EMC326SP16AKU-85LF [EMLSI]

2Mx16 bit CellularRAM AD-MUX; 2Mx16位的CellularRAM AD- MUX
EMC326SP16AKU-85LF
型号: EMC326SP16AKU-85LF
厂家: Emerging Memory & Logic Solutions Inc    Emerging Memory & Logic Solutions Inc
描述:

2Mx16 bit CellularRAM AD-MUX
2Mx16位的CellularRAM AD- MUX

文件: 总52页 (文件大小:490K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Preliminary  
EMC326SP16AK  
2Mx16 CellularRAM AD-MUX  
Document Title  
2Mx16 bit CellularRAM AD-MUX  
Revision History  
Revision No. History  
Draft Date  
Remark  
Initial Draft  
0.0  
July 18,2007  
Preliminary  
Emerging Memory & Logic Solutions Inc.  
4F Korea Construction Financial Cooperative B/D, 301-1 Yeon-Dong, Jeju-Si, Jeju-Do, Rep.of Korea Zip Code : 690-717  
Tel : +82-64-740-1700 Fax : +82-64-740-1749~1750 / Homepage : www.emlsi.com  
1
The attached datasheets are provided by EMLSI reserve the right to change the specifications and products. EMLSI will  
answer to your questions about device. If you have any questions, please contact the EMLSI office.  
Preliminary  
EMC326SP16AK  
2Mx16 CellularRAM AD-MUX  
x16 Burst, Multiplexed Address/Data  
FEATURES  
- 16-bit multiplexed address/data bus  
- Sigle device supports asynchrous and burst operation  
- Vcc, VccQ voltages:  
1.7V~1.95V VCC  
1.7V~1.95V VCCQ  
- Random access time: 70ns  
- Burst mode READ and WRITE access:  
4, 8, 16, or 32 words, or continuous burst  
Burst wrap or sequential  
Max clock rate: 104 MHz (tCLK = 9.62ns) , 133MHz(tCLK = 7.5ns)  
Burst initial latency: 38.5ns (4 clocks) @ 104 MHz ,  
37.5ns(5 clocks) @ 133 MHz  
tACLK: 7ns @ 104 MHz , 5.5ns @ 133 MHz  
- Low power consumption:  
Asynchronous READ: <25mA  
Initial access, burst READ:  
(38.5ns [4 clocks] @ 104 MHz) <35mA  
Continuous burst READ: <30mA  
Initial access, burst READ:  
(37.5ns [5 clocks] @ 133 MHz) <40mA  
Continuous burst READ: <35mA  
- Low-power features  
On-chip temperature compensated self refresh (TCSR)  
Partial array refresh (PAR)  
- Operating temperature range:  
Wireless -30°C to +85°C  
OPTIONS  
- Configuration: 32Mb (2 megabit x 16)  
- Vcc core / VccQ I/O voltage supply: 1.8V  
- Timing: 70ns access  
- Frequency: 83 MHz, 104 MHz, 133 MHz  
- Standby current at 85°C  
Low Low Power : 100µA(max)  
Low Power  
Standard  
: 120µA(max)  
: 140µA(max)  
2
Preliminary  
EMC326SP16AK  
2Mx16 CellularRAM AD-MUX  
Table of Contents  
Features.................................................................................................................................................................................. 2  
Options............................................................................................................................................................................... 2  
General Description................................................................................................................................................................. 6  
Functional Description............................................................................................................................................................. 9  
Power-Up Initialization........................................................................................................................................................ 9  
Bus Operating Modes.............................................................................................................................................................. 10  
Asynchronous Mode........................................................................................................................................................... 10  
Burst Mode Operation......................................................................................................................................................... 12  
Mixed-Mode Operation ....................................................................................................................................................... 15  
WAIT Operation ................................................................................................................................................................. 15  
LB# / UB# Operation........................................................................................................................................................... 15  
Low-Power Operation......... .................................................................................................................................................... 16  
Standby Mode Operation ................................................................................................................................................... 16  
Temperature Compensated Refresh................................................................................................................................... 16  
Partial Array Refresh .......................................................................................................................................................... 16  
Registers................................................................................................................................................................................. 17  
Access Using CRE ............................................................................................................................................................. 17  
Software Access ................................................................................................................................................................ 21  
Bus Configuration Register................................................................................................................................................. 23  
Burst Length (BCR[2:0]) Default = Continuous Burst ..................................................................................................... 24  
Burst Wrap (BCR[3]) Default = No Wrap ........................................................................................................................ 24  
Drive Strength (BCR[5:4]) Default = Outputs Use Half-Drive Strength ........................................................................... 25  
WAIT Polarity (BCR[10]) Default = WAIT Active HIGH................................................................................................... 26  
Initial Access Latency (BCR[14]) Default = Variable....................................................................................................... 26  
Operating Mode (BCR[15]) Default = Asynchronous Operation..................................................................................... 28  
Refresh Configuration Register........................................................................................................................................... 28  
Device Identification Register.............................................................................................................................................. 29  
Electrical Characteristics......................................................................................................................................................... 30  
Timing Requirements.............................................................................................................................................................. 32  
Timing Diagrams..................................................................................................................................................................... 36  
3
Preliminary  
EMC326SP16AK  
2Mx16 CellularRAM AD-MUX  
List of Figures  
Figure 1: Functional Block Diagram - 2 Meg x 16 .........................................................................................  
6
Figure 2: Power-Up Initialization Timing .......................................................................................................... 9  
Figure 3: READ Operation ............................................................................................................................... 11  
Figure 4: WRITE Operation ............................................................................................................................. 11  
Figure 5: Burst Mode READ (4-word burst)...................................................................................................... 12  
Figure 6: Burst Mode WRITE (4-word burst).................................................................................................... 13  
Figure 7: Refresh Collision During Variable-Latency READ Operation ........................................................... 14  
Figure 8: Wired-OR WAIT Configuration ......................................................................................................... 15  
Figure 9: Configuration Register WRITE, Asynchronous Mode, Followed by READ ARRAY Operation ......... 17  
Figure 10: Configuration Register WRITE, Synchronous Mode, Followed by READ ARRAY Operation ........... 18  
Figure 11: Register READ, Asynchronous Mode, Followed by READ ARRAY Operation ................................. 19  
Figure 12: Register READ, Synchronous Mode, Followed by READ ARRAY Operation ................................... 20  
Figure 13: Load Configuration Register ............................................................................................................. 22  
Figure 14: Read Configuration Register ............................................................................................................ 22  
Figure 15: Bus Configuration Register Definition ............................................................................................... 23  
Figure 16: WAIT Configuration During Burst Operation ..................................................................................... 26  
Figure 17: Latency Counter (Variable Initial Latency, No Refresh Collision) ...................................................... 27  
Figure 18: Latency Counter (Fixed Latency) ..................................................................................................... 27  
Figure 19: Refresh Configuration Register Mapping ......................................................................................... 28  
Figure 20: AC Input / Output Reference Waveform ........................................................................................... 31  
Figure 21: AC Output Load Circuit .................................................................................................................... 31  
Figure 22: Initialization Period .......................................................................................................................... 36  
