case 5. The  
wake-up time is 15 TAD (ADC clock period).  
Case[e] If Low voltage detector is used to wake-up the EM78P342N and the LVDWE  
bit of Bank 0-RE register is enabled before SLEP, WDT must be disabled by  
software. Hence, the EM78P342N can be awakened only with Case 6.  
Wake-up time is dependent on oscillator mode.  
If Port 5 Input Status Change Interrupt is used to wake up the EM78P342N (as in Case  
[b] above), the following instructions must be executed before SLEP:  
BC  
R3, 6  
; Select Segment 0  
MOV  
IOW  
A, @00xx1110b  
IOCE0  
; Select WDT prescaler and Disable WDT  
WDTC  
; Clear WDT and prescaler  
MOV  
R5, R5  
; Read Port 5  
ENI (or DISI)  
; Enable (or disable) global interrupt  
; Enable Port 5 input change wake-up bit  
MOV  
MOV  
MOV  
IOW  
SLEP  
A, @xxxxxx1xb  
RE  
A, @xxxxxx1xb  
IOCF0  
; Enable Port 5 input change interrupt  
; Sleep  
Similarly, if the Comparator Interrupt is used to wake up the EM78P342N (as in Case  
[c] above), the following instructions must be executed before SLEP:  
BC  
R3, 6  
; Select Segment 0  
MOV  
A, @xxx10XXXb  
; Select a comparator and P64 functions as  
; CO pin  
IOW  
MOV  
IOC80  
A, @00x11110b  
; Select WDT prescaler and Disable WDT,  
; and enable comparator output status  
; change interrupt  
IOW  
IOCE0  
WDTC  
; Clear WDT and prescaler  
ENI (or DISI)  
MOV  
; Enable (or disable) global interrupt  
; Enable comparator output status change  
; wake-up bit  
A, @xxx0x1xxb  
RE  
MOV  
SLEP  
; Sleep  
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
39  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
6.5.1.1 Wake-up and Interrupt Modes Operation Summary  
The controller can be awakened from sleep mode and idle mode. The wake-up signals  
are listed as follows.  
Wake-up  
Signal  
Sleep Mode  
Idle Mode  
Green Mode  
Interrupt  
Normal Mode  
Interrupt  
Wake-up + interrupt  
(if interrupt is enabled) (if interrupt is enabled) (if interrupt is enabled)  
+ next instruction  
If enable ICWE bit  
Wake-up + interrupt  
External  
interrupt  
or next instruction  
or next instruction  
If enable ICWE bit  
Wake-up + interrupt  
(if interrupt is enabled) (if interrupt is enabled)  
Interrupt  
Interrupt  
Port 5 pin  
change  
(if interrupt is enabled) (if interrupt is enabled)  
or next instruction  
or next instruction  
+ next instruction  
+ next instruction  
Wake-up + interrupt  
(if interrupt is enabled) (if interrupt is enabled) (if interrupt is enabled)  
+ next instruction  
If enable ADWE bit  
Wake-up + interrupt  
Interrupt  
Interrupt  
TCC overflow  
interrupt  
or next instruction  
or next instruction  
If enable ADWE bit  
Wake-up + interrupt  
AD  
Interrupt  
(if interrupt is enabled)  
or next instruction  
conversion  
complete  
interrupt  
(if interrupt is enabled) (if interrupt is enabled)  
+ next instruction + next instruction  
Fs and Fm dont stop Fs and Fm dont stop  
Fs and Fm dont stop  
If enable CMPWE bit  
Comparator Wake-up + interrupt  
If enable CMPWE bit  
Wake-up + interrupt  
Interrupt  
Interrupt  
(if interrupt is enabled) (if interrupt is enabled)  
or next instruction  
interrupt  
(if interrupt is enabled) (if interrupt is enabled)  
or next instruction  
+ next instruction  
+ next instruction  
High-pulse  
width timer  
underflow  
interrupt  
Wake-up + interrupt  
(if interrupt is enabled) (if interrupt is enabled) (if interrupt is enabled)  
+ next instruction  
Interrupt  
Interrupt  
or next instruction  
or next instruction  
Low-pulse  
width timer  
underflow  
interrupt  
Wake-up + interrupt  
(if interrupt is enabled) (if interrupt is enabled) (if interrupt is enabled)  
+ next instruction  
Interrupt  
Interrupt  
or next instruction  
or next instruction  
TCCA  
Wake-up + interrupt  
Interrupt  
Interrupt  
overflow  
interrupt  
(if interrupt is enabled) (if interrupt is enabled) (if interrupt is enabled)  
+ next instruction  
or next instruction  
or next instruction  
TCCB  
overflow  
interrupt  
Wake-up + interrupt  
Interrupt  
Interrupt  
(if interrupt is enabled) (if interrupt is enabled) (if interrupt is enabled)  
+ next instruction  
or next instruction  
or next instruction  
TCCC  
overflow  
interrupt  
Wake-up + interrupt  
Interrupt  
Interrupt  
(if interrupt is enabled) (if interrupt is enabled) (if interrupt is enabled)  
+ next instruction  
or next instruction  
or next instruction  
If Enable LVDWE bit  
Wake-up + interrupt  
(if interrupt is enabled) (if interrupt is enabled)  
+ next instruction + next instruction  
If Enable LVDWE bit  
Wake-up + interrupt  
Low Voltage  
Detector  
interrupt  
Interrupt  
Interrupt  
(if interrupt is enabled) (if interrupt is enabled)  
or next instruction  
or next instruction  
WDT Time out  
RESET  
RESET  
Low Voltage  
Reset  
RESET  
RESET  
After wake up:  
1. If interrupt is enabled → interrupt+ next instruction  
2. If interrupt is disabled → next instruction  
40   
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
Signal  
Sleep Mode  
Idle Mode*  
Normal Mode  
Green Mode  
DISI + IOCF0 (EXIE)  
Bit 2=1  
DISI + IOCF0 (EXIE)  
Bit 2=1  
DISI+IOCF0(EXIE) Bit 2 =1  
Wake-up + next instruction  
Set RF (EXIF)=1  
Next Instruction +  
Set RF (EXIF)=1  
Next Instruction +  
Set RF (EXIF)=1  
NA  
INT Pin  
ENI + IOCF0 (EXIE)  
Bit 2=1  
ENI + IOCF0 (EXIE)  
Bit 2=1  
ENI + IOCF0(EXIE) Bit 2 =1  
Interrupt Vector (003H)  
+ Set RF (EXIF)=1  
Interrupt Vector (003H)  
+ Set RF (EXIF)=1  
Wake-up + Interrupt Vector  
(003H) + Set RF (EXIF)=1  
RE (ICWE) Bit 1=0,  
IOCF0 (ICIE) bit 1=0  
RE (ICWE) Bit 1=0, IOCF0  
(ICIE) Bit 1=0  
IOCF0 (ICIE) Bit 1=0  
IOCF0 (ICIE) Bit 1=0  
Oscillator, TCC, TCCX  
and IR/PWM are  
stopped.  
Port 5 input status  
changed wake-up is  
invalid.  
TCC, TCCX and IR/PWM  
keep on running.  
Port 5 input status changed  
wake-up is invalid.  
Port 5 input status  
change interrupted is  
invalid  
Port 5 input status change  
interrupted is invalid  
RE (ICWE) Bit 1=0,  
IOCF0 (ICIE) Bit 1=1  
RE (ICWE) Bit 1=0, IOCF0  
(ICIE) Bit 1=1  
N/A  
N/A  
N/A  
N/A  
Set RF (ICIF)=1,  
Oscillator, TCC, TCCX  
and IR/PWM are  
stopped.  
Set RF (ICIF)=1,  
TCC, TCCX and IR/PWM  
keep on running.  
Port 5 input status  
changed wake-up is  
invalid.  
Port 5 input status changed  
wake-up is invalid.  
RE (ICWE) Bit 1=1,  
IOCF0 (ICIE) Bit 1=0  
RE (ICWE) Bit 1=1, IOCF0  
(ICIE) Bit1=0  
N/A  
N/A  
N/A  
N/A  
Port 5 Input  
Status  
Change  
Wake-up + Next  
Instruction  
Wake-up + Next Instruction  
TCC, TCCX and IR/PWM  
keep on running.  
Oscillator, TCC, TCCX  
and IR/PWM are  
stopped.  
RE (ICWE) Bit1=1, DISI RE (ICWE) Bit 1=1, DISI +  
DISI + IOCF0 (ICIE)  
Bit 1=1  
DISI + IOCF0 (ICIE)  
Bit 1=1  
+ IOCF0 (ICIE) Bit 1=1  
IOCF0 (ICE) Bit 1=1  
Wake-up + Next  
Instruction + Set RF  
(ICIF)=1  
Wake-up + Next Instruction  
+ Set RF (ICIF)=1  
Next Instruction  
Next Instruction  
Oscillator, TCC, TCCX  
and IR/PWM are  
stopped.  
TCC, TCCX and IR/PWM  
keep on running.  
+ Set RF (ICIF)=1  
+ Set RF (ICIF)=1  
RE (ICWE) Bit 1=1, ENI RE (ICWE) Bit 1=1, ENI +  
ENI + IOCF0 (ICIE)  
Bit 1=1  
ENI + IOCF0 (ICIE)  
Bit 1=1  
+ IOCF0 (ICIE) Bit 1=1  
IOCF0 (ICIE) Bit 1=1  
Wake-up + Interrupt  
Vector (006H) + Set RF Wake-up + Interrupt Vector  
(ICIF)=1  
(006H) + Set RF (ICIF)=1  
TCC, TCCX and IR/PWM  
keep on running.  
Interrupt Vector(006H)  
+ Set RF (ICIF)=1  
Interrupt Vector(006H)  
+ Set RF (ICIF)=1  
Oscillator, TCC, TCCX  
and IR/PWM are  
stopped.  
DISI + IOCF0 (TCIE)  
Bit 0=1  
DISI + IOCF0 (TCIE)  
Bit 0=1  
DISI+IOCF0(TCIE) Bit 0 =1  
Wake-up + next instruction  
Set RF (TCIF)=1  
Next Instruction + Set RF Next Instruction + Set  
(TCIF)=1  
RF (TCIF)=1  
TCC  
Overflow  
NA  
ENI + IOCF0(TCIE) Bit 0 =1 ENI + IOCF0 (TCIE)  
Bit 0=1  
ENI + IOCF0 (TCIE)  
Bit 0=1  
Wake-up + Interrupt Vector Interrupt Vector (009H) + Interrupt Vector (009H)  
(009H) + Set RF (TCIF)=1 Set RF (TCIF)=1 + Set RF (TCIF)=1  
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
41  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
Signal  
Sleep Mode  
Idle Mode*  
Normal Mode  
Green Mode  
RE (ADWE) Bit 3=0,  
IOCE0 (ADIE) Bit 5=0  
RE (ADWE) Bit 3=0, IOCE0  
(ADIE) Bit 5=0  
IOCE0 (ADIE) Bit 5=0  
IOCE0 (ADIE) Bit 5=0  
Clear R9 (ADRUN)=0,  
ADC is stopped,  
AD conversion wake-up  
is invalid.  
Clear R9 (ADRUN)=0, ADC  
is stopped,  
AD conversion wake-up is  
invalid.  
AD conversion interrupted AD conversion  
is invalid interrupted is invalid  
Oscillator, TCC, TCCX  
and IR/PWM are  
stopped.  
Oscillator, TCC, TCCX and  
IR/PWM keep on running.  
RE (ADWE) Bit 3=0,  
IOCE0 (ADIE) Bit 5=1  
RE (ADWE) Bit 3=0, IOCE0  
(ADIE) Bit 5=1  
N/A  
N/A  
N/A  
N/A  
Set RF (ADIF)=1, R9  
(ADRUN)=0, ADC is  
stopped,  
Set RF (ADIF)=1, R9  
(ADRUN)=0, ADC is  
stopped,  
AD conversion wake-up  
is invalid.  
AD conversion wake-up is  
invalid.  
Oscillator, TCC, TCCX  
and IR/PWM are  
stopped.  
Oscillator, TCC, TCCX and  
IR/PWM keep on running.  
RE (ADWE) Bit 3=1,  
IOCE0 (ADIE) Bit 5=0  
RE (ADWE) Bit 3=1, IOCE0  
(ADIE) Bit 5=0  
N/A  
N/A  
N/A  
N/A  
Wake-up + Next  
Instruction,  
Wake-up + Next Instruction,  
Oscillator, TCC, TCCX and  
IR/PWM keep on running.  
Wake-up when ADC  
completed.  
Oscillator, TCC, TCCX  
and IR/PWM keep on  
running.  
AD  
Conversion  
Wake-up when ADC  
completed.  
RE (ADWE) Bit 3=1,  
DISI + IOCE0 (ADIE)  
Bit 5=1  
RE (ADWE) Bit 3=1, DISI + DISI + IOCE0 (ADIE)  
DISI + IOCE0 (ADIE)  
Bit 5=1  
IOCE0 (ADIE) Bit 5=1  
Bit 5=1  
Wake-up + Next  
Instruction + RE  
(ADIF)=1,  
Wake-up + Next Instruction  
+ RE (ADIF)=1,  
Next Instruction  
+ RE (ADIF)=1  
Next Instruction  
+ RE (ADIF)=1  
Oscillator, TCC, TCCX  
and IR/PWM keep on  
running.  
Oscillator, TCC, TCCX and  
IR/PWM keep on running.  
Wake-up when ADC  
completed.  
Wake-up when ADC  
completed.  
RE (ADWE) Bit 3=1, ENI RE (ADWE) Bit 3=1, ENI +  
+ IOCE0 (ADIE) Bit 5=1 IOCE0 (ADIE) Bit 5=  
ENI + IOCE0 (ADI)  
Bit 5=1  
ENI + IOCE0 (ADIE)  
Bit 5=1  
Wake-up + Interrupt  
Vector (00CH)+ RE  
(ADIF)=1,  
Wake-up + Interrupt Vector  
(00CH)+ RE (ADIF)=1,  
Oscillator, TCC, TCCX and  
IR/PWM keep on running.  
Wake-up when ADC  
completed.  
Interrupt Vector (00CH)  
+ Set RE (ADIF)=1  
Interrupt Vector (00CH)  
+ Set RE (ADIF)=1  
Oscillator, TCC, TCCX  
and IR/PWM keep on  
running.  
Wake-up when ADC  
completed.  
42   
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
Signal  
Sleep Mode  
Idle Mode*  
Normal Mode  
Green Mode  
RE (CMPWE) Bit 2=0,  
RE (CMPWE) Bit 2=0,  
IOCE0 (CMPIE) Bit 4=0  
IOCE0 (CMPIE) Bit 4=0  
IOCE0 (CMPIE) Bit 4=0 IOCE0 (CMPIE) Bit 4=0  
Comparator output  
status changed wake-up Comparator output status  
Comparator output  
status change interrupt  
is invalid.  
is invalid.  
changed wake-up is invalid.  
TCC, TCCX and IR/PWM  
keep on running.  
Comparator output status  
change interrupt is invalid.  
Oscillator, TCC, TCCX  
and IR/PWM are  
stopped.  
RE (CMPWE) Bit 2=0,  
RE (CMPWE) Bit 2=0,  
N/A  
N/A  
N/A  
N/A  
IOCE0 (CMPIE) Bit 4=1 IOCE0 (CMPIE) Bit 4=1  
Set RE (CMPIF)=1,  
Set RE (CMPIF)=1,  
Comparator output  
status changed wake-up Comparator output status  
is invalid.  
changed wake-up is invalid.  
TCC, TCCX and IR/PWM  
keep on running.  
Oscillator, TCC, TCCX  
and IR/PWM are  
stopped.  
RE (CMPWE) Bit 2=1,  
RE (CMPWE) Bit 2=1,  
N/A  
N/A  
N/A  
N/A  
IOCE0 (CMPIE) Bit 4=0 IOCE0 (CMPIE) Bit 4=0  
Comparator  
(Comparator  
Output Status  
Change)  
Wake-up + Next  
Instruction,  
Wake-up + Next Instruction,  
TCC, TCCX and IR/PWM  
keep on running.  
Oscillator, TCC, TCCX  
and IR/PWM are  
stopped.  
RE (CMPWE) Bit 2=1,  
DISI + IOCE0 (CMPIE)  
Bit 4=1  
RE (CMPWE) Bit 2=1, DISI + DISI + IOCE0 (CMPIE)  
DISI + IOCE0 (CMPIE)  
Bit 4=1  
IOCE0 (CMPIE) Bit 4=1  
Bit 4=1  
Wake-up + Next  
Instruction + Set RE  
(CMPIF)=1,  
Wake-up + Next Instruction  
+ Set RE (CMPIF)1,  
Next Instruction  
Next Instruction  
Oscillator, TCC, TCCX  
and IR/PWM are  
stopped.  
