PBA3357/3 [ERICSSON]

PCM Codec, 2-Func, PDIP49, 34.40 X 71.10 MM, DIP-56/49;
PBA3357/3
型号: PBA3357/3
厂家: ERICSSON    ERICSSON
描述:

PCM Codec, 2-Func, PDIP49, 34.40 X 71.10 MM, DIP-56/49

PC 电信 光电二极管 电信集成电路
文件: 总16页 (文件大小:121K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
April 1997  
PBA 3357/3  
Dual Channel Complete Line  
Interface Circuit, DCLIC  
Description  
Key Features  
The PBA 3357/3 is a Dual Channel Complete Line Interface Circuit (DCLIC)  
manufactured in thick-film technology.  
Constant Current  
DC performance at VBAT=-40,0 V  
The PBA 3357/3 Dual CLIC consists of two Ericsson SLIC´s, two Combo 1 Codecs  
and all other necessary components to interface two seperate analogue extensions to  
the PCM highway.  
ILDC=min 17.3 mA at RLOOP=1800  
Two Software programmable receive  
gain ranges: (-3.5/-7.0) or  
(0/-3.5) dBr. Software receive  
gain range is selectable via  
hardware wiring  
Simple serial control interface, 8 bit  
50  
GV1A  
Controlled Power-on state:  
Open circuit, Receive channel off  
and all realys inactive  
5
6
51  
56  
52  
54  
55  
53  
RT A  
C
GV2A  
TSXA  
FSA  
RingTrip  
Net w ork  
RTRIPA  
SLIC  
A
9
8
RINGXA  
TIPXA  
Polarity reversal  
v
Recei e  
COMBO  
A
MCLKA  
DXA  
Gain  
7
Receive channel can be turned off  
On-Hook Transmission  
RRLYA  
Receive  
Channel  
On/Off  
Relay  
Driver  
14  
TESTRLYA  
DRA  
48  
Three relay drivers/line;  
a total of six relay drivers  
DETA  
44  
18  
45  
16  
SCLKA  
SDIB  
Terminating impedance  
ZTR=200 + (680 // 100 nF)  
LCLKA  
15  
42  
Relay  
Driver  
Control  
RLYA  
RLYB  
Longitudinal balance; typ 60 dB  
Nominal VBAT= - 48 V  
SCLKB  
LCLKB  
Interface 17  
Relay  
Driver  
(ASIC)  
46  
SDIA  
Few additional external  
componets needed  
Small physical size: 34.4 x 71.1 mm  
20  
DETB  
Receive  
Channel  
On/Off  
41  
39  
25  
27  
TESTRLYB  
RRLYB  
TIPXB  
DRB  
DXB  
Relay  
Driver  
COMBO  
26  
36  
37  
Receive  
Gain  
MCLKB  
FSB  
B
24  
SLIC  
RINGXB  
RTRIPB  
RTCB  
B
28  
34  
33  
Ring Trip  
TSXB  
GV2B  
GV1B  
Networ  
k
23  
22  
1,10,29,35,38  
GND  
2,30  
VEE  
VCC  
12,31  
4,11,32,40  
VBAT  
Figure 1: Block Diagram  
4-1  
PBA 3357/3  
Absolute Maximum Ratings  
Parameter  
Symbol  
Min  
Max  
Unit  
Temperature  
Storage temperature range  
Power Supply  
Tstg  
-40  
+125  
°C  
Positive Supply voltage with respect to Ground (GND)  
Negative Supply voltage with respect to Ground  
Battery voltage with respect to Ground  
VCC  
VEE  
VBAT  
-0,4  
-6,5  
-70  
+6,5  
+0,4  
+0,4  
V
V
V
Ring Relay Driver  
Relay Supply voltage  
Current  
VRRLY  
IRRLY  
VBAT  
VBAT  
-30  
VCC  
80  
V
mA  
Test Relay Driver  
Relay Supply voltage  
Current  
VTRLY  
ITRLY  
VCC  
80  
V
mA  
Additional Relay Driver  
Relay Supply voltage  
Current  
VRLY  
IRLY  
VCC  
70  
V
mA  
TIPX and RINGX terminals  
Voltage (each terminal), Continous (with respect to GND)  
Voltage (each terminal), Pulse tON < 10 ms. tREP>10 s, (Note 1)  
Voltage (each terminal), Pulse tON < 1 µs. tREP>10 s, (Note 1)  
Voltage (each terminal), Pulse tON < 250 ns. tREP>10 s, (Note 1)  
Current (each terminal)  
VTA, VRA  
VTA, VRA  
VTA, VRA  
VTA, VRA -120  
IDCMET  
-70  
-70  
-90  
1
5
10  
15  
105  
V
V
V
V
mA  
-105  
Recommended Operating Conditions  
Parameter  
Symbol  
Min  
Typical  
Max  
Unit  
Temperature  
Ambient temperature range, Operating  
Ambient temperature range, Test  
Tamb  
Tamb  
0
+70  
°C  
°C  
+23  
Power Supply  
Positive Supply voltage with respect to Ground (GND)  
Negative Supply voltage with respect to Ground  
Batteryvoltage with respect to Ground  
VCC  
VEE  
VBAT  
+4,75  
-5,25  
-56  
+5 +5,25  
-5 -4,75  
V
V
V
-48  
-44  
Electrical Characteristics  
