PKU4318LPIPLA [ERICSSON]

DC-DC Regulated Power Supply Module, 1 Output, 30W, Hybrid, ROHS COMPLIANT PACKAGE-8;
PKU4318LPIPLA
型号: PKU4318LPIPLA
厂家: ERICSSON    ERICSSON
描述:

DC-DC Regulated Power Supply Module, 1 Output, 30W, Hybrid, ROHS COMPLIANT PACKAGE-8

文件: 总38页 (文件大小:1050K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
3AMay2007
Key Features  
Industry standard Sixteenth-brick  
33.02 x 22.86 x 9.90 mm (1.3 x 0.9 x 0.39 in.)  
Wide output adjust, e.g. 3.3V +10/-40%  
1500 Vdc input to output isolation  
Meets isolation requirements equivalent to basic  
insulation according to IEC/EN/UL 60950  
More than 1.61 million hours MTBF  
General Characteristics  
Pre-biased start-up capability  
Output over voltage protection  
Input under voltage shut-down  
Over temperature protection  
Monotonic start-up  
Output short-circuit protection  
Remote sense  
Remote control  
Safety Approvals  
Design for Environment  
Output voltage adjust function  
Highly automated manufacturing ensures quality  
ISO 9001/14001 certified supplier  
Meets requirements in high-  
temperature lead-free soldering  
processes.  
Contents  
General Information  
Safety Specification  
Absolute Maximum Ratings  
............................................................. 2  
............................................................. 3  
............................................................. 4  
Product Program  
Ordering No.  
1.2 V/25 A Electrical Specification  
1.5 V/25 A Electrical Specification  
1.8 V/25 A Electrical Specification  
2.5 V/15 A Electrical Specification  
3.3 V/15 A Electrical Specification  
5.0 V/10 A Electrical Specification  
12.0 V/4.2 A Electrical Specification  
15.0 V/3.3 A Electrical Specification  
PKU 4318L PI ...................................... 5  
PKU 4318H PI ...................................... 8  
PKU 4418G PI .................................... 11  
PKU 4319 PI....................................... 14  
PKU 4510 PI....................................... 17  
PKU 4511 PI....................................... 20  
PKU 4513 PI....................................... 23  
PKU 4515 PI....................................... 26  
EMC Specification  
........................................................... 29  
........................................................... 30  
........................................................... 32  
........................................................... 33  
........................................................... 34  
........................................................... 36  
........................................................... 37  
........................................................... 38  
Operating Information  
Thermal Consideration  
Connections  
Mechanical Information  
Soldering Information  
Delivery Information  
Product Qualification Specification  
2
3AMay2007
General Information  
Exemptions in the RoHS directive utilized in Ericsson  
Power Modules products include:  
Ordering Information  
-
Lead in high melting temperature type solder (used to  
See Contents for individual product ordering numbers.  
solder the die in semiconductor packages)  
Lead in glass of electronics components and in  
electronic ceramic parts (e.g. fill material in chip  
resistors)  
-
Option  
Suffix  
SI  
PI  
P
LA  
Ordering No.  
PKU 4510 SI *  
PKU 4510 PI  
PKU 4510 PIP  
PKU 4510 PILA  
Isolated Surface mount  
Isolated Through-hole  
Positive Remote Control Logic  
Lead length 3.69 mm (0.145 in)  
Note: As an example a through-hole mounted, positive logic, short pin  
product would be PKU 4510 PIPLA.  
-
Lead as an alloying element in copper alloy containing  
up to 4% lead by weight (used in connection pins  
made of Brass)  
* Samples available on request.  
Reliability  
Quality Statement  
The Mean Time Between Failure (MTBF) is calculated at full  
output power and an operating ambient temperature (TA) of  
+40°C, which is a typical condition in Information and  
Communication Technology (ICT) equipment. Different  
methods could be used to calculate the predicted MTBF  
and failure rate which may give different results. Ericsson  
Power Modules currently uses Telcordia SR332.  
The products are designed and manufactured in an  
industrial environment where quality systems and methods  
like ISO 9000, 6σ (sigma), and SPC are intensively in use to  
boost the continuous improvements strategy. Infant  
mortality or early failures in the products are screened out  
and they are subjected to an ATE-based final test.  
Conservative design rules, design reviews and product  
qualifications, plus the high competence of an engaged  
work force, contribute to the high quality of our products.  
Predicted MTBF for the series is:  
-
1.61 million hours according to Telcordia SR332, issue  
1, Black box technique.  
Warranty  
Warranty period and conditions are defined in Ericsson  
Power Modules General Terms and Conditions of Sale.  
Telcordia SR332 is a commonly used standard method  
intended for reliability calculations in ICT equipment. The  
parts count procedure used in this method was originally  
modelled on the methods from MIL-HDBK-217F, Reliability  
Predictions of Electronic Equipment. It assumes that no  
reliability data is available on the actual units and devices  
for which the predictions are to be made, i.e. all predictions  
are based on generic reliability parameters.  
Limitation of Liability  
Ericsson Power Modules does not make any other  
warranties, expressed or implied including any warranty of  
merchantability or fitness for a particular purpose  
(including, but not limited to, use in life support  
applications, where malfunctions of product can cause  
injury to a person’s health or life).  
Compatibility with RoHS requirements  
The products are compatible with the relevant clauses and  
requirements of the RoHS directive 2002/95/EC and have a  
maximum concentration value of 0.1% by weight in  
homogeneous materials for lead, mercury, hexavalent  
chromium, PBB and PBDE and of 0.01% by weight in  
homogeneous materials for cadmium.  
3
3AMay2007
Safety Specification  
Isolated DC/DC converters  
It is recommended that a slow blow fuse with a rating  
twice the maximum input current per selected product be  
used at the input of each DC/DC converter. If an input filter  
is used in the circuit the fuse should be placed in front of  
the input filter.  
General information  
Ericsson Power Modules DC/DC converters and DC/DC  
regulators are designed in accordance with safety  
standards IEC/EN/UL60950, Safety of Information  
Technology Equipment.  
In the rare event of a component problem in the input filter  
or in the DC/DC converter that imposes a short circuit on  
the input source, this fuse will provide the following  
functions:  
IEC/EN/UL60950 contains requirements to prevent injury  
or damage due to the following hazards:  
Electrical shock  
Energy hazards  
Fire  
Mechanical and heat hazards  
Radiation hazards  
Chemical hazards  
Isolate the faulty DC/DC converter from the input  
power source so as not to affect the operation of  
other parts of the system.  