Figure 23: Asynchronous READ ....................................................................................................................... 36  
Figure 24: Single-Access Burst READ Operation - Variable Latency ................................................................ 37  
Figure 25: 4-Word Burst READ Operation - Variable Latency ........................................................................... 38  
Figure 26: Single-Access Burst READ Operation - Fixed Latency .................................................................... 39  
Figure 27: 4-Word Burst READ Operation - Fixed Latency ............................................................................... 40  
Figure 28: Burst READ Terminate at End-of-Row (Wrap off) ............................................................................. 41  
Figure 29: Burst READ Row Boundary Crossing .............................................................................................. 42  
Figure 30: Asynchronous WRITE ..................................................................................................................... 43  
Figure 31: Burst WRITE Operation - Variable Latency Mode ............................................................................ 44  
Figure 32: Burst WRITE Operation - Fixed Latency Mode ................................................................................ 45  
Figure 33: Burst WRITE Terminate at End-of-Row (Wrap off) ........................................................................... 46  
Figure 34: Burst WRITE Row Boundary Crossing ............................................................................................ 47  
Figure 35: Burst WRITE Followed by Burst READ ............................................................................................ 48  
Figure 36: Asynchronous WRITE Followed by Burst READ .............................................................................. 49  
Figure 37: Burst READ Followed by Asynchronous WRITE .............................................................................. 50  
Figure 38: Asynchronous WRITE Followed by Asynchronous READ ............................................................... 51  
4
Preliminary  
EMC326SP16AK  
2Mx16 CellularRAM AD-MUX  
List of Tables  
Table 1: Signal Descriptions ........................................................................................................................................... 7  
Table 2: Bus Operations ................................................................................................................................................. 8  
Table 3: Sequence and Burst Length .............................................................................................................................. 24  
Table 4: Drive Strength ................................................................................................................................................... 25  
Table 5: Variable Latency Configuration Codes............................................................................................................... 26  
Table 6: Fixed Latency Configuration Codes................................................................................................................... 27  
Table 7: Address Patterns for PAR(RCR[4] =1)............................................................................................................... 29  
Table 8: Device Identification Register Mapping ............................................................................................................. 29  
Table 9: Absolute Maximum Ratings ............................................................................................................................... 30  
Table 10: Electrical Characteristics and Operating Conditions ......................................................................................... 30  
Table 11: Capacitance ...................................................................................................................................................... 31  
Table 12: Asynchronous READ Cycle Timing Requirements ............................................................................................ 32  
Table 13: Burst READ Cycle Timing Requirements ......................................................................................................... 33  
Table 14: Asynchronous WRITE Cycle Timing Requirements .......................................................................................... 34  
Table 15: Burst WRITE Cycle Timing Requirements ......................................................................................................... 35  
Table 16: Initialization Timing Parameters ........................................................................................................................ 36  
5
Preliminary  
EMC326SP16AK  
2Mx16 CellularRAM AD-MUX  
GENERAL DESCRIPTION  
32Mb CellularRAM products are high-speed, CMOS pseudo-static random access memory developed for low-power, portable  
applications. The 32Mb CellularRAM device has a DRAM core organized as 2 Meg x 16 bits. These devices are a variation of the  
industry-standard Flash control interface, with a multiplexed address/data bus. The multiplexed address and data functionality  
dramatically reduce the required signal count, and increases read/write bandwidth. For seamless operation on a burst Flash bus,  
32Mb CellularRAM products incorporate a transparent self refresh mechanism. The hidden refresh requires no additional support  
from the system memory controller and has no significant impact on device READ/WRITE performance. Two user accessible control  
registers define device operation. The bus configuration register (BCR) defines how the 32Mb CellularRAM device interacts with the  
system memory bus and is nearly identical to its counterpart on burst mode Flash devices. The refresh configuration register (RCR) is  
used to control how refresh is performed on the DRAM array. These registers are automatically loaded with default settings during  
power-up and can be updated anytime during normal operation. Special attention has been focused on standby current consumption  
during self refresh. 32Mb CellularRAM products include two mechanisms to minimize standby current. Partial array refresh (PAR)  
enables the system to limit refresh to only that part of the DRAM array that contains essential data. Temperature compensated self  
refresh (TCSR) uses an onchip sensor to adjust the refresh rate to match the device temperature-the refresh rate decreases at lower  
temperatures to minimize current consumption during standby. The system configurable refresh mechanisms are accessed through  
the RCR. This 32Mb CellularRAM specification defines the industry-standard CellularRAM1.5 x16 A/D Mux feature set established by  
the CellularRAM Workgroup. It includes support for both variable and fixed latency, with three output-device drive-strength settings, a  
variety of wrap options, and a device ID register (DIDR).  
Figure 1: FUNTIONAL BLOCK DIAGRAM - 2 meg x 16  
A[20:16]  
Address Decode  
Logic  
Input  
Output  
MUX  
and  
Buffers  
2,048K x 16  
DRAM  
MEMORY  
ARRAY  
A/DQ[7:0]  
A/DQ[15:8]  
Refresh Configuration  
Register (RCR)  
Device ID Register  
(DIDR)  
Bus Configuration  
Register (BCR)  
CLK  
CE#  
WE#  
OE#  
ADV#  
CRE  
LB#  
Control  
Logic  
UB#  
WAIT  
Internal  
External  
Note: Functional block diagrams illustrate simplified device operation. See pin descriptions; Bus operations table; and timing diagrams for detailed  
information.  
6
Preliminary  
EMC326SP16AK  
2Mx16 CellularRAM AD-MUX  
Table 1: SIGNAL DESCRIPTIONS  
Symbol  
Type  
Descriptions  
Address inputs: Inputs for addresses during READ and WRITE operations. Addresses are internally  
latched during READ and WRITE cycles. The address lines are also used to define the value to be loaded  
into the BCR or the RCR.  
A[20:16]  
Input  
Clock: Synchronizes the memory to the system operating frequency during synchronous operations.  
When configured for synchronous operation, the address is latched on the first rising CLK edge when  
ADV# is active. CLK must be static (HIGH or LOW) during asynchronous access READ and WRITE  
operations when burst mode is enabled.  
CLK  
(note1)  
Input  
ADV#  
(note1)  
Address valid: Indiates that a valid address is present on the address inputs. Addresses are latched on  
the rising edge of ADV# during asynchronous READ and WRITE operations.  
Input  
Input  
Input  
Input  
Input  
Control register enable: When CRE is HIGH, WRITE operations load the RCR or BCR, and READ  
operations access the RCR, BCR, or DIDR.  
CRE  
CE#  
OE#  
WE#  
Chip enable: Activates the device when LOW. When CE# is HIGH, the device is disabled and goes into  
standby mode.  
Output enable: Enables the output buffers when LOW. When OE# is HIGH, the output buffers are  
disabled.  
Write enable: Determines if a given cycle is a WRITE cycle. If WE# is LOW, the cycle is a WRITE to either  
a configuration register or to the memory array.  
LB#  
Input  
Input  
Lower byte enable. DQ[7:0]  
UB#  
Upper byte enable. DQ[15:8]  
Address/data I/Os: These pins are a multiplexed address/data bus. As inputs for address, these pins  
A/DQ[15:0] Input/Output behave as A[15:0]. A[0] is the LSB of the 16-bit word address within the CellularRAM device. Address,  
RCR, and BCR values are loaded with ADV# LOW. Data is input or output when ADV# is HIGH.  
Wait: Provides data-valid feedback during burst READ and WRITE operations. WAIT is used to arbitrate  
WAIT  
(note1)  
collisions between refresh and READ/WRITE operations. WAIT is also asserted at the end of row unless  
wrapping within the burst length. Wait should be ignored during asynchronous operations. WAIT is High-Z  
when CE# is HIGH.  
Output  
RFU  
VCC  
-
Reserved for future use.  
Supply  
Supply  
Supply  
Supply  
Device power supply: (1.70V.1.95V) Power supply for device core operation.  
I/O power supply: (1.70V.1.95V) Power supply for input/output buffers.  
VSS must be connected to ground.  
VCCQ  
VSS  
VSSQ  
VSSQ must be connected to ground.  
Note:  
1. When using asynchronous mode exclusively, CLK can be tied to VSSQ or VCCQ. WAIT should be ignored during asynchronous mode operations.  
7
Preliminary  
EMC326SP16AK  
2Mx16 CellularRAM AD-MUX  
Table 2: BUS OPERATIONS  
Asynchfonous Mode  
BCR[15]=1  
UB#/  
LB#  
Power  
CLK ADV# CE# OE# WE# CRE  
WAIT2  
DQ[15:0]  
Notes  
Read  
Write  
Active  
Active  
Standby  
Idle  
X
X