TCC, TCCX and IR/PWM  
keep on running.  
+ Set RE (CMPIF)=1  
+ Set RE (CMPIF)=1  
RE (CMPWE) Bit 2=1,  
ENI + IOCE0 (CMPIE)  
Bit 4=1  
RE (CMPWE) Bit 2=1, ENI + ENI + IOCE0 (CMPIE)  
ENI + IOCE0 (CMPIE)  
Bit 4=1  
IOCE0 (CMPIE) Bit 4=1  
Bit 4=1  
Wake-up + Interrupt  
Vector (00FH) + Set RE  
(CMPIF)=1,Oscillator,  
TCC, TCCX and  
Wake-up + Interrupt Vector  
(00FH) + Set RE (CMPIF)=1 Interrupt Vector (00FH)  
Interrupt Vector (00FH)  
+ Set RE (CMPIF)=1  
TCC, TCCX and IR/PWM  
keep on running.  
+ Set RE (CMPIF)=1  
IR/PWM are stopped.  
DISI + IOCF0 (HPWTIE)  
Bit 6=1  
DISI + IOCF0 (HPWTIE) DISI + IOCF0 (HPWTIE)  
Bit 6=1  
Bit 6=1  
IR/PWM  
underflow  
interrupt  
Wake-up +Next Instruction  
+ Set RF (HPWTIF)=1  
Next Instruction  
Next Instruction  
+ Set RF (HPWTIF)=1  
+ Set RF (HPWTIF)=1  
ENI  
ENI  
N/A  
ENI  
(High-pulse  
width timer  
underflow  
interrupt)  
+ IOCF0 (HPWTIE)  
Bit 6 =1  
+ IOCF0 (HPWTIE)  
Bit 6 =1  
+ IOCF0 (HPWTIE) Bit 6 =1  
Wake-up + Interrupt Vector  
(012H)  
Interrupt Vector (012H)  
+ Set RF (HPWTIF)=1  
Interrupt Vector (012H)  
+ Set RF (HPWTIF)=1  
+ Set RF (HPWTIF)=1  
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
43  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
Signal  
Sleep Mode  
Idle Mode*  
Normal Mode  
Green Mode  
DISI + IOCF0 (LPWTIE)  
Bit 7=1  
DISI + IOCF0 (LPWTIE)  
Bit 7=1  
DISI + IOCF0 (LPWTIE)  
Bit 7=1  
IR/PWM  
underflow  
interrupt  
Wake-up +Next Instruction  
+ Set RF (LPWTIF)=1  
Next Instruction  
Next Instruction  
+ Set RF (LPWTIF)=1  
+ Set RF (LPWTIF)=1  
N/A  
ENI + IOCF0 (LPWTIE)  
Bit 7 =1  
ENI + IOCF0 (LPWTIE)  
Bit 7 =1  
ENI + IOCF0 (LPWTIE)  
Bit 7 =1  
(Low-pulse  
width timer  
underflow  
interrupt)  
Wake-up +Interrupt Vector  
(015H)  
Interrupt Vector (015H)  
+ Set RF (LPWTIF)=1  
Interrupt Vector (015H)  
+ Set RF (LPWTIF)=1  
+ Set RF (LPWTIF)=1  
DISI + IOCF0 (TCCAIE)  
Bit 3=1  
DISI + IOCF0 (TCCAIE)  
Bit 3=1  
DISI + IOCF0 (TCCAIE)  
Bit 3=1  
Wake-up +Next Instruction  
+ Set RF (TCCAIF)=1  
Next Instruction  
Next Instruction  
+ Set RF (TCCAIF)=1  
+ Set RF (TCCAIF)=1  
TCCA Over  
Flow  
N/A  
N/A  
N/A  
ENI + IOCF0 (TCCAIE)  
Bit 3=1  
ENI + IOCF0 (TCCAIE)  
Bit 3=1  
ENI + IOCF0 (TCCAIE)  
Bit 3=1  
Wake-up +Interrupt Vector  
(018H)  
Interrupt Vector (018H)  
+ Set RF (TCCAIF)=1  
Interrupt Vector (018H)  
+ Set RF (TCCAIF)=1  
+ Set RF (TCCAIF)=1  
DISI + IOCF0 (TCCBIE)  
Bit 4=1  
DISI + IOCF0 (TCCBIE)  
Bit 4=1  
DISI + IOCF0 (TCCBIE)  
Bit 4=1  
Wake-up +Next Instruction  
+ Set RF (TCCBIF)=1  
Next Instruction  
Next Instruction  
+ Set RF (TCCBIF)=1  
+ Set RF (TCCBIF)=1  
TCCB Over  
Flow  
ENI + IOCF0 (TCCBIE)  
Bit 4=1  
ENI + IOCF0 (TCCBIE)  
Bit 4=1  
ENI + IOCF0 (TCCBIE)  
Bit 4=1  
Interrupt Vector (01BH)  
+ Set RF (TCCBIF)=1  
Interrupt Vector (01BH)  
+ Set RF (TCCBIF)=1  
Wake-up +Interrupt Vector  
(01BH) + Set RF(TCCBIF)=1  
DISI + IOCF0 (TCCCIE)  
Bit 5=1  
DISI + IOCF0 (TCCCIE)  
Bit 5=1  
DISI + IOCF0 (TCCCIE)  
Bit 5=1  
Wake-up +Next Instruction  
+ Set RF (TCCCIF)=1  
Next Instruction  
Next Instruction  
+ Set RF (TCCCIF)=1  
+ Set RF (TCCCIF)=1  
TCCC Over  
Flow  
ENI + IOCF0 (TCCCIE)  
Bit 5=1  
ENI + IOCF0 (TCCCIE)  
Bit 5=1  
ENI + IOCF0 (TCCCIE)  
Bit 5=1  
Wake-up +Interrupt Vector  
(01EH) + Set RF  
Interrupt Vector (01EH)  
+ Set RF (TCCCIF)=1  
Interrupt Vector (01EH)  
+ Set RF (TCCCIF)=1  
(TCCCIF)=1  
44   
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
Signal  
Sleep Mode  
Idle Mode*  
Normal Mode  
Green Mode  
RE (LVDWE) Bit 0=0,  
RE (LVDWE) Bit 0=0, IOCD1  
IOCD1 (LVDIE) Bit 3=0  
IOCD1 (LVDIE) Bit 3=0  
IOCD1 (LVDIE) Bit 3=0 (LVDIE) Bit 3=0  
Low voltage detector  
Low voltage detector  
wake-up is invalid.  
wake-up is invalid.  
Oscillator, TCC, TCCX  
TCC, TCCX and IR/PWM  
and IR/PWM are  
Low voltage detector  
interrupted is invalid.  
Low voltage detector  
interrupted is invalid.  
keep on running.  
stopped.  
RE (LVDWE) Bit 0=0,  
RE (LVDWE) Bit 0=0, IOCD1  
N/A  
N/A  
N/A  
N/A  
IOCD1 (LVDIE) Bit 3=1 (LVDIE) Bit 3=1  
Set RE (LVDIF)=1,  
Set RE (LVDIF)=1,  
Low voltage detector  
Low voltage detector  
wake-up is invalid.  
wake-up is invalid.  
Oscillator, TCC, TCCX  
TCC, TCCX and IR/PWM  
and IR/PWM are  
keep on running.  
stopped.  
RE (LVDWE) Bit 0=1,  
RE (LVDWE) Bit 0=1, IOCD1  
N/A  
N/A  
N/A  
N/A  
IOCD1 (LVDIE) Bit 3=0 (LVDIE) Bit 3=0  
Wake-up + Next  
Low Voltage  
Detector  
Instruction,  
Wake-up + Next Instruction,  
Oscillator, TCC, TCCX TCC, TCCX and IR/PWM  
interrupt  
and IR/PWM are  
stopped.  
keep on running.  
RE (LVDWE) Bit =1,  
DISI + IOCD1 (LVDIE)  
Bit 3=1  
RE (LVDWE) Bit 0=1, DISI + DISI + IOCD1 (LVDIE)  
DISI + IOCD1 (LVDIE)  
Bit 3=1  
IOCD1 (LVDIE) Bit 3 =1  
Bit 3=1  
Wake-up + Next  
Instruction + Set RE  
(LVDIF)=1,  
Wake-up + Next Instruction  
+ Set RE (LVDIF) =1,  
Next Instruction  
Next Instruction  
Oscillator, TCC, TCCX TCC, TCCX and IR/PWM  
+ Set RE (LVDIF)=1  
+ Set RE (LVDIF) =1  
and IR/PWM are  
stopped.  
keep on running.  
RE (LVDWE) Bit 2=1,  
ENI + IOCD1 (LVDIE)  
Bit 3=1  
RE (LVDWE) Bit0=1, ENI + ENI + IOCD1 (LVDIE)  
ENI + IOCD1 (LVDIE)  
Bit 3=1  
IOCD1 (LVDIE) Bit 3 =1  
Bit 3=1  
Wake-up + Interrupt  
Vector (021H) + Set RE  
(LVDIF)=1,Oscillator,  
TCC, TCCX and  
Wake-up + Interrupt Vector  
(021H) + Set RE (LVDIF) =1, Interrupt Vector (021H)  
Interrupt Vector (021H)  
+ Set RE (LVDIF) =1  
TCC, TCCX and IR/PWM  
keep on running.  
+ Set RE (LVDIF)=1  
IR/PWM are stopped.  
WDT  
Timeout  
IOCE (WDTE)  
Bit 7=1  
Wake-up + Reset  
(Address 0x00)  
Wake-up + Reset  
(Address 0x00)  
Reset (Address 0x00)  
Reset (Address 0x00)  
Reset (Address 0x00)  
Reset (Address 0x00)  
Wake-up + Reset  
(Address 0x00)  
Low voltage  
reset  
Wake-up + Reset  
(Address 0x00)  
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
45  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
6.5.1.2 Register Initial Values after Reset  
The following summarizes the initialized values for registers.  
Address Name  
Reset Type  
Bit Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
C57  
C56  
C55  
C54  
C53  
C52  
C51  
C50  
Type  
Power-on  
1
1
1
1
1
1
1
1
N/A  
IOC50  
/RESET and WDT  
1
1
1
1
1
1
1
1
Wake-up from Pin  
Change  
P
P
P
P
P
P
P
P
Bit Name  
C67  
C66  
C65  
C64  
C63  
C62  
C61  
C60  
Type  
Power-on  
/RESET and WDT  
1
1
1
1
1
1
1
1
N/A  
IOC60  
1
1
1
1
1
1
1
1
Wake-up from Pin  
Change  
P
P
P
P
P
P
P
P
Bit Name  
0
0
0
0
0
0
0
0
0
0
0
0
C71  
1
C70  
1
Power-on  
N/A  
N/A  
N/A  
N/A  
N/A  
IOC70  
IOC80  
IOC90  
/RESET and WDT  
1
1
Wake-up from Pin  
Change  
P
P
P
P
P
P
P
P
Bit Name  
0
0
0
0
CMPOUT COS1  
COS0 TCCAEN TCCATS TCCATE  
Power-on  
0
0
0
0
0
0
0
0
0
0
0
0
/RESET and WDT  
Wake-up from Pin  
Change  
P
P
P
P
P
P
P
P
Bit Name  
TCCBHE TCCBEN TCCBTS TCCBTE  
0
0
TCCCEN TCCCTS TCCCTE  
Power-on  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
/RESET and WDT  
Wake-up from Pin  
Change  
P
P
P
P
P
P
P
P
Bit Name  
TCCCSE TCCCS2 TCCCS1 TCCCS0  
IRE  
0
HF  
0
LGP IROUTE  
Power-on  
0
0
0
0
0
0
0
0
0
0
0
0
IOCA0  
(IRCR)  
/RESET and WDT  
0
0
Wake-up from Pin  
Change  
P
P
P
P
P
P
P
P
Bit Name  
/PD57  
/PD56  
/PD55  
/PD54  
/PD53  
/PD52  
/PD51  
/PD50  
Power-on  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
IOCB0  
/RESET and WDT  
(PDCR)  
Wake-up from Pin  
Change  
P
P
P
P
P
P
P
P
46   
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
Address Name  
Reset Type  
Bit Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
/OD67  
/OD66  
/OD65  
/OD64  
/OD63  
/OD62  
/OD61 /OD60  
Power-on  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
IOCC0  
N/A  
/RESET and WDT  
(ODCR)  
Wake-up from Pin  
Change  
P
P
P
P
P
P
P
P
Bit Name  
/PH57  
/PH56  
/PH55  
/PH54  
/PH53  
/PH52  
/PH51  
/PH50  
Power-on  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
IOCD0  
N/A  
/RESET and WDT  
(PHCR1)  
Wake-up from Pin  
Change  
P
P
P
P
P
P
P
P
Bit Name  
WDTE  
EIS  
0
ADIE  
CMPIE PSWE  
PSW2  
PSW1  
PSW0  
Power-on  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
IOCE0  
N/A  
/RESET and WDT  
0
(WDTCR)  
Wake-up from Pin  
Change  
P
P
P
P
P
P
P
P
Bit Name  
LPWTIE HPWTIE TCCCIE TCCBIE TCCAIE  
EXIE  
ICIE  
0
TCIE  
Power-on  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
IOCF0  
(IMR)  
N/A  
/RESET and WDT  
0
Wake-up from Pin  
Change  
P
P
P
P
P
P
P
P
Bit Name  
TCCA7 TCCA6 TCCA5 TCCA4 TCCA3 TCCA2 TCCA1 TCCA0  
Power-on  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
IOC51  
N/A  
/RESET and WDT  
(TCCA)  
Wake-up from Pin  
Change  
P
P
P
P
P
P
P
P
Bit Name  
TCCB7 TCCB6 TCCB5 TCCB4 TCCB3 TCCB2 TCCB1 TCCB0  
Power-on  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
IOC61  
N/A  
/RESET and WDT  
(TCCB)  
Wake-up from Pin  
Change  
P
P
P
P
P
P
P
P
Bit Name  
TCCBH7 TCCBH6 TCCBH5 TCCBH4 TCCBH3 TCCBH2 TCCBH1 TCCBH0  
Power-on  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
IOC71  
N/A  
/RESET and WDT  
(TCCBH)  
Wake-up from Pin  
Change  
P
P
P
P
P
P
P
P
Bit Name  
TCCC7 TCCC6 TCCC5 TCCC4 TCCC3 TCCC2 TCCC1 TCCC0  
Power-on  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
IOC81  
N/A  
/RESET and WDT  
(TCCC)  
Wake-up from Pin  
Change  
P
P
P
P
P
P
P
P
Bit Name  
LTR7  
LTR6  
LTR5  
LTR4  
LTR3  
LTR2  
LTR1  
LTR0  
Power-on  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
IOC91  
(LTR)  
N/A  
/RESET and WDT  
Wake-up from Pin  
Change  
P
P
P
P
P
P
P
P
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
47  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
Address  
Name  
Reset Type  
Bit Name  
Bit 7  
HTR7  
0
Bit 6  
HTR6  
0
Bit 5  
HTR5  
0
Bit 4  
HTR4  
0
Bit 3  
HTR3  
0
Bit 2  
HTR2  
0
Bit 1  
HTR1  
0
Bit 0  
HTR0  
0
Power-on  
IOCA1  
(HTR)  
N/A  
/RESET and WDT  
0
0
0
0
0
0
0
0
Wake-up from Pin  
Change  
P
P
P
P
P
P
P
P
Bit Name  
HTSE  
HTS2  
HTS1  
HTS0  
LTSE  
LTS2  
LTS1  
LTS0  
Power-on  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
IOCB1  
(HLTS)  
N/A  
N/A  
/RESET and WDT  
Wake-up from Pin  
Change  
P
P
P
P
P
P
P
P
Bit Name  
TCCPC7 TCCPC6 TCCPC5 TCCPC4 TCCPC3 TCCPC2 TCCPC1 TCCPC0  
Power-on  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
IOCC1  
(TCCPC)  
/RESET and WDT  
Wake-up from Pin  
Change  
P
P
P
P
P
P
P
P
Bit Name  
TYPE1  
TYPE0  
LVR1  
LVR0  
LVDIE LVDEN  
LVD1  
LVD0  
Power-on  
1
1
1
1
0
0
0
1
1
1
1
IOCD1  
(LVD CR)  
(ROMLESS)  
N/A  
/RESET and WDT  
P
P
P
P
P
Wake-up from Pin  
Change  
P
P
P
P
P
P
P
P
Bit Name  
WDPTS TIMERSC CPUS  
IDLE  
HS3  
0
HS2  
0
HS1  
0
HS0  
0
Power-on  
1
1
1
1
1
1
1
IOCE1  
(OSSCR)  
N/A  
/RESET and WDT  
P
0
0
0
0
(ROMLESS)  
Wake-up from Pin  
Change  
P
P
P
P
P
P
P
P
Bit Name  
/PH67  
/PH66  
/PH65  
/PH64  
/PH63  
/PH62  
/PH61  
/PH60  
Power-on  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
IOCF1  
(PHCR2)  
N/A  
/RESET and WDT  
Wake-up from Pin  
Change  
P
P
P
P
P
P
P
P
Bit Name  
INTE  
INT  
0
TS  
1
TE  
1
PSTE  
PST2  
PST1  
PST0  
Power-on  
1
1
0
0
0
0
0
0
0
0
N/A  
CONT  
/RESET and WDT  
0
1
1
Wake-up from Pin  
Change  
P
P
P
P
P
P
P
P
Bit Name  
U
P
U
P
U
P
U
P
U
P
U
P
U
P
U
P
Power-on  
000  
001  
R0 (IAR)  
R1 (TCC)  
/RESET and WDT  
Wake-up from Pin  
Change  
P
P
P
P
P
P
P
P
Bit Name  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Power-on  
/RESET and WDT  
00  
Wake-up from Pin  
Change  
P
P
P
P
P
P
P
P
48   
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
Address Name  
Reset Type  
Bit Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Power-on  
002  
003  
004  
005  
006  
07  
R2 (PC)  
R3 (SR)  
R4 (RSR)  
R5  
/RESET and WDT  
Wake-up from Pin  
Change  
Jump to Address 0x06 or continue to execute next instruction  
Bit Name  
RST  
IOCS  
-
T
1
T
P
1
t
Z
U
P
DC  
U
C
U
P
Power-on  
0
0
0
0
0
0
/RESET and WDT  
P
Wake-up from Pin  
Change  
P
P
P
T
t
P
P
P
Bit Name  
0
0
BS  
0
U
P
U
P
U
P
U
P
U
P
U
P
Power-on  
/RESET and WDT  
0
Wake-up from Pin  
Change  
0
P
P
P
P
P
P
P
Bit Name  
P57  
1
P56  
1
P55  
1
P54  
1
P53  
1
P52  