Protect the distribution wiring from excessive  
current and power loss thus preventing  
hazardous overheating.  
On-board DC-DC converters are defined as component  
power supplies. As components they cannot fully comply  
with the provisions of any Safety requirements without  
“Conditions of Acceptability”. It is the responsibility of the  
installer to ensure that the final product housing these  
components complies with the requirements of all  
applicable Safety standards and Directives for the final  
product.  
The galvanic isolation is verified in an electric strength test.  
The test voltage (Viso) between input and output is  
1500 Vdc or 2250 Vdc for 60 seconds (refer to product  
specification).  
Leakage current is less than 1 µA at nominal input voltage.  
24 V DC systems  
The input voltage to the DC/DC converter is SELV (Safety  
Extra Low Voltage) and the output remains SELV under  
normal and abnormal operating conditions.  
Component power supplies for general use should comply  
with the requirements in IEC60950, EN60950 and  
UL60950 “Safety of information technology equipment”.  
48 and 60 V DC systems  
There are other more product related standards, e.g.  
IEEE802.3af “Ethernet LAN/MAN Data terminal equipment  
power”, and ETS300132-2 “Power supply interface at the  
input to telecommunications equipment; part 2: DC”, but  
all of these standards are based on IEC/EN/UL60950 with  
regards to safety.  
If the input voltage to Ericsson Power Modules DC/DC  
converter is 75 Vdc or less, then the output remains SELV  
(Safety Extra Low Voltage) under normal and abnormal  
operating conditions.  
Single fault testing in the input power supply circuit should  
be performed with the DC/DC converter connected to  
demonstrate that the input voltage does not exceed  
75 Vdc.  
Ericsson Power Modules DC/DC converters and DC/DC  
regulators are UL60950 recognized and certified in  
accordance with EN60950.  
If the input power source circuit is a DC power system, the  
source may be treated as a TNV2 circuit and testing has  
demonstrated compliance with SELV limits and isolation  
requirements equivalent to Basic Insulation in accordance  
with IEC/EN/UL60950.  
The flammability rating for all construction parts of the  
products meets requirements for V-0 class material  
according to IEC 60695-11-10.  
The products should be installed in the end-use  
equipment, in accordance with the requirements of the  
ultimate application. Normally the output of the DC/DC  
converter is considered as SELV (Safety Extra Low  
Voltage) and the input source must be isolated by  
minimum Double or Reinforced Insulation from the primary  
circuit (AC mains) in accordance with IEC/EN/UL60950.  
Non-isolated DC/DC regulators  
The input voltage to the DC/DC regulator is SELV (Safety  
Extra Low Voltage) and the output remains SELV under  
normal and abnormal operating conditions.  
4
3AMay2007
Absolute Maximum Ratings  
Characteristics  
min  
-45  
typ  
max  
+110  
+125  
+80  
1500  
100  
25  
Unit  
°C  
°C  
V
Tref  
TS  
Operating Temperature (see Thermal Consideration section)  
Storage temperature  
-55  
VI  
Input voltage  
-0.5  
Viso  
Vtr  
Isolation voltage (input to output test voltage)  
Input voltage transient (tp 100 ms)  
Vdc  
V
Positive logic option  
Negative logic option  
-0.5  
-0.5  
-0.5  
V
Remote Control pin voltage  
(see Operating Information section)  
VRC  
Vadj  
25  
V
Adjust pin voltage (see Operating Information section)  
6
V
Stress in excess of Absolute Maximum Ratings may cause permanent damage. Absolute Maximum Ratings, sometimes referred to as no destruction limits, are  
normally tested with one parameter at a time exceeding the limits of Output data or Electrical Characteristics. If exposed to stress above these limits, function and  
performance may degrade in an unspecified manner.  
Fundamental Circuit Diagram  
Primary  
Secondary  
+ In  
+ Out  
+ Sense  
Primary  
Driver  
Secondary  
Driver  
- Sense  
- Out  
Control and  
Supervision  
Vadj  
Bias supply  
and OTP  
Isolated  
Feedback  
RC  
- In  
5
3AMay2007
1.2 V/25 A Electrical Specification  
PKU 4318L  
Tref = -30 to +110ºC, VI = 36 to 75 V, sense pins connected to output pins unless otherwise specified under Conditions.  
Typical values given at: Tref = +25°C, VI= 53 V, max IO, unless otherwise specified under Conditions.  
An external capacitor of 1 μF is used on the input during all measurements.  
Characteristics  
Conditions  
min  
36  
typ  
Max  
75  
Unit  
VI  
Input voltage range  
V
Decreasing input voltage  
see Note 1  
Increasing input voltage  
see Note 1  
VIoff  
Turn-off input voltage  
Turn-on input voltage  
29  
32  
31  
33  
V
VIon  
33  
34.5  
V
CI  
Internal input capacitance  
Output power  
0.5  
μF  
PO  
Output voltage initial setting  
50 % of max IO  
0
30  
10  
W
83.5  
82.5  
84  
max IO  
η
Efficiency  
%
50 % of max IO , VI = 48 V  
max IO , VI = 48 V  
max IO  
83  
Pd  
Pli  
Power Dissipation  
Input idling power  
Input standby power  
Switching frequency  
6.3  
W
W
IO = 0 A, VI = 53 V  
VI = 53 V (turned off with RC)  
0-100 % of max IO  
1.8  
PRC  
fs  
0.13  
320  
W
290  
350  
kHz  
Output voltage initial setting and  
accuracy  
VOi  
Tref = +25°C, VI = 53 V, max IO  
1.176  
1.20  
1.224  
V
Output adjust range  
Output voltage tolerance band  
Idling voltage  
See operating information  
0-100 % of max IO  
1.00  
1.16  
1.18  
1.32  
1.24  
1.22  
12  
V
V
VO  
IO = 0 A  
V
Line regulation  
max IO  
5
5
mV  
mV  
Load regulation  
VI = 53 V, 0-100 % of max IO  
10  
Load transient  
voltage deviation  
VI = 53 V, Load step 25-75-25 % of  
max IO, di/dt = 7 A/μs,  
Vtr  
ttr  
tr  
±160  
25  
±250  
50  
mV  
μs  
Load transient recovery time  
Ramp-up time  
(from 1090 % of VOi)  
5
9
6
7
ms  
0-100 % of max IO  
Start-up time  
(from VI connection to 90 % of VOi)  
ts  
tf  
10  
11  
ms  
max IO  
IO = 10 % of max IO  
max IO  
0.05  
0.3  
0.1  
0.7  
5
0.2  
1.0  
ms  
ms  
ms  
VI shut-down fall time  
(from VI off to 10 % of VO)  
RC start-up time  
tRC  
max IO  
0.5  
0.5  
ms  
ms  
A
RC shut-down fall time  
(from RC off to 10 % of VO)  
IO = 10 % of max IO  
IO  
Output current  
0
25  
35  
Ilim  
Isc  
Current limit threshold  
Short circuit current  
Tref < max Tref  
26  
31  
20  
A
Tref = 25ºC, see Note 2  
A
See ripple & noise section,  
max IO, VOi  
VOac  
Output ripple & noise  
70  
130  
mVp-p  
V
Tref = +25°C, VI = 53 V, 0-100 % of  
OVP  
Over voltage protection  
1.55  
max IO  
Note 1: See Operating information section Turn-off Input Voltage.  
