PKJ4316APIM [ERICSSON]

DC-DC Regulated Power Supply Module, 1 Output, 310W, Hybrid, ROHS COMPLIANT PACKAGE-9;
PKJ4316APIM
型号: PKJ4316APIM
厂家: ERICSSON    ERICSSON
描述:

DC-DC Regulated Power Supply Module, 1 Output, 310W, Hybrid, ROHS COMPLIANT PACKAGE-9

文件: 总28页 (文件大小:1559K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
E
Technical Specification  
EN/LZT 146 367 R3B September 2009  
PKJ 4000 RFPA series Direct Converters  
Input 36-75 V, Output up to 12.4 A / 350 W  
© Ericsson AB  
Key Features  
Industry standard Half-brick  
61.00 x 57.90 x 12.70 mm (2.40 x 2.28 x 0.50 in.)  
High efficiency, typ. 91.5 % at 30.2Vout half load  
1500 Vdc input to output isolation  
Meets isolation requirements equivalent to basic  
insulation according to IEC/EN/UL 60950  
3 million hours predicted MTBF  
General Characteristics  
Output over-voltage protection  
Input under-voltage shutdown  
Over temperature protection  
Output short-circuit protection  
Remote sense  
Remote control  
Output voltage adjust function  
Highly automated manufacturing ensures quality  
ISO 9001/14001 certified supplier  
Safety Approvals  
Design for Environment  
Meets requirements in high-  
temperature lead-free soldering  
processes.  
Contents  
General Information  
Safety Specification  
Absolute Maximum Ratings  
............................................................. 2  
............................................................. 3  
............................................................. 4  
Product Program  
Ordering No.  
28.2V,11A / 310W Electrical Specification  
PKJ 4316 PI ......................................... 5  
28.2V/12.4A / 350W Electrical Specification PKJ 4316 API ...................................... 8  
30.2V/8.3A / 250W Electrical Specification  
28.2V/8.3A /230W Electrical Specification  
PKJ 4216N PI .................................... 11  
PKJ 4216 PI ........................................ 14  
EMC Specification  
........................................................... 18  
........................................................... 19  
........................................................... 20  
........................................................... 22  
........................................................... 23  
........................................................... 24  
........................................................... 24  
........................................................... 25  
Operating Information  
Thermal Consideration  
Connections  
Mechanical Information  
Soldering Information  
Delivery Information  
Product Qualification Specification  
E
2
Technical Specification  
EN/LZT 146 367 R3B September 2009  
PKJ 4000 RFPA series Direct Converters  
Input 36-75 V, Output up to 12.4 A / 350 W  
© Ericsson AB  
Compatibility with RoHS requirements  
General Information  
The products are compatible with the relevant clauses and  
requirements of the RoHS directive 2002/95/EC and have a  
maximum concentration value of 0.1% by weight in  
homogeneous materials for lead, mercury, hexavalent  
chromium, PBB and PBDE and of 0.01% by weight in  
homogeneous materials for cadmium.  
Ordering Information  
See Contents for individual product ordering numbers.  
Option  
Suffix  
M
LA  
Ordering No.  
PKJ 4316 PIM  
PKJ 4316 PILA  
Non-threaded standoff  
Lead length 3.69 mm(0.145 in)  
Note: As an example a non-threaded standoff, short pin product would be  
PKJ 4316 PIMLA.  
Exemptions in the RoHS directive utilized in Ericsson  
Power Modules products include:  
-
Lead in high melting temperature type solder (used to  
solder the die in semiconductor packages)  
Lead in glass of electronics components and in  
electronic ceramic parts (e.g. fill material in chip  
resistors)  
Lead as an alloying element in copper alloy containing  
up to 4% lead by weight (used in connection pins made  
of Brass)  
Reliability  
The Mean Time Between Failure (MTBF) is calculated at  
full output power and an operating ambient temperature  
(TA) of +40°C, which is a typical condition in Information  
and Communication Technology (ICT) equipment. Different  
methods could be used to calculate the predicted MTBF  
and failure rate which may give different results. Ericsson  
Power Modules currently uses Telcordia SR332.  
-
-
Quality Statement  
Predicted MTBF for the series is:  
The products are designed and manufactured in an  
industrial environment where quality systems and methods  
like ISO 9000, 6σ (sigma), and SPC are intensively in use  
to boost the continuous improvements strategy. Infant  
mortality or early failures in the products are screened out  
and they are subjected to an ATE-based final test.  
Conservative design rules, design reviews and product  
qualifications, plus the high competence of an engaged  
work force, contribute to the high quality of our products.  
-
3 million hours according to Telcordia SR332, issue 1,  
Black box technique.  
Telcordia SR332 is a commonly used standard method  
intended for reliability calculations in ICT equipment. The  
parts count procedure used in this method was originally  
modelled on the methods from MIL-HDBK-217F, Reliability  
Predictions of Electronic Equipment. It assumes that no  
reliability data is available on the actual units and devices  
for which the predictions are to be made, i.e. all predictions  
are based on generic reliability parameters.  
Warranty  
Warranty period and conditions are defined in Ericsson  
Power Modules General Terms and Conditions of Sale.  
Limitation of Liability  
Ericsson Power Modules does not make any other  
warranties, expressed or implied including any warranty of  
merchantability or fitness for a particular purpose (including,  
but not limited to, use in life support applications, where  
malfunctions of product can cause injury to a person’s  
health or life).  
E
3
Technical Specification  
EN/LZT 146 367 R3B September 2009  
PKJ 4000 RFPA series Direct Converters  
Input 36-75 V, Output up to 12.4 A / 350 W  
© Ericsson AB  
Safety Specification  
Isolated DC/DC converters  
General information  
It is recommended that a slow blow fuse with a rating twice  
the maximum input current per selected product be used at  
the input of each DC/DC converter. If an input filter is used  
in the circuit the fuse should be placed in front of the input  
filter.  
Ericsson Power Modules DC/DC converters and DC/DC  
regulators are designed in accordance with safety  
standards IEC/EN/UL60950, Safety of Information  
Technology Equipment.  
In the rare event of a component problem in the input filter  
or in the DC/DC converter that imposes a short circuit on  
the input source, this fuse will provide the following  
functions:  
IEC/EN/UL60950 contains requirements to prevent injury  
or damage due to the following hazards:  
Electrical shock  
Energy hazards  
Fire  
Mechanical and heat hazards  
Radiation hazards  
Chemical hazards  
Isolate the faulty DC/DC converter from the input  
power source so as not to affect the operation of  
other parts of the system.  
Protect the distribution wiring from excessive  
current and power loss thus preventing hazardous  
overheating.  
On-board DC-DC converters are defined as component  
power supplies. As components they cannot fully comply  
with the provisions of any Safety requirements without  
“Conditions of Acceptability”. It is the responsibility of the  