Tamb = 0 - 70 °C, VCC= +5 V ± 5 %, VEE=-5 V ± 5 %, VBAT=-44 - -56 V, RLDC= 600 , ZN=200 + (680 //100 nF) See also fig 7  
Parameter  
Condition  
Min  
Typical  
Max  
Unit  
Battery Feed Characteristics  
Line Current  
Line Current  
Line Voltage  
RL 1800 Ω  
RL = 1800 , VBAT= -40V  
RL = ∞ Ω, VBAT= -48 V  
18,0  
17,3  
35  
28,0  
39  
mA  
mA  
V
Battery Feed Characteristics, Polarity Reversad  
Line Current  
Line Current  
Line Voltage  
RL 1800 Ω  
RL = 1800 , VBAT= -40V  
RL = ∞ Ω, VBAT= -48 V  
-28,0  
-39  
-18,0  
-17,3  
-35  
mA  
mA  
V
4-2  
PBA 3357/3  
Electrical Characteristics cont.  
Parameter  
Condition  
Min  
Typical  
Max  
Unit  
Loop Current Detector  
Loop Resistance RL  
Loop Resistance RL  
Loop Resistance RL  
Loop Resistance RL  
Off hook Detection delay time  
Dial Pulse Distortion, (Note 6)  
Active, DET output High ("1")  
Stand-by, DET output High ("1")  
Active, DET output Low ("0")  
Stand-by, DET output Low ("0")  
-
20  
20  
kΩ  
kΩ  
kΩ  
kΩ  
ms  
ms  
2,3  
2,3  
100  
10  
10 pulses/s,  
-10  
0
Period 1000 ± 100 ms, (Note 2)  
Ring Trip Detector, (Note 6)  
Delay time from Off hook ringing to  
detection. DET from High to Low  
DET minimum output low, "0" time  
RL = 1800 , URG= 60 V  
150  
ms  
ms  
-
20  
30  
Ring Relay Driver  
On-state Voltage  
IOL= 25 mA  
IOL= 25 mA  
(VCC-2,0) (VCC-1,8)  
(VCC-2,0) (VCC-1,8)  
(VCC-1,0)  
V
V
V
Test Relay Driver  
On-state Voltage  
Additonal Relay Driver  
On-state Voltage  
IOL= 25 mA  
Power Dissipation per Line  
VBAT = - 48 V  
Active (Off hook)  
Active (Off hook)  
Stand-By (On hook) (Note 5)  
Active (On hook), (Note 5)  
RL= 500 Ω  
RL= 0 Ω  
RL 20 kΩ  
RL 20 kΩ  
1300  
1600  
360  
mW  
mW  
mW  
mW  
400  
Gain, Absolute  
The absolute reference level at the  
2-wire interface, 0 dBm0  
P= 1mW, ZTR= 200+(680//100nF)  
f= 1014 Hz  
0,9008  
VRMS  
Transmit (A-D), Li=0,0 dBr  
Receive (D-A), Lo= 0,0 dBr  
Receive (D-A), Lo= -3,5 dBr  
Receive (D-A), Lo= -7,0 dBr  
Receive (D-A) cancellation  
f= 1014 Hz, Level: -10 dBm0  
f= 1014 Hz, Level: -10 dBm0  
f= 1014 Hz, Level: -10 dBm0  
f= 1014 Hz, Level: -10 dBm0  
f= 1014 Hz, Level: -10 dBm0  
-0,3  
-0,4  
-3,9  
-7,4  
0,0 +0,4  
0,0 +0,3  
dB  
dB  
dB  
dB  
dB  
-3,5  
-7,0  
-3,2  
-6,7  
-50  
Attenuation / Frequency Distortion  
Transmit connection (A-D)  
(CCITT Q552 3.1.1.5)  
Reference:  
f = 1014 Hz = 200-300 Hz  
f = 300-400 Hz  
-0,3  
-0,3  
-0,3  
-0,3  
-0,3  
-0,3  
0,0  
-
dB  
dB  
dB  
dB  
dB  
dB  
0,0 +1,0  
0,0 +0,75  
0,0 +0,35  
0,0 +0,55  
0,0 +1,5  
f = 400-600 Hz  
f = 600-2400 Hz  
f = 2400-3000 Hz  
f = 3000-3400 Hz  
Receive connection (D-A)  
(CCITT Q552 3.1.1.5)  
Reference:  
f = 1014 Hz  
f = 200-400 Hz  
f = 400-600 Hz  
f = 600-2400 Hz  
f = 2400-3000 Hz  
f = 3000-3400 Hz  
-0,3  
-0,3  
-0,3  
-0,3  
-0,3  
0,0 +1,0  
0,0 +0,75  
0,0 +0,35  
0,0 +0,55  
0,0 +1,5  
dB  
dB  
dB  
dB  
dB  
4-3  
PBA 3357/3  
Electrical Characteristics cont.  
Parameter  
Condition  
Min  
Typical  
Max  
Unit  
Variation of Gain with Input Level, (Note 7)  
Transmit (A-D) and  
Receive (D-A) connection  
(CCITT Q552 3.1.1.4)  
Reference: f = 1014 Hz, Level -10 dBm0  
Input level = -55 to -50 dBm0  
Input level = -50 to -40 dBm0  
Input level = -40 to -3 dBm0  
Input level = -3 to +3 dBm0  
Input level = +3 dBm0,  
-1,5  
-0,5  
-0,3  
-0,5  
-2,5  
0,0  
0,0  
0,0  
0,0  
0,0  
+1,5  
+0,5  
+0,3  
+0,5  
+2,5  
dB  
dB  
dB  
dB  
dB  
VBAT= - 44V RL= 1800Ω  
Signal to Total Distortion, (Note 7)  
Transmit (A-D) connection  
(CCITT Q552 3.3.3)  
Li = 0 dBr  
Input level = -45 dBm0  
Input level = -40 dBm0  
Input level = -30 dBm0  
Input level = -20 dBm0  
Input level = -10 dBm0  
Input level = 0 dBm0  
19,9  
24,9  
32,9  
35,0  
35,0  
35,0  
dB  
dB  
dB  