Note 2: RMS current in hiccup mode, VO lower than aprox 0.5 V.  
6
3AMay2007
1.2 V/25 A Typical Characteristics  
PKU 4318L  
Efficiency  
Power Dissipation  
[%]  
90  
[W]  
10  
8
6
4
2
0
85  
80  
75  
70  
36 V  
48 V  
53 V  
75 V  
36 V  
48 V  
53 V  
75 V  
65  
0
5
10  
15  
2 0  
2 5  
[A]  
0
5
10  
15  
20  
25 [A]  
Dissipated power vs. load current and input voltage at  
ref = +25°C  
Efficiency vs. load current and input voltage at Tref = +25°C  
T
Output Current Derating  
Thermal Resistance  
[A]  
30  
[°C/W]  
12  
3.0 m/s  
25  
20  
15  
10  
5
10  
8
2.0 m/s  
1.5 m/s  
6
1.0 m/s  
4
Nat. Conv.  
2
0
0
0
20  
40  
60  
80  
100  
[°C]  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0[m/s]  
Available load current vs. ambient air temperature and airflow at  
VI = 53 V. See Thermal Consideration section.  
Thermal resistance vs. airspeed measured at the converter.  
Tested in wind tunnel with airflow and test conditions as per  
the Thermal consideration section.  
Output Characteristics  
Current Limit Characteristics  
[V]  
[V]  
1. 3 0  
2.00  
1. 2 5  
1. 2 0  
1. 15  
1. 10  
1.50  
1.00  
0.50  
36 V  
48 V  
53 V  
75 V  
36 V  
48 V  
53 V  
75 V  
0.00  
16 18 20 22 24 26 28 30 32 [A]  
0
5
10  
15  
2 0  
2 5  
[A]  
Output voltage vs. load current at Tref = +25°C  
Output voltage vs. load current at IO > max IO , Tref = +25°C  
At Vo lower than approx 0.5 V the module enters hiccup mode  
7
3AMay2007
1.2 V/25 A Typical Characteristics  
PKU 4318L  
Start-up  
Shut-down  
Start-up enabled by connecting VI at:  
Tref = +25°C, VI = 53 V,  
Top trace: output voltage ( 0.5 V/div.).  
Bottom trace: input voltage ( 20 V/div.).  
Time scale: ( 5 ms/div.).  
Shut-down enabled by disconnecting VI at:  
Tref = +25°C, VI = 53 V,  
IO = 25 A resistive load.  
Top trace: output voltage ( 0.5 V/div.).  
Bottom trace: input voltage ( 50 V/div.).  
Time scale: ( 0.2 ms/div.).  
I
O = 25 A resistive load.  
Output Ripple & Noise  
Output Load Transient Response  
Output voltage ripple at:  
Tref = +25°C, VI = 53 V,  
IO = 25 A resistive load.  
Trace: output voltage ( 20 mV/div.).  
Time scale: ( 2 μs/div.).  
Output voltage response to load current step- Top trace: output voltage ( 200 mV/div.).  
change (6.25 - 18.75 - 6.25 A) at:  
Bottom trace: load current ( 10 A/div.).  
Time scale: ( 0.1 ms/div.).  
Tref =+25°C, VI = 53 V.  
Output Voltage Adjust (see operating information)  
Passive adjust  
Active adjust  
The resistor value for an adjusted output voltage is calculated by  
using the following equations:  
The output voltage may be adjusted using a voltage applied to the  
Vadj pin. This voltage is calculated by using the following equation:  
Output Voltage Adjust Upwards, Increase:  
Vdesired 1.20 ⎞  
Vadj = ⎜1.225 + 2.45×  
V  
5.11×1.20  
(
100 + Δ%  
)
511  
1.20  
Radj = ⎜  
10.22kΩ  
1.225×Δ%  
Δ%  
Example: Upwards => 1.30 V  
Example: Increase 4% =>Vout = 1.248Vdc  
1.30 1.20 ⎞  
1.225 + 2.45×  
V = 1.43 V  
5.11×1.20  
(
100 + 4  
)
511  
4
1.20  
10.22kΩ = 128 kΩ  
1.225 × 4  
Example: Downwards => 1.0 V  
Output Voltage Adjust Downwards, Decrease:  
1.00 1.20 ⎞  
V = 0.82 V  
1.225 + 2.45×  
511⎞  
1.20  
Radj = ⎜  
⎟ − 10.22 kΩ  
Δ%  
Example: Decrease 2% =>Vout = 1.176 Vdc  
511⎞  
⎟ − 10.22 kΩ = 245 kΩ  
2
8
3AMay2007
1.5 V/25 A Electrical Specification  
PKU 4318H  
Tref = -30 to +110ºC, VI = 36 to 75 V, sense pins connected to output pins unless otherwise specified under Conditions.  
Typical values given at: Tref = +25°C, VI= 53 V, max IO, unless otherwise specified under Conditions.  
An external capacitor of 1 μF is used on the input during all measurements.  