installer to ensure that the final product housing these  
components complies with the requirements of all  
applicable Safety standards and Directives for the final  
product.  
The galvanic isolation is verified in an electric strength test.  
The test voltage (Viso) between input and output is  
1500 Vdc or 2250 Vdc for 60 seconds (refer to product  
specification).  
Leakage current is less than 1 µA at nominal input voltage.  
24 V DC systems  
The input voltage to the DC/DC converter is SELV (Safety  
Extra Low Voltage) and the output remains SELV under  
normal and abnormal operating conditions.  
Component power supplies for general use should comply  
with the requirements in IEC60950, EN60950 and  
UL60950 “Safety of information technology equipment”.  
48 and 60 V DC systems  
There are other more product related standards, e.g.  
IEEE802.3af “Ethernet LAN/MAN Data terminal equipment  
power”, and ETS300132-2 “Power supply interface at the  
input to telecommunications equipment; part 2: DC”, but all  
of these standards are based on IEC/EN/UL60950 with  
regards to safety.  
If the input voltage to Ericsson Power Modules DC/DC  
converter is 75 Vdc or less, then the output remains SELV  
(Safety Extra Low Voltage) under normal and abnormal  
operating conditions.  
Single fault testing in the input power supply circuit should  
be performed with the DC/DC converter connected to  
demonstrate that the input voltage does not exceed  
75 Vdc.  
Ericsson Power Modules DC/DC converters and DC/DC  
regulators are UL60950 recognized and certified in  
accordance with EN60950.  
If the input power source circuit is a DC power system, the  
source may be treated as a TNV2 circuit and testing has  
demonstrated compliance with SELV limits and isolation  
requirements equivalent to Basic Insulation in accordance  
with IEC/EN/UL60950.  
The flammability rating for all construction parts of the  
products meets requirements for V-0 class material  
according to IEC 60695-11-10.  
The products should be installed in the end-use equipment,  
in accordance with the requirements of the ultimate  
application. Normally the output of the DC/DC converter is  
considered as SELV (Safety Extra Low Voltage) and the  
input source must be isolated by minimum Double or  
Reinforced Insulation from the primary circuit (AC mains) in  
accordance with IEC/EN/UL60950.  
Non-isolated DC/DC regulators  
The input voltage to the DC/DC regulator is SELV (Safety  
Extra Low Voltage) and the output remains SELV under  
normal and abnormal operating conditions.  
E
4
Technical Specification  
EN/LZT 146 367 R3B September 2009  
PKJ 4000 RFPA series Direct Converters  
Input 36-75 V, Output up to 12.4 A / 350 W  
© Ericsson AB  
Absolute Maximum Ratings  
Characteristics  
min  
-40  
typ  
max  
+120  
+125  
+80  
1500  
100  
20  
Unit  
°C  
°C  
V
Tref  
TS  
Operating Temperature (see Thermal Consideration section)  
Storage temperature  
-55  
VI  
Input voltage  
-0.5  
Viso  
Vtr  
Isolation voltage (input to output test voltage)  
Input voltage transient (tp 100 ms)  
Vdc  
V
Positive logic option  
Negative logic option  
-0.5  
-0.5  
V
Remote Control pin voltage  
(see Operating Information section)  
VRC  
Vadj  
20  
V
Adjust pin voltage (see Operating Information section)  
28  
V
Stress in excess of Absolute Maximum Ratings may cause permanent damage. Absolute Maximum Ratings, sometimes referred to as no destruction limits, are  
normally tested with one parameter at a time exceeding the limits of Output data or Electrical Characteristics. If exposed to stress above these limits, function and  
performance may degrade in an unspecified manner.  
Fundamental Circuit Diagram  
Primary  
Secondary  
+In  
+Out  
-Out  
Control  
RC  
-In  
Isolated  
Feedback  
Vadj  
+Sense  
-Sense  
E
5
Technical Specification  
EN/LZT 146 367 R3B September 2009  
PKJ 4000 RFPA series Direct Converters  
Input 36-75 V, Output up to 12.4 A / 350 W  
© Ericsson AB  
28.2 V/11 A Electrical Specification  
PKJ 4316 PI  
Tref = -40 to +90ºC, VI = 35 to 75 V, unless otherwise specified under Conditions.  
Typical values given at: Tref = +25°C, VI= 53 V, max IO, unless otherwise specified under Conditions.  
Characteristics  
Conditions  
min  
35  
typ  
max  
75  
Unit  
V
VI  
Input voltage range  
VIoff  
VIon  
CI  
Turn-off input voltage  
Turn-on input voltage  
Internal input capacitance  
Output power  
Decreasing input voltage  
Increasing input voltage  
30  
33.5  
34.5  
10  
35  
V
32  
36  
V
µF  
PO  
Output voltage initial setting  
f = 100 Hz sinewave, 1 Vp-p  
50 % of max IO  
0
310  
W
SVR  
Supply voltage rejection (ac)  
40  
91.0  
89  
dB  
max IO , Tref = +25°C  
88.8  
88.8  
η
Efficiency  
%
50 % of max IO , VI = 48 V  
max IO, VI = 48 V, Tref = +25°C  
max IO, Tref = +25°C  
91.0  
89  
Pd  
Pli  
PRC  
fs  
Power Dissipation  
Input idling power  
Input standby power  
Switching frequency  
38.3  
3
39.4  
230  
W
W
IO= 0, VI = 53 V  
VI = 53 V (turned off with RC)  
0 -100% of max IO  
150  
210  
mW  
kHz  
190  
Output voltage initial setting and  
accuracy  
Tref = +25°C, VI = 53 V, IO = 12.4 A  
27.93  
19.74  
28.2  
28.47  
30.17  
V
V
VOi  
See operation information& see  
Note 1  
Output adjust range  
Output voltage tolerance band  
Idling voltage  
10-100% of max IO  
IO = 0  
27.85  
27.92  
28.55  
28.48  
80  
V
V
VO  
Line regulation  
max IO  
mV  
mV  
Load regulation  
VI = 53 V, 1-100% of max IO  
80  
Load transient  
voltage deviation  
VI = 53 V, Load step 25-75-25 % of  
Vtr  
ttr  
±1000  
40  
mV  
µs  
max IO, di/dt = 0.2 A/  
µs,  
Load transient recovery time  
Ramp-up time  
tr  
8
ms  
(from 1090 % of VOi)  
10-100% of max IO  
Start-up time  
(from VI connection to 90% of VOi)  
ts  
12  
ms  
IO  
Output current  
0
11  
16  
18  
A
A
A
Ilim  
Isc  
Current limit threshold  
Short circuit current  
Tref < max Tref  
Tref = 25ºC  
11.8  
See ripple & noise section,  
max IO, VOi  
VOac  
Output ripple & noise  
70  
250  
mVp-p  
V
Tref = +25°C, VI = 53 V, IO = 0-100%  
OVP  
Over Voltage Protection  
34.7  
39.5  
of max IO  
Note 1:The module can be trimmed down 30% and trimmed up 7% at all temperature condition.  
The module can be trimmed down 40% at 25°C and minimum reference temperature. At least 10% of normal output current is suggested when it is  
trimmed down 40% at maximum reference temperature. The module can be trimmed up 10% at 25°C and minimum reference temperature. When input  
voltage below 48V, at most 65% of normal output current is suggested in case it is trimmed up 10% at maximum reference temperature.  
Note 2:  
VO =<0.5 V  
E
6
Technical Specification  
EN/LZT 146 367 R3B September 2009  
PKJ 4000 RFPA series Direct Converters  
Input 36-75 V, Output up to 12.4 A / 350 W  
© Ericsson AB  
28.2 V/11 A Typical Characteristics  
Efficiency  
PKJ 4316 PI  
Power Dissipation  
[%]  
95  
[W]  
50  
36 V  
48 V  
53 V  
75 V  
36 V  
48 V  
53 V  
75 V  
40  
30  
20  
10  
0
90  
85  
80  
75  
70  
0
2
4
6
8
10  
12 [A]  
0
2
4
6
8
10  
12 [A]  
Dissipated power vs. load current and input voltage at  
Tref = +25°C  
Efficiency vs. load current and input voltage at Tref = +25°C  
Output Characteristics  
Current Limit Characteristics  
[V]  
[V]  
28.50  
30.00  
36 V  
48 V  
53 V  
75 V  
36 V  
24.00  
18.00  
12.00  
6.00  
28.40  
28.30  
28.20  
28.10  
28.00  
48 V  
53 V  
75 V  
0.00  
6
8
10  
12  
14  