1
P51  
1
P50  
1
Power-on  
/RESET and WDT  
1
1
1
1
1
1
1
1
Wake-up from Pin  
Change  
P
P
P
P
P
P
P
P
Bit Name  
P67  
1
P66  
1
P65  
1
P64  
1
P63  
1
P62  
1
P61  
1
P60  
1
Power-on  
R6  
/RESET and WDT  
1
1
1
1
1
1
1
1
Wake-up from Pin  
Change  
P
P
P
P
P
P
P
P
Bit Name  
0
0
0
0
0
0
0
0
0
0
0
0
P71  
1
P70  
1
Power-on  
R7  
/RESET and WDT  
1
1
Wake-up from Pin  
Change  
P
P
P
P
P
P
P
P
Bit Name  
ADE7  
ADE6  
ADE5  
ADE4  
ADE3  
ADE2  
ADE1  
ADE0  
Power-on  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R8  
08  
/RESET and WDT  
(AISR)  
Wake-up from Pin  
Change  
0
0
0
0
P
P
P
P
Bit Name  
VREFS CKR1  
CKR0 ADRUN ADPD  
ADIS2  
ADIS1 ADIS0  
Power-on  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R9  
09  
/RESET and WDT  
(ADCON)  
Wake-up from Pin  
Change  
P
P
P
P
P
0
P
P
Bit Name  
CALI  
SIGN  
VOF[2] VOF[1] VOF[0]  
0
0
0
0
0
0
Power-on  
0
0
0
0
0
0
0
0
0
0
RA  
0A  
/RESET and WDT  
(ADOC)  
Wake-up from Pin  
Change  
P
P
P
P
P
P
P
P
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
49  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
Address  
Name  
Reset Type  
Bit Name  
Bit 7  
AD11  
U
Bit 6  
AD10  
U
Bit 5  
AD9  
U
Bit 4  
AD8  
U
Bit 3  
AD7  
U
Bit 2  
AD6  
U
Bit 1  
AD5  
U
Bit 0  
AD4  
U
Power-on  
RB  
0B  
/RESET and WDT  
U
U
U
U
U
U
U
U
(ADDATA)  
Wake-up from Pin  
Change  
P
P
P
P
P
P
P
P
Bit Name  
0”  
0
0”  
0
0”  
0
0”  
0
AD11  
U
AD10  
U
AD9  
U
AD8  
U
Power-on  
RC  
0C  
0D  
0E  
/RESET and WDT  
0
0
0
0
U
U
U
U
(ADDATA1H)  
Wake-up from Pin  
Change  
0
0
0
0
P
P
P
P
Bit Name  
AD7  
U
AD6  
U
AD5  
U
AD4  
U
AD3  
U
AD2  
U
AD1  
U
AD0  
U
Power-on  
RD  
/RESET and WDT  
U
U
U
U
U
U
U
U
(ADDATA1L)  
Wake-up from Pin  
Change  
P
P
P
P
P
P
P
P
Bit Name  
/LVD  
LVDIF  
ADIF  
CMPIF ADWE CMPWE ICWE LVDWE  
Power-on  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RE  
/RESET and WDT  
(ISR2)  
Wake-up from Pin  
Change  
P
P
P
P
P
P
P
P
Bit Name  
LPWTIF HPWTIF TCCCIF TCCBIF TCCAIF  
EXIF  
ICIF  
0
TCIF  
Power-on  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RF  
0F  
/RESET and WDT  
0
(ISR1)  
Wake-up from Pin  
Change  
P
P
P
P
P
P
P
P
Bit Name  
U
P
U
P
U
P
U
P
U
P
U
P
U
P
U
P
Power-on  
0x10~0x3F R10~R3F  
/RESET and WDT  
Wake-up from Pin  
Change  
P
P
P
P
P
P
P
P
Legend: = not used  
“u” = unknown or dont care  
P= previous value before reset  
t= check Reset TypeTable in Section 6.5.2  
50   
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
6.5.1.3 Controller Reset Block Diagram  
VDD  
D
Q
CLK  
Oscillator  
CLK  
CLR  
Power-on Reset  
Voltage  
Detector  
ENWDTB  
WDT Timeout  
Reset  
Setup time  
WDT  
/RESET  
Figure 6-8 Controller Reset Block Diagram  
6.5.2 The T and P Status under Status Register  
A reset condition is initiated by one of the following events:  
1. Power-on reset  
2. /RESET pin input "low"  
3. WDT time-out (if enabled)  
The values of T and P as listed in the table below, are used to check how the processor  
wakes up.  
Reset Type  
RST  
0
T
1
P
1
Power-on  
/RESET during Operating mode,  
/RESET wake-up during Sleep mode  
LVR during Operating mode,  
0
*P  
1
*P  
0
0
0
*P  
1
*P  
0
LVR wake-up during Sleep mode  
WDT during Operating mode  
0
0
0
1
WDT wake-up during Sleep mode  
Wake-up on pin change during Sleep mode  
0
0
0
1
1
0
*P: Previous status before reset  
The following shows the events that may affect the status of T and P.  
Event  
RST  
0
T
1
1
0
1
1
P
1
Power-on  
WDTC instruction  
WDT time-out  
SLEP instruction  
*P  
0
1
*P  
0
*P  
1
Wake-up on pin changed during Sleep mode  
0
*P: Previous value before reset  
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
51  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
6.6 Interrupt  
The EM78P342N has seven interrupts enumerated below:  
1. TCC, TCCA, TCCB, TCCC overflow interrupt  
2. Port 5 Input Status Change Interrupt  
3. External interrupt [(P60, /INT) pin]  
4. Analog to Digital conversion completed  
5. IR/PWM Underflow Interrupt  
6. When the comparators status changes  
7. Low Voltage Detector Interrupt  
Before the Port 5 Input Status Change Interrupt is enabled, reading Port 5 (e.g. "MOV  
R5,R5") is necessary. Each Port 5 pin will have this feature if its status changes. The  
Port 5 Input Status Change Interrupt will wake up the EM78P342N from sleep mode if it  
is enabled prior to going into sleep mode by executing SLEP instruction. When wake up  
occurs, the controller will continue to execute program in-line if the global interrupt is  
disabled. If enabled, the global interrupt will branch out to the Interrupt Vector 006H.  
External interrupt equipped with digital noise rejection circuit (input pulse less than  
system clock time) is eliminated as noise. However, under Low Crystal oscillator (LXT)  
mode the noise rejection circuit will be disabled. Edge selection is possible with INTE  
of CONT. When an interrupt is generated by the External interrupt (when enabled), the  
next instruction will be fetched from Address 003H. Refer to Word 1 Bits 9 and 8,  
Section 6.14.2, Code Option Register (Word 1) for digital noise rejection definition.  
RF and RE are the interrupt status register that records the interrupt requests in the  
relative flags/bits. IOCF0 and IOCE0 are Interrupt mask registers. The global interrupt  
is enabled by the ENI instruction and is disabled by the DISI instruction. Once in the  
interrupt service routine, the source of an interrupt can be determined by polling the flag  
bits in RF. The interrupt flag bit must be cleared by instructions before leaving the  
interrupt service routine to avoid recursive interrupts.  
When interrupt mask bits is Enable, the flag in the Interrupt Status Register (RF) is set  
regardless of the ENI execution. Note that the result of RF will be the logic AND of RF  
and IOCF0 (refer to figure below). The RETI instruction ends the interrupt routine and  
enables the global interrupt (the ENI execution).  
When an interrupt is generated by the Timer clock/counter (when enabled), the next  
instruction will be fetched from Address 009, 018, 01B, and 01EH (TCC, TCCA, TCCB,  
and TCCC respectively).  
When an interrupt generated by the AD conversion is completed (when enabled), the  
next instruction will be fetched from Address 00CH.  
52   
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
When an interrupt is generated by the High time / Low time down counter underflow  
(when enabled), the next instruction will be fetched from Addresses 012 and 015H  
(High time and Low time respectively).  
When an interrupt is generated by the Comparators (when enabled), the next  
instruction will be fetched from Address 00FH (Comparator interrupt).  
When an interrupt is generated by the Low Voltage Detect (when enabled), the next  
instruction will be fetched from Address 021H (Low Voltage Detector interrupt).  
Before an interrupt subroutine is executed, the contents of ACC and the R3 and R4  
registers are saved first by the hardware. If another interrupt occurs, the ACC, R3, and  
R4 will be replaced by the new interrupt. After an interrupt service routine is completed,  
the ACC, R3, and R4 registers are restored.  
VCC  
P
D
Q
IRQn  
R
/IRQn  
CLK  
INT  
_
Q
IRQm  
C
L
RFRD  
RF  
ENI/DISI  
P
IOD  
Q
D
R
CLK  
_
Q
IOCFWR  
C
L
IOCF  
/RESET  
IOCFRD  
RFWR  
Interrupt  
occurs  
Interrupt sources  
ENI/DISI  
ACC  
Stack ACC  
Stack R3  
Stack R4  
R3 (7~5, 2~0)  
R4 (6~0)  
RETI  
Figure 6-9 Interrupt Back-up Diagram  
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
53  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
In EM78P342N, each individual interrupt source has its own interrupt vector as  
depicted in the table below.  
Interrupt Vector  
Interrupt Status  
External interrupt  
Port 5 pin change  
Priority *  
003H  
006H  
009H  
00CH  
00FH  
012H  
015H  
018H  
01BH  
01EH  
021H  
2
3
TCC overflow interrupt  
4
AD conversion complete interrupt  
Comparator interrupt  
5
6
High-pulse width timer underflow interrupt  
Low-pulse width timer underflow interrupt  
TCCA overflow interrupt  
7
8
9
TCCB overflow interrupt  
10  
11  
1
TCCC overflow interrupt  
Low Voltage Detector interrupt  
Note: *Priority: 1 = highest ; 11 = lowest priority  
6.7 Analog-to-Digital Converter (ADC)  
The analog-to-digital circuitry consists of an 8-bit analog multiplexer; three control  
registers (AISR/R8, ADCON/R9, and ADOC/RA), three data registers (ADDATA1/RB,  
ADDATA1H/RC, and ADDATA1L/RD) and an ADC with 12-bit resolution as shown in  
the functional block diagram below. The analog reference voltage (Vref) and the  
analog ground are connected via separate input pins. Connecting to an external VREF  
is more accurate than connecting to an internal VDD.  
The ADC module utilizes successive approximation to convert the unknown analog  
signal into a digital value. The result is fed to the ADDATA, ADDATA1H, and  
ADDATA1L. Input channels are selected by the analog input multiplexer via the  
ADCON register Bits ADIS1 and ADIS0.  
ADC7  
ADC6  
ADC5  
Vref  
ADC4  
ADC3  
ADC2  
ADC1  
ADC0  
Power-Down  
ADC  
Start to Convert  
( successive approximation )  
Fsco  
4-1  
MUX  
Internal RC  
7
~ 0  
1
0
3
4
3
11 10  
9
8
7
6
5
4
3
2
1
0
6
5
ADCON  
ADCON  
ADCON  
DATA BUS  
RF  
AISR  
ADDATA1H  
ADDATA1L  
Figure 6-10 Analog-to-Digital Conversion Functional Block Diagram  
54   
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
6.7.1 ADC Control Register (AISR/R8, ADCON/R9, ADOC/RA)  
6.7.1.1 R8 (AISR: ADC Input Select Register)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADE7  
ADE6  
ADE5  
ADE4  
ADE3  
ADE2  
ADE1  
ADE0  
The AISR register individually defines the P5, P6 and P7 pins as analog inputs or as  
digital I/O.  
Bit 7 (ADE7): AD converter enable bit of P57 pin  
0 : Disable ADC7, P57 functions as I/O pin  
1 : Enable ADC7 to function as analog input pin  
Bit 6 (ADE6): AD converter enable bit of P55 pin  
0 : Disable ADC6, P55 functions as I/O pin  
1 : Enable ADC6 to function as analog input pin  
Bit 5 (ADE5): AD converter enable bit of P70 pin  
0 : Disable ADC5, P70 functions as I/O pin  
1 : Enable ADC5 to function as analog input pin  
Bit 4 (ADE4): AD converter enable bit of P67 pin  
0 : Disable ADC4, P67 functions as I/O pin  
1 : Enable ADC4 to function as analog input pin  
Bit 3 (ADE3): AD converter enable bit of P53 pin  
0 : Disable ADC3, P53 functions as I/O pin  
1 : Enable ADC3 to function as analog input pin  
Bit 2 (ADE2): AD converter enable bit of P52 pin  
0 : Disable ADC2, P52 functions as I/O pin  
1 : Enable ADC2 to function as analog input pin  
Bit 1 (ADE1): AD converter enable bit of P51 pin  
0 : Disable ADC1, P51 acts as I/O pin  
1 : Enable ADC1 acts as analog input pin  
Bit 0 (ADE0): AD converter enable bit of P50 pin  
0 : Disable ADC0, P50 functions as I/O pin  
1 : Enable ADC0 to function as analog input pin  
6.7.1.2 R9 (ADCON: ADC Control Register)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
VREFS  
CKR1  
CKR0  
ADRUN  
ADPD  
ADIS2  
ADIS1  
ADIS0  
The ADCON register controls the operation of the AD conversion and decides which  
pin should be currently active.  
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
55  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
Bit 7 (VREFS): The input source of the ADC Vref  
0 : The ADC Vref is connected to Vdd (default value), and the  
VREF/TCC/P54 pin carries out the P54 function  
1 : The ADC Vref is connected to VREF/TCC/P54  
NOTE  
The P54/TCC/VREF pin cannot be applied to TCC and VREF at the same time. If  
P54/TCC/VREF functions as VREF analog input pin, then CONT Bit 5 (TS) must be 0”.  
The P54/TCC/VREF pin priority is as follows:  
P54/TCC/VREF Pin Priority  
High  
Medium  
TCC  
Low  
P54  
VREF  
Bit 6 ~ Bit 5 (CKR1 ~ CKR0): The prescaler of ADC oscillator clock rate  
00 = 1: 16 (default value)  
01 = 1: 4  
10 = 1: 64  
11 = 1: 8  
CPUS  
CKR1: CKR0 Operation Mode Max. Operation Frequency  
1
1
1
1
0
00  
01  
10  
11  
  