Characteristics  
Conditions  
min  
36  
typ  
Max  
75  
Unit  
VI  
Input voltage range  
V
Decreasing input voltage  
see Note 1  
Increasing input voltage  
See Note 1  
VIoff  
Turn-off input voltage  
Turn-on input voltage  
29  
32  
31  
33  
V
VIon  
33  
34.5  
V
CI  
Internal input capacitance  
Output power  
0.5  
μF  
PO  
Output voltage initial setting  
50 % of max IO  
0
37.5  
W
86  
85  
max IO  
η
Efficiency  
%
50 % of max IO , VI = 48 V  
max IO , VI = 48 V  
max IO  
86  
85  
Pd  
Pli  
Power Dissipation  
Input idling power  
Input standby power  
Switching frequency  
6.7  
2
10  
W
W
IO = 0 A, VI = 53 V  
VI = 53 V (turned off with RC)  
0-100 % of max IO  
PRC  
fs  
0.15  
320  
W
290  
350  
kHz  
Output voltage initial setting and  
accuracy  
VOi  
Tref = +25°C, VI = 53 V, max IO  
1.47  
1.50  
1.53  
V
Output adjust range  
Output voltage tolerance band  
Idling voltage  
See operating information  
0-100 % of max IO  
1.00  
1.455  
1.48  
1.65  
1.545  
1.52  
12  
V
V
VO  
IO = 0 A  
V
Line regulation  
max IO  
5
5
mV  
mV  
Load regulation  
VI = 53 V, 0-100 % of max IO  
10  
Load transient  
voltage deviation  
VI = 53 V, Load step 25-75-25 % of  
max IO, di/dt = 7 A/μs,  
Vtr  
ttr  
tr  
±120  
15  
±250  
50  
mV  
μs  
Load transient recovery time  
Ramp-up time  
(from 1090 % of VOi)  
3.5  
5
6
ms  
0-100 % of max IO  
Start-up time  
(from VI connection to 90 % of VOi)  
ts  
tf  
7
9
10  
ms  
max IO  
IO = 10 % of max IO  
max IO  
0.05  
0.1  
0.7  
5
0.2  
ms  
ms  
ms  
VI shut-down fall time  
(from VI off to 10 % of VO)  
RC start-up time  
tRC  
max IO  
0.6  
ms  
ms  
A
RC shut-down fall time  
(from RC off to 10 % of VO)  
IO = 10 % of max IO  
0.65  
IO  
Output current  
0
25  
35  
Ilim  
Isc  
Current limit threshold  
Short circuit current  
Tref < max Tref  
26  
31  
20  
A
Tref = 25ºC, see Note 2  
A
See ripple & noise section,  
max IO, VOi  
VOac  
Output ripple & noise  
80  
150  
mVp-p  
V
Tref = +25°C, VI = 53 V, 0-100 % of  
OVP  
Over voltage protection  
1.9  
max IO  
Note 1: See Operating information section Turn-off Input Voltage.  
Note 2: RMS current in hiccup mode, VO lower than aprox 0.5 V.  
9
3AMay2007
1.5 V/25 A Typical Characteristics  
PKU 4318H  
Efficiency  
Power Dissipation  
[%]  
95  
[W]  
10  
8
6
4
2
0
90  
85  
80  
75  
36 V  
48 V  
53 V  
75 V  
36 V  
48 V  
53 V  
75 V  
70  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
[A]  
[A]  
Dissipated power vs. load current and input voltage at  
ref = +25°C  
Efficiency vs. load current and input voltage at Tref = +25°C  
T
Output Current Derating  
Thermal Resistance  
[A]  
30  
[°C/W]  
14  
3.0 m/s  
2.0 m/s  
1.5 m/s  
1.0 m/s  
Nat. Conv.  
25  
20  
15  
10  
5
12  
10  
8
6
4
2
0
0
20  
40  
60  
80  
100  
[°C]  
0
[m/s]  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
Available load current vs. ambient air temperature and airflow at  
VI = 53 V. See Thermal Consideration section.  
Thermal resistance vs. airspeed measured at the converter.  
Tested in wind tunnel with airflow and test conditions as per  
the Thermal consideration section.  
Output Characteristics  
Current Limit Characteristics  
[V]  
[V]  
1. 6 0  
2.00  
1. 5 5  
1. 5 0  
1. 0 0  
36 V  
36 V  
48 V  
53 V  
75 V  
48 V  
53 V  
75 V  
1. 5 0  
1. 4 5  
1. 4 0  
0.50  
0.00  
0
5
10  
15  
20  
25  
[A]  
16  
18  
20  
22  
24  
26  
28  
30  
32  
[A]  
Output voltage vs. load current at Tref = +25°C  
Output voltage vs. load current at IO > max IO , Tref = +25°C  
At Vo lower than approx 0.5 V the module enters hiccup mode  
10  
3AMay2007
1.5 V/25 A Typical Characteristics  
PKU 4318H  
Start-up  
Shut-down  
Start-up enabled by connecting VI at:  
Top trace: output voltage ( 0.5 V/div.).  
Bottom trace: input voltage ( 20 V/div.).  
Time scale: ( 5 ms/div.).  
Shut-down enabled by disconnecting VI at:  
ref = +25°C, VI = 53 V,  
IO = 25 A resistive load.  
Top trace: output voltage ( 0.5 V/div.).  
Bottom trace: input voltage ( 50 V/div.).  
Time scale: ( 0.2 ms/div.).  
Tref = +25°C, VI = 53 V,  
T
IO = 25 A resistive load.  
Output Ripple & Noise  
Output Load Transient Response  
Output voltage ripple at:  
Tref = +25°C, VI = 53 V,  
Trace: output voltage ( 20 mV/div.).  
Time scale: ( 2 μs/div.).  
Output voltage response to load current step- Top trace: output voltage ( 200 mV/div.).  
change (6.25 - 18.75 - 6.25 A) at:  
Bottom trace: load current ( 10 A/div.).  
Time scale: ( 0.1 ms/div.).  
I
O = 25 A resistive load.  
Tref =+25°C, VI = 53 V.  
Output Voltage Adjust (see operating information)  
Passive adjust  
Active adjust  
The resistor value for an adjusted output voltage is calculated by  
using the following equations:  
The output voltage may be adjusted using a voltage applied to the  
Vadj pin. This voltage is calculated by using the following equation:  
Output Voltage Adjust Upwards, Increase:  
Vdesired 1.50 ⎞  
Vadj = ⎜1.225 + 2.45×  
V  
5.11×1.50  
(
100 + Δ%  
)
511  
1.50  
Radj = ⎜  
10.22kΩ  
1.225×Δ%  
Δ%  
Example: Upwards => 1.60 V  
Example: Increase 4% =>Vout = 1.56 Vdc  
1.60 1.50 ⎞  
1.225 + 2.45×  
V = 1.39 V  
5.11×1.50  
(
100 + 4  
)
511  
4
1.50  
10.22kΩ = 24.7 kΩ  
1.225 × 4  
Example: Downwards => 1.0 V  
Output Voltage Adjust Downwards, Decrease:  
1.00 1.50 ⎞  
V = 0.41 V  
1.225 + 2.45×  
511⎞  
1.50  
Radj = ⎜  
⎟ − 10.22 kΩ  
Δ%  
Example: Decrease 2% =>Vout = 1.47 Vdc  
511⎞  
⎟ − 10.22 kΩ = 245 kΩ  
2
11  
3AMay2007
1.8 V/25 A Electrical Specification  
PKU 4418G  
Tref = -30 to +110ºC, VI = 36 to 75 V, sense pins connected to output pins unless otherwise specified under Conditions.  