16 [A]  
0
2
4
6
8
10  
12 [A]  
Output voltage vs. load current at Tref = +25°C  
Output voltage vs. load current at IO > max IO , Tref = +25°C  
E
7
Technical Specification  
EN/LZT 146 367 R3B September 2009  
PKJ 4000 RFPA series Direct Converters  
Input 36-75 V, Output up to 12.4 A / 350 W  
© Ericsson AB  
28.2 V/11 A Typical Characteristics  
PKJ 4316 PI  
Start-up  
Shut-down  
Start-up enabled by connecting VI at:  
Tref = +25°C, VI = 53 V,  
IO = 11 A resistive load.  
Top trace: output voltage (10 V/div.).  
Bottom trace: input voltage (20 V/div.).  
Time scale: (10 ms/div.).  
Shut-down enabled by disconnecting VI at:  
Tref = +25°C, VI = 53 V,  
IO = 11 A resistive load.  
Top trace: output voltage (10 V/div.).  
Bottom trace: input voltage (20 V/div.).  
Time scale: (2 ms/div.).  
Output Ripple & Noise  
Output Load Transient Response  
Output voltage ripple at:  
Tref = +25°C, VI = 53 V,  
IO = 11 A resistive load.  
Trace: output voltage (20 mV/div.).  
Time scale: (2 µs/div.).  
Output voltage response to load current step- Top trace: output voltage (500 mV/div.).  
change (2.75-8.25-2.75 A) at:  
Tref =+25°C, VI = 53 V.  
Bottom trace: load current (10 A/div.).  
Time scale: (0.1 ms/div.).  
Output Voltage Adjust (see operating information)  
Passive adjust  
The resistor value for an adjusted output voltage is calculated by  
using the following equations:  
Output Voltage Adjust Upwards, Increase:  
(
100+%  
2.5×∆%  
)
100+2×∆% ⎤  
R
=10 V  
kΩ  
adj  
o
%  
Output Voltage Adjust Downwards, Decrease:  
100  
R
= 10  
(
2  
)
kΩ  
adj  
%  
Example: Increase 4% =>Vout = 29.33 Vdc  
(
100+4  
2.5×4  
)
100+2×4 ⎤  
10 28.2  
k= 2663 kΩ  
4
Example: Decrease 2% =>Vout = 27.64 Vdc  
100  
10  
(
2  
)
k=480 kΩ  
2
E
8
Technical Specification  
EN/LZT 146 367 R3B September 2009  
PKJ 4000 RFPA series Direct Converters  
Input 36-75 V, Output up to 12.4 A / 350 W  
© Ericsson AB  
28.2 V/11 A Typical Characteristics  
PKJ 4316 PI  
Output Current Derating – Base Plate  
Thermal Resistance – Base Plate  
[°C/W]  
4
[A]  
12  
3.0 m/s  
2.5 m/s  
9
3
2
1
0
2.0 m/s  
6
1.5 m/s  
1.0 m/s  
Nat. Conv.  
3
0
0
20  
40  
60  
80  
100 [°C]  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0 [m/s]  
Available load current vs. ambient air temperature and airflow at  
VI = 53 V. See Thermal Consideration section.  
Thermal resistance vs. airspeed measured at the converter. Tested in wind  
tunnel with airflow and test conditions as per  
the Thermal consideration section. VI = 53 V.  
Output Current Derating – Cold wall sealed box  
[A]  
12  
9
Tamb 85 C  
6
3
0
Tamb 35 C  
0
20  
40  
60  
80  
100 [°C]  
Available load current vs. base plate temperature.  
VI = 53 V. See Thermal Consideration section.  
E
9
Technical Specification  
EN/LZT 146 367 R3B September 2009  
PKJ 4000 RFPA series Direct Converters  
Input 36-75 V, Output up to 12.4 A / 350 W  
© Ericsson AB  
28.2 V/12.4 A Electrical Specification  
PKJ 4316 API  
Tref = -40 to +90ºC, VI = 35 to 75 V, unless otherwise specified under Conditions.  
Typical values given at: Tref = +25°C, VI= 53 V, max IO , unless otherwise specified under Conditions.  
Characteristics  
Conditions  
min  
35  
typ  
max  
Unit  
V
VI  
Input voltage range  
75  
33  
35  
VIoff  
VIon  
CI  
Turn-off input voltage  
Turn-on input voltage  
Internal input capacitance  
Output power  
Decreasing input voltage  
Increasing input voltage  
31  
32.2  
34  
V
32.5  
V
10  
µF  
W
PO  
Output voltage initial setting  
f = 100 Hz sinewave, 1 Vp-p  
50 % of max IO  
0
350  
SVR  
Supply voltage rejection (ac)  
40  
91.0  
89  
dB  
max IO  
88  
88  
η
Efficiency  
%
50 % of max IO , VI = 48 V  
max IO, VI = 48 V  
91.0  
89  
Pd  
Pli  
PRC  
fs  
Power Dissipation  
Input idling power  
Input standby power  
Switching frequency  
max IO, Tref = +25°C  
IO= 0, VI = 53 V  
41.0  
3
44.1  
230  
W
W
VI = 53 V (turned off with RC)  
0 -100% of max IO  
150  
210  
mW  
kHz  
190  
Output voltage initial setting and  
accuracy  
Tref = +25°C, VI = 53 V, IO = 12.4 A  
27.93  
19.74  
28.2  
28.47  
30.17  
V
V
VOi  
See operation information & see  
Note 1  
Output adjust range  
Output voltage tolerance band  
Idling voltage  
10-100% of max IO  
IO = 0  
27.85  
27.92  
28.55  
28.48  
80  
V
V
VO  
Line regulation  
max IO  
mV  
mV  
Load regulation  
VI = 53 V, 0-100% of max IO  
80  
Load transient  
voltage deviation  
VI = 53 V, Load step 25-75-25 % of  
max IO, di/dt = 0.2 A/µs,  
Vtr  
ttr  
±1000  
40  
mV  
µs  
Load transient recovery time  
Ramp-up time  
(from 1090 % of VOi)  
tr  
10  
ms  
10-100% of max IO  
Start-up time  
ts  
(from VI connection to 90% of  
VOi)  
13  
ms  
IO  
Output current  
0
12.4  
19.5  
20.5  
A
A
A
Ilim  
Isc  
Current limit threshold  
Short circuit current  
Tref < max Tref  
13  
Tref = 25ºC, see Note 2  
See ripple & noise section,  
max IO, VOi  
VOac  
Output ripple & noise  
70  
250  
mVp-p  
V
Tref = +25°C, VI = 53 V, IO = 0-100%  
OVP  
Over Voltage Protection  
34.7  
39.5  
of max IO  
Note 1:The module can be trimmed down 30% and trimmed up 7% at all temperature condition.  
The module can be trimmed down 40% at 25°C and minimum reference temperature. At least 10% of normal output current is suggested when it is  
trimmed down 40% at maximum reference temperature. The module can be trimmed up 10% at 25°C and minimum reference temperature. When input  
voltage below 48V, at most 65% of normal output current is suggested in case it is trimmed up 10% at maximum reference temperature.  
Note 2: VO =<0.5 V  
E
10  
Technical Specification  
EN/LZT 146 367 R3B September 2009  
PKJ 4000 RFPA series Direct Converters  
Input 36-75 V, Output up to 12.4 A / 350 W  
© Ericsson AB  
28.2 V/12.4 A Typical Characteristics  
Efficiency  
PKJ 4316 API  
Power Dissipation  
[%]  
95  
[W]  
50  
36 V  
48 V  
53 V  
75 V  
36 V  
40  
30  
20  
10  
0
90  
85  
80  
75  
70  
48 V  
53 V  
75 V  
0
3
6
9
12  
15 [A]  
0
3
6
9
12  
15 [A]  
Dissipated power vs. load current and input voltage at  
Tref = +25°C  
Efficiency vs. load current and input voltage at Tref = +25°C  
Output Characteristics  
Current Limit Characteristics  
[V]  
[V]  
28.30  
30.00  
36 V  
48 V  
53 V  
75 V  
36 V  
48 V  
53 V  
75 V  
24.00  
18.00  
12.00  
6.00  
28.25  
28.20  
28.15  
28.10  
0.00  
6
8
10  
12  
14  
16  
18 [A]  
0
3
6
9
12  
15 [A]  
Output voltage vs. load current at Tref = +25°C  
Output voltage vs. load current at IO > max IO , Tref = +25°C  
E
11  
Technical Specification  
EN/LZT 146 367 R3B September 2009  
PKJ 4000 RFPA series Direct Converters  
Input 36-75 V, Output up to 12.4 A / 350 W  
© Ericsson AB  
28.2 V/12.4 A Typical Characteristics  
PKJ 4316 API  
Start-up  
Shut-down  
Start-up enabled by connecting VI at:  
Tref = +25°C, VI = 53 V,  
IO = 12.4 A resistive load.  
Top trace: output voltage (10 V/div.).  
Bottom trace: input voltage (50 V/div.).  
Time scale: (5 ms/div.).  
Shut-down enabled by disconnecting VI at:  
Tref = +25°C, VI = 53 V,  
IO = 12.4 A resistive load.  
Top trace: output voltage (10 V/div.).  
Bottom trace: input voltage (50 V/div.).  
Time scale: (5 ms/div.).  
Output Ripple & Noise  
Output Load Transient Response  
Output voltage ripple at:  
Tref = +25°C, VI = 53 V,  
Trace: output voltage (20 mV/div.).  
Time scale: (2 µs/div.).  
Output voltage response to load current step- Top trace: output voltage (1 V/div.).  
change (3.1-9.3-3.1 A) at:  