Fosc/16  
Fosc/4  
4 MHz  
1 MHz  
16 MHz  
2 MHz  
Fosc/64  
Fosc/8  
Internal RC  
Bit 4 (ADRUN): ADC starts to RUN  
0 : Reset upon completion of the conversion. This bit cannot be reset  
though software.  
1 : an AD conversion is started. This bit can be set by software.  
Bit 3 (ADPD): ADC Power-down mode  
0 : Switch off the resistor reference to conserve power even while the  
CPU is operating  
1 : ADC is operating  
56   
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
Bit 2 ~ Bit 0 (ADIS2 ~ ADIS0): Analog Input Select  
000 = ADIN0/P50  
001 = ADIN1/P51  
010 = ADIN2/P52  
011 = ADIN3/P53  
100 = ADIN4/P67  
101 = ADIN5/P70  
110 = ADIN6/P55  
111 = ADIN7/P57  
These bits can only be changed when the ADIF bit and the ADRUN bit  
are both LOW  
6.7.1.3 RA (ADOC: AD Offset Calibration Register)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CALI  
SIGN  
VOF[2]  
VOF[1]  
VOF[0]  
0”  
0”  
0”  
Bit 7 (CALI): Calibration enable bit for ADC offset  
0 = disable Calibration  
1 = enable Calibration  
Bit 6 (SIGN): Polarity bit of offset voltage  
0 = Negative voltage  
1 = Positive voltage  
Bit 5 ~ Bit 3 (VOF[2] ~ VOF[0]): Offset voltage bits.  
EM78P342N  
0LSB  
VOF[2]  
VOF[1]  
VOF[0]  
ICE341N  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0LSB  
2LSB  
4LSB  
6LSB  
8LSB  
10LSB  
12LSB  
14LSB  
2LSB  
4LSB  
6LSB  
8LSB  
10LSB  
12LSB  
14LSB  
Bit 2 ~ Bit 0: Unimplemented, read as ‘0’.  
6.7.2 ADC Data Register (ADDATA/RB, ADDATA1H/RC,  
ADDATA1L/RD)  
When the AD conversion is completed, the result is loaded to the ADDATA, ADDATA1H  
and ADDATA1L registers. The ADRUN bit is cleared, and the ADIF is set.  
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
57  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
6.7.3 ADC Sampling Time  
The accuracy, linearity, and speed of the successive approximation of the AD converter  
are dependent on the properties of the ADC and the comparator. The source  
impedance and the internal sampling impedance directly affect the time required to  
charge the sample holding capacitor. The application program controls the length of  
the sample time to meet the specified accuracy. Generally speaking, the program  
should wait for 2s for each Kof the analog source impedance and at least 2s for  
the low-impedance source. The maximum recommended impedance for analog  
source is 10Kat Vdd=5V. After the analog input channel is selected, this acquisition  
time must be done before the conversion is started.  
6.7.4 AD Conversion Time  
CKR1 and CKR0 select the conversion time (Tct), in terms of instruction cycles. This  
allows the MCU to run at the maximum frequency without sacrificing the AD conversion  
accuracy. For the EM78P342N, the conversion time per bit is about 4s. The table  
below shows the relationship between Tct and the maximum operating frequencies.  
Operation Max. Operation Max. Conversion  
CKR1:CKR0  
Max. Conversion Rate  
Mode  
Fosc/16  
Fosc/4  
Frequency  
Rate/Bit  
00  
01  
10  
11  
4 MHz  
250kHz (4µs) 154µs=60µs (16.7kHz)  
250kHz (4µs) 154µs=60µs (16.7kHz)  
250kHz ( 4µs) 154µs=60µs (16.7kHz)  
250kHz ( 4µs) 154µs=60µs (16.7kHz)  
1 MHz  
Fosc/64  
Fosc/8  
16 MHz  
2 MHz  
NOTE  
Pin not used as an analog input pin can be used as regular input or output pin.  
During conversion, do not perform output instruction to maintain precision for all of  
the pins.  
6.7.5 ADC Operation during Sleep Mode  
In order to obtain a more accurate ADC value and reduce power consumption, the AD  
conversion remains operational during sleep mode. As the SLEP instruction is  
executed, all the MCU operations will stop except for the Oscillator, TCC, TCCA,  
TCCB, TCCC, and AD conversion.  
The AD Conversion is considered completed as determined by:  
1. The ADRUN bit of the R9 register is cleared to 0”.  
2. The ADIF bit of the RE register is set to “1.  
3. The ADWE bit of the RE register is set to “1.” Wakes up from ADC conversion  
(where it remains in operation during sleep mode).  
4. Wake up and execution of the next instruction if the ADIE bit of the IOCE0 is  
enabled and the DISIinstruction is executed.  
58   
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
5. Wake up and enters into Interrupt vector (Address 0x00C) if the ADIE bit of the  
IOCE0 is enabled and the ENIinstruction is executed.  
6. Enters into an Interrupt vector (Address 0x00C) if the ADIE bit of the IOCE0 is  
enabled and the ENIinstruction is executed.  
The results are fed into the ADDATA, ADDATA1H, and ADDATA1L registers when the  
conversion is completed. If the ADIE is enabled, the device will wake up. Otherwise,  
the AD conversion will be shut off, no matter what the status of the ADPD bit is.  
6.7.6 Programming Process/Considerations  
6.7.6.1 Programming Process  
Follow these steps to obtain data from the ADC:  
1. Write to the eight bits (ADE7: ADE0) on the R8 (AISR) register to define the  
characteristics of R5 (digital I/O, analog channels, or voltage reference pin)  
2. Write to the R9/ADCON register to configure the AD module:  
a) Select the ADC input channel (ADIS2 : ADIS0)  
b) Define the AD conversion clock rate (CKR1 : CKR0)  
c) Select the VREFS input source of the ADC  
d) Set the ADPD bit to 1 to begin sampling  
3. Set the ADWE bit, if the wake-up function is employed  
4. Set the ADIE bit, if the interrupt function is employed  
5. Write “ENI” instruction, if the interrupt function is employed  
6. Set the ADRUN bit to 1  
7. Write “SLEPinstruction or Polling.  
8. Wait for wake-up or for the ADRUN bit to be cleared to 0, interrupt flag (ADIF) is  
set 1,” or ADC interrupt occurs.  
9. Read the ADDATA or ADDATA1H and ADDATA1L conversion data registers. If the  
ADC input channel changes at this time, the ADDATA, ADDATA1H, and  
ADDATA1L values can be cleared to ‘0’.  
10. Clear the interrupt flag bit (ADIF).  
11. For the next conversion, go to Step 1 or Step 2 as required. At least two Tct is  
required before the next acquisition starts.  
NOTE  
In order to obtain accurate values, it is necessary to avoid any data transition on the I/O  
pins during AD conversion  
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
59  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
6.7.6.2 Sample Demo Programs  
R_0 == 0  
PSW == 3  
; Indirect addressing register  
; Status register  
PORT5 == 5  
PORT6 == 6  
RE== 0XE  
; Interrupt status register  
B. Define a Control Register  
IOC50 == 0X5  
IOC60 == 0X6  
IOCE0== 0XE  
C_INT== 0XF  
; Control Register of Port 5  
; Control Register of Port 6  
; Interrupt Mask Register 2  
; Interrupt Mask Register  
C. ADC Control Register  
ADDATA == 0xB  
AISR == 0x08  
ADCON == 0x9  
; The contents are the results of ADC  
; ADC input select register  
;
7
6
5
4
3
2
1
0
;VREFS CKR1 CKR0 ADRUN ADPD ADIS2 ADIS1 ADIS0  
D. Define Bits in ADCON  
ADRUN == 0x4  
ADPD == 0x3  
; ADC is executed as the bit is set  
; Power Mode of ADC  
E. Program Starts  
ORG 0  
; Initial address  
JMP INITIAL  
;
ORG 0x0C  
JMP CLRRE  
;
; Interrupt vector  
;(User program section)  
;
CLRRE:  
MOV A,RE  
AND A, @0BXX0XXXXX ; To clear the ADIF bit, “X” by application  
MOV RE,A  
BS ADCON, ADRUN  
; To start to execute the next AD conversion  
; if necessary  
RETI  
INITIAL:  
MOV A,@0B00000001  
MOV AISR,A  
; To define P50 as an analog input  
MOV A,@0B00001000  
; To select P50 as an analog input channel, and  
;
AD power on  
; To define P50 as an input pin and set clock  
rate at fosc/16  
MOV ADCON,A  
;
En_ADC:  
MOV A, @0BXXXXXXX1 ; To define P50 as an input pin, and the others  
; are dependent on applications  
IOW PORT5  
60   
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
MOV A, @0BXXXX1XXX ; Enable the ADWE wake-up function of ADC, “X”  
; by application  
MOV RE,A  
MOV A, @0BXX1XXXXX ; Enable the ADIE interrupt function of ADC,  
; “X” by application  
IOW IOCE0  
ENI  
; Enable the interrupt function  
; Start to run the ADC  
BS ADCON, ADRUN  
; If the interrupt function is employed, the following three lines  
may be ignored  
;If Sleep:  
SLEP  
;
;(User program section)  
;
or  
;If Polling:  
POLLING:  
JBC ADCON, ADRUN  
JMP POLLING  
; To check the ADRUN bit continuously;  
; ADRUN bit will be reset as the AD conversion  
; is completed  
;
;(User program section)  
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
61  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
6.8 Infrared Remote Control Application/PWM Waveform  
Generation  
6.8.1 Overview  
This LSI can easily output infrared carrier or PWM standard waveform. As illustrated  
below, the IR and PWM waveform generation function include an 8-bit down count  
timer/counter, high-time, low-time, and IR control register. The IROUT pin waveform is  
determined by IOCA0 (IR and TCCC scale control register), IOCB1 (high-time rate,  
low-time rate control register), IOC81 (TCCC counter), IOCA1 (high-time register), and  
IOC91 (low-time register).  
Fosc  
8-bit counter  
8-to-1 MUX  
8-bit counter  
8-to-1 MUX  
8-bit counter  
8-to-1 MUX  
Scale  
(IOCB1)  
Scale  
(IOCB 1)  
Scale  
(IOCA0)  
8
8
Auto-reload buffer  
(High-time)(IOCA1)  
Auto-reload buffer  
(Low-time) (IOC91)  
8-bit binary  
down counter  
8-bit binary  
down counter  
8
8
Fcarrier  
8-bit binary  
down counter  
H/W Modulator  
8
Auto-reload buffer  
(TCCC)(IOC81)  
HF  
Underflow Interrupt  
HPWTIF  
LGP  
IRE  
IROUT pin  
LPWTIF  
Figure 6-12 IR/PWM System Block Diagram  
Details of the Fcarrier High Time Width and Low Time Width are shown below:  
FT  
Fcarrier  
2
1Decimal TCCC Counter Value  
IOC81  
TCCC Scale  
IOCA0  
 