dB  
dB  
dB  
Receive (D-A) connection  
(CCITT Q552 3.3.3)  
Lo = 0 dBr  
Input level = -45 dBm0  
Input level = -40 dBm0  
Input level = -30 dBm0  
Input level = -20 dBm0  
Input level = -10 dBm0  
Input level = 0 dBm0  
19,9  
24,9  
32,9  
35,0  
35,0  
35,0  
dB  
dB  
dB  
dB  
dB  
dB  
Receive (D-A) connection  
(CCITT Q552 3.3.3)  
Lo = -3,5 dBr  
Input level = -45 dBm0  
Input level = -40 dBm0  
Input level = -30 dBm0  
Input level = -20 dBm0  
Input level = -10 dBm0  
Input level = 0 dBm0  
18,5  
23,2  
31,2  
34,4  
35,0  
35,0  
dB  
dB  
dB  
dB  
dB  
dB  
Receive (D-A) connection  
(CCITT Q552 3.3.3)  
Lo = -7,0 dBr  
Input level = -45 dBm0  
Input level = -40 dBm0  
Input level = -30 dBm0  
Input level = -20 dBm0  
Input level = -10 dBm0  
Input level = 0 dBm0  
14,5  
19,5  
28,8  
33,8  
35,0  
35,0  
dB  
dB  
dB  
dB  
dB  
dB  
Idle Channel Noise, (CCITT Q552 3.3.2)(Note 8)  
Transmit (A-D) connection  
Receive (D-A) connection  
Li = 0 dBr  
Lo = 0, -3,5 or -7,0 dBr  
-66 dBm0p  
-70 dBm0p  
Power Supply Rejection Ratio (PSRR)  
VCC to Analog Interface  
f= 50 to 4000 Hz  
f= 50 to 4000 Hz  
f= 50 to 4000 Hz  
35  
10  
25  
dB  
dB  
dB  
VEE to Analog Interface  
VBAT to Analog Interface  
4-4  
PBA 3357/3  
Electrical Characteristics cont.  
Parameter  
Condition  
Min  
Typical  
Max  
Unit  
Impedance  
Nominal Impedance, ZTR  
ZTR = 200 + (680 // 100 nF)  
Return Loss  
Note 3  
(CCITT Q552 2.1.1.2)  
f= 300 Hz  
f= 500 to 2000 Hz  
f= 3400 Hz  
14  
18  
14  
30  
35  
30  
dB  
dB  
dB  
Longitudinal Balance, L-T  
(CCITT Q552 2.2.2)  
f= 300 to 600 Hz  
f= 600 to 3400 Hz  
40  
46  
60  
60  
dB  
dB  
Terminal Balance Return Loss, TBRL  
(CCITT Q552 3.1.8.1)  
Note 4  
f= 300 Hz  
f= 500 to 2500 Hz  
f= 3400 Hz  
16  
20  
16  
20  
30  
20  
dB  
dB  
dB  
Stability Balance Return Loss,SBRL  
Only applicable when Lo = -3,5 or -7 dBr  
ZN="Worst Terminating condition  
encountered in normal operation"  
Open Circuit, f = 200 to 3600 Hz  
Short Circuit, f = 200 to 3600 Hz  
2,0  
2,0  
dB  
dB  
Outband Signalling  
Transmit (A-D) connection  
(CCITT Q552 3.1.6)  
Input level: -25 dBm0  
f= 4600 to 72000 Hz  
In-band signal  
-50  
dBm0  
dBm0  
Receive (D-A) connection, (Note 7)  
(CCITT Q552 3.1.7)  
Input level: 0 dBm0  
f= 300 to 3400 Hz  
Out-band signal (f= 4600 - 72000 Hz)  
-25  
Intermodulation  
Crosstalk  
2nd or 3rd order, 4-tone, A-D  
2nd or 3rd order, 4-tone, D-A  
-41  
-41  
dB  
dB  
Input Crosstalk  
Output Crosstalk  
CCITT Q552 3.1.4.1 (far-end) FEXT  
CCITT Q552 3.1.4.2 (far-end) FEXT  
-70  
-73  
dBm0  
dBm0  
Digital Inputs  
Input Low voltage  
Inputs: SDI, SCLK, LCLK  
Other Inputs  
Inputs: SDI, SCLK, LCLK  
Other Inputs  
0,0  
0,0  
2,0  
2,2  
0,8  
0,6  
VCC  
VCC  
V
V
V
V
Input High voltage  
Input Low current  
Input High current  
Inputs: SDI, SCLK, LCLK  
Other Inputs  
Inputs: SDI, SCLK, LCLK  
Other Inputs  
-20  
-10  
-20  
-10  
+20  
+10  
+20  
+10  
µA  
µA  
µA  
µA  
4-5  
PBA 3357/3  
Electrical Characteristics cont.  
Ref  
Parameter  
fig  
Symbol  
Min  
Typical Max  
Unit  
Timing Specification  
Frequency of Master Clock, MCLK  
Width of Master Clock High  
Width of Master Clock Low  
Rise time of Master Clock  
Fall time of Master Clock  
2
2
2
2
2
1/TPM  
tWMH  
tWML  
tRM  
2,037 2,048 2,062 MHz  
160  
160  
ns  
ns  
ns  
ns  
50  
50  
tFM  
Delay time to valid Data from FS or MCLK,  
whichever comes later and Delay time from  
FS to Data output disabled  
3
tDZF  
20  
50  
165  
ns  
Delay time from MCLK High to Data output Disabled  
2
tDZC  
tSDB  
tHBD  
165  
ns  
Setup time from DR valid to MCLK, Low  
Hold time from MCLK Low to DR Invalid  
3
3
50  
50  
ns  
ns  
Holding time from BIT Clock Low to the Frame Sync (FS)  