Typical values given at: Tref = +25°C, VI= 53 V, max IO, unless otherwise specified under Conditions.  
An external capacitor of 1 μF is used on the input during all measurements.  
Characteristics  
Conditions  
min  
36  
typ  
Max  
75  
Unit  
VI  
Input voltage range  
V
Decreasing input voltage  
see Note 1  
Increasing input voltage  
see Note 1  
VIoff  
Turn-off input voltage  
Turn-on input voltage  
29  
32  
31  
33  
V
VIon  
33  
34.5  
V
CI  
Internal input capacitance  
Output power  
0.5  
μF  
PO  
Output voltage initial setting  
50 % of max IO  
0
45  
W
86.4  
86.0  
86.8  
86.3  
7.3  
max IO  
η
Efficiency  
%
50 % of max IO , VI = 48 V  
max IO, VI = 48 V  
max IO  
Pd  
Pli  
Power Dissipation  
Input idling power  
Input standby power  
Switching frequency  
11.5  
W
W
IO = 0 A, VI = 53 V  
VI = 53 V (turned off with RC)  
0-100 % of max IO  
2.4  
PRC  
fs  
0.15  
320  
W
290  
350  
kHz  
Output voltage initial setting and  
accuracy  
VOi  
Tref = +25°C, VI = 53 V, max IO  
1.764  
1.80  
1.836  
V
Output adjust range  
Output voltage tolerance band  
Idling voltage  
See operating information  
0-100 % of max IO  
1.00  
1.75  
1.77  
1.98  
1.85  
1.82  
12  
V
V
VO  
IO = 0 A  
V
Line regulation  
max IO  
5
4
mV  
mV  
Load regulation  
VI = 53 V, 0-100 % of max IO  
10  
Load transient  
voltage deviation  
VI = 53 V, Load step 25-75-25 % of  
max IO, di/dt = 7 A/μs,  
Vtr  
ttr  
tr  
±120  
20  
±250  
50  
mV  
μs  
Load transient recovery time  
Ramp-up time  
(from 1090 % of VOi)  
3.5  
7
5
6
ms  
0-100 % of max IO  
Start-up time  
(from VI connection to 90 % of VOi)  
ts  
tf  
9
10  
ms  
max IO  
IO = 10 % of max IO  
max IO  
0.05  
0.3  
0.1  
0.7  
7
0.2  
1.0  
ms  
ms  
ms  
VI shut-down fall time  
(from VI off to 10 % of VO)  
RC start-up time  
tRC  
max IO  
0.2  
0.7  
ms  
ms  
A
RC shut-down fall time  
(from RC off to 10 % of VO)  
IO = 10 % of max IO  
IO  
Output current  
0
25  
35  
Ilim  
Isc  
Current limit threshold  
Short circuit current  
Tref < max Tref  
26  
31  
20  
A
Tref = 25ºC, see Note 2  
A
See ripple & noise section,  
max IO, VOi  
VOac  
Output ripple & noise  
85  
150  
mVp-p  
V
Tref = +25°C, VI = 53 V, 0-100 % of  
OVP  
Over voltage protection  
2.2  
max IO  
Note 1: See Operating information section Turn-off Input Voltage.  
Note 2: RMS current in hiccup mode, VO lower than aprox 0.5 V.  
12  
3AMay2007
1.8 V/25 A Typical Characteristics  
PKU 4418G  
Efficiency  
Power Dissipation  
[%]  
90  
[W]  
10  
8
6
4
2
0
85  
80  
75  
70  
36 V  
48 V  
53 V  
75 V  
36 V  
48 V  
53 V  
75 V  
65  
0
0
5
10  
15  
2 0  
2 5  
[A]  
5
10  
15  
2 0  
2 5  
[A]  
Dissipated power vs. load current and input voltage at  
ref = +25°C  
Efficiency vs. load current and input voltage at Tref = +25°C  
T
Output Current Derating  
Thermal Resistance  
[A]  
30  
[°C/W]  
12  
25  
20  
15  
10  
5
3.0 m/s  
10  
8
2.0 m/s  
6
1.5 m/s  
4
1.0 m/s  
2
Nat. Conv.  
0
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0[m/s]  
0
20  
40  
60  
80  
100  
[°C]  
Available load current vs. ambient air temperature and airflow at  
VI = 53 V. See Thermal Consideration section.  
Thermal resistance vs. airspeed measured at the converter.  
Tested in wind tunnel with airflow and test conditions as per  
the Thermal consideration section.  
Output Characteristics  
Current Limit Characteristics  
[V]  
[V]  
1.90  
2.00  
1.50  
1.00  
0.50  
0.00  
1.85  
36 V  
48 V  
53 V  
75 V  
36 V  
48 V  
53 V  
75 V  
1.80  
1.75  
1.70  
16  
18  
20  
22  
24  
26  
28  
30  
32 [A]  
0
5
10  
15  
20  
25 [A]  
Output voltage vs. load current at Tref = +25°C  
Output voltage vs. load current at IO > max IO , Tref = +25°C  
At Vo lower than approx 0.5 V the module enters hiccup mode  
13  
3AMay2007
1.8 V/25 A Typical Characteristics  
PKU 4418G  
Start-up  
Shut-down  
Start-up enabled by connecting VI at:  
Tref = +25°C, VI = 53 V,  
Top trace: output voltage ( 0.5 V/div.).  
Bottom trace: input voltage ( 20 V/div.).  
Time scale: ( 5 ms/div.).  
Shut-down enabled by disconnecting VI at:  
Tref = +25°C, VI = 53 V,  
IO = 25 A resistive load.  
Top trace: output voltage ( 0.5 V/div.).  
Bottom trace: input voltage ( 50 V/div.).  
Time scale: ( 0.2 ms/div.).  
I
O = 25 A resistive load.  
Output Ripple & Noise  
Output Load Transient Response  
Output voltage ripple at:  
Tref = +25°C, VI = 53 V,  
IO = 25 A resistive load.  
Trace: output voltage ( 20 mV/div.).  
Time scale: ( 2 μs/div.).  