FOSC  
where FT   
1
1Decimal High Time Value  
1Decimal Low Time Value  
IOCA1  
High Time Scale  
Low Time Scale  
IOCB1  
High Time Width   
Low Time Width   
FT  
IOC91  
IOCB1  
FT  
When an interrupt is generated by the High time down counter underflow (when  
enabled), the next instruction will be fetched from Address 018 and 01BH (High time  
and Low time respectively).  
62   
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
6.8.2 Function Description  
The following figure shows LGP=0 and HF=1. The IROUT waveform modulates the  
Fcarrier waveform at low-time segments of the pulse.  
Fcarrier  
low time width  
high time width  
low time width  
high time width  
HF  
IRE  
Start  
IROUT  
Figure 6-13a LGP=0, HF=1, IROUT Pin Output Waveform  
The following figure shows LGP=0 and HF=0. The IROUT waveform cannot modulate  
the Fcarrier waveform at low-time segments of the pulse. So IROUT waveform is  
determined by the high time width and low time width instead. This mode can produce  
standard PWM waveform.  
Fcarrier  
low time width  
high time width  
low time width  
high time width  
HF  
Start  
IRE  
IROUT  
Figure 6-13b LGP=0, HF=0, IROUT Pin Output Waveform  
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
63  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
The following figure shows LGP=0 and HF=1. The IROUT waveform modulates the  
Fcarrier waveform at low-time segments of the pulse. When IRE goes low from high,  
the output waveform of IROUT will keep transmitting until high-time interrupt occurs.  
Fcarrier  
low time width  
high time width  
low time width  
high time width  
HF  
Start  
IR disable  
IRE  
IROUT  
Always high-level  
Figure 6-13c LGP=0, HF=1, When IRE goes Low from High, IROUT Pin Outputs Waveform  
The following figure shows LGP=0 and HF=0. The IROUT waveform cannot modulate  
the Fcarrier waveform at low-time segments of the pulse. So IROUT waveform is  
determined by high time width and low time width. This mode can produce standard  
PWM waveform when IRE goes low from high. The output waveform of IROUT will  
keep on transmitting until high-time interrupt occurs.  
Fcarrier  
low time width  
high time width  
low time width  
high time width  
HF  
Start  
IR disable  
IRE  
IROUT  
Always high-level  
Figure 6-13d LGP=0, HF=0, When IRE goes Low from High, Irout Pin Output Waveform  
64   
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
The following figure shows LGP=1 and HF=1. When this bit is set to high level, the  
high-time segment of the pulse is ignored. So, IROUT waveform output is determined  
by low-time width.  
Fcarrier  
low time width  
low time width  
low time width  
HF  
Start  
IR disable  
IRE  
IROUT  
Always high-level  
Figure 6-13e LGP=1 and HF=1, IROUT Pin Output Waveform  
6.8.3 Programming the Related Registers  
When defining IR/PWM, refer to the operation of the related registers as shown in the  
tables below.  
IR/PWM Related Control Registers  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
009  
IOC90 TCCBHE/0TCCBEN/0TCCBTS/0 TCCBTE/0  
IR CR  
/IOCA0  
0
TCCCEN/0TCCCTS/0TCCCTE/0  
00A  
00F  
00B  
TCCCSE/0TCCCS2/0 TCCCS1/0 TCCCS0/0 IRE/0  
HF/0  
LGP/0 IROUTE/0  
IMR  
/IOCF0  
LPWTIE/0 HPWTIE/0 TCCCIE/0 TCCBIE/0 TCCAIE/0 EXIE/0  
ICIE/0  
TCIE/0  
LTS0/0  
HLTS  
/IOCB1  
HTSE/0  
HTS2/0  
HTS1/0  
HTS0/0  
LTSE/0  
LTS2/0  
LTS1/0  
IR/PWM Related Status/Data Registers  
Name Bit 7 Bit 6 Bit 5 Bit 4  
Address  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
00F  
ISR/RF LPWTIF/0 HPWTIF/0 TCCCIF/0 TCCBIF/0 TCCAIF/0 EXIF/0  
ICIF/0  
TCIF/0  
TCCC  
/IOC81  
006  
009  
00A  
TCCC7/0 TCCC6/0 TCCC5/0 TCCC4/0 TCCC3/0 TCCC2/0 TCCC1/0 TCCC0/0  
LTR  
/IOC91  
LTR7/0  
HTR7/0  
LTR6/0  
HTR6/0  
LTR5/0  
HTR5/0  
LTR4/0  
HTR4/0  
LTR3/0  
HTR3/0  
LTR2/0  
HTR2/0  
LTR1/0  
HTR1/0  
LTR0/0  
HTR0/0  
HTR  
/IOCA1  
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
65  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
6.9 Timer/Counter  
6.9.1 Overview  
Timer A (TCCA) is an 8-bit clock counter. Timer B (TCCB) is a 16-bit clock counter.  
Timer C (TCCC) is an 8-bit clock counter that can be extended to 16-bit clock counter  
with programmable scalers. TCCA, TCCB, and TCCC can be read and written to, and  
are cleared at every reset condition.  
6.9.2 Functional Description  
Set predict value  
Set predict value  
Set predict value  
TCCCEN  
Set TCCCIF  
TCCAEN  
TCCBEN  
Set TCCBIF  
Set TCCAIF  
TCCC  
TCCB  
TCCA  
Overflow  
TCCCS1 ~ TCCCS0  
Overflow  
Overflow  
Fosc or  
External input  
Fosc or  
External input  
8-to-1 MUX  
8 Bit  
counter  
Fosc or  
External input  
Figure 6-14 Timer Block Diagram  
Each signal and block of the above Timer block diagram is described as follows:  
TCCX: Timer A~C register. TCCX is incremented until it matches with zero, and then  
reloads the predicted value. When writing a value to TCCX, the predicted  
value and TCCX value become the set value. When reading from TCCX, the  
value will be the TCCX direct value. When TCCXEN is enabled, the reloading  
of the predicted value to TCCX, TCCXIE is also enabled. TCCXIF will be set at  
the same time. It is an up counter.  
TCCA Counter (IOC51):  
IOC51 (TCCA) is an 8-bit clock counter. It can be read, written to, and cleared  
on any reset condition and it is also an Up Counter.  
1
TCCA Timeout period  
256 TCCA cnt 1  
FOSC  
TCCB Counter (IOC61):  
IOC61 is an 8-bit clock counter for the least significant byte of TCCBX (TCCB).  
It can be read, written, and cleared on any reset condition and it is also an Up  
Counter.  
66   
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
TCCBH / MSB Counter (IOC71):  
IOC71 is an 8-bit clock counter for the most significant byte of TCCBX  
(TCCBH). It can be read, written to, and cleared on any reset condition.  
When TCCBHE (IOC90) is “0,” then TCCBH is disabled. When TCCBHE is”1,”  
then TCCB is a 16-bit length counter.  
When TCCBH is disabled:  
TCCB Timeout period  
1
256 TCCB cnt 1  
FOSC  
When TCCBH is enabled:  
1
TCCB Timeout period  
65536   
TCCBH 256 TCCB cnt  
1  
FOSC  
TCCC Counter (IOC81):  
IOC81 (TCCC) is an 8-bit clock counter. It can be read, written to, and cleared  
on any reset condition.  
If HF (Bit 2 of IOCA0) = 1 and IRE (Bit 3 of IOCA0) = 1, TCCC counter scale  
uses the low-time segments of the pulse generated by F  
frequency  
carrier  
modulation (see Figure 6-11 in Section 6.8.2, Function Description). The  
TCCC value will then be the TCCC predicted value.  
When HF = 0 or IRE = 0. The TCCC is an Up Counter.  
In TCCC Up Counter mode:  
1
TCCC Timeout period   
Scaler  
IOCA0  
256 TCCC cnt 1  
FOSC  
When HF = 1 and IRE = 1, TCCC counter scale uses the low-time segments of  
the pulse generated by the F  
frequency modulation.  
carrier  
In IR mode:  
FT  
Fcarrier  
2
1Decimal TCCC Counter Value  
IOC81  
TCCC Scale  
IOCA0  
  