Tref =+25°C, VI = 53 V.  
Bottom trace: load current (5 A/div.).  
Time scale: (0.1 ms/div.).  
I
O = 12.4 A resistive load.  
Output Voltage Adjust (see operating information)  
Passive adjust  
Active adjust  
The resistor value for an adjusted output voltage is calculated by  
using the following equations:  
The output voltage may be adjusted using a voltage applied to the  
Vadj pin. This voltage is calculated by using the following equations:  
Output Voltage Adjust Upwards, Increase:  
Vdesired V  
o
Vadj = 2.5 + 5 ×  
V
(
100+∆%  
2.5×∆%  
)
100+2×∆% ⎤  
V
o
R
= 10 Vo  
kΩ  
adj  
%  
Output Voltage Adjust Downwards, Decrease:  
Example: Upwards => 29.33V  
100  
R
= 10  
(
2  
)
kΩ  
adj  
%  
29.33 28.2 ⎞  
=2.7V  
2.5 + 5 ×  
28.2  
Example: Increase 4% =>Vout = 29.33 Vdc  
Example: Downwards => 27.07V  
(
100+4  
2.5×4  
)
100+2×4 ⎤  
10 28.2  
k=2663 kΩ  
4
27.07 28.2 ⎞  
=2.3V  
2.5 + 5 ×  
Example: Decrease 2% =>Vout = 27.64 Vdc  
28.2  
100  
10  
(
2  
)
k=480 kΩ  
2
E
12  
Technical Specification  
EN/LZT 146 367 R3B September 2009  
PKJ 4000 RFPA series Direct Converters  
Input 36-75 V, Output up to 12.4 A / 350 W  
© Ericsson AB  
28.2 V/12.4 A Typical Characteristics  
PKJ 4316 API  
Output Current Derating – Base Plate  
Thermal Resistance – Base Plate  
[A]  
[°C/W]  
4
15  
3.0 m/s  
12  
9
2.5 m/s  
2.0 m/s  
1.5 m/s  
1.0 m/s  
Nat. Conv.  
3
2
1
0
6
3
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0 [m/s]  
0
20  
40  
60  
80  
100 [°C]  
Available load current vs. ambient air temperature and airflow at  
VI = 53 V. See Thermal Consideration section.  
Thermal resistance vs. airspeed measured at the converter. Tested in  
wind tunnel with airflow and test conditions as per  
the Thermal consideration section. VI = 53 V.  
Output Current Derating – Cold wall sealed box  
[A]  
15  
12  
Tamb 85 C  
9
6
3
0
Tamb 35 C  
0
20  
40  
60  
80  
100 [°C]  
Available load current vs. base plate temperature.  
VI = 53 V. See Thermal Consideration section.  
E
13  
Technical Specification  
EN/LZT 146 367 R3B September 2009  
PKJ 4000 RFPA series Direct Converters  
Input 36-75 V, Output up to 12.4 A / 350 W  
© Ericsson AB  
30.2 V/8.3 A Electrical Specification  
PKJ 4216N PI  
Tref = -40 to +90ºC, VI = 35 to 75 V, unless otherwise specified under Conditions.  
Typical values given at: Tref = +25°C, VI= 53 V, max IO, unless otherwise specified under Conditions.  
Characteristics  
Conditions  
min  
35  
typ  
max  
Unit  
V
VI  
Input voltage range  
75  
35  
36  
VIoff  
VIon  
CI  
Turn-off input voltage  
Turn-on input voltage  
Internal input capacitance  
Output power  
Decreasing input voltage  
Increasing input voltage  
30  
33.5  
34.5  
10  
V
32  
V
µF  
W
PO  
Output voltage initial setting  
f = 100 Hz sinewave, 1 Vp-p  
50 % of max IO  
0
250  
SVR  
Supply voltage rejection (ac)  
40  
dB  
91.5  
91.0  
91.5  
91.0  
24.7  
3
max IO  
90.5  
90.5  
η
Efficiency  
%
50 % of max IO , VI = 48 V  
max IO, VI = 48 V  
Pd  
Pli  
PRC  
fs  
Power Dissipation  
Input idling power  
Input standby power  
Switching frequency  
max IO, Tref = +25°C  
IO= 0, VI = 53 V  
26.2  
230  
W
W
VI = 53 V (turned off with RC)  
0 -100% of max IO  
150  
210  
mW  
kHz  
190  
Output voltage initial setting and  
accuracy  
Tref = +25°C, VI = 53 V, IO = 8.3 A  
29.95  
21.14  
30.2  
30.45  
30.95  
V
V
VOi  
See operation information & see  
Note 1  
Output adjust range  
Output voltage tolerance band  
Idling voltage  
10-100% of max IO  
IO = 0  
29.90  
29.90  
30.50  
30.50  
100  
V
V
VO  
Line regulation  
max IO  
mV  
mV  
Load regulation  
VI = 53 V, 1-100% of max IO  
100  
Load transient  
voltage deviation  
VI = 53 V, Load step 25-75-25 % of  
max IO, di/dt = 1 A/µs,  
Vtr  
ttr  
±1000  
40  
mV  
µs  
Load transient recovery time  
Ramp-up time  
(from 1090 % of VOi)  
tr  
8
ms  
10-100% of max IO  
Start-up time  
ts  
(from VI connection to 90% of  
VOi)  
12  
ms  
IO  
Output current  
0
8.3  
A
A
A
Ilim  
Isc  
Current limit threshold  
Short circuit current  
Tref < max Tref  
8.7  
14.2  
15.8  
Tref = 25ºC, see Note 2  
See ripple & noise section,  
max IO, VOi  
VOac  
Output ripple & noise  
200  
250  
40  
mVp-p  
V
Tref = +25°C, VI = 53 V, IO = 0-100%  
OVP  
Over Voltage Protection  
34  
of max IO  
Note 1:The module can be trimmed down 30% and trimmed up 2.5% at all temperature condition.  
The module can be trimmed down 40% at 25°C and minimum reference temperature. At least 10% of normal output current is suggested when it is  
trimmed down 40% at maximum reference temperature. At most 10% of normal output current is suggested when it is trimmed up 10% at all  
temperature condition.  
Note 2:  
VO =<0.5 V  
E
14  
Technical Specification  
EN/LZT 146 367 R3B September 2009  
PKJ 4000 RFPA series Direct Converters  
Input 36-75 V, Output up to 12.4 A / 350 W  
© Ericsson AB  
30.2 V/8.3 A Typical Characteristics  
Efficiency  
PKJ 4216N PI  
Power Dissipation  
[%]  
95  
[W]  
30  
36 V  
48 V  
53 V  
75 V  
36 V  
25  
20  
15  
10  
5
90  
85  
80  
75  
70  
48 V  
53 V  
75 V  
0
0
2
4
6
8
10 [A]  
0
2
4
6
8
10 [A]  
Dissipated power vs. load current and input voltage at  
Tref = +25°C  
Efficiency vs. load current and input voltage at Tref = +25°C  
Output Characteristics  
Current Limit Characteristics  
[V]  
[V]  
32.00  
30.50  
36 V  
48 V  
53 V  
75 V  
36 V  
48 V  
53 V  
75 V  
30.40  
30.30  
30.20  
30.10  
30.00  
24.00  
16.00  
8.00  
0.00  
4
6
8
10  
12  
14  
16 [A]  
0
2
4
6
8
10 [A]  
Output voltage vs. load current at Tref = +25°C  
Output voltage vs. load current at IO > max IO , Tref = +25°C  
E
15  
Technical Specification  
EN/LZT 146 367 R3B September 2009  
PKJ 4000 RFPA series Direct Converters  
Input 36-75 V, Output up to 12.4 A / 350 W  
© Ericsson AB  
30.2 V/8.3 A Typical Characteristics  
PKJ 4216N PI  
Start-up  
Shut-down  
Start-up enabled by connecting VI at:  
Tref = +25°C, VI = 53 V,  
IO = 8.3 A resistive load.  
Top trace: output voltage (10 V/div.).  
Bottom trace: input voltage (20 V/div.).  
Time scale: (10 ms/div.).  
Shut-down enabled by disconnecting VI at:  
Tref = +25°C, VI = 53 V,  
IO = 8.3 A resistive load.  
Top trace: output voltage (10 V/div.).  
Bottom trace: input voltage (20 V/div.).  
Time scale: (2 ms/div.).  
Output Ripple & Noise  
Output Load Transient Response  
Output voltage ripple at:  
Tref = +25°C, VI = 53 V,  
IO = 8.3 A resistive load.  
Trace: output voltage (50 mV/div.).  
Time scale: (2 µs/div.).  
Output voltage response to load current step- Top trace: output voltage (500 mV/div.).  
change (3-6-3 A) at:  
Bottom trace: load current (5 A/div.).  
Time scale: (0.1 ms/div.).  
Tref =+25°C, VI = 53 V.  
Output Voltage Adjust (see operating information)  
Passive adjust  
The resistor value for an adjusted output voltage is calculated by  
using the following equations:  
Output Voltage Adjust Upwards, Increase:  
(
100+%  
2.5×∆%  
)
100+2×∆% ⎤  
R
=10 V  
kΩ  
adj  
o
%  
Output Voltage Adjust Downwards, Decrease:  
100  
R
= 10  
(
2  
)
kΩ  
adj  
%  
Example: Increase 4% =>Vout = 31.41 Vdc  
(
100+4  
2.5×4  
)
100+2×4 ⎤  
10 30.2  
k= 2871 kΩ  
4
Example: Decrease 2% =>Vout = 29.60 Vdc  
100  
10  
(
2  
)
kΩ  
=480 kΩ  
2
E
16  
Technical Specification  
EN/LZT 146 367 R3B September 2009  
PKJ 4000 RFPA series Direct Converters  
Input 36-75 V, Output up to 12.4 A / 350 W  
© Ericsson AB  
30.2 V/8.3 A Typical Characteristics  