3
tHBF  
0
ns  
Setup time from Frame Sync to BIT Clock  
Hold time from 3rd period of BIT Clock  
Low to Frame Sync (FS)  
3
3
tSFB  
tHBFI  
80  
100  
ns  
ns  
Delay time from MCLK High to Data valid  
Setup time from FS to MCLK Low  
2
2
tDBD  
tSF  
0
80  
180  
ns  
ns  
Hold time from FS Low to MCLK Low  
Delay time TSX Low  
2
2
tHF  
tXDP  
100  
ns  
ns  
140  
15  
Propagation Delay  
4
4
4
4
4
tpLH  
tSDS  
thSL  
thLS  
thSD  
ns  
ns  
ns  
ns  
ns  
Min. Setup time SDI-SCLK  
Min. Hold time SCLK-LCLK  
Hold time LCLK-SCLK  
Min. Hold time, SCLK-SDI  
5
5
5
5
200  
Notes  
1. Requires DBAT; see Figure 6.  
2. Dial Pulse Distortion at the DET  
output. Pulse tone: 8-14 pulses/s,  
40 to 77 % duty factor for in-out  
application of a external resistance  
(200 - 1800 ) on the two-wire  
terminal.  
Hz up to 20 dB @ 500 Hz and falling  
log scale from 20 dB @ 2000 Hz  
down to 16 dB @ 3400 Hz.  
7. At VBAT = -44 V and RLDC = 1800the  
SLIC has start to saturate. This will  
effect some transmission parameters,  
for high signal levels.(> -10dBm0).  
5. Power dissipation is measured for  
both channels at the same time and  
divided by two.  
8. The noise increase when the  
saturation guard becomes active  
arround RLDC 1400 but is still  
better than CCITT Q552.3.3.2..  
3. Rising log scale from 14 dB @ 300  
Hz up to 18 dB @ 500 Hz and falling  
log scale from 18 dB @ 2000 Hz  
down to 14 dB @ 3400 Hz.  
6. The state during the pause of the  
ringing cadence or pulse dialling  
shall be active.  
4. Rising log scale from 16 dB @ 300  
4-6  
PBA 3357/3  
Reference Figures  
t
XDP  
TSX  
t
RM  
t
t
t
t
T
WML  
WMH  
3
PM  
FM  
DZC  
8
1
4
5
t
6
7
2
MCLK  
FS  
t
HOLD  
t
HF  
t
t
DZC  
SF  
DBD  
2
2
3
3
4
4
5
6
6
8
DX  
DR  
1
7
7
1
8
5
Figure 2. Short Frame Sync Timing diagram.  
3
1
4
5
6
7
8
2
MCLK  
t
t
SFB  
HBFI  
t
FS  
DZF  
t
HBF  
DX  
DR  
2
2
3
4
4
5
t
6
8
1
7
7
t
t
HBD  
SDB  
3
HBD  
8
1
6
5
Figure 3. Long Frame Sync Timing diagram.  
t
t
T
W
W
SCKL  
t
t
t
t
SDS  
HLS  
HDS  
HLS  
D7  
D5  
D2  
D1  
D0  
SDI  
D6  
D4  
D3  
LCLK  
Figure 4. Control Timing diagram.  
4-7  
PBA 3357/3  
56 55 54 53 52 51 50  
48  
46 45 44  
42 41 40 39  
36 35 34 33 32 31 30 29  
1
2
4
5
6
7
8
9
10 11 12  
14 15 16 17 18  
20  
22 23 24 25 26 27 28  
Figure 5. Pin-configuration, 56 pin DIL.  
Pin Description  
Pin  
Symbol  
Description  
1
2
3
GND  
VEE  
Ground.  
Negative Supply Voltage, - 5V, for the CLIC.  
Omitted Pin.  
4
5
VBAT  
RTC  
Battery Voltage, - 48 V to the CLIC.  
A ring Trip filter Capacitor input for Channel A. For standard performance of the CLIC, leave the  
pin open.  
6
7
RTRIP A  
RRLY A  
Ring Trip network input for Channel A. Connect to the resistor RRT A. The resistor RRT A causes  
a voltage drop when Off-hook occurs during ringing. The voltage will cause a change of state in  
DET A.  
Ring Relay driver output for Channel A. The output is Open-collector, with a Kick-back diode  
included, designed to be connected to a negative voltage.  
8
TIPX A  
RINGX A  
GND  
Tip lead input for Channel A to the CLIC from the subscriber line (two-wire).  
Ring lead input for Channel A to the CLIC from the subscriber line (two-wire).  
Ground.  
9
10  
11  
12  
13  
14  
VBAT  
Battery Voltage, - 48 V to the CLIC.  
VCC  
Positive Supply Voltage, + 5V, for the CLIC.  
Omitted pin.  
TRLY A  
RLY A  
Test Relay driver output for Channel A. The output is Open-collector, with a Kick-back diode  
included, designed to be connected to a negative voltage.  
15  
Additional Relay driver output for Channel A. The output is Open-collector, with a Kick-back diode  
included, designed to be connected to a negative voltage.  
16  
17  
SCLK B  
LCLK B  