FOSC  
where FT   
1
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
67  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
6.9.3 Programming the Related Registers  
When defining TCCX, refer to the operation of its related registers as shown in the  
tables below.  
TCCX Related Control Registers:  
Address  
0x08  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
IOC80  
0
0
CPOUT/0  
COS1/0  
COS0/0 TCCAEN/0 TCCATS/0 TCCATE/0  
0x09  
IOC90 TCCBHE/0 TCCBEN/0 TCCBTS/0 TCCBTE/0  
0
TCCCEN/0 TCCCTS/0 TCCCTE/0  
IR CR  
0x0A  
0x0F  
TCCCSE/0 TCCCS2/0 TCCCS1/0 TCCCS0/0  
/IOCA0  
IRE/0  
HF/0  
LGP/0  
ICIE/0  
IROUTE/0  
TCIE/0  
IMR  
/IOCF0  
LPWTE/0 HPWTE/0 TCCCIE/0 TCCBIE/0 TCCAIE/0  
EXIE/0  
Related TCCX Status/Data Registers:  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0x0F  
ISR/RF  
LPWTF/0 HPWTF/0 TCCCIF/0 TCCBIF/0 TCCAIF/0  
EXIF/0  
ICIF/0  
TCIF/0  
TCCA  
/IOC51  
0x05  
0x06  
0x07  
0x08  
TCCA7/0  
TCCB7/0  
TCCA6/0  
TCCB6/0  
TCCA5/0  
TCCB5/0  
TCCA4/0  
TCCB4/0  
TCCA3/0  
TCCB3/0  
TCCA2/0  
TCCB2/0  
TCCA1/0  
TCCB1/0  
TCCA0/0  
TCCB0/0  
TCCB  
/IOC61  
TCCBH  
/IOC71  
TCCBH7/0 TCCBH6/0 TCCBH5/0 TCCBH4/0 TCCBH3/0 TCCBH2/0 TCCBH1/0 TCCBH0/0  
TCCC7/0 TCCC6/0 TCCC5/0 TCCC4/0 TCCC3/0 TCCC2/0 TCCC1/0 TCCC0/0  
TCCC  
/IOC81  
6.10 Comparator  
The EM78P342N has one  
comparator which has two  
analog inputs and one  
output. The comparator  
can be employed to wake  
up the system from  
-
Cin  
-
CO  
CMP  
Cin+  
+
sleep/idle mode. The  
Figure at right shows the  
comparator circuit.  
Cin-  
Cin+  
Output  
10mV  
Figure 6-15 Comparator Operating Mode  
68   
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
6.10.1 External Reference Signal  
The analog signal that is presented at Cincompares to the signal at Cin+, and the  
digital output (CO) of the comparator is adjusted accordingly by taking the following  
notes into considerations:  
NOTE  
The reference signal must be between Vss and Vdd.  
The reference voltage can be applied to either pin of the comparator.  
Threshold detector applications may be of the same reference.  
The comparator can operate from the same or different reference sources.  
6.10.2 Comparator Outputs  
The compared result is stored in the CMPOUT of IOC80.  
The comparator outputs are sent to CO (P64) by programming Bit 4 and Bit 3  
<COS1, COS0> of the IOC80 register to <1,0>. See table under Section 6.2.4,  
IOC80 (Comparator and TCCA Control Registers) for Comparator/OP select bits  
function description.  
The following figure shows the Comparator Output Block Diagram.  
To C0  
From OP I/O  
CMRD  
EN  
EN  
Q
D
Q
D
To CMPOUT  
RESET  
To CPIF  
CMRD  
From other  
comparator  
Figure 6-16 Comparator Output Configuration  
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
69  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
6.10.3 Using Comparator as an Operation Amplifier  
The comparator can be used as an operation amplifier if a feedback resistor is  
externally connected from the input to the output. In this case, the Schmitt trigger  
function can be disabled for power saving purposes, by setting Bit 4, Bit 3 <COS1,  
COS0> of the IOC80 register to <1,1>. See table under Section 6.2.4, IOC80  
(Comparator and TCCA Control Registers) for Comparator/OP select bits function  
description.  
NOTE  
Under Operation Amplifier:  
The CMPIE (IOCE0.4), CMPWE (RE.2), and CMPIF (RE.4) bits are invalid.  
The comparator interrupt is invalid.  
The comparator wake-up is invalid.  
6.10.4 Comparator Interrupt  
CMPIE (IOCE0.4) must be enabled for the ENIinstruction to take effect.  
Interrupt is triggered whenever a change occurs on the comparator output pin.  
The actual change on the pin can be determined by reading the Bit CMPOUT,  
IOC80<5>.  
CMPIF (RE.4), the comparator interrupt flag, can only be cleared by software.  
6.10.5 Wake-up from Sleep Mode  
If the CMPWE bit of the RE register is set to “1,” the comparator remains active  
and the interrupt remains functional, even under Sleep mode.  
If a mismatch occurs, the change will wake up the device from Sleep mode.  
The power consumption should be taken into consideration for the benefit of  
energy conservation.  
If the function is unemployed during Sleep mode, turn off the comparator before  
entering into sleep mode.  
The Comparator is considered completed as determined by:  
1. COS1 and COS0 bits of IOC80 register setting selects Comparator.  
2. CMPIF bit of RE register is set to 1.  
3. CMPWE bit of RE register is set to 1. Wakes up from Comparator (where it  
remains in operation during sleep/idle mode).  
4. Waking-up and executing the next instruction, if CMPIE bit of IOCE0 is enabled and  
the DISIinstruction is executed.  
5. Waking-up and entering into Interrupt vector (Address 0x00F), if CMPIE bit of  
IOCE0 is enabled and the ENIinstruction is executed.  
6. Entering into Interrupt vector (Address 0x00F), if CMPIE bit of IOCE0 is enabled  
and the ENIinstruction is executed.  
70   
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
6.11 Oscillator  
6.11.1 Oscillator Modes  
The EM78P342N can be operated in six different oscillator modes, such as High  
Crystal Oscillator Mode 1 (HXT1), High Crystal Oscillator Mode 2 (HXT2), Low Crystal  
Oscillator Mode 1 (LXT1), Low Crystal Oscillator Mode 2 (LXT2), External RC  
Oscillator Mode (ERC), and RC Oscillator Mode with Internal RC Oscillator Mode  
(IRC). You can select one of them by programming the OSC2, OCS1, and OSC0 in the  
Code Option register.  
The Oscillator modes defined by OSC2, OCS1, and OSC0 are described below.  
Oscillator Modes  
OSC2  
OSC1  
OSC0  
ERC1 (External RC oscillator mode); P70/OSCO acts as P70  
ERC1 (External RC oscillator mode); P70/OSCO acts as OSCO  
IRC2 (Internal RC oscillator mode); P70/OSCO acts as P70  
IRC2 (Internal RC oscillator mode); P70/OSCO acts as OSCO  
LXT13 (Frequency range of XT mode is 1MHz ~ 100kHz)  
HXT13 (Frequency range of XT mode is 16 MHz ~ 6 MHz)  
LXT23 (Frequency range of XT mode is 32kHz)  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
HXT23 (Frequency range of XT mode is 6 MHz ~ 1 MHz) (default)  
1 In ERC mode, OSCI is used as oscillator pin. OSCO/P70 is defined by code option Word 0  
Bit 6 ~ Bit 4.  
2 In IRC mode, P55 is normal I/O pin. OSCO/P70 is defined by code option Word 0 Bit 6 ~ Bit 4.  
3 In LXT1, LXT2, HXT1 and HXT2 modes; OSCI and OSCO are used as oscillator pins. These  
pins cannot and should not be defined as normal I/O pins.  
The maximum operating frequency limit of crystal/resonator at different VDDs, are as  
follows:  
Conditions  
VDD  
2.1V  
3.0V  
4.5V  
Max. Freq. (MHz)  
4
8
Two clocks  
16  
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
71  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
6.11.2 Crystal Oscillator/Ceramic Resonators (Crystal)  
The EM78P342N can be driven by an external clock signal through the OSCI pin as  
illustrated below.  
OSCI  
OSCO  
Figure 6-17 External Clock Input Circuit  
In most applications, Pin OSCI and Pin OSCO can be connected with a crystal or  
ceramic resonator to generate oscillation. Figure 6-18 below depicts such a circuit.  
The same applies to the HXT1 mode, HTX2 mode, LXT1 mode and LXT2 mode.  
C1  
OSCI  
Crystal  
OSCO  
RS  
C2  
Figure 6-18 Crystal/Resonator Circuit  
The following table provides the recommended values for C1 and C2. Since each  
resonator has its own attribute, user should refer to the resonator specifications for the  
appropriate values of C1 and C2. RS, a serial resistor, maybe required for AT strip cut  
crystal or low frequency mode. Figure 6-21 is PCB layout suggestion. When the  
system works in Crystal mode (16 MHz), a 10 Kis connected between OSCI and  
OSCO.  
72   
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
Capacitor selection guide for crystal oscillator or ceramic resonators:  
Oscillator Type  
Frequency Mode  
Frequency  
C1 (pF)  
C2 (pF)  
100kHz  
200kHz  
455kHz  
1 MHz  
67 pF  
30 pF  
30 pF  
30 pF  
30 pF  
30 pF  
30 pF  
67 pF  
30 pF  
30 pF  
30 pF  
30 pF  
30 pF  
30 pF  
LXT  
(100 K ~ 1 MHz)  
Ceramic Resonators  
1.0 MHz  
2.0 MHz  
4.0 MHz  
MXT  
(1 M ~ 6 MHz)  
LXT2 (32.768kHz)  
32.768kHz  
40 pF  
40 pF  
100kHz  
200kHz  
455kHz  
1 MHz  
67 pF  
30 pF  
30 pF  
30 pF  
30 pF  
30 pF  
30 pF  
30 pF  
30 pF  
30 pF  
30 pF  
30 pF  
30 pF  
15 pF  
67 pF  
30 pF  
30 pF  
30 pF  
30 pF  
30 pF  
30 pF  
30 pF  
30 pF  
30 pF  
30 pF  
30 pF  
30 pF  
15 pF  
LXT1  
(100 K ~ 1 MHz)  
455kHz  
1.0 MHz  
2.0 MHz  
4.0 MHz  
6.0 MHz  
6.0 MHz  
8.0 MHz  
10.0 MHz  
12.0 MHz  
16.0 MHz  
HXT2  
(1~6 MHz)  
Crystal Oscillator  
HXT1  
(6~16 MHz)  
Circuit diagrams for serial and parallel modes Crystal/Resonator:  
330  
330  
C
OSCI  
7404  
7404  
7404  
Crystal  
Figure 6-19 Serial Mode Crystal/Resonator Circuit Diagram  
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
73  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
4.7K  
10K  
7404  
Vdd  
OSCI  
7404  
10K  
Crystal  
10K  
C1  
C2  
Figure 6-20 Parallel Mode Crystal/Resonator Circuit Diagram  
Figure 6-21 Parallel Mode Crystal/Resonator Circuit Diagram  
74   
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
6.11.3 External RC Oscillator Mode  
For some applications that do not require  
precise timing calculation, the RC  
Vcc  
oscillator (Figure 6-22) could offer an  
effective cost savings. Nevertheless, it  
should be noted that the frequency of the  
RC oscillator is influenced by the supply  
voltage, the values of the resistor (Rext),  
the capacitor (Cext), and even by the  
operation temperature. Moreover, the  
frequency also changes slightly from one  
chip to another due to the manufacturing  
process variation.  
Rext  
OSCI  
Cext  
Figure 6-22 External RC Oscillator Mode  
Circuit  
In order to maintain a stable system frequency, the values of the Cext should be no less  
than 20 pF, and the value of Rext should not be greater than 1 M. If the frequency  
cannot be kept within this range, the frequency can be affected easily by noise,  
humidity, and leakage.  
The smaller the Rext in the RC oscillator is, the faster its frequency will be. On the  
contrary, for very low Rext values, for instance, 1 K, the oscillator will become  
unstable because the NMOS cannot correctly discharge the capacitance current.  
Based on the above reasons, it must be kept in mind that all supply voltage, the  
operation temperature, the components of the RC oscillator, the package types and  
PCB layout have certain effects on the system frequency.  
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
75  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
The RC Oscillator frequencies:  
Cext Rext  
Average Fosc 5V, 25C  
3.5MHz  
Average Fosc 3V, 25C  
3.0 MHz  
3.3k  
5.1k  
10k  
2.4 MHz  
2.2MHz  
20 pF  
100 pF  
300 pF  
1.27 MHz  
140kHz  
1.24 MHz  
143kHz  
100k  
3.3k  
5.1k  
10k  
1.21 MHz  
805kHz  
1.18 MHz  
790kHz  
420kHz  
418kHz  
100k  
3.3k  
5.1k  
10k  
45 kHz  
46kHz  
550kHz  
526kHz  
364kHz  
350kHz  
188kHz  
185kHz  
100k  
20kHz  
20kHz  
Note: 1: Measured based on DIP packages.  
2: The values are for design reference only.  
3: The frequency drift is 30%  
6.11.4 Internal RC Oscillator Mode  
The EM78P342N offers a versatile internal RC mode with default frequency value of 4  
MHz. Internal RC oscillator mode has other frequencies (16 MHz, 1 MHz, and 455kHz)  
that can be set by Code Option (Word 1), RCM1, and RCM0. The Table below describes  
the EM78P342N internal RC drift with voltage, temperature, and process variations.  
Internal RC Drift Rate (Ta=25°C, VDD=5V±5%, VSS=0V)  
Drift Rate  
Internal  
Temperature  
Voltage  
RC Frequency  
Process  
Total  
(-40°C ~+85°C) (2.3V~3.9V~5.5V)  
4 MHz  
16 MHz  
1 MHz  
±5%  
±5%  
±5%  
±5%  
±5%  
±5%  
±5%  
±5%  
±4%  
±4%  
±4%  
±4%  
±14%  
±14%  
±14%  
±14%  
455kHz  
Note: Theoretical values are for reference only. Actual values may vary depending on the actual  
process.  
76   
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
6.12 Power-on Considerations  
Any microcontroller is not warranted to start operating properly before the power supply  
stabilizes in steady state. The EM78P342N POR voltage range is 1.6V ~ 1.8V. Under  
customer application, when power is switched OFF, Vdd must drop below 1.6V and  
remains at OFF state for 10s before power can be switched ON again. Subsequently,  
the EM78P342N will reset and work normally. The extra external reset circuit will work  
well if Vdd rises fast enough (50ms or less). However, under critical applications, extra  
devices are still required to assist in solving power-on problems.  
6.12.1 Programmable WDT Time-out Period  
The Option word (WDTPS) is used to define the WDT time-out period (18ms5 or  
4.5ms6). Theoretically, the range is from 4.5ms or 18ms. For most crystal or ceramic  
resonators, the lower the operation frequency is, the longer is the required set-up time.  
6.12.2 External Power-on Reset Circuit  
The circuit shown in the  
following figure implements  
VDD  
an external RC to produce a  
reset pulse. The pulse  
/RESET  
R
D
width (time constant) should  
be kept long enough to  
allow the Vdd to reach the  
minimum operating voltage.  
This circuit is used when the  
power supply has a slow  
power rise time. Because  
Rin  
C
Figure 6-23 External Power-on Reset Circuit  
the current leakage from the /RESET pin is about 5A, it is recommended that R  
should not be greater than 40KΩ. This way, the voltage at Pin /RESET is held below  
0.2V. The diode (D) functions as a short circuit at power-down. The “C” capacitor is  
discharged rapidly and fully. Rin, the current-limited resistor, prevents high current  
discharge or ESD (electrostatic discharge) from flowing into Pin /RESET.  
5
6
VDD=5V, WDT time-out period = 16.5ms ± 30%.  
VDD=3V, WDT time-out period = 18ms ± 30%.  
VDD=5V, WDT time-out period = 4.2ms ± 30%.  
VDD=3V, WDT time-out period = 4.5ms ± 30%.  
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
77  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
6.12.3 Residual Voltage Protection  
When the battery is replaced, device power (Vdd) is removed but residual voltage  
remains. The residual voltage may trip below Vdd minimum, but not to zero. This  
condition may cause a poor power-on reset. Figure 6-24 and Figure 6-25 show how to  
create a protection circuit against residual voltage.  
VDD  
VDD  
33K  
Q1  
10K  
/RESET  
100K  
1N4684  
Figure 6-24 Residual Voltage Protection Circuit 1  
VDD  
VDD  
R1  
Q1  
/RESET  
R2  
R3  
Figure 6-25 Residual Voltage Protection Circuit 2  
78   
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
6.13 Code Option  
EM78P342N has two Code Option Words and one Customer ID word that are not part  
of the normal program memory.  
Word 0  
Word 1  
Word 2  
Bit 12 ~ Bit 0  
Bit 12 ~ Bit 0  
Bit12 ~ Bit 0  
6.13.1 Code Option Register (Word 0)  
Word 0  
Bit Bit 12 Bit 11 Bit 10 Bit9 Bit 8  
Bit 7  
Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0  
Mne  
LVR1 LVR0 TYPE1 TYPE0 CLKS ENWDTB OSC2 OSC1 OSC0  
High High High High 4clocks Disable High High High  
Protect  
monic  
1
0
Disable  
Enable  
Low Low  
Low Low 2clocks Enable Low Low Low  
Bits 12~11 (LVR1 ~ LVR0): Low Voltage Reset Enable bits  
LVR1, LVR0  
VDD Reset Level  
VDD Release Level  
11  
10  
01  
00  
NA (Power-on Reset) (Default)  
2.4V  
3.5V  
4.0V  
2.6V  
3.7V  
4.2V  
Bits 10~9 (TYPE1 ~ TYPE0): Type selection for EM78P342N.  
TYPE 1, TYPE 0  
MCU Type  
Not used  
00  
01  
EM78P342N-14Pin  
EM78P342N-16Pin  
EM78P342N-18Pin  
10  
11  
EM78P342N-20Pin (Default)  
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
79  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
Bit 8 (CLKS):  
Instruction period option bit  
0 = two oscillator periods  
1 = four oscillator periods (default)  
Refer to Section 6.15 for Instruction Set  
Bit 7 (ENWDTB): Watchdog timer enable bit  
0 = Enable  
1 = Disable (default)  
Bits 6, 5 and 4 (OSC2, OSC1 and OSC0): Oscillator Modes Selection bits  
Oscillator Modes  
OSC2  
OSC1  
OSC0  
ERC1 (External RC oscillator mode); P70/OSCO acts as P70  
ERC1 (External RC oscillator mode); P70/OSCO acts as OSCO  
IRC2 (Internal RC oscillator mode); P70/OSCO acts as P70  
IRC2 (Internal RC oscillator mode); P70/OSCO acts as OSCO  
LXT13 (Frequency range of XT, mode is 1MHz ~ 100kHz)  
HXT13 (Frequency range of XT mode is 16MHz ~ 6MHz)  
LXT23 (Frequency range of XT mode is 32kHz)  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
HXT23 (Frequency range of XT mode is 6MHz ~ 1MHz) (default)  
1 In ERC mode, OSCI is used as oscillator pin. OSCO/P54 is defined by code option Word 0  
Bit 6 ~ Bit 4.  
2 In IRC mode, P54 is normal I/O pin. OSCO/P54 is defined by code option Word 0 Bit 6 ~ Bit 4.  
3 In LXT1, LXT2, HXT1 and HXT2 modes; OSCI and OSCO are used as oscillator pins. These  
pins cannot and should not be defined as normal I/O pins.  
Bit 3: Not used, (reserved). This bit is set to “0” all the time.  
Bits 2 ~ 0 (Protect): Protect Bit  
Protect Bits  
Protect  
0
1
Enable  
Disable (default)  
80   
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
6.13.2 Code Option Register (Word 1)  
Word 1  
Bit Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit2 Bit1 Bit0  
Mne  
RCOUT NRHL NRE  
C3  
C2  