PKJ 4216N PI  
Output Current Derating – Base Plate  
Thermal Resistance – Base Plate  
[A]  
[°C/W]  
4
10  
3.0 m/s  
8
6
4
2
0
2.5 m/s  
2.0 m/s  
1.5 m/s  
1.0 m/s  
Nat. Conv.  
3
2
1
0
0
20  
40  
60  
80  
100 [°C]  
[m/s]  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
Available load current vs. ambient air temperature and airflow at  
VI = 53 V. See Thermal Consideration section.  
Thermal resistance vs. airspeed measured at the converter. Tested in  
wind tunnel with airflow and test conditions as per  
the Thermal consideration section. VI = 53 V.  
Output Current Derating – Cold wall sealed box  
[A]  
10  
8
6
4
2
0
Tamb 85 C  
Tamb 35 C  
0
20  
40  
60  
80  
100 [°C]  
Available load current vs. base plate temperature.  
VI = 53 V. See Thermal Consideration section.  
E
17  
Technical Specification  
EN/LZT 146 367 R3B September 2009  
PKJ 4000 RFPA series Direct Converters  
Input 36-75 V, Output up to 12.4 A / 350 W  
© Ericsson AB  
28.2 V,8.3 A/234W Electrical Specification  
PKJ 4216 PI  
Tref = -40 to +90ºC, VI = 35 to 75 V, sense pins connected to output pins unless otherwise specified under Conditions.  
Typical values given at: Tref = +25°C, VI= 53 VI max IO, unless otherwise specified under Conditions.  
Characteristics  
Conditions  
min  
35  
typ  
max  
75  
Unit  
V
VI  
Input voltage range  
VIoff  
VIon  
CI  
Turn-off input voltage  
Turn-on input voltage  
Internal input capacitance  
Output power  
Decreasing input voltage  
Increasing input voltage  
30  
32.5  
34.5  
10  
35  
V
32  
36  
V
µF  
PO  
Output voltage initial setting  
50 % of max IO  
0
234  
W
91.4  
90.8  
91.5  
90.8  
23.7  
2
max IO  
η
Efficiency  
%
50 % of max IO, VI = 48 V  
max IO, VI = 48 V  
max IO  
Pd  
Pli  
PRC  
fs  
Power Dissipation  
Input idling power  
Input standby power  
Switching frequency  
27.5  
W
W
IO = 0 A, VI = 53 V  
VI = 53 V (turned off with RC)  
0-100 % of max IO  
0.20  
210  
W
190  
230  
kHz  
Output voltage initial setting and  
accuracy  
VOi  
Tref = +25°C, VI = 53 V, IO = 8.3 A  
27.92  
28.20  
28.48  
V
Output adjust range  
Output voltage tolerance band  
Idling voltage  
See operating information  
10-100 % of max IO  
IO = 0 A  
19.74  
27.64  
27.64  
31.02  
28.76  
28.76  
50  
V
V
VO  
V
Line regulation  
max IO  
10  
10  
mV  
mV  
Load regulation  
VI = 53 V, 0-100 % of max IO  
50  
Load transient  
voltage deviation  
Vtr  
ttr  
±1200  
40  
±1800  
100  
mV  
µs  
VI = 53 V, Load step 25-75-25 % of  
max IO, di/dt = 0.2 A/  
µs  
Load transient recovery time  
Ramp-up time  
tr  
3
6
8
15  
ms  
(from 1090 % of VOi)  
10-100 % of max IO  
Start-up time  
(from VI connection to 90 % of VOi)  
ts  
tf  
12  
20  
ms  
max IO  
IO = 0 A  
max IO  
0.1  
0.2  
0.2  
0.4  
13  
0.4  
0.8  
ms  
VI shut-down fall time  
(from VI off to 10 % of VO)  
s
RC start-up time  
ms  
ms  
s
tRC  
max IO  
0.4  
0.4  
RC shut-down fall time  
(from RC off to 10 % of VO)  
I
O = 0 A  
IO  
Output current  
0
8.3  
16  
17  
A
Ilim  
Isc  
Current limit threshold  
Short circuit current  
Tref < max Tref  
9.5  
12  
13  
A
Tref = 25ºC, see Note 1  
A
See ripple & noise section,  
max IO, VOi  
VOac  
Output ripple & noise  
50  
37  
250  
39  
mVp-p  
V
Tref = +25°C, VI = 53 V, 0-100 % of  
OVP  
Over voltage protection  
35  
max IO  
Note 1:The module can be trimmed down 30% and trimmed up 10% at all temperature condition.  
The module can be trimmed down 40% at 25°C and minimum reference temperature. At least 10% of normal output current is suggested when it is  
trimmed down 40% at maximum reference temperature.  
Note 2:  
VO =<0.5 V  
E
18  
Technical Specification  
EN/LZT 146 367 R3B September 2009  
PKJ 4000 RFPA series Direct Converters  
Input 36-75 V, Output up to 12.4 A / 350 W  
© Ericsson AB  
28.2 V,8.3 A/234W Typical Characteristics  
Efficiency  
PKJ 4216 PI  
Power Dissipation  
[%]  
95  
[W]  
30  
36 V  
48 V  
53 V  
75 V  
36 V  
25  
20  
15  
10  
5
90  
85  
80  
75  
70  
48 V  
53 V  
75 V  
0
0
2
4
6
8
[A]  
0
2
4
6
8
[A]  
Dissipated power vs. load current and input voltage at  
Tref = +25°C  
Efficiency vs. load current and input voltage at Tref = +25°C  
Output Characteristics  
Current Limit Characteristics  
[V]  
[V]  
32.00  
28.35  
36 V  
48 V  
53 V  
75 V  
36 V  
28.30  
28.25  
28.20  
28.15  
28.10  
48 V  
53 V  
75 V  
24.00  
16.00  
8.00  
0.00  
0
2
4
6
8
[A]  
4
6
8
10  
12  
14  
16 [A]  
Output voltage vs. load current at Tref = +25°C  
Output voltage vs. load current at IO > max IO , Tref = +25°C  
E
19  
Technical Specification  
EN/LZT 146 367 R3B September 2009  
PKJ 4000 RFPA series Direct Converters  
Input 36-75 V, Output up to 12.4 A / 350 W  
© Ericsson AB  
28.2 V,8.3 A/234W Typical Characteristics  
Start-up  
PKJ 4216 PI  
Shut-down  
Start-up enabled by connecting VI at:  
Tref = +25°C, VI = 53 V,  
IO = 8.3 A resistive load.  
Top trace: output voltage (10 V/div.).  
Bottom trace: input voltage (20 V/div.).  
Time scale: (5 ms/div.).  
Shut-down enabled by disconnecting VI at:  
Tref = +25°C, VI = 53 V,  
IO = 8.3 A resistive load.  
Top trace: output voltage (10V/div.).  
Bottom trace: input voltage (20 V/div.).  
Time scale: (0.1 ms/div.).  
Output Ripple & Noise  
Output Load Transient Response  
Output voltage ripple at:  
Tref = +25°C, VI = 53 V,  
Trace: output voltage (20 mV/div.).  
Time scale: (2 µs/div.).  
Output voltage response to load current step- Top trace: output voltage (1.0 V/div.).  
change (2.1-6.2-2.1 A) at:  
Tref =+25°C, VI = 53 V.  
Bottom trace: load current (5 A/div.).  
Time scale: (0.1 ms/div.).  
I
O = 8.3 A resistive load.  
Output Voltage Adjust (see operating information)  
Passive adjust  
The resistor value for an adjusted output voltage is calculated by  
using the following equations:  
Output Voltage Adjust Upwards, Increase:  
(
100+%  
2.5×∆%  
)
100+2×∆% ⎤  
R
=10 V  
kΩ  
adj  
o
%  
Output Voltage Adjust Downwards, Decrease:  
100  
R
= 10  
(
2  
)
kΩ  
adj  
%  
Example: Increase 4% =>Vout = 29.33 Vdc  
(
100+4  
2.5×4  
)
100+2×4  
10 28.2  
k= 2663 kΩ  
4
Example: Decrease 2% =>Vout = 27.64 Vdc  
100  
10  
(
2  
)
k=480 kΩ  
2
E
20  
Technical Specification  
EN/LZT 146 367 R3B September 2009  
PKJ 4000 RFPA series Direct Converters  
Input 36-75 V, Output up to 12.4 A / 350 W  
© Ericsson AB  
28.2 V,8.3 A/234W Typical Characteristics  
PKJ 4216 PI  
Output Current Derating – Base Plate  
Thermal Resistance – Base Plate  
[A]  
10  
[°C/W]  
5
3.0 m/s  
8
4
3
2
1
0
2.5 m/s  
6
4
2
0
2.0 m/s  
1.5 m/s  
1.0 m/s  
Nat. Conv.  
[m/s]  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0
20  
40  
60  
80  
100 [°C]  
Available load current vs. ambient air temperature and airflow at  
VI = 53 V. See Thermal Consideration section.  
Thermal resistance vs. airspeed measured at the converter. Tested in  
wind tunnel with airflow and test conditions as per  
the Thermal consideration section. VI = 53 V.  
Output Current Derating – Cold wall sealed box  
[A]  
10  
8
6
4
2
0
Tamb 85 C  
Tamb 35 C  
0
20  
40  
60  
80  
100 [°C]  
Available load current vs. base plate temperature.  
VI = 53 V. See Thermal Consideration section.  
E
21  
Technical Specification  
EN/LZT 146 367 R3B September 2009  
PKJ 4000 RFPA series Direct Converters  
Input 36-75 V, Output up to 12.4 A / 350 W  
© Ericsson AB  
EMC Specification  
Conducted EMI measured according to EN55022, CISPR 22  