Serial Clock for Channel B. Clocks data into the shift-register on low-to-high transitions (edge)  
Latch Clock for Channel B. Latches the data in the shift-register out on the eight parallell output  
bits on low-to-high transition (edge).  
18  
19  
20  
SDI B  
Serial Data Input for Channel B.  
Omitted pin.  
DET B  
Detector output for Channel B. The output is a Open-collector with internal pull-up resistor to VCC.  
4-8  
PBA 3357/3  
Pin Description cont.  
Pin  
Symbol  
Description  
21  
22  
Omitted pin.  
GV1 B  
Gain Value for Channel B. For a receive gain of 0 to -3,5 dBr, GV1 and GV2 are connected togehter. For  
a receive gain of -3,5 to -7,0 dBr, GV1 and GV2 shall be left open.  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
GV2 B  
FS B  
see GV1 B.  
Frame Sync for Channel B; Transmit and Receive.  
PCM Receive Data Input for Channel B.  
DR B  
MCLK B  
DX B  
TSX B  
GND  
Master Clock for Channel B.  
PCM Transmit data Output for Channel B; Tri-state.  
Time Slot for Channel B; Open-drain. Output pulse low during encoding.  
Ground.  
VEE  
Negative Supply Voltage, - 5V, for the CLIC.  
Positive Supply Voltage, + 5V, for the CLIC.  
Battery Voltage, - 48 V to the CLIC.  
VCC  
VBAT  
RTC B  
RTRIP B  
Ring Trip filter Capacitor input for Channel B. For standard performance of the CLIC, leave the pin open.  
Ring Trip network input for Channel B. Connect to the resistor RRT B. The resistor RRT B causes a  
voltage drop when Off-hook occurs during ringing. The voltage will cause a change of state in DET B.  
35  
36  
37  
38  
39  
GND  
Ground.  
TIPX B  
RINGX B  
GND  
Tip lead input for Channel B to the CLIC from the subscriber line (two-wire).  
Ring lead input for Channel B to the CLIC from the subscriber line (two-wire).  
Ground.  
RRLY B  
Ring Relay driver output for Channel B. The output is Open-collector, with a Kick-back diode included,  
designed to be connected to a negative voltage.  
40  
41  
VBAT  
Battery Voltage, - 48 V to the CLIC.  
TRLY B  
Test Relay driver output for Channel B. The output is Open-collector, with a Kick-back diode included,  
designed to be connected to a negative voltage.  
42  
RLY B  
Additional Relay driver output for Channel B. The output is Open-collector, with a Kick-back diode  
included, designed to be connected to a negative voltage.  
43  
44  
45  
Omitted pin.  
SCLK A  
LCLK A  
Serial Clock for Channel A. Clocks data into the shift-register on low-to-high transitions (edge).  
Latch Clock for Channel A. Latches the data in the shift-register out on the eight parallell output bits on  
low-to-high transition (edge).  
46  
47  
48  
49  
50  
SDI A  
DET A  
GV1 A  
Serial Data Input for Channel A.  
Omitted pin.  
Detector output for Channel A. The output is a Open-collector with internal pull-up resistor to VCC.  
Omitted pin.  
Gain Value for Channel A For a receive gain of 0 to -3,5 dBr, GV1 and GV2 are connected togehter. For a  
receive gain of -3,5 to -7,0 dBr, GV1 and GV2 shall be left open.  
51  
52  
53  
54  
55  
56  
GV2 A  
FS A  
see GV1 A.  
Frame Sync for Channel A Transmit and Receive.  
PCM Receive Data Input for Channel A.  
Master Clock for Channel A.  
DR A  
MCLK A  
DX A  
PCM Transmit data Output for Channel A; Tri-state.  
Time Slot for Channel A; Open-drain. Output pulse low during encoding.  
TSX A  
4-9  
PBA 3357/3  
Over Voltage Protection  
Since all flip-flops in the circuit is  
Functional Description and  
Applications Information  
initually set to zero, it is recommended to  
avoid to start with ’FF’, which is the only  
single word enable to open the circuit.  
The CLIC must be protected against  
surge voltages and power cross  
conditions.  
In figure 6, the line resistors with fuse  
function, RF1 and RF2, PTC:s, together  