L
L
L
X
X
X
H
L
L
L
L
L
L
Low-z  
High-z  
High-z  
Low-z  
Data out  
Data in  
High-z  
X
4
L
4
Standby  
No operation  
H or L  
X
X
X
H
L
X
X
X
5, 6  
4, 6  
X
Configuration register  
write  
Active  
Active  
Power  
X
X
L
L
H
L
L
H
H
X
L
Low-z  
Low-z  
WAIT  
High-z  
Configuration register  
read  
Config.  
Reg.out  
H
Burst Mode  
BCR[15]=0  
UB#/  
LB#  
CLK ADV# CE# OE# WE# CRE  
DQ[15:0]  
Notes  
Async read  
Async write  
Active  
Active  
Standby  
Idle  
H or L  
H or L  
H or L  
H or L  
L
L
H
L
L
L
L
X
X
X
X
H
H
L
L
L
L
L
L
L
L
L
Low-z  
Low-z  
High-z  
Low-z  
Low-z  
Low-z  
Data out  
Data in  
High-z  
X
4, 7  
4
Standby  
X
X
L
X
X
H
L
X
X
L
5, 6  
4, 6  
4, 8  
4, 8  
No operation  
Initial burst read  
Initial burst write  
Active  
Active  
Address  
Address  
L
X
Data out  
or  
Burst continue  
Active  
H
L
X
X
X
L
Low-z  
4, 8  
Data in  
Configuration register  
write  
Active  
Active  
L
L
L
L
H
L
L
H
H
X
L
Low-z  
Low-z  
High-z  
8, 9  
8, 9  
Configuration register  
read  
Config.  
Reg.out  
H
Note:  
1. With burst mode enabled, CLK must be static(HIGH or LOW) during asynchronous READs and asynchronous WRITEs and to achieve standby power  
during standby mode.  
2. The WAIT polarity is configured through the bus configuration register (BCR[10]).  
3. When LB# and UB# are in select mode (LOW), DQ[15:0] are enabled. When only LB# is in select mode, DQ[7:0] are enabled. When only UB# is  
in the select mode, DQ[15:8] are enabled.  
4. The device will consume active power in this mode whenever addresses are changed.  
5. When the device is in standby mode, address inputs and data inputs/outputs are internally isolated from any external influence.  
6. VIN = VCCQ or 0V; all device pins must be static (unswitched) in order to achieve standby current.  
7. When the BCR is configured for sync mode, sync READ and WRITE, and async WRITE are supported by EMLSI  
8. Burst mode operation is initialized through the bus configuration register (BCR[15]).  
9. Initial cycle. Following cycles are the same as BURST CONTINUE. CE# must stay LOW for the equivalent of a single-word burst (as indicated  
by WAIT).  
8
Preliminary  
EMC326SP16AK  
2Mx16 CellularRAM AD-MUX  
FUNTIONAL DESCRIPTION  
In general, 32Mb CellularRAM devices are high-density alternatives to SRAM and Pseudo SRAM products, popular in low-power,  
portable applications. The 32Mb device contains a 33,554,432-bit DRAM core, organized as 2,097,152 addresses by 16 bits.The device  
implement a multiplexed address/data bus. This multiplexed configuration supports greater bandwidth through the x16 data bus, yet still  
reduces the required signal count. The 32Mb CellularRAM bus interface supports both asynchronous and burst mode transfers.  
POWER-UP INITIALIZATION  
32Mb CellularRAM products include an on-chip voltage sensor used to launch the power-up initialization process. Initialization will  
configure the BCR and the RCR with their default settings. VCC and VCCQ must be applied simultaneously. When they reach a stable  
level at or above 1.7V, the device will require 150µs to complete its self-initialization process. Until the end of tPU, CE# should track  
VccQ and remain HIGH. When initialization is complete, the device is ready for normal operation.  
Figure 2: Power-Up Initialization Timing  
Vcc=1.7V  
tPU  
Device ready for  
normal operation  
Vcc  
VccQ  
Device Initialization  
9
Preliminary  
EMC326SP16AK  
2Mx16 CellularRAM AD-MUX  
BUS OPERATING MODES  
32Mb CelluarRAM products incorporate a burst mode interface found on Flash products targeting low-power, wireless applications. This  
bus interface supports asynchronous and burst mode read and write transfers. The specific interface supported is defined by the value  
loaded into the BCR.  
Asynchronous Mode  
Asynchronous mode uses the industry- standard SRAM control signals (CE#, ADV#, OE#, WE#, and LB#/UB#). READ operations(Fig-  
ure 3) are initiated by bringing CE#, ADV#, and LB#/UB# LOW while keeping OE# and WE# HIGH, and driving the address onto the A/  
DQ bus. ADV# is taken HIGH to capture the address, and OE# is taken LOW. Valid data will be driven out of the I/Os after the specified  
access time has elapsed. WRITE operations(Figure 4 ) occur when CE#, ADV#, WE#, and LB#/UB# are driven LOW. with the address  
on the A/DQ bus. ADV# is taken HIGH to capture the address, then the WRITE data is driven onto the bus. During asynchronous  
WRITE operations, the OE# level is a “Don't Care,” and WE# will override OE#; however, OE# must be HIGH while the address is  
driven onto the A/DQ bus. The data to be written is latched on the rising edge of CE#, WE#, UB#, or LB# (whichever occurs first). Dur-  
ing asynchronous operations with burst mode enabled, the CLK input must be held static(HIGH or LOW). WAIT will be driven during  
asynchronous READs, and its state should be ignored. WE# LOW time must be limited to tCEM.  
10  
Preliminary  
EMC326SP16AK  
2Mx16 CellularRAM AD-MUX  
Figure 3: READ Operation  
Valid  
Address  
A[20:16]  
CE#  
OE#  
WE#  
Valid  
Data  
Valid  
Address  
A/DQ[15:0]  
High-Z  
ADV#  
LB#/UB#  
Don’t Care  
Figure 4: WRITE Operation  
Valid  
Address  
A[20:16]  
CE#  
OE#  
WE#  
t
CEM  
Valid  
Data  
Valid  
Address  
A/DQ[15:0]  
ADV#  
LB#/UB#  
Undefined  
Don’t Care  
11  
Preliminary  
EMC326SP16AK  
2Mx16 CellularRAM AD-MUX  
Burst Mode Operation  
Burst mode operations enable high-speed synchronous READ and WRITE operations. Burst operations consist of a multi-clock  
sequence that must be performed in an ordered fashion. After CE# goes LOW, the address to access is latched on the rising edge of  
the next clock that ADV# is LOW. During this first clock rising edge, WE# indicates whether the operation is going to be a READ (WE#  
= HIGH, Figure 5) or WRITE (WE# = LOW, Figure 6).  
Figure 5: Burst Mode READ (4-word burst)  
CLK  
A[20:16]  
Address  
Address  
ADV#  
CE#  
Latency Code 2(3 clocks)  
OE#  
WE#  
LB#/UB#  
Address  
A/DQ[15:0]  
D0  
D2  
D3  
Address  
D1  
WAIT  
READ Burst Identified  
(WE# = HIGH)  
READ Burst Identified  
(WE# = HIGH)  
Undefined  
Don’t Care  
Note:  
Non-default BCR settings for burst mode READ (4-word burst): Fixed or variable latency;  
Latency code two (three clocks); WAIT active LOW; WAIT asserted during delay.  
Diagram in the figure above is representative of variable latency with no refresh collision or fixed-latency access.  
12  
Preliminary  
EMC326SP16AK  
2Mx16 CellularRAM AD-MUX  
Figure 6: Burst Mode WRITE (4-word burst, OE# HIGH)  
CLK  
Address  
A[20:16]  
ADV#  
Address  
Latency Code 2(3 clocks)  
CE#  
WE#  
LB#/UB#  
A/DQ[15:0]  
WAIT  
Address  
Address  
D0  
D1  
D2  
D3  
WRITE Burst Identified  
(WE# = LOW)  
WRITE Burst Identified  
(WE# = LOW)  
Don’t Care  
Note: Non-default BCR settings for burst mode WRITE (4-word burst): Fixed or variable latency;  
latency code two (three clocks); WAIT active LOW; WAIT asserted during delay.  
The size of a burst can be specified in the BCR either as a fixed length or continuous. Fixed-length bursts consist of four, eight, sixteen,  
or thirty-two words. Continuous bursts have the ability to start at a specified address and burst to the end of the address. It goes back to  
the first address and continues to burst when continuous bursts meet the end of address.  
The latency count stored in the BCR defines the number of clock cycles that elapse before the initial data value is transferred between  
the processor and CellularRAM device. The initial latency for READ operations can be configured as fixed or variable (WRITE  
operations always use fixed latency). Variable latency allows the CellularRAM to be configured for minimum latency at high clock  
frequencies, but the controller must monitor WAIT to detect any conflict with refresh cycles.  
Fixed latency outputs the first data word after the worst-case access delay, including allowance for refresh collisions. The initial latency  
time and clock speed determine the latency count setting. Fixed latency is used when the controller cannot monitor WAIT. Fixed latency  
also provides improved performance at lower clock frequencies.  
The WAIT output asserts when a burst is initiated, and de-asserts to indicate when data is to be transferred into (or out of ) the memory.  
WAIT will again be asserted at the boundary of the row, unless wrapping within the burst length. With wrap off, the CellularRAM device  
will restore the previous row’s data and access the next row, WAIT will be de-asserted, and the burst can continue across the row  
boundary(See Figeure 29 for a READ, Figure 34 for a WRITE). If the burst is to terminate at the row boundary, CE# must go HIGH  
within 2 clocks of the last data(See Figure 28). CE# must go HIGH before any clock edge following the last word of a defined-length  
burst WRITE(See Figure 31 and 32).  
The CE# LOW time is limited by refresh considerations. CE# must not stay LOW longer than tCEM. If a burst suspension will cause CE#  
to remain LOW for longer than tCEM, CE# should be taken HIGH and the burst restarted with a new CE# LOW/ADV# LOW cycle.  
13  
Preliminary  
EMC326SP16AK  
2Mx16 CellularRAM AD-MUX  
Figure 7: Refresh Collision During Variable-Latency READ Operation  
V
IH  
CLK  
A[20:16]  
ADV#  
V
IL  
V
IH  
Valid  
Address  
V
V
IL  
IH  
V
IL  
V
IH  
CE#  
V
IL  
V
IH  
OE#  
WE#  
V
V
IL  
IH  
V
IL  
V
IH  
LB#/UB#  
V
IL  
V
V
OH  
OH  
Valid  
Address  
D3  
A/DQ[15:0]  
D0  
D1  
D2  
V
V
V
OL  
OL  
High-Z  
OH  
WAIT  
V
OL  
Additional WAIT states inserted to allow refresh completion.  
Undefined  
Don’t Care  
Note: Non-default BCR settings for refresh collision during variable-latency READ operation:  
Latency code two (three clocks); WAIT active LOW; WAIT asserted during delay.  
14  
Preliminary  
EMC326SP16AK  
2Mx16 CellularRAM AD-MUX  
Mixed-Mode Operation  
The device supports a combination of synchronous READ and asynchronous WRITE operations when the BCR is configured for  
synchronous operation. The asynchronous WRITE operations require that the clock (CLK) remain static (HIGH or LOW) during the  
entire sequence. The ADV# signal can be used to latch the target address. CE# can remain LOW when the device is transitioning  
between mixed-mode operations with fixed latency enabled; however, the CE# LOW time must not exceed tCEM. Mixed-mode operation  
facilitates a seamless interface to legacy burst mode Flash memory controllers. See Figure 36 on page 49 for the “Asynchronous  
WRITE Followed by Burst READ” timing diagram.  
WAIT Operation  
The WAIT output on a CellularRAM device is typically connected to a shared, system-level WAIT signal(See Figure 8). The shared  