and FCC part 15J (see test set-up). See Design Note 009 for  
further information. The fundamental switching frequency is  
210 kHz for PKJ 4316 API @ VI = 53 V, max IO.  
Conducted EMI Input terminal value (typ)  
Test set-up  
Layout recommendations  
The radiated EMI performance of the Product will depend on  
the PCB layout and ground layer design. It is also important to  
consider the stand-off of the product. If a ground layer is used,  
it should be connected to the output of the product and the  
equipment ground or chassis.  
EMI without filter  
A ground layer will increase the stray capacitance in the PCB  
and improve the high frequency EMC performance.  
External filter (class B)  
Required external input filter in order to meet class B in  
EN 55022, CISPR 22 and FCC part 15J.  
Output ripple and noise  
Output ripple and noise measured according to figure below.  
See Design Note 022 for detailed information.  
Filter components:  
C1=120pF  
C2,3,4 = 2 μF  
C5 = 33 μF  
C6,7 = 2.2 nF  
L1 = 1 μH  
L2,3 = 0.809 μH  
Common mode  
inductor  
Output ripple and noise test setup  
EMI with filter  
E
22  
Technical Specification  
EN/LZT 146 367 R3B September 2009  
PKJ 4000 RFPA series Direct Converters  
Input 36-75 V, Output up to 12.4 A / 350 W  
© Ericsson AB  
voltage. The higher output power the higher input capacitance  
is needed. Approximately doubled capacitance value is  
required for a 24 V input voltage source compared to a 48V  
input voltage source.  
Operating information  
Input Voltage  
The input voltage range 35 to 75Vdc meets the requirements  
of the European Telecom Standard ETS 300 132-2 for normal  
input voltage range in –48 and –60 Vdc systems, -40.5 to -  
57.0 V and –50.0 to -72 V respectively.  
At input voltages exceeding 75 V, the power loss will be higher  
than at normal input voltage and Tref must be limited to  
absolute max +120°C. The absolute maximum continuous  
input voltage is 80 Vdc.  
External Decoupling Capacitors  
When powering loads with significant dynamic current  
requirements, the voltage regulation at the point of load can  
be improved by addition of decoupling capacitors at the load.  
The most effective technique is to locate low ESR ceramic and  
electrolytic capacitors as close to the load as possible, using  
several parallel capacitors to lower the effective ESR. The  
ceramic capacitors will handle high-frequency dynamic load  
changes while the electrolytic capacitors are used to handle  
low frequency dynamic load changes. It is equally important to  
use low resistance and low inductance PCB layouts and  
cabling.  
Turn-off Input Voltage  
The DC/DC converters monitor the input voltage and will turn  
on and turn off at predetermined levels.  
The minimum hysteresis between turn on and turn off input  
voltage is 1V.  
External decoupling capacitors will become part of the control  
loop of the DC/DC converter and may affect the stability  
margins. As a “rule of thumb”, 100 µF/A of output current can  
be added without any additional analysis. The ESR of the  
capacitors is a very important parameter. Power Modules  
guarantee stable operation with a verified ESR value of >10  
macross the output connections.  
Remote Control (RC)  
The products are fitted with a  
remote control function referenced  
to the primary negative input  
connection (- In), with negative and  
positive logic options available. The  
RC function allows the product to  
be turned on/off by an external  
device like a semiconductor or  
mechanical switch. The RC pin has  
an internal pull up resistor to + In.  
For further information please contact your local Ericsson  
Power Modules representative.  
Output Voltage Adjust (Vadj  
)
The products have an Output Voltage Adjust pin (Vadj). This  
pin can be used to adjust the output voltage above or below  
Output voltage initial setting.  
When increasing the output voltage, the voltage at the output  
pins (including any remote sense compensation ) must be  
kept below the threshold of the over voltage protection, (OVP)  
to prevent the converter from shutting down. At increased  
output voltages the maximum power rating of the converter  
remains the same, and the max output current must be  
decreased correspondingly.  
To increase the voltage the resistor should be connected  
between the Vadj pin and +Sense pin. The resistor value of the  
Output voltage adjust function is according to information  
given under the Output section for the respective product.  
To decrease the output voltage, the resistor should be  
connected between the Vadj pin and –Sense pin.  
The maximum required sink current is 1 mA. When the RC pin  
is left open, the voltage generated on the RC pin is  
3.5 – 6.0 V. The standard product is provided with “negative  
logic” remote control and will be off until the RC pin is  
connected to the -In. To turn on the product the voltage  
between RC pin and -In should be less than 1V. To turn off the  
converter the RC pin should be left open, or connected to a  
voltage higher than 4 V referenced to -In. In situations where it  
is desired to have the product to power up automatically  
without the need for control signals or a switch, the RC pin can  
be wired directly to -In.  
See Design Note 021 for detailed information.  
Input and Output Impedance  
The impedance of both the input source and the load will  
interact with the impedance of the product. It is important that  
the input source has low characteristic impedance. The  
products are designed for stable operation without external  
capacitors connected to the input or output. The performance  
in some applications can be enhanced by addition of external  
capacitance as described under External Decoupling  
Capacitors.  
If the input voltage source contains significant inductance, the  
addition of a 22 - 100 µF capacitor across the input of the  
product will ensure stable operation. The capacitor is not  
required when powering the product from an input source with  
an inductance below 10 µH. The minimum required  
capacitance value depends on the output power and the input  
E
23  
Technical Specification  
EN/LZT 146 367 R3B September 2009  
PKJ 4000 RFPA series Direct Converters  
Input 36-75 V, Output up to 12.4 A / 350 W  
© Ericsson AB  
Operating information continued  
Thermal Consideration  
Parallel Operation  
General  
Two converters may be paralleled for redundancy if the total  
power is equal or less than PO max. It is not recommended to  
parallel the converters without using external current sharing  
circuits.  
The products are designed to operate in different thermal  
environments and sufficient cooling must be provided to  
ensure reliable operation.  
For products mounted on a PCB without a heat sink attached,  
cooling is achieved mainly by conduction, from the pins to the  
host board, and convection, which is dependant on the airflow  
across the product. Increased airflow enhances the cooling of  
the product. The Output Current Derating graph found in the  
Output section for each model provides the available output  
current vs. ambient air temperature and air velocity at  
VI = 53 V.  
See Design Note 006 for detailed information.  
Remote Sense  
The DC/DC converters have remote sense that can be used to  
compensate for voltage drops between the output and the  
point of load. The sense traces should be located close to the  