Output voltage response to load current step- Top trace: output voltage ( 200 mV/div.).  
change (6.25 - 18.75 - 6.25 A) at:  
Bottom trace: load current ( 10 A/div.).  
Time scale: ( 0.1 ms/div.).  
Tref =+25°C, VI = 53 V.  
Output Voltage Adjust (see operating information)  
Passive adjust  
Active adjust  
The resistor value for an adjusted output voltage is calculated by  
using the following equations:  
The output voltage may be adjusted using a voltage applied to the  
Vadj pin. This voltage is calculated by using the following equation:  
Output Voltage Adjust Upwards, Increase:  
Vdesired 1.80 ⎞  
V  
Vadj = ⎜1.225 + 2.45×  
5.11×1.80  
(
100 + Δ%  
)
511  
1.80  
Radj = ⎜  
10.22kΩ  
1.225×Δ%  
Δ%  
Example: Upwards => 1.90 V  
Example: Increase 4% =>Vout = 1.872 V  
1.90 1.80 ⎞  
1.225 + 2.45×  
V = 1.36 V  
5.11×1.80  
(
100 + 4  
)
511  
4
1.80  
10.22kΩ = 57 kΩ  
1.225 × 4  
Example: Downwards => 1.0 V  
Output Voltage Adjust Downwards, Decrease:  
1.00 1.80 ⎞  
V = 0.14 V  
1.225 + 2.45×  
511⎞  
1.80  
Radj = ⎜  
⎟ − 10.22 kΩ  
Δ%  
Example: Decrease 2% =>Vout = 1.764 V  
511⎞  
⎟ − 10.22 kΩ = 245 kΩ  
2
14  
3AMay2007
2.5 V/15 A Electrical Specification  
PKU 4319  
Tref = -30 to +110ºC, VI = 36 to 75 V, sense pins connected to output pins unless otherwise specified under Conditions.  
Typical values given at: Tref = +25°C, VI= 53 V, max IO, unless otherwise specified under Conditions.  
An external capacitor of 1 μF is used on the input during all measurements.  
Characteristics  
Conditions  
min  
36  
typ  
max  
75  
Unit  
V
VI  
Input voltage range  
Decreasing input voltage  
see Note 1  
Increasing input voltage  
see Note 1  
VIoff  
Turn-off input voltage  
Turn-on input voltage  
29  
32  
31  
33  
V
V
VIon  
33  
34.5  
CI  
Internal input capacitance  
Output power  
0.5  
μF  
PO  
Output voltage initial setting  
50 % of max IO  
0
37.5  
8.5  
W
88.0  
87.3  
88.7  
87.6  
5.5  
max IO  
η
Efficiency  
%
50 % of max IO , VI = 48 V  
max IO , VI = 48 V  
max IO  
Pd  
Pli  
Power Dissipation  
Input idling power  
Input standby power  
Switching frequency  
W
W
IO = 0 A, VI = 53 V  
VI = 53 V, turned off with RC  
0-100 % of max IO  
1.5  
PRC  
fs  
0.15  
320  
W
290  
350  
kHz  
Output voltage initial setting and  
accuracy  
VOi  
Tref = +25°C, VI = 53 V, max IO  
2.45  
2.50  
2.55  
V
Output adjust range  
Output voltage tolerance band  
Idling voltage  
See operating information  
0-100 % of max IO  
1.90  
2.42  
2.45  
3.0  
2.58  
2.55  
10  
V
V
VO  
IO = 0 A  
V
Line regulation  
max IO  
1
8
mV  
mV  
Load regulation  
VI = 53 V, 0-100 % of max IO  
15  
Load transient  
voltage deviation  
Vtr  
ttr  
tr  
±125  
20  
±250  
40  
mV  
μs  
VI = 53 V, Load step 25-75-25 % of  
max IO, di/dt = 1 A/μs.  
Load transient recovery time  
Ramp-up time  
(from 1090 % of VOi)  
3.5  
7
4
4.5  
ms  
0-100 % of max IO  
Start-up time  
(from VI connection to 90 % of VOi)  
ts  
tf  
8
9
ms  
max IO  
IO = 10 % of max IO  
max IO  
0.1  
0.9  
0.2  
1.3  
6
0.4  
1.5  
ms  
ms  
ms  
VI shut-down fall time  
(from VI off to 10 % of VO)  
RC start-up time  
tRC  
max IO  
1
ms  
ms  
A
RC shut-down fall time  
(from RC off to 10 % of VO)  
IO = 10 % of max IO  
1.5  
IO  
Output current  
0
15  
22  
Ilim  
Isc  
Current limit threshold  
Short circuit current  
Tref < max Tref  
16  
18  
13  
A
Tref = 25ºC, see Note 2  
A
See ripple & noise section,  
max IO, VOi  
VOac  
Output ripple & noise  
55  
100  
mVp-p  
V
Tref = +25°C, VI = 53 V, 0-100 % of  
OVP  
Over voltage protection  
3.35  
max IO  
Note 1: See Operating Instruction, section Turn-off Input Voltage  
Note 2: RMS current in hiccup mode, VO lower than aprox 0.5 V  
15  
3AMay2007
2.5 V/15 A Typical Characteristics  
PKU 4319  
Efficiency  
Power Dissipation  
[%]  
95  
[W]  
8
90  
85  
80  
75  
70  
6
4
2
0
36 V  
48 V  
53 V  
75 V  
36 V  
48 V  
53 V  
75 V  
0
3
5
8
10  
13  
15 [A]  
0
3
5
8
10  
13  
15 [A]  
Dissipated power vs. load current and input voltage at  
ref = +25°C  
Efficiency vs. load current and input voltage at Tref = +25°C  
T
Output Current Derating  
Thermal Resistance  
[A]  
20  
[°C/W]  
12  
3.0 m/s  
10  
8
15  
10  
5
2.0 m/s  
1.5 m/s  
6
4
1.0 m/s  
2
Nat. Conv.  
0
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0[m/s]  
[°C]  
0
20  
40  
60  
80  
100  
Available load current vs. ambient air temperature and airflow at  
VI = 53 V. See Thermal Consideration section.  
Thermal resistance vs. airspeed measured at the converter.  
Tested in wind tunnel with airflow and test conditions as per  
the Thermal consideration section.  