with the voltage clamping device OVPD  
form the secondary protection. The PTC  
acts as a resettable fuse for non  
destructive power contact.  
The protection network in figure 6 is  
designed to meet requirements in CCITT  
k20, Table 1.  
If overvoltages with a magnitude  
higher than CCITT k20, Table 1, is  
expected, a primary protection is  
required. A Gas Discharge Tube is  
recommended.  
ZBAT protects against overvoltage on  
VBAT and ensure that the OVP-device  
can trigger if the -48V should not be  
connected  
The capacitor CG Between ground and  
the OVP-device should be as close as  
possible to the OVP-device.  
The OVP-device ground connector  
should be as close as possible to the  
CLIC ground connector.  
General  
The PBA 3357/3 is a Dual Complete  
Line Interface Circuit. Only a small  
number of additional external  
components are required.  
In case of a requirement for test of the  
subscriber line and system, two relays  
per line will be needed.  
In figure 6 they are relay RL1, RL2,  
RL4 and RL5. One ring relay per  
channel will be needed to apply the ring  
signal to the subscriber line (RL3 and  
RL6).  
TTL or CMOS use  
The integrated circuits of the interface  
are LSTTL or CMOS. CMOS use need  
specific attention during the board  
insertion under back panel power on  
condition.  
Power-up Sequence  
The optimum power-up sequence, in  
order to avoid any problem, is: Ground,  
VBAT (-48 V), VEE (- 5 V) and VCC (+ 5 V)  
in stated order.  
If it is not possible to control the  
power-up sequence , the following  
design must be used:  
Ring Trip  
The ring trip function has been designed  
to the following conditions:  
1. 6,2 V Zener diode DVCC, DVEE2  
:
Unbalanced ringing super-  
imposed on the battery voltage.  
The zener diodes will protect all +5 V  
and -5 V IC´s on the linecard from  
overvoltage if Ground being  
connected after VCC/VEE and  
VBAT.in the power-up sequence.  
Ring generator data:  
Output typical 75 VRMS  
min 60 VRMS, max 90 VRMS  
Impedance min 20 , max 40 Ω  
Frequency typ 25 ± 3 Hz  
This due to the voltage dividing  
between the decoupling capacitors on  
the line card.  
Loop Resistance <1800 Ω  
Grounding  
On-hook impedance @ 25 Hz  
(Ringing signal) is 7,5 to 18 k Ω  
One, two or three POT’s (Plain  
2. Schottky diode DVEE1  
:
The ”grounds”; GND’s shall be tied  
together as close as possible; i.e. in one  
point on the PCB.  
The different ground points on the  
linecard shall also be connected  
together into one point.  
GND should be distributed with a very  
low impedance as a ground plane or a  
grid in order to sink the overvoltage  
current with low voltage drops between  
the connectors of the component.  
The schottky diode, with low forward  
voltage drop, will protect all -5 V IC’s  
on the linecard from reverse voltage if  
Ground is connected after VEE and  
Ordinary Telephone or equal) in parallell  
on each line.  
In order to sense off-hook during  
ringing, two resistors per line is required;  
RRT and RRG.  
V
BAT.in the power-up sequence.  
This due to the voltage dividing  
between the decoupling capacitors on  
the line card.  
They should be 240 , min 2 W.  
Note: RRT and RRG must fulfill CCITT  
k20. Lightning Surge.  
The CLIC state during the pause of  
the ringing cadence shall be active due  
to longer stabilization time in stand-by  
state.  
3. Resistor RVEE  
:
The resistor will reduce the charging  
current into the decoupling capacitors  
and limit dV/dt.  
Power-up State  
At Power-up, the CLIC Control Circuit  
makes a reset and put the CLIC in its  
power-up state.The power-up state i  
Open Circuit and no Relay Drivers  
activated. The CLIC will remain in this  
state until programmed else by sending  