WAIT signal is used by the processor to coordinate transactions with multiple memories on the synchronous bus.  
Figure 8: Wired or WAIT Configuration  
External  
Pull-Up  
CellularRAM  
Pull-Down  
Resistor  
WAIT  
READY  
WAIT  
WAIT  
Processor  
Other  
Device  
Other  
Device  
When a burst READ or WRITE operation has been initiated, WAIT goes active to indicate that the CellularRAM device requires addi-  
tional time before data can be transferred. For burst READ operations, WAIT will remain active until valid data is output from the device.  
For burst WRITE operations, WAIT will indicate to the memory controller when data will be accepted into the CellularRAM device. When  
WAIT transitions to an inactive state, the data burst will progress on successive clock edges.  
During a burst cycle, CE# must remain asserted until the first data is valid. Bringing CE# HIGH during this initial latency may cause data  
corruption.  
When using variable initial access latency (BCR[14] = 0), the WAIT output performs an arbitration role for burst READ operations  
launched while an on-chip refresh is in progress. If a collision occurs, WAIT is asserted for additional clock cycles until the refresh has  
completed(See Figure 7 ). When the refresh operation has completed, the burst READ operation will continue normally.  
WAIT is also asserted when a continuous READ or WRITE burst crosses a row boundary. The WAIT assertion allows time for the new  
row to be accessed.  
WAIT will be asserted after OE# goes LOW during asynchronous READ operations. WAIT will be High-Z during asynchronous WRITE  
operations. WAIT should be ignored during all asynchronous operations.  
By using fixed initial latency (BCR[14] = 1), this CellularRAM device can be used in burst mode without monitoring the WAIT signal.  
However, WAIT can still be used to determine when valid data is available at the start of the burst and at the end of the row. If WAIT is  
not monitored, the controller must properly terminate all burst accesses at row boundaries on its own.  
LB#/UB# Operation  
The LB# enable and UB# enable signals support byte-wide data WRITEs. During WRITE operations, any disabled bytes will not be  
transferred to the RAM array and the internal value will remain unchanged. During an asynchronous WRITE cycle, the data to be written  
is latched on the rising edge of CE#, WE#, LB#, or UB#, whichever occurs first. LB# and UB# must be LOW during READ cycles. When  
both the LB# and UB# are disabled (HIGH) during an operation, the device will disable the data bus from receiving or transmitting data.  
Although the device will seem to be deselected, it remains in an active mode as long as CE# remains LOW.  
15  
Preliminary  
EMC326SP16AK  
2Mx16 CellularRAM AD-MUX  
LOW-POWER OPERATION  
Standby Mode Operation  
During standby, the device current consumption is reduced to the level necessary to perform the DRAM refresh operation. Standby  
operation occurs when CE# is HIGH. The device will enter a reduced power state upon completion of a READ or WRITE operation, or  
when the address and control inputs remain static for an extended period of time. This mode will continue until a change occurs to the  
address or control inputs.  
Temperature Compensated Refresh  
Temperature compensated self refresh (TCSR) allows for adequate refresh at different temperatures. This CellularRAM device includes  
an on-chip temperature sensor that automatically adjusts the refresh rate according to the operating temperature. The device  
continually monitors the temperature to select an appropriate self-refresh rate.  
Partial Array Refresh  
Partial array refresh (PAR) restricts refresh operation to a portion of the total memory array. This feature enables the device to reduce  
standby current by refreshing only that part of the memory array required by the host system. The refresh options are full array, one-half  
array, one-quarter array, one-eighth array, or none of the array. The mapping of these partitions can start at either the beginning or the  
end of the address map(See Table 7). READ and WRITE operations to address ranges receiving refresh will not be affected. Data  
stored in addresses not receiving refresh will become corrupted. When re-enabling additional portions of the array, the new portions are  
available immediately upon writing to the RCR.  
16  
Preliminary  
EMC326SP16AK  
2Mx16 CellularRAM AD-MUX  
Registers  
Two user-accessible configuration registers define the device operation. The bus configuration register (BCR) defines how the Cellular-  
RAM interacts with the system memory bus and is nearly identical to its counterpart on burst mode Flash devices. The refresh  
configuration register (RCR) is used to control how refresh is performed on the DRAM array. These registers are automatically loaded  
with default settings during power-up, and can be updated any time the devices are operating in a standby state. A DIDR provides  
information on the device manufacturer, CellularRAM generation, and the specific device configuration. The DIDR is read-only.  
Access Using CRE  
The registers can be accessed using either a synchronous or an asynchronous operation when the control register enable (CRE) input  
is HIGH(see Figure 9 through 12 on pages 17 through 20) . When CRE is LOW, a READ or WRITE operation will access the memory  
array. The configuration register values are written via addresses A[20:16] and A/DQ[15:0]. In an asynchronous WRITE, the values are  
latched into the configuration register on the rising edge of ADV#, CE#, or WE#, whichever occurs first; LB# and UB# are “Don’t Care”.  
The BCR is accessed when A[19:18] are 10b; the RCR is accessed when A[19:18] are 00b. The DIDR is read when A[19:18] are 01b.  
For READs, address inputs other than A[19:18] are “Don’t Care”, and register bits 15:0 are output on DQ[15:0]. Immediately after a  
configuration register READ or WRITE operation is performed, reading the memory array is highly recommended.  
Figure 9: Configuration Register WRITE, Asynchronous Mode, Followed by READ ARRAY Operation  
A[20:16]  
OPCODE  
Address  
Address  
(except A[19:18])  
t
t
AVS  
AVH  
Select control register  
1
A[19:18]  
CRE  
t
AVS  
t
AVH  
ADV#  
t
VP  
t
CPH  
Initiate Control register access  
CE#  
OE#  
t
CW  
t
WP  
Write address bus value  
to control register  
WE#  
LB#/UB#  
A/DQ[15:0]  
Valid  
data  
OPCODE  
Address  
Don’t Care  
Note: A[19:18] = 00b to load RCR, and 10b to load BCR.  
17  
Preliminary  
EMC326SP16AK  
2Mx16 CellularRAM AD-MUX  
Figure 10: Configuration Register WRITE, Synchronous Mode, Followed by READ ARRAY Operation  
CLK  
Latch control register value  
A[20:16]  
OPCODE  
Address  
Address  
(except A[19:18])  
t
HD  
t
SP  
Latch control register address  
2
A[19:18]  
t
HD  
t
SP  
CRE  
ADV#  
CE#  
t
SP  
t
HD  
t
CBPH  
t
CSP  
Note3  
OE#  
WE#  
t
SP  
t
HD  
LB#/UB#  
Valid  
data  
A/DQ[15:0]  
OPCODE  
Address  
t
KHTL  
High-Z  
High-Z  
WAIT  
Don’t Care  
Note:  
1. Nondefault BCR settings for synchronous mode configuration register WRITE followed by READ ARRAY operation: Latency  
code 2 (3 clocks), WAIT active LOW, WAIT asserted during delay.  
2. A[19:18] = 00b to load RCR, and 10b to load BCR.  
3. CE# must remain LOW to complete a burst-of-one WRITE. WAIT must be monitored; additional WAIT cycles caused by refresh  
collisions require a corresponding number of additional CE# LOW cycles.  
18  
Preliminary  
EMC326SP16AK  
2Mx16 CellularRAM AD-MUX  
Figure 11: Register READ, Asynchronous Mode, Followed by READ ARRAY Operation  
A[20:16]  
Address  
Address  
(except A[19:18])  
t
t
AVH  
AVS  
Select register  
1
A[19:18]  
t
t
AVH  
AA  
t
CRE  
AVS  
t
AA  
ADV#  
t
VP  
t
AADV  
t
CPH  
Initiate register access  
CE#  
t
t
HZ  
CPH  
t
CO  
OE#  
WE#  
t
t
OHZ  
OE  
t
BA  
t
BHZ  
t
OLZ  
LB#/UB#  
Valid  
A/DQ[15:0]  
Valid CR  
Address  
data  
Undefined  
Don’t Care  
Note: A[19:18] = 00b to read RCR, 10b to read BCR, and 01b to read DIDR.  
19  
Preliminary  
EMC326SP16AK  
2Mx16 CellularRAM AD-MUX  
Figure 12: Register READ, Synchronous Mode, Followed by READ ARRAY Operation  
CLK  
Latch control register value  
A[20:16]  
(except A[19:18])  
Address  
t
HD  
t
SP  
Latch control register address  
2
A[19:18]  
Address  
t
HD  
t
SP  
CRE  
t
SP  
t
HD  
ADV#  
t
CBPH  
t
ABA  
t
CSP  
CE#  
OE#  
WE#  
Note3  
t
HZ  
t
OHZ  
t
SP  
t
t
HD  
BOE  
LB#/UB#  
t
t
KOH  
ACLK  
t
OLZ  
Valid  
A/DQ[15:0]  
Valid CR  
Address  
data  
t
KHTL  
High-Z  
High-Z  
WAIT  
Undefined  
Don’t Care  
Note:  
1. Nondefault BCR settings for synchronous mode register READ followed by READ ARRAY operation: Latency code 2 (3 clocks),  
WAIT active LOW, WAIT asserted during delay.  
2. A[19:18] = 00b to read RCR, 10b to read BCR, and 01b to read DIDR.  
3. CE# must remain LOW to complete a burst-of-one READ. WAIT must be monitored; additional WAIT cycles caused by refresh collisions require  
a corresponding number of additional CE# LOW cycles.  
20  
Preliminary  
EMC326SP16AK  
2Mx16 CellularRAM AD-MUX  
Software Access  
Software access of the registers uses a sequence of asynchronous READ and asynchronous WRITE operations. The contents of the  
configuration registers can be modified and all registers can be read using the software sequence.  
The configuration registers are loaded using a four-step sequence consisting of two asynchronous READ operations followed by two  
asynchronous WRITE operations (see Figure 13 ). The READ sequence is virtually identical except that an asynchronous READ is  
performed during the fourth operation (see Figure 14). The address used during all READ and WRITE operations is the highest address  
of the CellularRAM device being accessed (1FFFFFh); the contents of this address are not changed by using this sequence.  
The data value presented during the third operation (WRITE) in the sequence defines whether the BCR, RCR, or the DIDR is to be  
accessed. If the data is 0000h, the sequence will access the RCR; if the data is 0001h, the sequence will access the BCR; if the data is  
0002h, the sequence will access the DIDR. This value must be valid at the falling edge of WE#. During the fourth operation, DQ[15:0]  
transfer data in to or out of bits 15:0 of the registers.  
The use of the software sequence does not affect the ability to perform the standard (CRE-controlled) method of loading the  
configuration registers. However, the software nature of this access mechanism eliminates the need for CRE. If the software  
mechanism is used, CRE can simply be tied to VSS. The port line often used for CRE control purposes is no longer required.  
21  
Preliminary  
EMC326SP16AK  
2Mx16 CellularRAM AD-MUX  