PCB ground layer to reduce noise susceptibility. The remote  
sense circuitry will compensate for up to 10% voltage drop  
between output pins and the point of load.  
The product is tested on a 254 x 254 mm, 35 µm (1 oz),  
16-layer test board mounted vertically in a wind tunnel with a  
cross-section of 608 x 203 mm.  
If the remote sense is not needed +Sense should be  
connected to +Out and -Sense should be connected to -Out.  
Over Temperature Protection (OTP)  
The converters are protected from thermal overload by an  
internal over temperature shutdown circuit.  
When the baseplate temperature (center of baseplate)  
exceeds 140°C the converter will shut down(latching). The  
DC/DC converter can be restarted by cycling the input voltage  
or using the remote control function.  
Over Voltage Protection (OVP)  
The converters have latching output overvoltage protection. In  
the event of an overvoltage condition, the converter will  
shutdown immediately. The converter can be restarted by  
cycling the input voltage or using the remote control function.  
Over Current Protection (OCP)  
The converters include current limiting circuitry for protection  
at continuous overload.  
The output voltage will decrease towards zero for output  
currents in excess of max output current (max Io). The  
converter will resume normal operation after removal of the  
overload. The load distribution should be designed for the  
maximum output short circuit current specified.  
For products with base plate used in a sealed box/cold wall  
application, cooling is achieved mainly by conduction  
throughthe cold wall. The Output Current Derating graphs are  
found in the Output section for each model. The product is  
tested in a sealed box test set up with ambient temperatures  
85, 55 and 35°C. See Design Note 028 for further details.  
E
24  
Technical Specification  
EN/LZT 146 367 R3B September 2009  
PKJ 4000 RFPA series Direct Converters  
Input 36-75 V, Output up to 12.4 A / 350 W  
© Ericsson AB  
Ambient Temperature Calculation  
For products with base plate the maximum allowed ambient  
temperature can be calculated by using the thermal resistance.  
1. The power loss is calculated by using the formula  
((1/η) - 1) × output power = power losses (Pd).  
η = efficiency of product. E.g. 89.5% = 0.895  
2. Find the thermal resistance (Rth) in the Thermal Resistance  
graph found in the Output section for each model. Note that  
the thermal resistance can be significantly reduced if a  
heat sink is mounted on the top of the base plate.  
Calculate the temperature increase (ΔT).  
ΔT = Rth x Pd  
3. Max allowed ambient temperature is:  
Max TP1 - ΔT.  
Proper cooling of the product can be verified by measuring the  
temperature at positions P1, P2. The temperature at these  
positions should not exceed the max values provided in the  
table below. The number of points may vary with different  
thermal design and topology.  
E.g PKJ 4316 API at 2m/s:  
1
See Design Note 019 for further information.  
1. ((  
) - 1) × 350 W = 52.3 W  
0.87  
Position  
P1  
Description  
Temp. limit  
120º C  
2. 52.3 W × 1.8°C/W = 94.1°C  
Reference Point, Baseplate  
P2  
PCB  
110º C  
3. 120 °C –94.1°C = max ambient temperature is 25.9°C.  
The actual temperature will be dependent on several factors  
such as the PCB size, number of layers and direction of  
airflow.  
Base plate  
Definition of reference temperature TP1  
The reference temperature is used to monitor the temperature  
limits of the product. Temperatures above maximum TP1,  
meassured at the reference point P1 are not allowed and may  
cause degradation or permanent damage to the product. TP1 is  
also used to define the temperature range for normal operating  
conditions. TP1 is defined by the design and used to guarantee  
safety margins, proper operation and high reliability to the  
product.  
E
25  
Technical Specification  
EN/LZT 146 367 R3B September 2009  
PKJ 4000 RFPA series Direct Converters  
Input 36-75 V, Output up to 12.4 A / 350 W  
© Ericsson AB  
Connections  
Pin  
1
Designation  
+In  
Function  
Positive input  
2
3
4
5
6
7
8
9
RC  
Case  
-In  
Remote control  
Connected to base plate  
Negative input  
-Out  
-Sen  
Vadj  
+Sen  
+Out  
Negative output  
Negative sense  
Output voltage adjust  
Positive sense  
Positive output  
E
26  
Technical Specification  
EN/LZT 146 367 R3B September 2009  
PKJ 4000 RFPA series Direct Converters  
Input 36-75 V, Output up to 12.4 A / 350 W  
© Ericsson AB  
Mechanical Information  
E
27  
Technical Specification  
EN/LZT 146 367 R3B September 2009  
PKJ 4000 RFPA series Direct Converters  
Input 36-75 V, Output up to 12.4 A / 350 W  
© Ericsson AB  
Soldering Information  
The product is intended for manual or wave soldering. When  
wave soldering is used, the temperature on the pins is  
specified to maximum 270 °C for maximum 10 seconds.  
A maximum preheat rate of 4°C/s and a temperature of max of  
+150°C is suggested. When soldering by hand, care should  
be taken to avoid direct contact between the hot soldering iron  
tip and the pins for more than a few seconds in order to  
prevent overheating.  
A no-clean flux is recommended to avoid entrapment of  
cleaning fluids in cavities inside the product or between the  
product and the host board. The cleaning residues may affect  
long time reliability and isolation voltage.  
Delivery Package Information  
The products are delivered in antistatic clamshell trays.  
Clamshell Specifications  
Material  
Conductive/dissipative PET  
105 < Ohm/square < 1012  
The clamshells are not bake able.  
10 products/clamshell  
Surface resistance  
Bake ability  
Clamshell capacity  
Clamshell  
thickness  
25 mm [0.984 inch]  
Box capacity  
50 products (5 full clamshells/box)  
150 g empty, typical 1050 g one full  
clamshell  
Clamshell weight  
E
28  
Technical Specification  
EN/LZT 146 367 R3B September 2009  
PKJ 4000 RFPA series Direct Converters  
Input 36-75 V, Output up to 12.4 A / 350 W  
© Ericsson AB  
Product Qualification Specification  
Characteristics  
External visual inspection  
Dry heat  
IPC-A-610  
IEC 60068-2-2 Bd  
Temperature  
Duration  
+125 °C  
1000 h  
Cold (in operation)  
Damp heat  
IEC 60068-2-1 Ad  
IEC 60068-2-67 Cy  
Temperature TA  
Duration  
-45°C  
72 h  
Temperature  
Humidity  
Duration  
+85 °C  
85 % RH  
1000 hours  
Operational life test  
MIL-STD-202G method 108A  
IEC 60068-2-14 Na  
Duration  
1000 h  
Change of temperature  
(Temperature cycling)  
Temperature range  
Number of cycles  
Dwell/transfer time  
-40 to +100 °C  
1000  
15 min/0-1 min  
Vibration, broad band random  
IEC 60068-2-64 Fh, method 1  
IEC 60068-2-27 Ea  
Frequency  
Spectral density  
Duration  
10 to 500 Hz  
0.07 g2/Hz  
10 min in each 3 perpendicular  
directions  
Mechanical shock  
Peak acceleration  
Duration  
100 g  
6 ms  
Pulse shape  
Directions  
Half sine  
6
Number of pulses  
18 (3 + 3 in each perpendicular  
direction)  
Robustness of terminations  
Resistance to soldering heat  
Solderability  
IEC 60068-2-21 Test Ua1  
IEC 60068-2-20 Tb Method 1A  
IEC 60068-2-20 test Ta  
Plated through hole mount  
products  
All leads  
Solder temperature  
Duration  
270° C  
10-13 s  
Preconditioning  
Temperature, SnPb Eutectic  
Temperature, Pb-free  
Steam ageing  
235° C  
260° C  
Immersion in cleaning solvents  
IEC 60068-2-45 XA  
Method 2  
Water  
Glycol ether  
Isopropanol  
+55° C  
+35° C  
+35° C  