Output Characteristics  
Current Limit Characteristics  
[V]  
[V]  
2.60  
2.58  
2.55  
2.53  
2.50  
2.48  
2.45  
2.43  
2.40  
3.00  
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
36 V  
48 V  
53 V  
75 V  
36 V  
48 V  
53 V  
75 V  
8
9 10 11 12 13 14 15 16 17 18 19 20 [A]  
0
3
5
8
10  
13  
15 [A]  
Output voltage vs. load current at Tref = +25°C  
Output voltage vs. load current at IO > max IO , Tref = +25°C  
At Vo lower than approx 0.5 V the module enters hiccup mode  
16  
3AMay2007
2.5 V/15 A Typical Characteristics  
PKU 4319  
Start-up  
Shut-down  
Start-up enabled by connecting VI at:  
Tref = +25°C, VI = 53 V,  
Top trace: output voltage ( 1 V/div.).  
Bottom trace: input voltage ( 50 V/div.).  
Time scale: ( 2 ms/div.).  
Shut-down enabled by disconnecting VI at:  
Tref = +25°C, VI = 53 V,  
IO = 15 A resistive load.  
Top trace: output voltage ( 1 V/div.).  
Bottom trace: input voltage ( 50 V/div.).  
Time scale: ( 1 ms/div.).  
I
O = 15 A resistive load.  
Output Ripple & Noise  
Output Load Transient Response  
Output voltage ripple at:  
Tref = +25°C, VI = 53 V,  
IO = 15 A resistive load.  
Trace: output voltage ( 20 mV/div.).  
Time scale: ( 2 μs/div.).  
Output voltage response to load current step- Top trace: output voltage ( 200 mV/div.).  
change ( 3.75 — 11.25 -3.75 A) at:  
Bottom trace: load current ( 5 A/div.).  
Time scale: ( 0.1 ms/div.).  
Tref =+25°C, VI = 53 V.  
Output Voltage Adjust (see operating information)  
Passive adjust  
Active adjust  
The resistor value for an adjusted output voltage is calculated by  
using the following equations:  
The output voltage may be adjusted using a voltage applied to the  
adj pin. This voltage is calculated by using the following equation:  
V
Output Voltage Adjust Upwards, Increase:  
Vdesired 2.50 ⎞  
V  
Vadj = ⎜1.225 + 2.45 ×  
5.11× 2.50  
(
100 + Δ%  
)
511  
2.50  
Radj = ⎜  
10.22kΩ  
1.225 × Δ%  
Δ%  
Example: Upwards => 2.75 V  
Example: Increase 4% =>Vout = 2.60 Vdc  
2.75 2.50 ⎞  
1.225 + 2.45 ×  
V = 1.47 V  
5.11× 2.50  
(
100 + 4  
)
511  
4
2.50  
10.22kΩ = 133 kΩ  
1.225 × 4  
Example: Downwards => 2.25 V  
Output Voltage Adjust Downwards, Decrease:  
2.25 2.50 ⎞  
1.225 + 2.45 ×  
V = 0.98 V  
511⎞  
2.50  
Radj = ⎜  
⎟ − 10.22 kΩ  
Δ%  
Example: Decrease 2% =>Vout = 2.45 Vdc  
511⎞  
⎟ − 10.22 kΩ = 245 kΩ  
2
17  
3AMay2007
3.3 V/15 A Electrical Specification  
PKU 4510  
Tref = -30 to +110ºC, VI = 36 to 75 V, sense pins connected to output pins unless otherwise specified under Conditions.  
Typical values given at: Tref = +25°C, VI= 53 V, max IO, unless otherwise specified under Conditions.  
An external capacitor of 1 μF is used on the input during all measurements.  
Characteristics  
Conditions  
min  
36  
typ  
Max  
75  
Unit  
V
VI  
Input voltage range  
Decreasing input voltage,  
see Note 1  
Increasing input voltage  
see Note 1  
VIoff  
Turn-off input voltage  
Turn-on input voltage  
29  
32  
31  
33  
V
V
VIon  
33  
34.5  
CI  
Internal input capacitance  
Output power  
0.5  
μF  
PO  
Output voltage initial setting  
50 % of max IO  
0
49.5  
9.5  
W
89.7  
89.2  
89.9  
89.3  
6.0  
max IO  
η
Efficiency  
%
50 % of max IO , VI = 48 V  
max IO , VI = 48 V  
max IO  
Pd  
Pli  
Power Dissipation  
Input idling power  
Input standby power  
Switching frequency  
W
W
IO = 0 A, VI = 53 V  
VI = 53 V (turned off with RC)  
0-100 % of max IO  
1.8  
PRC  
fs  
0.15  
320  
W
290  
350  
kHz  
Output voltage initial setting and  
accuracy  
VOi  
Tref = +25°C, VI = 53 V, max IO  
3.24  
3.30  
3.36  
V
See operating information and note 2  
0-100 % of max IO  
Output adjust range  
Output voltage tolerance band  
Idling voltage  
1.90  
3.20  
3.24  
3.63  
3.40  
3.36  
10  
V
V
VO  
IO = 0 A  
V
Line regulation  
max IO  
1
8
mV  
mV  
Load regulation  
VI = 53 V, 0-100 % of max IO  
18  
Load transient  
voltage deviation  
VI = 53 V, Load step 25-75-25 % of  
max IO, di/dt = 1 A/μs.  
Vtr  
ttr  
tr  
-165/+150  
-330/+250  
mV  
μs  
Load transient recovery time  
20  
4
40  
Ramp-up time  
(from 1090 % of VOi)  
2.5  
6
4.6  
ms  
0-100 % of max IO  
Start-up time  
(from VI connection to 90 % of VOi)  
ts  
tf  
8
9
ms  
max IO  
IO = 10 % of max IO  
max IO  
0.1  
1.0  
0.2  
1.4  
6
0.3  
1.6  
ms  
ms  
ms  
VI shut-down fall time  
(from VI off to 10 % of VO)  
RC start-up time  
tRC  
max IO  
1
ms  
ms  
A
RC shut-down fall time  
(from RC off to 10 % of VO)  
IO = 10 % of max IO  
1.5  
IO  
Output current  
0
15  
22  
Ilim  
Isc  
Current limit threshold  
Short circuit current  
Tref < max Tref  
16  
18  
14  
A
Tref = 25ºC, see Note 3  
A
See ripple & noise section,  
max IO, VOi  
VOac  
Output ripple & noise  
60  
100  
mVp-p  
V
Tref = +25°C, VI = 53 V, 0-100 % of  
OVP  
Over voltage protection  
4.35  
max IO  
Note 1: See Operating Instruction, section Turn-off Input Voltage  
Note 2: VI min 38 V to obtain 3.63 V at 49.5 W output power.  
Note 3: RMS current in hiccup mode, VO lower than aprox 0.5 V.  