Figure 13: Load Configuration Register  
WRITE  
READ  
READ  
WRITE  
CE#  
OE#  
WE#  
LB#/UB#  
ADV#  
Address  
(MAX)  
Address  
(MAX)  
Address  
(MAX)  
Address  
(MAX)  
A[20:16]  
0ns (min); Note 1  
Address  
(MAX)  
Address  
(MAX)  
Address  
(MAX)  
Address  
(MAX)  
CR Value  
in  
A/DQ[15:0]  
XXXX  
XXXX  
RCR : 0000h  
BCR : 0001h  
Don’t Care  
Note:  
If the data at the falling edge of WE# is not 0000h, 0001h or 0002h, it is possible that the data stored at the highest memory location will be altered.  
Figure 14: Read Configuration Register  
WRITE  
READ  
READ  
READ  
CE#  
OE#  
WE#  
LB#/UB#  
ADV#  
Address  
(MAX)  
Address  
(MAX)  
Address  
(MAX)  
Address  
(MAX)  
A[20:16]  
0ns (min); Note 1  
Address  
(MAX)  
Address  
(MAX)  
Address  
(MAX)  
Address  
(MAX)  
CR Value  
out  
A/DQ[15:0]  
XXXX  
XXXX  
RCR : 0000h  
BCR : 0001h  
DIDR : 0002h  
Don’t Care  
Note:  
If the data at the falling edge of WE# is not 0000h, 0001h or 0002h, it is possible that the data stored at the highest memory location will be altered.  
22  
Preliminary  
EMC326SP16AK  
2Mx16 CellularRAM AD-MUX  
BUS CONFIGURATION REGISTER  
The BCR defines how the CellularRAM device interacts with the system memory bus. Figure 15 describes the control bits in the BCR.  
At power-up, the BCR is set to 9D1Fh. The BCR is accessed with CRE HIGH and A[19:18] = 10b, or through the register access  
software sequence with A/DQ = 0001h on the third cycle.  
Figure 15: Bus Configuration Register Definition  
A
[20]  
A
A
A/DQ A/DQ  
A/DQ  
[13:11]  
A/DQ A/DQ  
A/DQ  
8
A/DQ  
7
A/DQ A/DQ  
A/DQ  
3
A/DQ  
[2:0]  
[19:18] [17:16]  
15  
14  
10  
9
6
[5:4]  
20  
19-18  
17-16  
15  
14  
13 12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Register  
Select  
Operating Initial  
Latency  
Counter  
WAIT  
Polarity  
WAIT  
Configuration(WC)  
Drive  
Burst  
Burst  
Reserved  
Reserved  
Reserved  
Reserved Reserved  
Mode  
Latency  
Strength Wrap(BW) Length(BL)  
All must be set to “0”  
Must be set to “0”  
Must be set to “0”  
Must be set to “0” Must be set to “0”  
BCR[14]  
Initial Access Latency  
Variable (default)  
Fixed  
BCR[3]  
Burst Wrap (Note 1)  
Burst wraps within the burst length  
Burst no wrap (default)  
0
1
0
1
BCR[5] BCR[4]  
Drive Strength  
Full  
BCR[13] BCR[12] BCR[11]  
Latency Counter  
Code 8  
0
0
1
1
0
1
0
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1/2 (default)  
1/4  
Code 1 - Reserved  
Code 2  
Reserved  
Code 3 (default)  
Code 4  
Code 5  
BCR[8]  
WAIT Configuration  
Asserted during delay  
Code 6  
0
1
Asserted one data cycle before delay (default)  
Code 7 - Reserved  
BCR[10]  
WAIT Polarity  
0
1
Active LOW  
Active HIGH (default)  
BCR[15]  
Operating Mode  
0
1
Synchronousburstaccessmode  
BCR[2] BCR[1] BCR[0]  
Burst Length (Note 1)  
4 words  
Asynchronous access mode (default)  
0
0
0
1
1
0
1
0
1
0
1
1
8 words  
BCR[19] BCR[18] Register Select  
1
16 words  
0
1
0
0
0
1
Select RCR  
Select BCR  
Select DIDR  
0
32 words  
1
Continuous burst (default)  
Reserved  
Others  
Note:  
1. Burst wrap and length apply to both READ and WRITE operations.  
2. Reserved bits must be set to zero. Reserved bits not set to zero will affect device functionallity. BCR[15:0] will be read back as written.  
23  
Preliminary  
EMC326SP16AK  
2Mx16 CellularRAM AD-MUX  
Burst Length (BCR[2:0]) Default = Continuous Burst  
Burst lengths define the number of words the device outputs during burst READ and WRITE operations. The device supports a burst  
length of 4, 8, 16, or 32 words. The device can also be set in continuous burst mode where data is output sequentially without regard to  
address boundaries; the internal address wraps to 000000h if the device is read past the last address.  
Burst Wrap (BCR[3]) Default = No Wrap  
The burst-wrap option determines if a 4, 8, 16, or 32 word READ or WRITE burst wraps within the burst length, or steps through  
sequential addresses. If the wrap option is not enabled, the device accesses data from sequential addresses without regard to address  
boundaries; the internal address wrap to 000000h if the device is read past the last address.  
Table 3: Sequence and Burst Length  
4 Word  
Starting  
Address  
8 Word  
16 Word  
Burst Length  
32 Word  
Burst Length  
Continuous  
Burst  
BURST Wrap  
Burst  
Burst Length  
Length  
BCR[3] Wrap Decimal Linear  
Linear  
Linear  
Linear  
Linear  
0
1
2
3
4
0-1-2-3  
1-2-3-0  
2-3-0-1  
3-0-1-2  
0-1-2-3-4-5-6-7  
1-2-3-4-5-6-7-0  
2-3-4-5-6-7-0-1  
3-4-5-6-7-0-1-2  
4-5-6-7-0-1-2-3  
0-1-2-3-4-5-6-7-8-9-10-11-12-13-14-15  
1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-0  
2-3-4-5-6-7-8-9-10-11-12-13-14-15-0-1  
3-4-5-6-7-8-9-10-11-12-13-14-15-0-1-2  
4-5-6-7-8-9-10-11-12-13-14-15-0-1-2-3  
0-1-2 ... 29-30-31  
1-2-3 ... 30-31-0  
2-3-4 ... 31-0-1  
3-4-5 ... 0-1-2  
4-5-6 ... 1-2-3  
0-1-2-3-4-5-6-...  
1-2-3-4-5-6-7-...  
2-3-4-5-6-7-8-...  
3-4-5-6-7-8-9-...  
4-5-6-7-8-9-10-...  
5
6
5-6-7-0-1-2-3-4  
6-7-0-1-2-3-4-5  
7-0-1-2-3-4-5-6  
5-6-7-8-9-10-11-12-13-14-15-0-1-2-3-4  
6-7-8-9-10-11-12-13-14-15-0-1-2-3-4-5  
7-8-9-10-11-12-13-14-15-0-1-2-3-4-5-6  
...  
5-6-7 ... 2-3-4  
6-7-8 ... 3-4-5  
7-8-9 ... 4-5-6  
...  
5-6-7-8-9-10-11-...  
6-7-8-9-10-11-12-...  
7-8-9-10-11-12-13-...  
...  
0
Yes  
7
...  
14  
15  
...  
30  
31  
14-15-0-1-2-3-4-5-6-7-8-9-10-11-12-13  
15-0-1-2-3-4-5-6-7-8-9-10-11-12-13-14  
14-15-16-...-11-12-13 14-15-16-17-18-19-20-...  
15-16-17...-12-13-14  
...  
15-16-17-18-19-20-21-...  
...  
30-31-0-...-27-28-29  
31-0-1-... -28-29-30  
30-31-32-33-34-...  
31-32-33-34-35-...  
0
1
2
3
4
5
0-1-2-3  
1-2-3-4  
2-3-4-5  
3-4-5-6  
0-1-2-3-4-5-6-7  
1-2-3-4-5-6-7-8  
2-3-4-5-6-7-8-9  
3-4-5-6-7-8-9-10  
4-5-6-7-8-9-10-11  
0-1-2-3-4-5-6-7-8-9-10-11-12-13-14-15  
1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16  
2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17  
3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18  
4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19  
0-1-2-...-29-30-31  
1-2-3-...-30-31-32  
2-3-4-...-31-32-33  
3-4-5-...-32-33-34  
4-5-6-...-33-34-35  
5-6-7-...-34-35-36  
0-1-2-3-4-5-6-...  
1-2-3-4-5-6-7-...  
2-3-4-5-6-7-8-...  
3-4-5-6-7-8-9-...  
4-5-6-7-8-9-10-...  
5-6-7-8-9-10-11-...  
5-6-7-8-9-10-11-12 5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20  
6-7-8-9-10-11-12-  
6
7
6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21  
13  
6-7-8-...-35-36-37  
7-8-9-...-36-37-38  
6-7-8-9-10-11-12-...  
7-8-9-10-11-12-13-...  
7-8-9-10-11-12-13- 7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-  
1
No  
14  
22  
...  
...  
...  
...  
14  
14-15-16-17-18-...-23-24-25-26-27-28-29  
15-16-17-18-19-...-24-25-26-27-28-29-30  
14-15-16-...43-44-45  
14-15-16-17-18-19-20-...  
15  
...  
15-16-17-...-44-45-46 15-16-17-18-19-20-21-...  
... ...  
30  
31  
30-31-32-...-59-60-61 30-31-32-33-34-35-36-...  
31-32-33-...-60-61-62 31-32-33-34-35-36-37-...  
24  
Preliminary  
EMC326SP16AK  
2Mx16 CellularRAM AD-MUX  
Drive Strength (BCR[5:4]) Default = Outputs Use Half-Drive Strength  
The output driver strength can be altered to full, one-half, or one-quarter strength to adjust for different data bus loading scenarios. The  
reduced-strength options are intended for stacked chip (Flash + CellularRAM) environments when there is a dedicated memory bus.  
The reduced-drive-strength option minimizes the noise generated on the data bus during READ operations. Full output drive strength  
should be selected when using a discrete CellularRAM device in a more heavily loaded data bus environment. Outputs are configured  
at half-drive strength during testing. See Table 4 for additional information.  
Table 4: Drive Strength  
BCR[5]  
BCR[4]  
Drive Strength  
Use Recommendation  
Impedance Typ ()  
0
0
Full  
25~30  
CL = 30pF to 50pF  
1/2  
(default)  
CL = 15pF to 30pF  
104 MHz at light load  
0
1
50  
1
1
0
1
1/4  
100  
CL = 15pF or lower  
Reserved  
25  
Preliminary  
EMC326SP16AK  
2Mx16 CellularRAM AD-MUX  
WAIT Configuration (BCR[8]) Default = WAIT Transitions One Clock Before Data Valid/Invalid  
The WAIT configuration bit is used to determine when WAIT transitions between the asserted and the de-asserted state with respect to  
valid data presented on the data bus. The memory controller will use the WAIT signal to coordinate data transfer during synchronous  
READ and WRITE operations. When BCR[8] = 0, data will be valid or invalid on the clock edge immediately after WAIT transitions to the  
de-asserted or asserted state, respectively. When BCR[8] = 1, the WAIT signal transitions one clock period prior to the data bus going  
valid or invalid(See Figure 16).  
WAIT Polarity (BCR[10]) Default = WAIT Active HIGH  
The WAIT polarity bit indicates whether an asserted WAIT output should be HIGH or LOW. This bit will determine whether the WAIT  
signal requires a pull-up or pull-down resistor to maintain the de-asserted state.  
Figure 16: WAIT Configuration During Burst Operation  
CLK  
BCR[8] = 0  
Data Valid in current cycle  
WAIT  
BCR[8] = 1  
Data Valid in next cycle  
WAIT  
initial latency  
D3  
D0  
D1  
D2  
A/DQ[15:0]  
End of row  
Don’t Care  
Note: Non-default BCR setting: WAIT active LOW.  
Latency Counter (BCR[13:11]) Default = Three Clock Latency  
The latency counter bits determine how many clocks occur between the beginning of a READ or WRITE operation and the first data  
value transferred. For allowable latency codes, see Table 5 and 6 on pages 26 and 27, respectively, and Figure 17 and 18 in page 27,  
respctively.  
Initial Access Latency (BCR[14]) Default = Variable  
Variable initial access latency outputs data after the number of clocks set by the latency counter. However, WAIT must be monitored to  
detect delays caused by collisions with refresh operations. Fixed initial access latency outputs the first data at a consistent time that  
allows for worst-case refresh collisions. The latency counter must be configured to match the initial latency and the clock frequency. It is  
not necessary to monitor WAIT with fixed initial latency. The burst begins after the number of clock cycles configured by the latency  
counter(See Table 6 on page 27 and Figure 18 on page 27).  
Table 5: Variable Latency Configuration Codes  
Latency  
Configuration  
Code  
1
Max Input CLK Frequency (MHz)  
Latency  
BCR[13:11]  
Normal  
Refresh Collision  
133  
104  
83  
010  
011  
2 (3 clocks)  
2
3
4
-
4
6
8
-
66(15ns)  
66(15ns)  
52(19.2ns)  
3 (4 clocks)-default  
4 (5 clocks)  
104(9.62ns) 104(9.62ns)  
83(12ns)  
100  
133(7.5ns)  
-
-
-
-
-
Others  
Reserved  
Note: 1. Latency is the number of clock cycles from the initiation of a burst operation until data appears. Data is transferred on the next clock cycle.  