C1  
C0 RCM1 RCM0  
monic  
System  
1
32/fc Enable  
_clk  
High High High High High High  
Open_  
0
8/fc Disable  
drain  
Low Low  
Low  
Low  
Low  
Low  
Bit 12:  
Not used, (reserved). This bit is set to “0” all the time.  
Bits 11~10: Not used, (reserved). These bits are set to “1” all the time.  
Bit 9 (RCOUT): Instruction clock output enable bit in IRC or ERC mode  
0 : OSCO pin is open drain  
1 : OSCO output instruction clock (default)  
Bit 8 (NRHL): Noise rejection high/low pulses define bit. INT pin is falling or rising  
edge trigger  
0 : Pulses equal to 8/fc is regarded as signal  
1 : Pulses equal to 32/fc is regarded as signal (default)  
NOTE  
The noise rejection function is turned off in the LXT2 and sleep mode.  
Bit 7 (NRE):  
Noise rejection enable  
0 : disable noise rejection  
1 : enable noise rejection (default), but in Low Crystal oscillator  
(LXT) mode, the noise rejection circuit is always disabled.  
Bit 6: Not used, (reserved). This bit is set to “1” all the time.  
Bits 5, 4, 3, and Bit 2 (C3, C2, C1, C0): Calibrator of internal RC mode  
C3, C2, C1, and C0 must be set to 1only (auto-calibration).  
Bit 1 and Bit 0 (RCM1, RCM0): RC mode selection bits  
RCM 1  
RCM 0  
Frequency (MHz)  
1
1
0
0
1
0
1
0
4 (Default)  
16  
1
455kHz  
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
81  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
6.13.3 Customer ID Register (Word 2)  
Word 2  
Bit Bit 12 Bit 11 Bit 10 Bit 9  
Bit 8  
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit2 Bit1 Bit0  
Mnem  
onic  
RESET  
ENB  
WDT  
NRM  
ID5  
ID4  
ID3  
ID2  
ID1  
ID0  
PS  
18ms High High High High High High  
4.5ms Low Low Low Low Low Low  
1
0
MOD1 P71  
MOD2 /RESET  
Bits 12 ~ 11:  
Bit 10:  
Not used (reserved). These bits are set to “1” all the time.  
Not used, (reserved). This bit is set to “0” all the time.  
0 : Noise Reject Mode 2  
Bit 9 (NRM):  
For multi-time circuit use, such as key scan and LED output.  
1 : Noise reject Mode 1. For General input or output use  
(Default)  
Bit 8 (RESETENB): RESET/P71 Pin Select Bit  
0 : P71 set to /RESET pin  
1 : P71 is general purpose input pin or open-drain for output  
Port (default)  
Bit 7:  
Not used (reserved). This bit is set to “1” all the time.  
WDT Time-out Period Selection bit  
Bit 6 (WDTPS):  
WDT Time  
Watchdog Timer*  
18 ms (Default)  
4.5 ms  
1
0
*Theoretical values, for reference only.  
Bits 5 ~ 0:  
Customer’s ID code  
82   
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
6.14 Low Voltage Detector/Low Voltage Reset  
The Low Voltage Reset (LVR) and the Low Voltage Detector (LVD) are designed for  
unstable power situation, such as external power noise interference or in EMS test  
condition.  
When LVR is enabled, the system supply voltage (Vdd) drops below Vdd reset level  
(V ) and remains at 10s, a system reset will occur and the system will remain in  
RESET  
reset status. The system will remain at reset status until Vdd voltage rises above Vdd  
release level. Refer to Figure 6-26.  
If Vdd drops below the low voltage detector level, /LVD (Bit 7 of RE) is cleared to 0to  
show a low voltage signal when LVD is enabled. This signal can be used for low  
voltage detection.  
6.14.1 Low Voltage Reset  
LVR property is set at Bits 12 and 11 of Code Option Word 0. Detailed operation mode  
is as follows:  
Word 0  
Bit 12 Bit 11 Bit 10 Bit 9 Bit 8  
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0  
LVR1 LVR0 TYPE1 TYPE0 CLKS ENWDTB OSC2 OSC1 OSC0  
Protect  
Bits 12~11 (LVR1 ~ LVR0): Low Voltage Reset enable bits.  
LVR1, LVR0  
VDD Reset Level  
VDD Release Level  
11  
10  
01  
00  
NA (Power-on Reset)  
2.4V  
3.5V  
4.0V  
2.6V  
3.7V  
4.2V  
6.14.2 Low Voltage Detector  
LVD property is set and Register detailed operation mode is as follows:  
6.14.2.1 IOCD1 (LVD Control Register)  
Bit  
EM78P342N  
ICE341N  
7
6
5
4
3
2
1
0
-
-
-
-
LVDIE LVDEN LVD1  
LVD0  
LVD0  
TYPE1 TYPE0 LVR1  
LVR0 LVDIE LVDEN LVD1  
NOTE  
IOCD1< 3 > register is both readable and writable  
Individual interrupt is enabled by setting its associated control bit in the IOCD1< 4 >  
to "1."  
Global interrupt is enabled by the ENI instruction and is disabled by the DISI  
instruction. Refer to Figure 6-8 (Interrupt Input Circuit) under Section 6.6 (Interrupt).  
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
83  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
Bit 3 (LVDIE): Low voltage Detector interrupt enable bit.  
0 : Disable Low voltage Detector interrupt  
1 : Enable Low voltage Detector interrupt  
When the detect low level voltage state is used to enter an interrupt  
vector or enter next instruction, the LVDIE bit must be set to “Enable.  
Bit 2 (LVDEN): Low Voltage Detector Enable bit  
0 : Low voltage detector disable  
1 : Low voltage detector enable  
Bits 1~0 (LVD1:0): Low Voltage Detector level bits.  
LVDEN  
LVD1, LVD0  
LVD voltage Interrupt Level  
/LVD  
Vdd 2.2V  
Vdd > 2.2V  
Vdd 3.3V  
Vdd > 3.3V  
Vdd 4.0V  
Vdd > 4.0V  
Vdd 4.5V  
Vdd > 4.5V  
NA  
0
1
0
1
0
1
0
1
0
1
11  
1
1
10  
01  
1
0
00  
××  
6.14.2.2 RE (Interrupt Status 2 and Wake-up Control Register)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
/LVD  
LVDIF  
ADIF  
CMPIF  
ADWE  
CMPWE  
ICWE  
LVDWE  
NOTE  
■ RE < 6, 5, 4 > can be cleared by instruction but cannot be set.  
■ IOCE0 is the interrupt mask register.  
■ Reading RE will result to "logic AND" of RE and IOCE0.  
Bit 7 (/LVD): Low voltage Detector state. This is a read only bit. When the VDD pin  
voltage is lower than LVD voltage interrupt level (selected by LVD1 and  
LVD0), this bit will be cleared.  
0 : Low voltage is detected.  
1 : Low voltage is not detected or LVD function is disabled.  
Bit 6 (LVDIF): Low Voltage Detector Interrupt Flag  
LVDIF reset to 0by software or hardware.  
Bit 0 (LVDWE): Low Voltage Detect Wake-up Enable bit.  
0 : Disable Low Voltage Detect wake-up.  
1 : Enable Low Voltage Detect wake-up.  
When the Low Voltage Detect is used to enter an interrupt vector or to  
wake up the IC from sleep/idle with Low Voltage Detect running, the  
LVDWE bit must be set to “Enable.  
84   
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
6.14.3 Programming Process  
Follow these steps to obtain data from the LVD:  
1. Write to the two bits (LVD1: LVD0) on the LVDCR register to define the LVD level.  
2. Set the LVDWE bit, if the wake-up function is employed.  
3. Set the LVDIE bit, if the interrupt function is employed.  
4. Write “ENI” instruction, if the interrupt function is employed.  
5. Set the LVDEN bit to 1  
6. Write “SLEPinstruction or Polling /LVD bit.  
7. Clear the low voltage detector interrupt flag bit (LVDIF) when Low Voltage Detector  
interrupt occurred.  
The LVD module uses the internal circuit. When LVDEN (Bit 2 of IOCD1) is set to 1,  
the LVD module is enabled.  
When LVDWE (Bit 0 of RE) is set to 1, the LVD module will continue to operate during  
sleep/idle mode. If Vdd drops slowly and crosses the detect point (VLVD), the LVDIF  
(Bit 6 of RE) will be set to 1, the /LVD (Bit 7 of RE) will be cleared to 0, and the  
system will wake up from Sleep/Idle mode. When a system reset occurs, the LVDIF will  
be cleared.  
When Vdd remains above VLVD, LVDIF is kept at 0and /LVD is kept at 1. When  
Vdd drops below VLVD, LVDIF is set to 1and /LVD is kept at 0. If ENI instruction is  
executed, LVDIF will be set to 1, and the next instruction will branch to interrupt Vector  
021H. The LVDIF is cleared to 0by software. Refer to Figure 6-26 below.  
LVDIF is cleared by  
software  
Vdd  
VLVD  
VRESET  
LVDIF  
Internal  
18ms  
Reset  
<LVR Voltage drop  
>LVR Voltage drop  
Vdd < Vreset not longer than 10us, the system still keeps on operating  
System occur reset  
Figure 6-26 LVD/LVR Waveform Situation  
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
85  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
6.15 Instruction Set  
Each instruction in the instruction set is a 13-bit word divided into an OP code and one  
or more operands. Normally, all instructions are executed within one single instruction  
cycle (one instruction consists of two oscillator time periods), unless the program  
counter is changed by instructions "MOV R2,A," "ADD R2,A," or by instructions of  
arithmetic or logic operation on R2 (e.g., "SUB R2,A," "BS(C) R2,6," "CLR R2," etc.).  
In addition, the instruction set has the following features:  
1. Every bit of any register can be set, cleared, or tested directly.  
2. The I/O registers can be regarded as general registers. That is, the same  
instruction can operate on I/O registers.  
The following symbols are used in the Instruction Set table:  
Convention:  
R = Register designator that specifies which one of the registers (including operation and general  
purpose registers) is to be utilized by the instruction.  
Bits 6 and 7 in R4 determine the selected register bank.  
b = Bit field designator that selects the value for the bit located in the register R and which affects  
the operation.  
k = 8 or 10-bit constant or literal value  
Binary Instruction Hex  
Mnemonic  
Operation  
No Operation  
Status Affected  
0 0000 0000 0000 0000  
0 0000 0000 0001 0001  
0 0000 0000 0010 0002  
0 0000 0000 0011 0003  
0 0000 0000 0100 0004  
NOP  
None  
C
DAA  
Decimal Adjust A  
A CONT  
0 WDT, Stop oscillator  
0 WDT  
CONTW  
SLEP  
WDTC  
IOW R  
ENI  
None  
T, P  
T, P  
0 0000 0000 rrrr  
000r  
A IOCR  
None1  
None  
None  
None  
0 0000 0001 0000 0010  
0 0000 0001 0001 0011  
0 0000 0001 0010 0012  
Enable Interrupt  
Disable Interrupt  
[Top of Stack] PC  
[Top of Stack] PC,  
Enable Interrupt  
CONT A  
IOCR A  
A R  
0 A  
DISI  
RET  
0 0000 0001 0011 0013  
0 0000 0001 0100 0014  
RETI  
None  
CONTR  
IOR R  
None  
0 0000 0001 rrrr  
0 0000 01rr rrrr  
001r  
00rr  
None1  
MOV R,A  
CLRA  
None  
0 0000 1000 0000 0080  
Z
0 0000 11rr rrrr  
0 0001 00rr rrrr  
0 0001 01rr rrrr  
0 0001 10rr rrrr  
0 0001 11rr rrrr  
0 0010 00rr rrrr  
0 0010 01rr rrrr  
00rr  
01rr  
01rr  
01rr  
01rr  
02rr  
02rr  
CLR R  
0 R  
R-A A  
R-A R  
R-1 A  
R-1 R  
A VR A  
A VR R  
Z
SUB A,R  
SUB R,A  
DECA R  
DEC R  
Z, C, DC  
Z, C, DC  
Z
Z
Z
Z
OR A,R  
OR R,A  
86   
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
Binary Instruction Hex  
Mnemonic  
Operation  
A & R A  
A & R R  
A R A  
A R R  
A + R A  
A + R R  
R A  
R R  
/R A  
/R R  
R+1 A  
R+1 R  
R-1 A, skip if zero  
R-1 R, skip if zero  
R(n) A(n-1), R(0) C,  
C A(7)  
R(n) R(n-1), R(0) C,  
C R(7)  
R(n) A(n+1), R(7) C,  
C A(0)  
R(n) R(n+1), R(7) C,  
C R(0)  
Status Affected  
0 0010 10rr rrrr  
0 0010 11rr rrrr  
0 0011 00rr rrrr  
0 0011 01rr rrrr  
0 0011 10rr rrrr  
0 0011 11rr rrrr  
0 0100 00rr rrrr  
0 0100 01rr rrrr  
0 0100 10rr rrrr  
0 0100 11rr rrrr  
0 0101 00rr rrrr  
0 0101 01rr rrrr  
0 0101 10rr rrrr  
0 0101 11rr rrrr  
02rr  
02rr  
03rr  
03rr  
03rr  
03rr  
04rr  
04rr  
04rr  
04rr  
05rr  
05rr  
05rr  
05rr  
AND A,R  
AND R,A  
XOR A,R  
XOR R,A  
ADD A,R  
ADD R,A  
MOV A,R  
MOV R,R  
COMA R  
COM R  
Z
Z
Z
Z
Z, C, DC  
Z, C, DC  
Z
Z
Z
Z
INCA R  
Z
INC R  
Z
DJZA R  
DJZ R  
None  
None  
0 0110 00rr rrrr  
0 0110 01rr rrrr  
0 0110 10rr rrrr  
0 0110 11rr rrrr  
0 0111 00rr rrrr  
06rr  
06rr  
06rr  
06rr  
07rr  
RRCA R  
RRC R  
C
C
RLCA R  
RLC R  
C
C
R(0-3) A(4-7),  
R(4-7) A(0-3)  
R(0-3) R(4-7)  
R+1 A, skip if zero  
R+1 R, skip if zero  
0 R(b)  
SWAPA R  
None  
0 0111 01rr rrrr  
0 0111 10rr rrrr  
0 0111 11rr rrrr  
0 100b bbrr rrrr  
0 101b bbrr rrrr  
0 110b bbrr rrrr  
0 111b bbrr rrrr  
07rr  
07rr  
07rr  
0xxx  
0xxx  
0xxx  
0xxx  
SWAP R  
JZA R  
None  
None  
JZ R  
None  
BC R,b  
BS R,b  
JBC R,b  
JBS R,b  
None 2  
None 3  
None  
1 R(b)  
if R(b)=0, skip  
if R(b)=1, skip  
PC+1 [SP], (Page, k)   
PC  
None  
1 00kk kkkk kkkk 1kkk  
CALL k  
None  
1 01kk kkkk kkkk 1kkk  
1 1000 kkkk kkkk 18kk  
1 1001 kkkk kkkk 19kk  
1 1010 kkkk kkkk 1Akk  
1 1011 kkkk kkkk 1Bkk  
1 1100 kkkk kkkk 1Ckk  
1 1101 kkkk kkkk 1Dkk  
1 1110 1001 000k 1E9k  
1 1110 1010 kkkk  
JMP k  
(Page, k) PC  
k A  
A k A  
A & k A  
A k A  
k A, [Top of Stack] PC  
k-A A  
k R4(6)  
None  
None  
Z
MOV A,k  
OR A,k  
AND A,k  
XOR A,k  
RETL k  
SUB A,k  
BANK k  
Z
Z
None  
Z, C, DC  
None  
1EAK LCALL k  
PC+1[SP], kPC  
kPC  
None  
None  
k kkkk kkkk kkkk  
1 1110 1011 kkkk  
k kkkk kkkk kkkk  
1EBK LJMP k  
Note: 1 This instruction is applicable to IOC50~IOCF0, IOC51 ~ IOCF1 only.  
2 This instruction is not recommended for RF operation.  
3 This instruction cannot operate under RF.  
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
87  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
7 Absolute Maximum Ratings  
Items  
Rating  
Temperature under bias  
Storage temperature  
Input voltage  
-40C  
-65C  
Vss-0.3V  
Vss-0.3V  
2.3V  
to  
to  
to  
to  
to  
to  
85C  
150C  
Vdd+0.5V  
Vdd+0.5V  
5.5V  
Output voltage  
Working Voltage  
Working Frequency  
DC  
16 MHz  
8 DC Electrical Characteristics  
Ta= 25C, VDD= 5.0V, VSS= 0V  
Symbol  
FXT  
Parameter  
Crystal: VDD to 5V  
ERC: VDD to 5V  
Condition  
Min.  
32.768k  
760  
Typ.  
4
Max.  
16  
Unit  
MHz  
kHz  
Two cycles with two clocks  
R: 5.1K, C: 100 pF  
ERC  
950  
1140  
Input High Threshold  
Voltage (Schmitt Trigger)  
VIHRC  
IERC1  
VILRC  
IERC2  
IIL  
OSCI in RC mode  
3.9  
21  
1.7  
16  
-1  
4
22  
1.8  
17  
0
4.1  
23  
1.9  
18  
1
V
Sink current  
VI from low to high, VI=5V  
OSCI in RC mode  
mA  
V
Input Low Threshold  
Voltage (Schmitt Trigger)  
Sink current  
VI from high to low, VI=2V  
VIN = VDD, VSS  
mA  
A  
Input Leakage Current for  
input pins  
Input High Voltage  
(Schmitt Trigger)  
VIH1  
Ports 5, 6, 7  
Ports 5, 6, 7  
/RESET  
0.7Vdd  
-0.3V  
0.7Vdd  
-0.3V  
0.7Vdd  
-0.3V  
Vdd+0.3V  
0.3Vdd  
V
V
V
V
V
V
Input Low Voltage  
(Schmitt Trigger )  
VIL1  
Input High Threshold  
Voltage (Schmitt Trigger)  
VIHT1  
VILT1  
VIHT2  
VILT2  
Vdd+0.3V  
0.3Vdd  
Input Low Threshold  
Voltage (Schmitt trigger)  
/RESET  
Input High Threshold  
Voltage (Schmitt Trigger)  
TCC,INT  
TCC,INT  
Vdd+0.3V  
0.3Vdd  
Input Low Threshold  
Voltage (Schmitt Trigger)  
VIHX1  
VILX1  
Clock Input High Voltage  
Clock Input Low Voltage  
OSCI in crystal mode  
OSCI in crystal mode  
2.9  
1.7  
3.0  
1.8  
3.1  
1.9  
V
V
88   
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
Symbol  
Parameter  
Condition  
VOH = 0.9VDD  
Min. Typ.  
Max.  
Unit  
Output High Voltage  
(Ports 5, 6, 7)  
IOH1  
-10  
20  
70  
mA  
Output Low Voltage  
(Ports 5, 6,7)  
IOL1  
IOL2  
VOL = 0.1VDD  
VOL = 0.3VDD  
mA  
mA  
Output Low Voltage  
(Ports 60, 61,62, 63)  
Ta = 25C  
2.4  
2.4  
3.5  
3.5  
4.0  
4.0  
V
V
LVR1  
LVR2  
LVR3  
Ta = -40 ~ 85C  
Ta = 25C  
3.1  
2.73  
3.56  
3.16  
-50  
20  
3.92  
4.25  
4.43  
4.81  
-90  
60  
V
Low voltage reset level  
Ta = -40 ~ 85C  
V
Ta = 25C  
V
Ta = -40 ~ 85C  
V
IPH  
IPL  
Pull-high current  
Pull-low current  
Pull-high active, input pin at VSS  
Pull-low active, input pin at Vdd  
A  
A  
All input and I/O pins at VDD,  
output pin floating, WDT disabled  
ISB1  
ISB2  
Power down current  
Power down current  
2.0  
10  
A  
A  
All input and I/O pins at VDD,  
output pin floating, WDT enabled  
/RESET= 'High', Fosc=32kHz  
(Crystal type, CLKS="0"),  
Output pin floating, WDT disabled  
Operating supply current  
at two clocks  
ICC1  
ICC2  
ICC3  
ICC4  
15  
15  
20  
25  
A  
A  
/RESET= 'High', Fosc=32kHz  
(Crystal type,CLKS="0"), output  
pin floating, WDT enabled  
Operating supply current  
at two clocks  
/RESET= 'High', Fosc= 4 MHz  
(Crystal type, CLKS="0"), output  
pin floating, WDT enabled  
Operating supply current  
at two clocks  
1.5  
2.8  
1.7  
3.0  
mA  
mA  
/RESET= 'High', Fosc=10 MHz  
(Crystal type, CLKS="0"),  
Output pin floating, WDT enabled  
Operating supply current  
at two clocks  
Note: 1. These parameters are hypothetical (not tested) and are provided for design reference use only.  
2. Data under Minimum, Typical, and Maximum (Min., Typ., and Max.) columns are based on  
hypothetical results at 25 C. These data are for design reference only.  
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
89  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
Internal RC Electrical Characteristics (Ta=25 C, VDD=5 V, VSS=0V)  
Drift Rate  
Internal RC  
Temperature  
25C  
Voltage  
5V  
Min.  
Typ.  
Max.  
4 MHz  
16 MHz  
1 MHz  
3.84 MHz  
15.36 MHz  
0.96 MHz  
436.8kHz  
4 MHz  
16 MHz  
1 MHz  
455kHz  
4.16 MHz  
16.64 MHz  
1.04 MHz  
473.2kHz  
25C  
5V  
25C  
5V  
455kHz  
25C  
5V  
Internal RC Electrical Characteristics (Ta=-40 ~85 C, VDD=2.2~5.5 V, VSS=0V)  
Drift Rate  
Internal RC  
Temperature  
-40C ~85C  
-40C ~85C  
-40C ~85C  
-40C ~85C  
Voltage  
Min.  
Typ.  
Max.  
4 MHz  
16 MHz  
1 MHz  
2.2V~5.5V  
2.2V~5.5V  
2.2V~5.5V  
2.2V~5.5V  
3.44 MHz  
13.76 MHz  
0.86 MHz  
391.3kHz  
4 MHz  
16 MHz  
1 MHz  
455kHz  
4.56 MHz  
18.24 MHz  
1.14 MHz  
518.7kHz  
455kHz  
90   
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
8.1 AD Converter Characteristics  
Vdd=2.5V to 5.5V, Vss=0V, Ta=-40 to 85°C  
Symbol  
VAREF  
VASS  
Parameter  
Condition  
Min. Typ. Max. Unit  
2.5  
Vss  
VASS  
750  
Vdd  
Vss  
V
V
V
Analog reference  
voltage  
VAREF - VASS 2.5V  
VAI  
Analog input voltage  