相关型号:

PKJ4316APIP

DC-DC Regulated Power Supply Module, 1 Output, 350W, Hybrid, ROHS COMPLIANT, PACKAGE-9
ERICSSON

PKJ4316PI

DC-DC Regulated Power Supply Module, 1 Output, 310W, Hybrid, ROHS COMPLIANT PACKAGE-9
ERICSSON

PKJ4316PILA

DC-DC Regulated Power Supply Module, 1 Output, 310W, Hybrid, ROHS COMPLIANT PACKAGE-9
ERICSSON

PKJ4316PIM

DC-DC Regulated Power Supply Module, 6 Output, 600W, Hybrid, ROHS COMPLIANT PACKAGE-9
ERICSSON

PKJ4318OEPI

DC-DC Regulated Power Supply Module, 1 Output, 36W, Hybrid, 2.300 X 2.400 INCH, 0.330 INCH HEIGHT, LOW PROFILE, HALF BRICK PACKAGE-9/8
ERICSSON

PKJ4318PIPOAT

DC-DC Regulated Power Supply Module, 1 Output, 30W, Hybrid
ERICSSON

PKJ4318PIPT

DC-DC Regulated Power Supply Module, 1 Output, 36W, Hybrid
ERICSSON

PKJ4318PITLA

DC-DC Regulated Power Supply Module, 1 Output, 36W, Hybrid
ERICSSON

PKJ4319PI

Analog IC
ETC

PKJ4319PIP

Analog IC
ETC

PKJ4510PI

DC-DC Regulated Power Supply Module, 1 Output, 50W, Hybrid
ERICSSON

PKJ4510PIP

Analog IC
ETC