26  
Preliminary  
EMC326SP16AK  
2Mx16 CellularRAM AD-MUX  
Figure 17: Latency Counter (Variable Initial Latency, No Refresh Collision)  
V
IH  
CLK  
V
IL  
V
IH  
Valid  
Address  
A[21:16]  
V
IL  
V
IH  
ADV#  
V
IL  
Code 2  
V
IH  
Valid  
A/DQ[15:0]  
A/DQ[15:0]  
A/DQ[15:0]  
D0  
D1  
D0  
D2  
D1  
D0  
D3  
D2  
D1  
D4  
D5  
D4  
D3  
D6  
D5  
D4  
D7  
D6  
D5  
Address  
V
IL  
Code 3 (default)  
V
IH  
Valid  
Address  
Code 4  
Valid  
Address  
D3  
D7  
D6  
V
IL  
V
IH  
D2  
V
IL  
Undefined  
Don’t Care  
Table 6: Fixed Latency Configuration Codes  
Latency  
Latency Count (N)  
Normal  
Max Input CLK Frequency (MHz)  
BCR[13:11]  
Configuration  
Code  
133  
104  
83  
010  
011  
2 (3 clocks)  
2
3
4
5
6
8
--  
33(30ns)  
52(19.2ns)  
66(15ns)  
75(13.3ns)  
104(9.62ns)  
133(7.5ns)  
-
33(30ns)  
52(19.2ns)  
66(15ns)  
75(13.3ns)  
104(9.62ns)  
-
33(30ns)  
52(19.2ns)  
66(15ns)  
75(13.3ns)  
83(12ns)  
-
3 (4 clocks)-default  
4 (5 clocks)  
5 (6 clocks)  
6 (7 clocks)  
8 (9 clocks)  
Reserved  
100  
101  
110  
000  
Others  
-
-
Figure 18: Latency Counter (Fixed Latency)  
N-1  
Cycles  
Cycle N  
V
IH  
CLK  
V
IL  
t
AA  
V
IH  
Valid  
Address  
A[20:16]  
V
IL  
t
AADV  
V
IH  
ADV#  
CE#  
V
IL  
t
CO  
V
IH  
V
IL  
t
ACLK  
V
OH  
A/DQ[15:0]  
(READ)  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
V
OL  
t
t
SP HD  
V
OH  
A/DQ[15:0]  
(WRITE)  
Valid  
Address  
Valid  
Input  
Valid  
Input  
Valid  
Valid  
Input  
Valid  
Input  
Input  
V
OL  
Burst Identified  
(ADV# = LOW)  
Undefined  
Don’t Care  
27  
Preliminary  
EMC326SP16AK  
2Mx16 CellularRAM AD-MUX  
Operating Mode (BCR[15]) Default = Asynchronous Operation  
The operating mode bit selects either synchronous burst operation or the default asynchronous mode of operation.  
REFRESH CONFIGURATION REGISTER  
The refresh configuration register (RCR) defines how the CellularRAM device performs its transparent self refresh. Altering the refresh  
parameters can dramatically reduce current consumption during standby mode. Figure 19 describes the control bits used in the RCR. At  
power-up, the RCR is set to 0010h. The RCR is accessed with CRE HIGH and A[19:18] = 00b; or through the register access software  
sequence with A/DQ = 0000h on the third cycle.  
Figure 19: Refresh Configuration Register Mapping  
A[20]  
A[19:18]  
A[17:16]  
A/DQ  
[15:7]  
A/DQ  
6
A/DQ  
5
A/DQ  
4
A/DQ  
3
A/DQ  
2
A/DQ  
1
A/DQ  
0
20  
19-18  
17-16  
15~7  
6
5
4
3
2
1
0
Register  
Select  
Reserved  
Reserved  
Reserved  
Ignored  
Reserved  
PAR  
Setting is ignored  
(Default 001b)  
All must be set to “0”  
Must be set to “0”  
All must be set to “0”  
RCR[19] RCR[18]  
Register Select  
Select RCR  
RCR[2]  
RCR[1]  
RCR[0]  
Refresh Coverage  
Full array (default)  
Bottom 1/2 array  
Bottom 1/4 array  
Bottom 1/8 array  
None of array  
0
1
0
0
0
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Select BCR  
Select DIDR  
Top 1/2 array  
Top 1/4 array  
Top 1/8 array  
Note: 1. Reserved bits must be set to zero. Reserved bits not set to zero will affect device functionality. RCR[15:0] will be read back as written.  
28  
Preliminary  
EMC326SP16AK  
2Mx16 CellularRAM AD-MUX  
Partial Array Refresh (RCR[2:0] Default = Full Array Refresh)  
The PAR bits restrict refresh operation to a portion of the total memory array. This feature allows the device to reduce standby current by  
refreshing only that part of the memory array required by the host system. The refresh options are full array, one-half array, one-quarter  
array, one-eighth array, or none of the array. The mapping of these partitions can start at either the beginning or the end of the address  
map(See Table 7 and Table 8).  
Table 7: Address Patterns for PAR (RCR[4] = 1)  
RCR[2]  
RCR[1]  
RCR[0]  
Active Section  
Full Die  
Address Space  
000000h-1FFFFFh  
000000h-0FFFFFh  
000000h-07FFFFh  
000000h-03FFFFh  
0
Size  
Density  
32Mb  
16Mb  
8Mb  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
2 Meg x 16  
1 Meg x 16  
512 K x 16  
256 K x 16  
0 Meg x 16  
1 Meg x 16  
512 K x 16  
256 K x 16  
One-half die  
One-quarter of die  
One-eighth of die  
None of die  
4Mb  
0Mb  
One-half of die  
One-quarter of die  
One-eighth of die  
100000h-1FFFFFh  
180000h-1FFFFFh  
1C0000h-1FFFFFh  
16Mb  
8Mb  
4Mb  
Device Identification Register  
The DIDR provides information on the device manufacturer, CellularRAM generation, and the specific device configuration. Table 8  
describes the bit fields in the DIDR. This register is read-only. The DIDR is accessed with CRE HIGH and A[19:18] = 01b, or through the  
register access software sequence with A/DQ = 0002h on the third cycle.  
Table 8: Device Identification Register Mapping  
Bit Field  
DIDR[15]  
DIDR[14:11]  
Device version  
Bit  
DIDR[10:8]  
Device density  
Bit  
DIDR[7:5]  
DIDR[4:0]  
Field name  
Row Length  
CellularRAM generation  
Vendor ID  
Bit  
Setting  
Bit  
Generation  
Bit  
Setting  
Length  
Version  
Density  
Vendor  
EMLSI  
Setting  
Setting  
Setting  
Options  
128 words  
0b  
2nd  
0001b  
32Mb  
001b  
CR 1.5  
010b  
01010b  
29  
Preliminary  
EMC326SP16AK  
2Mx16 CellularRAM AD-MUX  
ELECTRICAL CHARACTERISTICS  
Table 9: Absolute Maximum Ratings  
Parameter  
Rating  
-0.3V to VccQ + 0.3V  
-0.2V to +2.45V  
-0.2V to +2.45V  
-55°C to +150°C  
-30°C to +85°C  
+260°C  
Voltage to any pin except Vcc, VccQ relative to Vss  
Voltage on Vcc supply relative to Vss  
Voltage on VccQ supply relative to Vss  
Storage temperature (plastic)  
Operating temperature (case) Wireless  
Soldering temperature and time: 10s (solder ball only)  
Stresses greater than those listed may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these  
or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect reliability.  
Table 10: Electrical Characteristics and Operating Conditions  
Wireless Temperature (-30°C < TC < +85°C)  
Description  
Conditions  
Symbol  
Min  
1.7  
Max  
1.95  
1.95  
Unit Notes  
V
Supply voltage  
V
V
CC  
V
I/O supply voltage  
Input high voltage  
Input low voltage  
Output high voltage  
Output low voltage  
Input leakage current  
Output leakage current  
Operating current  
1.7  
CCQ  
V
V
- 0.4  
V
+ 0.2  
CCQ  
V
V
1
2
3
3
IH  
CCQ  
V
-0.20  
0.4  
IL  
OH  
OL  
LI  
I
I
= -0.2mA  
= +0.2mA  
V
0.80 X V  
V
OH  
CCQ  
V
I
0.20 X V  
V
OL  
CCQ  
V
= 0 to V  
CCQ  
1
1
µA  
µA  
IN  
OE# = V or chip disabled  
IH  
I
LO  
Conditions  
Symbol  
Typ  
Max  
Unit Notes  
Asynchronous random  
READ/WRITE  
I
I
1
70ns  
25  
mA  
4
CC  
133MHz  
104MHz  
83MHz  
40  
35  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
µA  
µA  
µA  
Initial access,  
burst READ/WRITE  
2
4
CC  
30  
133MHz  
104MHz  
83MHz  
35  
V
= V  
or 0V chip enabled, I  
= 0  
OUT  
IN  
CCQ  
I
3R  
Continuous burst READ  
Continuous burst WRITE  
30  
4
4
CC  
25  
133MHz  
104MHz  
83MHz  
40  
I
3W  
35  
CC  
30  
Standard  
Low Power  
140  
120  
V
= V  
or 0V, CE# = V  
I
SB  
Standby current  
Note:  
TBD  
5, 6  
IN  
CCQ  
CCQ  
Low-Low Power  
100  
1. Input signals may overshoot to VCCQ + 1.0V for periods less than 2ns during transitions.  
2. Input signals may undershoot to VSS - 1.0V for periods less than 2ns during transitions.  
3. BCR[5:4] = 01b (default setting of one-half drive strength).  
4. This parameter is specified with the outputs disabled to avoid external loading effects. The user must add the current required to drive output  
capacitance expected in the actual system.  
5. I (max) values measured with PAR set to FULL ARRAY and at +85°C. In order to achieve low standby current, all inputs must be driven to  
SB  
either VCCQ or VSS. I might be slightly higher for up to 500ms after power-up, or when entering standby mode.  
SB  
6. I (typ) is the average I at 25°C and VCC = VCCQ = 1.8V. This parameter is verified during characterization, and is not 100% tested.  
SB  
SB  
30  
Preliminary  
EMC326SP16AK  
2Mx16 CellularRAM AD-MUX  
Table 11: Capacitance  
Description  
Conditions  
Symbol  
Min  
Max  
Unit Notes  
C
Input Capacitance  
2.0  
6
pF  
1
IN  
Tc = = +25°C; f = 1 MHz;  
C
Input/Output  
Capacitance(A/DQ)  
V
= 0V  
IO  
IN  
3.0  
6.5  
pF  
1
Note: 1. These parameters are verified in device characterization and are not 100% tested.  
Figure 20: AC Input/Output Reference Waveform  
VccQ  
2
1
3
VccQ/2  
Test Points  
Output  
Input  
VccQ/2  
VssQ  
Note:  
1. AC test inputs are driven at VCCQ for a logic 1 and VSSQ for a logic 0. Input rise and fall times (10% to 90%) <1.6ns.  
2. Input timing begins at VCCQ/2.  
3. Output timing ends at VCCQ/2.  
Figure 21: AC Output Load Circuit  
Test Points  
50  
VccQ/2  
DUT  
30pF  
Note: All tests are performed with the outputs configured for default setting of half drive strength (BCR[5:4] = 01b).  
31  
Preliminary  
EMC326SP16AK  
2Mx16 CellularRAM AD-MUX  
TIMING REQUIREMENTS  
Table 12: Asynchronous READ Cycle Timing Requirements  
All tests performed with outputs configured for default setting of half drive strength, (BCR[5:4] = 01b).  
Parameter  
Symbol  
Min  
Max  
70  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Notes  
t
Address access time  
AA  
t
ADV# access time  
70  
AADV  
t
Address hold from ADV# HIGH  
Address setup to ADV# HIGH  
LB#/UB# access time  
2
5
AVH  
t
AVS  
t
70  
7
BA  
t
LB#/UB# disable to DQ High-Z output  
Chip select access time  
1
1
BHZ  
t
70  
CO  
t
CE# LOW to ADV# HIGH  
Chip disable to DQ and WAIT High-Z output  
Output enable to valid output  
OE# LOW to WAIT valid  
7
1
CVS  
t
7
20  
7.5  
8
HZ  
t
OE  
t
OEW  
t
Output disable to DQ High-Z output  
Output enable to Low-Z output  
ADV# pulse width  
1
2
OHZ  
t
3
5
OLZ  
t
VP  
Note:  
1. The High-Z timings measure a 100mV transition from either V or V toward VccQ/2.  
OH  
OL  
2. The Low-Z timings measure a 100mV transition away from the High-Z (VccQ/2) level toward either V or V  
OH  
.
OL  
32  
Preliminary  
EMC326SP16AK  
2Mx16 CellularRAM AD-MUX  
Table 13: Burst READ Cycle Timing Requirements  
All tests performed with outputs configured for default setting of half drive strength, (BCR[5:4] = 01b).  
133MHz  
104MHz  
83MHZ  
Parameter  
Symbol  
Unit Notes  
Min  
Max  
Min  
Max  
Min  
Max  
t
Address access time (fixed latency)  
ADV# access time (fixed latency)  
Burst to READ access time (variable latency)  
CLK to output delay  
70  
70  
70  
70  
70  
70  
45  
9
ns  
ns  
ns  
ns  
ns  
ns  
AA  
t
AADV  
t
35.5  
5.5  
35.9  
7
ABA  
t
ACLK  
t
Address hold from ADV# HIGH(fixed latency)  
Burst OE# LOW to output delay  
2
5
2
5
2
6
AVH  
t
20  
20  
20  
BOE  