VAREF  
Ivdd  
VDD=VAREF=5.0V,  
850 1000 µA  
IAI1  
Analog supply current VASS = 0.0V  
Ivref  
Ivdd  
IVref  
-10  
500  
200  
0
+10 µA  
820 µA  
300 µA  
(V reference from Vdd)  
VDD=VAREF=5.0V,  
Analog supply current VASS = 0.0V (V reference  
from VREF)  
600  
250  
IAI2  
VDD=5.0V, OP used  
IOP  
OP current  
Resolution  
Resolution  
450  
550  
9
650 µA  
Output voltage swing from  
0.2V to 4.8V  
ADREF=0, Internal VDD  
VDD=5.0V, VSS = 0.0V  
10  
RN1  
RN2  
Bits  
Bits  
ADREF=1, External VREF  
VDD=VREF=5.0V,  
VSS = 0.0V  
12  
11  
LN1  
LN2  
Linearity error  
Linearity error  
VDD = 2.5 to 5.5V Ta=25°C  
VDD= 2.5 to 5.5V Ta=25°C  
0
0
± 4  
± 2  
±8 LSB  
±4 LSB  
Differential nonlinear  
error  
DNL  
FSE1  
FSE2  
OE  
VDD = 2.5 to 5.5V Ta=25°C  
0
± 0.5 ±0.9 LSB  
VDD=VAREF=5.0V,  
VASS = 0.0V  
Full scale error  
Full scale error  
Offset error  
±0  
±0  
±0  
± 4  
± 2  
± 2  
±8 LSB  
±4 LSB  
±4 LSB  
VDD=VREF=5.0V, VSS =  
0.0V  
VDD=VAREF=5.0V,  
VASS = 0.0V  
Recommended  
impedance of analog  
voltage source  
ZAI  
0
8
10  
KΩ  
VDD=VAREF=5.0V,  
VASS = 0.0V  
TAD  
TCN  
ADIV  
ADC clock duration  
AD conversion time  
4
15  
0
µs  
VDD=VAREF=5.0V,  
VASS = 0.0V  
15 TAD  
ADC OP input voltage VDD=VAREF=5.0V,  
VAREF  
V
V
range  
VASS = 0.0V  
0
0.2  
4.8  
0.3  
5
ADC OP output  
voltage swing  
VDD=VAREF=5.0V,  
VASS =0.0V, RL=10K  
ADOV  
4.7  
VDD=VAREF=5.0V,  
VASS = 0.0V  
ADSR  
PSR  
ADC OP slew rate  
0.1  
±0  
0.3  
V/µs  
Power Supply  
Rejection  
VDD=5.0V±0.5V  
±2 LSB  
Note: 1. These parameters are hypothetical (not tested) and provided for design reference use only.  
2. There is no current consumption when ADC is off other than minor leakage current.  
3. AD conversion result will not decrease when an increase of input voltage and no missing code  
will result.  
4. These parameters are subject to change without further notice.  
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
91  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
8.2 Comparator (OP) Characteristics  
Vdd = 5.0V, Vss=0V, Ta=-40 to 85°C  
Symbol Parameter  
SR  
Condition  
Min.  
0.1  
Typ.  
0.2  
Max.  
Unit  
V/us  
mV  
Slew rate  
Vos  
Input offset voltage  
10  
Vdd =5.0V,  
VSS = 0.0V  
IVR  
Input voltage range  
0
5
V
Vdd =5.0V,  
VSS = 0.0V,  
RL=10K  
0
0.2  
4.8  
0.3  
5
OVS  
Output voltage swing  
V
4.7  
Iop  
Ico  
Supply current of OP  
250  
350  
300  
500  
µA  
µA  
Supply current of Comparator  
Power-supply Rejection Ratio Vdd= 5.0V,  
PSRR  
Vs  
50  
60  
70  
dB  
V
for OP  
VSS = 0.0V  
Operating range  
2.5  
5.5  
Note: 1. These parameters are hypothetical (not tested) and provided for design reference use only.  
2. These parameters are subject to change without further notice.  
8.3 Device Characteristics  
The graphs below were derived based on a limited number of samples and they are  
provided for reference only. Hence, the device characteristic shown herein cannot be  
guaranteed as fully accurate. In these graphs, the data may be out of the specified  
operating warranted range.  
IRC OSC Frequency (VDD=3V)  
9
8
7
6
5
4
3
2
1
0
-40  
-20  
0
25  
70  
50  
85  
Temperature oC  
Figure 8-1 Internal RC OSC Frequency vs. Temperature, VDD=3V  
92   
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
IRC OSC Frequency (VDD=5V)  
10  
9
8
7
6
5
4
3
2
1
0
-40  
-20  
0
25  
50  
70  
85  
Temperature ()  
Figure 8-2 Internal RC OSC Frequency vs. Temperature, VDD=5V  
9 AC Electrical Characteristics  
Ta=-40 to 85 C, VDD=5V 5%, VSS=0V  
Symbol  
Dclk  
Parameter  
Conditions  
Min.  
Typ.  
50  
Max.  
55  
DC  
DC  
Unit  
%
Input CLK duty cycle  
45  
Crystal type  
RC type  
100  
ns  
Instruction cycle time  
(CLKS="0")  
Tins  
500  
ns  
Ttcc  
TCC input time period  
Device reset hold time  
/RESET pulse width  
Watchdog timer duration  
Input pin setup time  
Input pin hold time  
(Tins+20)/N*  
ns  
Tdrh  
Trst  
Ta = 25C  
Ta = 25C  
Ta = 25C  
11.3  
2000  
11.3  
16.2  
21.6  
ms  
ns  
Twdt  
Tset  
16.2  
0
21.6  
ms  
ns  
Thold  
Tdelay  
Tdrc  
15  
20  
50  
3
25  
55  
5
ns  
Output pin delay time  
ERC delay time  
Cload=20pF  
Ta = 25C  
45  
ns  
1
ns  
Note: 1. *N = selected prescaler ratio  
2. Twdt1: The Option Word 1 (WDTPS) is used to define the oscillator set-up time. WDT timeout  
length is the same as set-up time (18ms).  
3. Twdt2: The Option word1 (WDTPS) is used to define the oscillator set-up time. WDT timeout  
length is the same as set-up time (4.5ms).  
4. These parameters are hypothetical (not tested) and are provided for design reference only.  
5. Data under Minimum, Typical, and Maximum (Min., Typ., and Max.) columns are based on  
hypothetical results at 25C. These data are for design reference use only.  
6. The Watchdog timer duration is determined by Code Option Word1 (WDTPS).  
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
93  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
10 Timing Diagrams  
AC Test Input/Output Waveform  
VDD-0.5V  
GND+0.5V  
0.75 VDD  
TEST POINTS  
0.25VDD  
0.75 VDD  
0.25VDD  
Note: AC Testing: Input is driven at VDD-0.5V for logic “1, and GND+0.5V for logic “0”  
Timing measurements are made at 0.75V for logic “1, and 0.25VDD for logic “0”  
Figure 10-1a AC Test Input/Output Waveform Timing Diagram  
Reset Timing (CLK = "0")  
Instruction 1  
NOP  
Executed  
CLK  
/RESET  
Tdrh  
Figure 10-1b Reset Timing Diagram  
TCC Input Timing (CLKS = "0")  
ins  
CLK  
TCC  
tcc  
Figure 10-1c TCC Input Timing Diagram  
94   
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
APPENDIX  
A Ordering and Manufacturing Information  
EM78P342NSO14J  
Material Type  
J: RoHS complied  
S: Sony SS-00259 complied  
Contact Elan Sales for details  
Pin Number  
Package Type  
D: DIP  
SO: SOP  
SS: SSOP  
Check the following section  
Specific Annotation  
Product Number  
Product Type  
P: OTP  
Elan 8-bit Product  
For example:  
EM78P342ND14J  
is EM78P342N with OTP program memory product, in 14-pin DIP  
300mil package with RoHS complied  
IC Mark  
‧‧‧‧‧‧‧  
Elan Product Number / Package, Material Type  
Batch Number  
EM78Paaaaaa  
1041c bbbbbb  
Manufacture Date  
YYWW”  
YY is year and WW is week  
c is Alphabetical suffix code for Elan use only  
‧‧‧‧‧‧‧  
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
95  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
Ordering Code  
EM78P342ND14J  
Material Type  
Contact Elan Sales for details  
Package Type / Pin Number  
Check the followingsection  
Elan IC Product Number  
B Package Type  
OTP MCU  
Package Type  
Pin Count  
Package Size  
EM78P342ND14  
EM78P342NSO14  
EM78P342NSO16A  
EM78P342ND18  
EM78P342NSO18  
EM78P342ND20  
EM78P342NSO20  
EM78P342NSS20  
DIP  
SOP  
SOP  
DIP  
14  
14  
16  
18  
18  
20  
20  
20  
300 mil  
150 mil  
150 mil  
300 mil  
300 mil  
300 mil  
300 mil  
209 mil  
SOP  
DIP  
SOP  
SSOP  
These are Green products which do not contain hazardous substances and comply  
with the third edition of Sony SS-00259 standard.  
Pb content is less than 100ppm and complies with Sony specifications.  
Part No.  
EM78P342NxJ/xS  
Pure Tin  
Electroplate type  
Ingredient (%)  
Sn: 100%  
Melting point (°C)  
232°C  
Electrical resistivity  
-cm)  
11.4  
Hardness (hv)  
Elongation (%)  
8~10  
>50%  
96   
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
C Packaging Configuration  
C.1 EM78P342ND14  
Symbol  
Min Normal Max  
4.318  
A
A1  
A2  
c
D
E
D
E1  
eB  
0.381  
3.175  
14  
8
3.302  
3.429  
C
0.203 0.254 0.356  
18.796 19.050 19.304  
E
6.174  
7.366  
8.409  
6.401  
7.696  
9.017  
6.628  
8.025  
9.625  
E1  
e
B
1
7
0.356 0.457 0.559  
1.143 1.524 1.778  
B
B1  
L
e
θ
θ
3.048  
3.302 3.556  
2.540(TYP)  
15  
0
A1  
A2  
A
L
B
e
B1  
TITLE:  
PDIP-14L 300MIL PACKAGE OUTLINE  
DIMENSION  
File :  
D14  
Edtion: A  
Unit : mm  
Scale: Free  
Material:  
Sheet:1 of 1  
Figure C-1 EM78P342N 14-pin PDIP Package Type  
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
97  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
C.2 EM78P342NSO14  
Symbol  
Min  
1.350  
0.100  
0.330  
0.190  
3.800  
5.800  
8.550  
0.600  
Normal  
Max  
1.750  
0.250  
0.510  
0.250  
4.000  
6.200  
8.750  
1.270  
A
A1  
b
c
E
H
D
L
E
H
1.27(TYP)  
e
θ
0
8
e
b
c
D
A2  
A
TITLE:  
SOP-14L(150MIL) PACKAGE OUTLINE  
DIMENSION  
File :  
NSO14  
Edtion: A  
Unit : mm  
Scale: Free  
Material:  
Sheet:1 of 1  
Figure C-2 EM78P342N 14-pin SOP Package Type  
98   
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
C.3 EM78P342NSO16A  
Symbol  
Min.  
1.350  
0.100  
1.300  
0.330  
0.190  
3.800  
5.800  
9.800  
0.600  
Normal  
1.400  
Max.  
1.750  
0.250  
1.500  
0.510  
0.250  
4.000  
6.200  
10.000  
1.270  
A
A1  
A2  
b
c
E
H
D
L
e
1.27 (TYP)  
θ
0
8
b
e
c
TITLE:  
SOP-16L(150MIL) PACKAGE OUTLINE  
DIMENSION  
File :  
Edtion:  
A
NSO16  
Unit : mm  
Scale: Free  
Material:  
Sheet:1 of 1  
Figure C-3 EM78P342N 16-pin SOP Package Type  
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
99  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
C.4 EM78P342ND18  
Symbol  
A
Min Normal Max  
4.450  
0.381  
3.175  
A1  
A2  
c
3.302  
3.429  
0.203 0.254 0.356  
22.610 22.860 23.110  
D
6.220  
7.370  
8.510  
6.438  
7.620  
9.020  
6.655  
7.870  
9.530  
E1  
E
eB  
B
B1  
L
e
θ
0.356 0.457 0.559  
1.143 1.524 1.778  
3.048  
eB  
3.302 3.556  
2.540(TYP)  
15  
0
θ
TITLE:  
PDIP-18L 300MIL PACKAGE OUTLINE  
DIMENSION  
File :  
D18  
Edtion: A  
Unit : mm  
Scale: Free  
Material:  
Sheet:1 of 1  
Figure C-4 EM78P342N 18-pin PDIP Package Type  
100   
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
C.5 EM78P342NSO18  
Symbol  
Min  
2.350  
0.102  
Normal  
Max  
2.650  
0.300  
A
A1  
b
0.406(TYP)  
0.230  
7.400  
0.320  
7.600  
c
E
10.000  
11.350  
0.406  
10.650  
11.750  
1.270  
H
D
L
0.838  
1.27(TYP)  
e
θ
0
8
b
e
c
TITLE:  
SOP-18L(300MIL) PACKAGE OUTLINE  
DIMENSION  
File :  
SO18  
Edtion: A  
Unit : mm  
Scale: Free  
Material:  
Sheet:1 of 1  
Figure C-5 EM78P342N 18-pin SOP Package Type  
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
101  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
C.6 EM78P342ND20  
Symbol Min Normal Max  
E
A
A1  
A2  
c
4.450  
0.381  
3.175  
3.302  
3.429  
0.203 0.254 0.356  
D
25.883 26.060 26.237  
E1  
E
6.220  
7.370  
8.510  
6.438  
7.620  
9.020  
6.655  
7.870  
9.530  
eB  
B
0.356 0.457 0.559  
1.143 1.524 1.778  
3.048 3.302 3.556  
2.540(TYP)  
B1  
L
e
θ
0
15  
TITLE:  
PDIP-20L 300MIL PACKAGE  
OUTLINE DIMENSION  
File :  
Edtion: A  
D20  
Unit : mm  
Scale: Free  
Material:  
Sheet:1 of 1  
Figure C-6 EM78P342N 20-pin PDIP Package Type  
102   
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
C.7 EM78P342NSO20  
Symbol  
Min  
2.350  
0.102  
Normal  
Max  
2.650  
0.300  
A
A1  
b
0.406(TYP)  
c
0.230  
7.400  
0.320  
7.600  
E
H
D
L
10.000  
12.600  
0.630  
10.650  
12.900  
1.100  
0.838  
e
1.27(TYP)  
0
8
θ
b
e
c
TITLE:  
SOP-20L(300MIL) PACKAGE  
OUTLINE DIMENSION  
File :  
Edtion: A  
SO20  
Unit : mm  
Scale: Free  
Material:  
Sheet:1 of 1  
Figure C-7 EM78P342N 20-pin SOP Package Type  
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
103  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
C.8 EM78P342NSS20  
Symbol  
Min  
Normal  
Max  
2.130  
0.250  
1.880  
0.380  
0.200  
8.200  
5.600  
7.500  
0.850  
A
A1  
A2  
b
c
E
E1  
D
L
0.050  
1.620  
0.220  
0.090  
7.400  
5.000  
6.900  
0.650  
1.750  
7.800  
5.300  
7.200  
0.750  
1.250(REF )  
0.650(TYP)  
4
L1  
e
0
8
θ
b
e
c
L1  
TITLE:  
SSOP-20L(209MIL) PACKAGE OUTLINE  
DIMENSION  
File :  
SSOP20  
Edtion: A  
Unit : mm  
Scale: Free  
Material:  
Sheet:1 of 1  
Figure C-8 EM78P342N 20-pin SSOP Package Type  
104   
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
D Quality Assurance and Reliability  
Test Category  
Test Conditions  
Remarks  
Solder temperature=245 5 C, for 5 seconds up to the  
Solderability  
stopper using a rosin-type flux  
Step 1: TCT, 65 C (15min)~150 C (15min), 10 cycles  
Step 2: Bake at 125 C, TD (durance)=24 hrs  
Step 3: Soak at 30 C /60% , TD (durance)=192 hrs  
For SMD IC (such as  
SOP, QFP, SOJ, etc)  
Pre-condition  
Step 4: IR flow 3 cycles  
(Pkg thickness 2.5mm or  
3
Pkg volume 350mm ----225 5 C)  
(Pkg thickness 2.5mm or  
Pkg volume 350mm ----240 5 C )  
3
Temperature cycle test -65 (15mins)~150 C (15mins), 200 cycles  
TA =121 C, RH=100%, pressure=2 atm,  
TD (durance) = 96 hrs  
Pressure cooker test  
High temperature /  
High humidity test  
TA=85 C , RH=85% , TD (durance)=168 , 500 hrs  
High-temperature  
storage life  
TA=150 C, TD (durance)=500, 1000 hrs  
High-temperature  
operating life  
TA=125 C, VCC=Max. operating voltage,  
TD (durance) =168, 500, 1000 hrs  
TA=25 C, VCC=Max. operating voltage, 150mA/20V  
Latch-up  
IP_ND,OP_ND,IO_ND  
IP_NS,OP_NS,IO_NS  
IP_PD,OP_PD,IO_PD,  
IP_PS,OP_PS,IO_PS,  
°
TA=25 C, ≥ | ± 3KV |  
ESD (HBM)  
°
TA=25 C, ≥ | ± 300V |  
ESD (MM)  
VDD-VSS(+),VDD_VSS  
(-)mode  
D.1 Address Trap Detect  
An address trap detect is one of the MCU embedded fail-safe functions that detects MCU  
malfunction caused by noise or the like. Whenever the MCU attempts to fetch an  
instruction from a certain section of ROM, an internal recovery circuit is auto started. If a  
noise-caused address error is detected, the MCU will repeat execution of the program  
until the noise is eliminated. The MCU will then continue to execute the next program.  
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
105  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
E How to Use the ICE 341N  
ICE 341 for EM78P342N  
W1  
W1  
P55/OSCI Pin Select  
OSCI P55  
I/O Port (P55)  
OSCI P55  
Crystal, ERC (OSCI)  
Oscillator IRC Modes select I/O Port (P55)  
Oscillator Crystal, ERC Modes select Crystal (OSCI)  
106   
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
JP3  
2
20  
RESET  
/P71  
P56  
P52  
P51  
P53  
P50  
P54  
P55  
GND  
VDD  
P60  
P67  
P61  
P66  
P62  
P65  
P63  
P57  
1
P70  
P64  
19  
P52/ADC2  
P53/ADC3  
1
16  
15  
14  
13  
12  
11  
10  
9
P51/ADC1  
P52/ADC2  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
P51/ADC1  
2
3
4
5
6
7
8
P50/ADC0  
P53/ADC3  
P54/TCC/VREF  
P71/RESET  
Vss  
P50/ADC0  
P54/TCC/VREF  
P71//RESET  
Vss  
P55/OSCI/ADC6  
P55/OSCI/ADC6  
P70/OSCO/ADC5  
VDD  
P70/OSCO/ADC5  
VDD  
P60//INT  
P67/IR OUT/ADC4  
P66/CIN-  
P60//INT  
P67/IR OUT/ADC4  
P66/CIN-  
P61/TCCA  
P64/CO  
P61/TCCA  
8
P65/CIN+  
EM78P342ND14/SO14  
EM78P342NSO16A  
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
107  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
P56  
P52/ADC2  
P53/ADC3  
P54/TCC/VREF  
P71/RESET  
Vss  
P57/ADC7  
P51/ADC1  
P50/ADC0  
P55/OSCI/ADC6  
P70/OSCO/ADC5  
VDD  
P52/ADC2  
P53/ADC3  
P54/TCC/VREF  
P71//RESET  
Vss  
1
2
3
4
5
6
7
8
9
18  
17  
16  
15  
14  
13  
12  
11  
10  
P51/ADC1  
P50/ADC0  
3
P55/OSCI/ADC6  
P70/OSCO/ADC5  
VDD  
4
5
6
P60//INT  
P67/IR OUT/ADC4  
P66/CIN-  
7
P60//INT  
P67/IR OUT/ADC4  
P66/CIN-  
P61/TCCA  
P62/TCCB  
P63/TCCC  
8
P61/TCCA  
P62/TCCB  
P63/TCCC  
P65/CIN+  
9
P65/CIN+  
P64/CO  
10  
P64/CO  
EM78P342ND20/SO20/SS20  
EM78P342ND18/SO18  
DIP IDC PLUG  
P57  
P51  
P50  
P55  
P70  
VDD  
P67  
P66  
P65  
P64  
1
P56  
20  
P52  
1
20  
P53  
P54  
RESET  
/P71  
10  
11  
GND  
P60  
P61  
P62  
P63  
DIP IDC PLUG  
11  
10  
108   
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
F Comparison between V-Package and U-Package Versions  
This microcontroller device is comprised of the older V-package version and the newer  
U-package version. In the newer U-package version, a Code Option NRM is added  
and various features such as Crystal mode Operating frequency range and IRC mode  
wake-up time from sleep mode to normal mode, have been modified to favorably meet  
users’ requirements. The following table is provided for quick comparison between the  
two package version and for user convenience in the choice of the most suitable  
product for their application.  
Item  
EM78P342N-V  
4.0V, 3.5V, 2.7V  
EM78P342N-U  
4.0V, 3.5V, 2.4V  
Level Voltage Reset  
DC ~ 12 MHz, 4.5V  
DC ~ 8 MHz, 3.0V  
DC ~ 4 MHz, 2.1V  
DC ~ 16 MHz, 4.5V  
DC ~ 8 MHz, 3.0V  
DC ~ 4 MHz, 2.1V  
Crystal mode  
Operating frequency  
range at 0°C~ 70°C  
IRC mode wake-up time  
( Sleep Normal )  
80s  
10s  
Condition: 5V, 4MHz  
Added a Code Option  
NRM  
Code Option  
EM78P342N  
EM78P342N  
0735V  
0735U  
EM78P342N-V Package  
EM78P342N-U Package  
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  
109  
EM78P342N  
8-Bit Microprocessor with OTP ROM  
110   
Product Specification (V1.5) 04.18.2016  
(This specification is subject to change without prior notice)  

相关型号:

EM78P342NSS20

8-Bit Microprocessor with OTP ROM
EMC

EM78P343N

8-Bit Microprocessor with OTP ROM
EMC

EM78P343NKM

8-Bit Microprocessor with OTP ROM
EMC

EM78P343NM

8-Bit Microprocessor with OTP ROM
EMC

EM78P343NP

8-Bit Microprocessor with OTP ROM
EMC

EM78P346N

8-Bit Microprocessor with OTP ROM
EMC

EM78P350N

8-Bit Microprocessor with OTP ROM
EMC

EM78P350NAK

8-Bit Microprocessor with OTP ROM
EMC

EM78P350NK

8-Bit Microprocessor with OTP ROM
EMC

EM78P350NM

8-Bit Microprocessor with OTP ROM
EMC

EM78P350NP

8-Bit Microprocessor with OTP ROM
EMC

EM78P351NK

8-Bit Microprocessor with OTP ROM
EMC