the inverse of the desired command  
word (see table page 11) followed by the  
desired command word. Example: To set  
the CLIC in active state with command  
word ’C8’, the inverse of ’C8’, ’37’,  
followed by ’C8’ has to be sent. Once  
this two word sequence has been sent  
the CLIC is enabled to take one-word  
command.  
4. RC-network RBAT and CBAT  
:
Receive Gain Pins (GV1, GV2)  
To protect the VBAT - pin from being  
exposed to a faster dV/dt - rate than  
4 V / µs when connecting to VBAT  
The receive gain can have three different  
values; 0, -3,5 or -7,0 dBr.  
If the pins GV1 (pin 23, 50) and GV2  
(pin 22, 51) are shorted, the low gain  
equals -3,5 dBr and the high gain equals  
0,0 dBr.  
If the pins GV1 and GV2 are left open,  
the gain values are -7,0 dBr and -3,5 dBr  
respectively. High and low gain is  
selected with input data to the ASIC.  
.
This can be achieved by using a RC-  
filter with the time constant (τ) formed  
by a 5,1 resistor (RBAT) and a  
0,47 µF capacitor (CBAT).  
To ensure a fail-safe function in the  
system, it is recommended to use  
resistors with some type of fuse function  
and a Fuse on VCC connection in series  
with the power supplies to avoid  
resulting failures in the system.  
1.  
4-10  
PBA 3357/3  
Control Data  
Each channel of PBA 3357/3 has an ASIC which controls all line functions with a 8 bit serial word  
Relay  
Driver  
Test Relay Detector  
Gain  
Control  
SLIC Operation  
Receive  
Control  
Function  
Driver  
Select  
*
*
*
*
*
0
1
*
*
*
0
1
*
*
*
*
*
*
*
*
*
*
1
0
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
1
0
0
*
*
*
*
Receive Channel Off  
High Gain  
Low Gain  
Test relay driver  
Active (On)  
Test relay driver Inactive (Off)  
Relay driver Active (On)  
Relay driver Inactive (Off)  
Operating State  
Active Detector  
None  
*
*
*
*
X
X
*
*
0
0
0
0
0
1
*
*
Open Circiut  
Ring Relay driver  
Active (Ringing)  
Ring Trip  
*
*
*
*
0
1
*
*
1
1
1
1
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
0
0
1
1
0
1
0
0
1
1
*
*
Active  
Loop Current  
Ground Key  
Loop Current  
Ground Key  
Loop Current  
None  
Active  
*
*
0
*
*
Stand by  
Stand by  
Tip open  
No Function  
*
*
1
*
*
*
*
0
*
*
*
*
X
0
*
*
*
*
*
*
Active, Polarity Reversed Loop Current  
Active, Polarity Reversed Ground Key  
Stand by, Polarity Reversed Loop Current  
Stand by, Polarity Reversed Ground Key  
Sequence of Data Input (SDI)  
*
*
1
*
*
*
*
0
*
*
*
*
1
*
*
D7  
D6  
D5  
D4  
D3 D2 D1  
D0  
Comments: 1) X = Do not care 2) = Function specified elsewhere in the table.  
*
The CLIC will remain in its power-up state until programmed by sending the inverse of the desired command word  
followed by the desired command word. Example: To set CLIC in active state with command ’C8’, the inverse of  
’C8’, ’37’, followed by ’C8’ has to be sent. To set CLIC in standby state with command ’CA’, the inverse of ’CA’, ’35’,  
followed by ’CA’ has to be sent. Once this has been done the CLIC is enabled to take single-word command. The  
Power-up state is Open Circuit and no Relay Driver activated.  
Example on Control Input:  
HEX Word  
Binary Word  
Function  
D7 D6 D5 D4 D3 D2 D1 D0  
Relay Driver Off  
Testrelay Driver Off  
(Bit D7 )  
(Bit D6 )  
C8  
1
1
0
0
1
0
0
0
C
8
Active, Detector = Loop Current (Bit D3, D2, D1 and D5)  
Receive Channel On, Low Gain (Bit D0 and D4 )  
D7 D6 D5 D4 D3 D2 D1 D0  
Relay Driver Off  
(Bit D7 )  
D2  
1
1
0
1
0
0
1
0
Testrelay Driver Off  
(Bit D6 )  
D
2
Ringing, Detector = Ring Trip  
Receive Channel On, High Gain  
(Bit D3, D2, D1)  
(Bit D0 and D4 )  
Note: BIT D7 is sent first, BIT D0 is sent last.  
4-11  
PBA 3357/3  
Application Reference Figures  
Subscriber line System  
+5 V  
System  
Bus A  
CLIC  