CE# HIGH between subsequent burst or mixed  
mode operations  
t
ns  
1
1
CBPH  
t
Maximum CE# pulse width  
CLK period  
4
4
4
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CEM  
t
7.5  
9.62  
12  
CLK  
t
Chip select access time (fixed latency)  
CE# setup time to active CLK edge  
Hold time from active CLK edge  
Chip disable to DQ and WAIT High-Z output  
CLK rise or fall time  
70  
70  
70  
CO  
t
2.5  
1.5  
3
2
4
2
CSP  
t
HD  
t
7
8
1.6  
7
8
1.8  
9
2
HZ  
t
1.2  
5.5  
KHKL  
t
CLK to WAIT valid  
2
2
3
2
2
4
KHTL  
t
Output HOLD from CLK  
2
3
KOH  
t
CLK HIGH or LOW time  
KP  
t
Output disable to DQ High-Z output  
Output enable to Low-Z output  
Setup time to active CLK edge  
7
8
8
2
3
OHZ  
t
3
2
3
3
3
3
OLZ  
t
SP  
Note:  
1. A refresh opportunity must be provided every t  
. A refresh opportunity is satisfied by either of the following two conditions: a) clocked CE#  
CEM  
HIGH, or b) CE# HIGH for longer than 15ns.  
2. The High-Z timings measure a 100mV transition from either V or V toward VccQ/2.  
OH  
OL  
3. The Low-Z timings measure a 100mV transition away from the High-Z (VccQ/2) level toward either V or V  
OH  
.
OL  
33  
Preliminary  
EMC326SP16AK  
2Mx16 CellularRAM AD-MUX  
Table 14: Asynchronous WRITE Cycle Timing Requirements  
Parameter  
Symbol  
Min  
0
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Notes  
t
Address and ADV# LOW setup time to WE# LOW  
Address HOLD from ADV# going HIGH  
Address setup to ADV# going HIGH  
Address valid to end of WRITE  
LB#/UB# select to end of WRITE  
CE# HIGH between subsequent async operations  
CE# LOW to ADV# HIGH  
AS  
t
2
AVH  
t
5
AVS  
t
70  
70  
5
AW  
t
BW  
t
CPH  
t
7
CVS  
t
Chip enable to end of WRITE  
Data HOLD from WRITE time  
Data WRITE setup time  
70  
0
CW  
t
DH  
t
20  
DW  
t
Chip disable to WAIT High-Z output  
ADV# pulse width  
7
1
HZ  
t
5
VP  
t
ADV# setup to end of WRITE  
WRITE to DQ High-Z output  
WRITE pulse width  
70  
VS  
t
8
1
2
WHZ  
t
45  
0
4000  
WP  
t
WRITE recovery time  
WR  
Note:  
1. The High-Z timings measure a 100mV transition from either V or V toward VccQ/2.  
OH  
OL  
2. WE# Low time must be limited to t  
(4µs).  
CEM  
34  
Preliminary  
EMC326SP16AK  
2Mx16 CellularRAM AD-MUX  
Table 15: Burst WRITE Cycle Timing Requirements  
133MHz  
104MHz  
83MHZ  
Parameter  
Symbol  
Unit Notes  
Min  
Max  
Min  
Max  
Min  
Max  
Address and ADV# LOW setup time  
to WE# LOW  
tAS  
0
2
5
0
2
5
0
ns  
ns  
ns  
1
t
Address HOLD from ADV# HIGH(fixed latency)  
2
AVH  
CE# HIGH between subsequent burst or  
mixed mode operations  
tCBPH  
6
2
2
tCEM  
tCLK  
tCSP  
tHD  
4
4
4
Maximum CE# pulse width  
Clock period  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
7.5  
2.5  
1.5  
9.62  
3
12  
4
CE# setup to CLK active edge  
Hold time from active CLK edge  
Chip disable to WAIT High-Z output  
CLK rise or fall time  
2
2
tHZ  
7
8
1.6  
7
8
1.8  
9
3
tKHKL  
tKHTL  
1.2  
5.5  
Clock to WAIT valid  
t
Output HOLD from CLK  
2
3
2
2
3
3
2
3
3
KOH  
tKP  
tSP  
CLK HIGH or LOW time  
Setup time to activate CLK edge  
Note:  
1. t required if t  
> 20ns.  
AS  
CSP  
2. A refresh opportunity must be provided every t  
HIGH, or b) CE# HIGH for longer than 15ns.  
. A refresh opportunity is satisfied by either of the following two conditions: a) clocked CE#  
CEM  
3. The High-Z timings measure a 100mV transition from either V or V toward VccQ/2.  
OH  
OL  
35  
Preliminary  
EMC326SP16AK  
2Mx16 CellularRAM AD-MUX  
TIMING DIAGRAMS  
Figure 22: Initialization Period  
Vcc(MIN)  
Vcc, VccQ = 1.7V  
Device ready for  
normal operation  
t
PU  
Table 16: Initialization Timing Parameters  
Parameter  
Symbol  
Min  
Max  
Unit  
Initialization period (required before normal operations)  
t
150  
µs  
PU  
Figure 23: Asynchronous READ  
V
V
IH  
IL  
A[20:16]  
Valid Address  
t
AA  
t
t
AVH  
AVS  
V
V
IH  
IL  
ADV#  
t
AADV  
t
t
VP  
t
HZ  
CVS  
V
IH  
IL  
CE# V  
t
CO  
t
BHZ  
OHZ  
t
BA  
V
IH  
IL  
LB#/UB#  
V
t
t
OE  
V
V
IH  
IL  
OE#  
V
V
IH  
IL  
t
OLZ  
WE#  
t
t
AVH  
AVS  
V
V
V
V
IH  
IL  
OH  
A/DQ[15:0]  
Valid address  
t
Valid Output  
OL  
AA  
t
HZ  
tOEW  
WAIT V  
High-Z  
High-Z  
OH  
OL  
V
Undefined  
Don’t Care  
36  
Preliminary  
EMC326SP16AK  
2Mx16 CellularRAM AD-MUX  
Figure 24: Single-Access Burst READ Operation - Variable Latency  
t
t
t
KP  
CLK  
KP  
V
IH  
IL  
CLK V  
t
KHKL  
t
t
SP  
HD  
V
IH  
IL  
Valid Address  
A[20:16]  
V
t
HD  
t
SP  
V
V
IH  
IL  
t
ADV#  
CE#  
HD  
t
CEM  
t
HZ  
t
t
CSP  
ABA  
V
V
V
V
V
V
V
V
IH  
IL  
IH  
IL  
IH  
IL  
IH  
IL  
t
OHZ  
t
BOE  
OE#  
t
t
t
OLZ  
SP  
HD  
WE#  
t
HD  
t
SP  
LB#/UB#  
A/DQ[15:0]  
t
t
t
ACLK  
t
KOH  
HD  
SP  
V
V
V
V
OH  
IH  
IL  
Valid  
Address  
Valid Output  
High-Z  
High-Z  
High-Z  
OL  
t
KOH  
V
V
OH  
OL  
High-Z  
WAIT  
t
KHTL  
t
KHTL  
READ Burst Identified  
(WE# = HIGH)  
Undefined  
Don’t Care  
1. Non-default BCR settings: Latency code two (three clocks); WAIT active LOW; WAIT asserted during delay.  
37  
Preliminary  
EMC326SP16AK  
2Mx16 CellularRAM AD-MUX  
Figure 25: 4-Word Burst READ Operation - Variable Latency  
t
t
t
t
KP  
KHKL  
CLK  
KP  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
IH  
IL  
IH  
IL  
IH  
IL  
IH  
IL  
IH  
IL  
IH  
IL  
CLK  
A[20:16]  
ADV#  
CE#  
t
t
HD  
SP  
Valid Address  
t
HD  
t
SP  
t
t
ABA  
t
t
CBPH  
CSP  
HD  
t
CEM  
t
HZ  
t
BOE  
OE#  
t
OHZ  
t
t
t
HD  
OLZ  
SP  
WE#  
t
HD  
t
SP  
IH  
IL  
LB#/UB#  
t
t
t
t
KOH  
ACLK  
HD  
SP  
V
V
OH  
OL  
Note 3  
High-Z  
IH  
IL  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
address  
A/DQ[15:0]  
t
KOH  
Note 2  
High-Z  
OH  
OL  
High-Z  
WAIT  
t
KHTL  
t
KHTL  
READ Burst Identified  
(WE# = HIGH)  
Undefined  
Don’t Care  
Notes :  
1. Non-default BCR settings: Latency code two (three clocks); WAIT active LOW; WAIT asserted during delay.  
2. WAIT Will remain de-asserted even if CE# remains LOW past the end of the defined burst length.  
3. A/DQ[15:0] will output undefined data if CE# remains LOW past the end of the defined burst length.  
38  
Preliminary  
EMC326SP16AK  
2Mx16 CellularRAM AD-MUX  
Figure 26: Single-Access Burst READ Operation - Fixed Latency  
t
t
KP  
t
CLK  
KP  
V
V
V
V
IH  
IL  
CLK  
t
t
KHKL  
SP  
IH  
IL  
A[20:16]  
Valid Address  
t
AVH  
t
AA  
t
t
HD  
SP  
V
V
IH  
IL  
ADV#  
t
t
AADV  
HD  
t
CEM  
t
HZ  
t
CSP  
V
V
V
V
V
V
V
V
IH  
IL  
IH  
IL  
IH  
IL  
CE#  
OE#  
t
CO  
t
OHZ  
t
BOE  
t
OLZ  
t
t
SP  
HD  
WE#  
t
t
SP  
HD  
IH  
IL  
UB#/LB#  
t
t
AVH  
t
t
ACLK  
SP  
KOH  
Valid Output  
KOH  
V
V
V
IH  
IL  
OH  
Valid Address  
High-Z  
High-Z  
A/DQ[15:0]  
V
OL  
t
V
OH  
OL  
High-Z  
WAIT  
V
t
KHTL  
t
KHTL  
READ Burst Identified  
(WE# = HIGH)  
Undefined  
Don’t Care  
1. Non-default BCR settings: Fixed latency; latency code four (five clocks); WAIT active LOW; WAIT asserted during delay.  
39  
Preliminary  
EMC326SP16AK  
2Mx16 CellularRAM AD-MUX  
Figure 27: 4-Word Burst READ Operation - Fixed Latency  
t
t
t
t
KP  
KHKL  
CLK  
KP  
V
V
V
V
IH  
CLK  
IL  
t
SP  
IH  
IL  
A[20:16]  
Valid Address  
t
AVH  
t
AA  
t
HD  
t
V
V
SP  
IH  
ADV#  
IL  
t
AADV  
t
CEM  
t
t
CBPH  
HD  
t
CSP  
V
V
V
V
V
V
V
V
IH  
IL  
IH  
IL  
IH  
IL  
CE#  
OE#  
t
HZ  
t
CO  
t
BOE  
t
OHZ  
t
OLZ  
t
t
HD  
SP  
WE#  
t
HD  
t
SP  
IH  
IL  
UB#/LB#  
t
t
KOH  
ACLK  
t
t
AVH  
SP  
V
V
V
OH  
OL  
Note 3  
High-Z  
IH  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
address  
A/DQ[15:0]  
WAIT  
V
V
IL  
t
KOH  
OH  
Note 2  
High-Z  
High-Z  
V
OL  
tKHTL  
tKHTL  
READ Burst Identified  
(WE# = HIGH)  
Undefined  
Don’t Care  
Notes :  
1. Non-default BCR settings: Fixed latency; latency code two (three clocks); WAIT active LOW; WAIT asserted during delay.  
2. WAIT will remain de-asserted even if CE# remains LOW past the end of the defined burst length.  
3. A/DQ[15:0] will output undefined data if CE# remains LOW past the end of the defined burst length.  
40  
Preliminary  
EMC326SP16AK  
2Mx16 CellularRAM AD-MUX  
Figure 28: Burst READ Terminate at End-of-Row (Wrap Off)  
VIH  
CLK  
VIL  
t
CLK  
VIH  
VIL  
VIH  
VIL  
VIH  
A[20:16]  
ADV#  
UB#/LB# V  
IL  
t
t
CSP  
HD  
Note 2  
VIH  
VIL  
VIH  
CE#  
OE# V  
IL  
VIH  
VIL  
WE#  
End of row  
A/DQ[15:0]V  
OH  
Valid  
Output  
Valid  
Output  
VOL  
t
t
HZ  
HZ  
t
KHTL  
VOH  
VOL  
WAIT  
High-Z  
t
KOH  
Undefined  
Don’t Care  
Notes :  
1. Non-default BCR settings for burst READ at end of row : fixed or variable latency, WAIT active LOW; WAIT asserted during delay.  
2. For burst READs, CE# must go HIGH before the second CLK after the WAIT period begins ( befor the second CLK after WAIT asserts with BCR[8]=0, or  
before the third CLK after WAIT asserts with BCR[8]=1 ).  
41  
Preliminary  
EMC326SP16AK  
2Mx16 CellularRAM AD-MUX  
Figure 29: Burst READ Row Boundary Crossing  
V
V
V
IH  
IL  
CLK  
A[20:16]  
ADV#  
t
CLK  
IH  
V
V
IL  
IH  
V
IL  
V
V
IH  
IL  
UB#/LB#  
CE#  
V
V
V
V
V
V
IH  
IL  
IH  
IL  
IH  
IL  
OE#  
WE#  
End of row  
Valid output  
t
t
HD  
SP  
V
V
OH  
OL  
Valid output  
A/DQ[15:0]  
WAIT  
Valid output  
Valid out  
t
t
KTHL  
KTHL  
V
OH  
Note 2  
V
OL  
t
KOH  
t
KOH  
Don’t Care  
Note:  
1. Nondefault BCR settings for burst READ at end of row : fixed or variable latency, WAIT active LOW, WAIT asserted during delay. (shown as  
solid line)  
2. WAIT will be assert for LC or LC + 1 cycles for variables latency, or LC cycles for fixed latency.  
42  
Preliminary  
EMC326SP16AK  
2Mx16 CellularRAM AD-MUX  
Figure 30: Asynchronous WRITE  
V
V
IH  
Valid Address  
A[20:16]  
ADV#  
IL  
t
t
AVS  
AVH  
t
VS  
t
VP  
V
V
IH  
t
t
AS  
t
AW  
IL  
AS  
t
CW  
V
V
V
V
V
V
V
V
t
IH  
IL  
IH  
IL  
IH  
IL  
IH  
IL  
CVS  
CE#  
UB#/LB#  
OE#  
t
BW  
t
WP  
t
WE#  
A/DQ[15:0]  
WAIT  
AS  
t
t
t
t
DH  
AVS  
AVH  
DW  
V
IH  
Valid Address  
Valid Input  
V
IL  
V
V
t
OH  
OL  
AW  
High-Z  
Don’t Care  
43  
Preliminary  
EMC326SP16AK  
2Mx16 CellularRAM AD-MUX  
Figure 31: Burst WRITE Operation - Variable Latency Mode  
t
t
t
KP  
t
KHKL  
CLK  
KP  
V
V
V
V
V
V
IH  
IL  
CLK  
A[20:16]  
ADV#  
t
t
HD  
SP  
IH  
IL  
IH  
IL  
Valid Address  
3
3
t
t
AS  
t
t
SP  
HD  
AS  
t
SP  
t
HD  
V
IH  
UB#/LB#  
CE#  
V
V
IL  
t
t
HD  
CBPH  
t
CSP  
t
CEM  
IH  
IL  
Note4  
V
V
V
V
V
IH  
IL  
IH  
IL  
OE#  
WE#  
t
t
SP  
HD  
3
t
t
t
t
HD  
AS  
HD  
SP  
V
IH  
IL  
A/DQ[15:0]  
Valid Address  
D1  
D2  
D3  
D0  
V
t
t
KHTL  
HZ  
t
t
SP  
KHTL  
V
V
OH  
OL  
WAIT  
High-Z  
High-Z  
Note 2  
t
KOH  
WRITE Burst Identified  
(WE# = Low)  
Don’t Care  
Note:  
1. Nondefault BCR settings for burst WRITE operation in variable latency mode: latency code 2 (3 clocks), WAIT active LOW, WAIT asserted  
during delay, burst length 4, burst wrap enabled.  
2. WAIT asserts for LC cycles for both fixed and variable latency. LC = latency code (BCR[13:11]).  
t
t
3. AS required if CSP > 20ns.  
4. CE# must go HIGH before any clock edge following the last word of a defined-length burst.  
44  
Preliminary  
EMC326SP16AK  
2Mx16 CellularRAM AD-MUX  
Figure 32: Burst WRITE Operation - Fixed Latency Mode  
t
t
t
KP  
t
KHKL  
CLK  
KP  
V
V
V
V
V
V
V
V
V
V
V
V
IH  
IL  
CLK  
A[20:16]  
ADV#  
t
SP  
IH  
IL  
IH  
IL  
IH  
IL  
IH  
IL  
IH  
IL  
Valid Address  
3
3
t
t
t
AS  
AVH  
t
t
SP  
HD  
AS  
t
SP  
t
HD  
UB#/LB#  
CE#  
t
t
CBPH  
HD  
t
CSP  
t
CEM  
Note 4  
OE#  
t
t
HD  
SP  
V
V
V
V
IH  
IL  
IH  
IL  
WE#  
A/DQ[15:0]  
WAIT  
t
t
HD  
t
3
SP  
AVH  
t
AS  
Valid Address  
t
D1  
D2  
D3  
D0  
t
t
KHTL  
t
HZ  
SP  
KHTL  
V
V
OH  
OL  
High-Z  
High-Z  
Note2  
t
KOH  
Don’t Care  
WRITE Burst Identified  
(WE# = LOW)  
Note:  
1. Nondefault BCR settings for burst WRITE operation in fixed latency mode: fixed latency, latency code 2(3 clocks), WAIT active LOW,  
WAIT asserted during delay, burst length 4, burst wrap enabled.  
2. WAIT asserts for LC cycles for both fixed and variable latency. LC = latency code (BCR[13:11]).  
t
t
3. AS required if CSP > 20ns.  
4. CE# must go HIGH before any clock edge following the last word of a defined-length burst.  
45  
Preliminary  
EMC326SP16AK  
2Mx16 CellularRAM AD-MUX  
Figure 33: Burst WRITE Terminate at End-of-Row (Wrap Off)  
VIH  
CLK  
VIL  
t
CLK  
VIH  
VIL  
VIH  
VIL  
VIH  
VIL  
VIH  
A[20:16]  
ADV#  
UB#/LB#  
t
t
HD  
CSP  
Note 2  
CE# V  
IL  
VIH  
OE#  
VIL  
VIH  
VIL  
VIH  
VIL  
WE#  
A/DQ[15:0]  
WAIT  
t
t
HD  
SP  
Valid  
Intput  
Valid  
Intput  
t
t
HZ  
HZ  
End of row  
VOH  
VOL  
High-Z  
t
t
KOH  
KHTL  
Don’t Care  
Note:  
1. Nondefault BCR settings for burst WRITE at end of row: fixed or variable latency, WAIT active LOW, WAIT asserted during delay.  
(shown as solid line)  
2. For burst WRITEs, CE# must go HIGH before the second CLK after the WAIT period begins(befor the second CLK after WAIT asserts with  
BCR[8]=0, or before the third CLK after WAIT asserts with BCR[8]=1).  
46  
Preliminary  
EMC326SP16AK  
2Mx16 CellularRAM AD-MUX  
Figure 34: Burst WRITE Row Boundary Crossing  
V
V
V
V
IH  
IL  
CLK  
t
CLK  
IH  
IL  
A[20:16]  
V
V
IH  
IL  
ADV#  
V
V
V
V
IH  
IL  
IH  
IL  
UB#/LB#  
CE#  
V
V
V
V
IH  
IL  
IH  
IL  
OE#  
WE#  
End of row  
Valid input  
KTHL  
t
t
HD  
SP  
V
IH  
IL  
A/DQ[15:0] V  
Valid input  
Valid input  
Valid output  
Valid output  
t
t
KTHL  
V
V
OH  
OL  
WAIT  
t
KOH  
t
KOH  
Note 2  
Don’t Care  
Note:  
1. Nondefault BCR settings for burst WRITE at end of row : Fixed or variable latency, WAIT active LOW, WAIT asserted during delay. (shown as  
solid line)  
2. WAIT will be assert for LC or LC + 1 cycles for variables latency, or LC cycles for fixed latency.  
47  
Preliminary  
EMC326SP16AK  
2Mx16 CellularRAM AD-MUX  
Figure 35: Burst WRITE Followed by Burst READ  
t
CLK  
VIH  
VIL  
VIH  
VIL  
VIH  
VIL  
VIH  
VIL  
VIH  
VIL  
VIH  
VIL  
CLK  
t
t
t
t
SP HD  
SP HD  
Valid  
Valid  
A[20:16]  
Address  
Address  
t
t
SP HD  
t
t
SP HD  
ADV#  
t
HD  
t
SP  
UB#/LB#  
CE#  
t
t
t
HD CBPH  
CSP  
Note 2  
t
t
OHZ  
CSP  
OE#  
t
t
t
t
SP  
HD  
SP HD  
VIH  
VIL  
VIH  
VIL  
WE#  
A/DQ[15:0]  
WAIT  
t
t
t
t
t
KOH  
SP HD  
t
SP  
BOE  
t
t
HD  
SP HD  
VOH  
VOL  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
D0  
D1  
D2  
D3  
Address  
VOH  
VOL  
t
ACLK  
High-Z  
High-Z  
Undefined  
Don’t Care  
Note:  
1. Nondefault BCR settings for burst WRITE followed by burst READ: fixed or variable latency, latency code 2 (3 clocks), WAIT active LOW,  
WAIT asserted during delay.  
t
2. A refresh opportunity must be provided every CEM. A refresh opportunity is satisfied by either of the following two conditions: a) clocked CE#  
HIGH, or b) CE# HIGH for longer than 15ns.  
48  
Preliminary  
EMC326SP16AK  
2Mx16 CellularRAM AD-MUX  
Figure 36: Asynchronous WRITE Followed by Burst READ  
t
CLK  
VIH  
CLK  
VIL  
t
t
HD  
SP  
VIH  
Valid Address  
Valid Address  
A[20:16]  
VIL  
t
t
AVH  
AVS  
t
t
t
HD  
SP  
VIH  
VIL  
t
VP  
ADV#  
t
t
AS  
HD  
t
BW  
SP  
VIH  
VIL  
UB#/LB#  
CE#  
t
t
CSP  
CBPH  
t
VIH  
VIL  
VIH  
VIL  
CW  
Note 2  
t
OHZ  
OE#  
WE#  
t
t
t
SP HD  
WP  
VIH  
VIL  
t
WC  
t
BOE  
t
t
t
SP  
HD  
AS  
VOH  
VOL  
VIH  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Data  
Valid Address  
Valid Address  
t
A/DQ[15:0] V  
IL  
t
t
t
DH  
AVS  
DW  
t
AVH  
ACLK  
VOH  
VOL  
t
KHTL  
tKOH  
WAIT  
High-Z  
Undefined  
Don’t Care  
Note:  
1. Nondefault BCR settings for asynchronous WRITE, with ADV# LOW, followed by burst READ: fixed or variable latency, latency code 2 (3 clocks),  
WAIT active LOW, WAIT asserted during delay.  
2. When the divice is transitioning between asynchronous and variable-latency burst operations, CE# must go HIGH. CE# can stay LOW when the  
t
device is transitioning to fixed-latency burst READs. A refresh opportunity must be provided every CEM. A refresh opportunity is satisfied by  
either of the following two conditions: a) clocked CE# HIGH, or b) CE# HIGH for longer than 15ns.  
49  
Preliminary  
EMC326SP16AK  
2Mx16 CellularRAM AD-MUX  
Figure 37: Burst READ Followed by Asynchronous WRITE  
t
CLK  
V
V
V
V
IH  
IL  
CLK  
t
t
HD  
SP  
IH  
IL  
Valid Address  
Valid Address  
A[20:16]  
t
t
AVH  
AVS  
t
VS  
t
t
HD  
t
SP  
VP  
V
V
IH  
IL  
ADV#  
t
AS  
t
AW  
t
t
CBPH  
HD  
t
t
CSP  
CW  
V
V
V
V
V
V
V
V
V
V
IH  
IL  
IH  
IL  
IH  
IL  
CE#  
OE#  
t
HZ  
Note 2  
t
OHZ  
t
BOE  
t
t
t
t
t
t
WPH  
AS  
SP  
HD  
OLZ  
WP  
WE#  
t
t
t
HD  
BW  
t
SP  
IH  
IL  
UB#/LB#  
t
AS  
t
t
t
HD  
t
t
KOH  
t
SP  
ACLK  
t
DW  
DH  
AVS  
AVH  
VOH  
VOL  
VIH  
VIL  
IH  
IL  
Valid Address  
Valid Address  
Valid Output  
Valid Input  
A/DQ[15:0]  
WAIT  
t
KOH  
V
V
OH  
OL  
High-Z  
High-Z  
t
KHTL  
t
KHTL  
Undefined  
Don’t Care  
READ Burst Identified  
(WE# = HIGH)  
Notes:  
1. Nondefault BCR settings for burst READ followed by asynchronous WRITE using ADV#: fixed or variable latency, latency code 2 (3 clocks),  
WAIT active LOW, WAIT asserted during delay.  
2. When the device is transitioning between asynchronous and variable-latency burst operations, CE# must go HIGH. CE# can stay LOW  
when the device is transitioning from fixed-latency burst READs; asynchronous operation begins at the falling edge of ADV#. A refresh opportunity  
t
must be provided every CEM. A refresh opportunity is satisfied by either of the following two conditions: a) clocked CE# HIGH, or b) CE# HIGH  
for longer than 15ns.  
50  
Preliminary  
EMC326SP16AK  
2Mx16 CellularRAM AD-MUX  
Figure 38: Asynchronous WRITE Followed by Asynchronous READ  
VIH  
Valid Address  
t
Valid Address  
A[20:16]  
VIL  
t
t
t
AVS  
AVH  
AVH  
AVS  
t
AA  
t
AS  
t
t
AW  
VS  
t
AADV  
VIH  
VIL  
tVP  
tVP  
t
ADV#  
WR  
t
AS  
t
t
BHZ  
CVS  
t
BA  
VIH  
VIL  
VIH  
VIL  
VIH  
VIL  
t
BW  
UB#/LB#  
CE#  
t
t
HZ  
t
CPH  
CO  
t
CVS  
t
CW  
Note 1  
t
OHZ  
t
OLZ  
t
OE  
OE#  
t
WP  
WE#V  
IH  
VIL  
t
AS  
t
AA  
t
AW  
VIH  
VIL  
VOH  
VOL  
Valid Address  
t
Valid Address  
A/DQ[15:0]  
WAIT  
Valid Input  
t
V
alid Output  
t
t
t
t
t
AVH  
AVS  
AVS  
AVH  
HZ  
DS  
DH  
t
OEZ  
VOH  
VOL  
High-Z  
Undefined  
Don’t Care  
Note:  
t
1. When configured for synchronous mode (BCR[15] = 0), CE# must remain HIGH for at least 5ns ( CPH) to schedule the appropriate refresh  
t
interval. Otherwise, CPH is only required after CE#-controlled WRITEs.  
51  
Preliminary  
EMC326SP16AK  
2Mx16 CellularRAM AD-MUX  
MEMORY FUNCTION GUIDE  
EM X XX X X X XX X X X - XX XX  
1. EMLSI Memory  
2. Device Type  
3. Density  
12. Power  
11. Speed  
10. PKG  
4. Function  
9. Option  
5. Technology  
8. Version  
6. Operating Voltage  
1. Memory Component  
7. Organization  
8. Version  
Blank ----------------- Mother die  
A ----------------------- 2’nd generation  
B ----------------------- 3’rd generation  
C ----------------------- 4’th generation  
D ----------------------- 5’th generation  
2. Device Type  
6 ---------------------- Low Power SRAM  
7 ---------------------- STRAM  
C ---------------------- CellularRAM  
9. Option  
3. Density  
Blank ---- No optional mode  
4 ----------------------- 4M  
8 ----------------------- 8M  
16 --------------------- 16M  
32 --------------------- 32M  
64 --------------------- 64M  
28 --------------------- 128M  
H ----------- Demultiplexed with DPD  
J ------------ Demultiplexed with DPD & RBC  
K ------------ Multiplexed with RBC  
L ------------ Multiplexed with DPD & RBC  
10. Package  
Blank ---------------------- Wafer  
4. Function  
S
T
U
P
Z
Y
V
---------------------- 32 sTSOP1  
---------------------- 32 TSOP1  
---------------------- 44 TSOP2  
---------------------- 48 FPBGA  
---------------------- 52 FPBGA  
---------------------- 54 FPBGA  
---------------------- 90 FPBGA  
2 ----Multiplexed async.  
3-----Demultiplexed async. with page mode  
4-----Demultiplexed async. with direct DPD  
5-----Multiplexed sync.  
6-----Optional mux/demuxed sync.  
5. Technology  
S ----------------------- Single Transistor & Trench Cell  
11. Speed (@async.)  
45 ---------------------- 45ns  
55 ---------------------- 55ns  
70 ---------------------- 70ns  
85 ---------------------- 85ns  
90 ---------------------- 90ns  
10 --------------------- 100ns  
12 --------------------- 120ns  
6. Operating Voltage  
V ----------------------- 3.3V  
U ----------------------- 3.0V  
S ----------------------- 2.5V  
R ----------------------- 2.0V  
P ----------------------- 1.8V  
L ----------------------- 1.5V  
7. Organization  
12. Power  
8 ---------------------- x8 bit  
16 ---------------------- x16 bit  
32 ---------------------- x32 bit  
LL ---------------------- Low Low Power  
LF ---------------------- Low Low Power  
(Pb-Free&Green)  
L ---------------------- Low Power  
52  

相关型号:

EMC326SP16AKU-85LL

2Mx16 bit CellularRAM AD-MUX
EMLSI

EMC326SP16AKU-90L

2Mx16 bit CellularRAM AD-MUX
EMLSI

EMC326SP16AKU-90LF

2Mx16 bit CellularRAM AD-MUX
EMLSI

EMC326SP16AKU-90LL

2Mx16 bit CellularRAM AD-MUX
EMLSI

EMC326SP16AKV-10L

2Mx16 bit CellularRAM AD-MUX
EMLSI

EMC326SP16AKV-10LF

2Mx16 bit CellularRAM AD-MUX
EMLSI

EMC326SP16AKV-10LL

2Mx16 bit CellularRAM AD-MUX
EMLSI

EMC326SP16AKV-12L

2Mx16 bit CellularRAM AD-MUX
EMLSI

EMC326SP16AKV-12LF

2Mx16 bit CellularRAM AD-MUX
EMLSI

EMC326SP16AKV-12LL

2Mx16 bit CellularRAM AD-MUX
EMLSI

EMC326SP16AKV-45L

2Mx16 bit CellularRAM AD-MUX
EMLSI

EMC326SP16AKV-45LF

2Mx16 bit CellularRAM AD-MUX
EMLSI