LPMA  
test bus  
test bus  
PCM &  
R
RTA  
CMOS  
OR  
LSTTL  
Circuits  
Control  
Channel A  
R
System  
Bus B  
F1A  
RTRIPA  
TIPXA  
PCM &  
Control  
PTC  
1A  
Line A  
R
RGA  
Channel B  
OVPDA  
+5 V  
SCLKA  
SDIA  
LCLKA  
SCLKB  
SDIB  
R
RINGXA  
RTCA  
F2A  
CMOS  
OR  
LSTTL  
Circuits  
PTC  
2A  
C
GA  
RL1  
RL3  
RL2  
LCLKB  
+5 V  
RRLYA  
TRLYA  
DET A  
LS251  
Mux  
RLYA  
DET B  
LPMB  
R
RTB  
-48VOVP  
R
F1B  
D
RTRIPB  
TIPXB  
R
BAT  
BAT  
-48 V  
PTC  
1B  
V
C
BAT  
Line B  
Z
BAT  
BAT  
R
RGB  
R
OVPDB  
VR  
-5 V  
R
V
VEE  
R
RINGXB  
RTCB  
EE  
F2B  
PTC  
-5 V  
2B  
C
GB  
V
CC  
FUSE  
V
RL4  
RL5  
RL6  
CC  
+5 V  
D
VEE2  
D
RRLYB  
TRLYB  
VCC  
GND  
D
VEE1  
RLYB  
GND  
-48 VOVP  
GV1A*G*V2A  
GV1*B*GV2B  
Ring  
Generator  
Components within the rectangle  
can be shard by four CLIC´s  
** Low recieve gain range when open  
OVPDRING  
Ring signal to  
other lines  
-5VR  
-48 V  
Figure 6. Typical Application for Dual CLIC PBA 3357/3 on a 16 Lines Line Card.  
Denotation  
Type of Component; requirements, name etc  
OVPDA, OVPDB  
OVPDRING  
TISP R3612  
Transient supressor, Zener diode type, 200V  
D
VCC, DVEE2  
Zener diode 6,2 V 1 W; BZX 85 C6V2  
Schottky diode 1N5818, 1N5820  
Diode 1N4004 or similar  
DVEE1  
DBAT  
ZBAT  
Transient supressor, BZW04-58 or SA58A  
Relay; 9 V type  
RL1-RL6  
LPMA, LPMB1)  
PBR 522 01/1 2 x 40 , matched, Line Resistor with  
PTC and Two 240 resistors.  
RVEE, RVR  
RBAT  
1,0 , ± 20 %, 0,25 W (with fuse function)  
5,1 , ± 20 %, 1 W (with fuse function, max 4 DualCLIC’s)  
CBAT  
0,47 µF, ± 20 %, 100 V.  
Recommended types:  
1. Ceramic, X7R, with low voltage coefficient;  
max 15 % at 50 VDC  
2. Metallized polyester film (stacked MKT); Prefered  
CGA, CGB  
Fuse  
0,22 µF, ± 20 %, 100 V. Recommended types: same as CBAT  
Fuse 1A depending on the power supply current lr the interface circuits  
4-12  
PBA 3357/3  
Application Reference Figures cont.  
VBAT  
VBAT  
GV1A/B  
GV2A/B  
+5V  
V
CC  
-5V  
V
EE  
DET  
PCM output  
PCM output  
DET  
DR A/B  
DX A/B  
147k  
114k  
FS  
FS A  
FS B  
RTRIP A/B  
DC-LOOP HOLDER  
C1  
PCM meas instrument  
MCLK  
MCLK A/B  
Vac (input)  
ZN  
40  
40  
TIP A/B  
LCKL  
SCKL  
SDI  
RLDC  
10H  
LCKL A/B  
SCKL A/B  
SDI A/B  
RLDC  
Vac  
(output)  
ZN  
RING A/B  
C2  
GND  
C1 = C2 100 µF  
Figure 7. Reference diagram for Transmission Measurement.  
4-13  
PBA 3357/3  
Mechanical Outline  
E
2,54 ± 0,2 not acc.  
71,1 +0,5/-0,3  
max 0,64  
3,8 ± 0,3  
max 8,0  
Figure 8. Mechanical outline.  
4-14  
PBA 3357/3  
4-15  
PBA 3357/3  
Information given in this data sheet is believed to be  
accurate and reliable. However no responsibility is  
assumed for the consequences of its use nor for any  
infringement of patents or other rights of third parties  
which may result from its use. No license is granted  
by implication or otherwise under any patent or patent  
rights of Ericsson Components. These products are  
sold only according to Ericsson Components' general  
conditions of sale, unless otherwise confirmed in  
writing.  
Specifications subject to change without  
notice.  
1522-PBA 3357/3 Uen Rev. A  
© Ericsson Components AB 1997  
Ericsson Components AB  
S-164 81 Kista-Stockholm, Sweden  
Telephone: (08) 757 50 00  
4-16  

相关型号:

PBA3357/3N

SLIC, PDIP49, 34.40 X 71.10 MM, DIP-56/49
ERICSSON

PBA50F

Unit type
RSG

PBA50F-12

AC-DC Chassis Mount
XPPOWER

PBA50F-12

Unit type
RSG

PBA50F-12-TN

AC-DC Regulated Power Supply Module,
COSEL

PBA50F-15

AC-DC Chassis Mount
XPPOWER

PBA50F-15

Unit type
RSG

PBA50F-24

AC-DC Chassis Mount
XPPOWER

PBA50F-24

Unit type
RSG

PBA50F-3

AC-DC Chassis Mount
XPPOWER

PBA50F-36

AC-DC Chassis Mount
XPPOWER

PBA50F-36

Unit type
RSG