18  
3AMay2007
3.3 V/15 A Typical Characteristics  
PKU 4510  
Efficiency  
Power Dissipation  
[%]  
95  
[W]  
8
90  
85  
80  
75  
70  
6
4
2
0
36 V  
48 V  
53 V  
75 V  
36 V  
48 V  
53 V  
75 V  
0
3
5
8
10  
13  
15 [A]  
0
3
5
8
10  
13  
15 [A]  
Dissipated power vs. load current and input voltage at  
ref = +25°C  
Efficiency vs. load current and input voltage at Tref = +25°C  
T
Output Current Derating  
Thermal Resistance  
[A]  
20  
[°C/W]  
14  
12  
10  
8
3.0 m/s  
15  
10  
5
2.0 m/s  
6
1.5 m/s  
4
1.0 m/s  
2
0
Nat. Conv.  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0[m/s]  
0
0
20  
40  
60  
80  
100  
[°C]  
Available load current vs. ambient air temperature and airflow at  
VI = 53 V. See Thermal Consideration section.  
Thermal resistance vs. airspeed measured at the converter.  
Tested in wind tunnel with airflow and test conditions as per  
the Thermal consideration section.  
Output Characteristics  
Current Limit Characteristics  
[V]  
[V]  
3.40  
4.00  
3.50  
3.00  
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
3.35  
3.30  
3.25  
3.20  
36 V  
48 V  
53 V  
75 V  
36 V  
48 V  
53 V  
75 V  
0
3
5
8
10  
13  
15 [A]  
8
9 10 11 12 13 14 15 16 17 18 19 20 [A]  
Output voltage vs. load current at Tref = +25°C  
Output voltage vs. load current at IO > max IO , Tref = +25°C  
At Vo lower than approx 0.5 V the module enters hiccup mode  
19  
3AMay2007
3.3 V/15 A Typical Characteristics  
PKU 4510  
Start-up  
Shut-down  
Start-up enabled by connecting VI at:  
Tref = +25°C, VI = 53 V,  
Top trace: output voltage ( 1 V/div.).  
Bottom trace: input voltage ( 50 V/div.).  
Time scale: ( 2 ms/div.).  
Shut-down enabled by disconnecting VI at:  
Tref = +25°C, VI = 53 V,  
IO = 15 A resistive load.  
Top trace: output voltage ( 1 V/div.).  
Bottom trace: input voltage ( 50 V/div.).  
Time scale: ( 1 ms/div.).  
I
O = 15 resistive load.  
Output Ripple & Noise  
Output Load Transient Response  
Output voltage ripple at:  
Tref = +25°C, VI = 53 V,  
IO = 15 A resistive load.  
Trace: output voltage ( 20 mV/div.).  
Time scale: ( 2 μs/div.).  
Output voltage response to load current step- Top trace: output voltage ( 200 mV/div.).  
change (3.75 - 11.25 - 3.75 A) at:  
Bottom trace: load current ( 5 A/div.).  
Time scale: ( 0.1 ms/div.).  
Tref =+25°C, VI = 53 V.  
Output Voltage Adjust (see operating information)  
Passive adjust  
Active adjust  
The resistor value for an adjusted output voltage is calculated by  
using the following equations:  
The output voltage may be adjusted using a voltage applied to the  
Vadj pin. This voltage is calculated by using the following equation:  
Output Voltage Adjust Upwards, Increase:  
Vdesired 3.30 ⎞  
V  
Vadj = ⎜1.225 + 2.45 ×  
5.11× 3.30  
(
100 + Δ%  
)
511  
3.30  
Radj =  
10.22 kΩ  
1.225× Δ%  
Δ%  
Example: Upwards => 3.50 V  
Example: Increase 4% =>Vout = 3.432 Vdc  
3.50 3.30 ⎞  
1.225 + 2.45 ×  
V = 1.37 V  
5.11× 3.30  
(
100 + 4  
)
511  
4
3.30  
10.22kΩ = 220 kΩ  
1.225 × 4  
Example: Downwards => 3.10 V  
Output Voltage Adjust Downwards, Decrease:  
3.10 3.30 ⎞  
1.225 + 2.45 ×  
V = 1.08 V  
511⎞  
3.30  
Radj = ⎜  
⎟ − 10.22 kΩ  
Δ%  
Example: Decrease 2% =>Vout = 3.234 Vdc  
511⎞  
⎟ − 10.22 kΩ = 245 kΩ  
2
20  
3AMay2007
5.0 V/10 A Electrical Specification  
PKU 4511  
Tref = -30 to +110ºC, VI = 36 to 75 V, sense pins connected to output pins unless otherwise specified under Conditions.  
Typical values given at: Tref = +25°C, VI= 53 V, max IO, unless otherwise specified under Conditions.  
An external capacitor of 1 μF is used on the input during all measurements.  
Characteristics  
Conditions  
min  
36  
typ  
Max  
75  
Unit  
V
VI  
Input voltage range  
Decreasing input voltage,  
see Note 1  
Increasing input voltage  
see Note 1  
VIoff  
Turn-off input voltage  
Turn-on input voltage  
29  
32  
31  
33  
V
V
VIon  
33  
34.5  
CI  
Internal input capacitance  
Output power  
0.5  
μF  
PO  
Output voltage initial setting  
50 % of max IO  
max IO  
0
50  
W
89.8  
89.6  
90.0  
89.8  
5.8  
η
Efficiency  
%
50 % of max IO , VI = 48 V  
max IO , VI = 48 V  
max IO  
Pd  
Pli  
Power Dissipation  
Input idling power  
Input standby power  
Switching frequency  
8.5  
W
W
IO = 0  
1.8  
PRC  
fs  
(turned off with RC)  
0-100 % of max IO  
0.15  
320  
W
290  
350  
kHz  
Output voltage initial setting and  
accuracy  
VOi  
Tref = +25°C, VI = 53 V, max IO  
4.90  
5.00  
5.10  
V
See operating information and note 2  
0-100 % of max IO  
Output adjust range  
Output voltage tolerance band  
Idling voltage  
4.00  
4.85  
4.90  
5.50  
5.15  
5.10  
10  
V
V
VO  
IO = 0 A  
V
Line regulation  
max IO  
5
mV  
mV  
Load regulation  
VI = 53 V, 0-100 % of max IO  
15  
22  
Load transient  
voltage deviation  
Load step 25-75-25 % of max IO,  
di/dt = 1 A/μs,  
Vtr  
ttr  
tr  
±250  
20  
±500  
45  
mV  
μs  
Load transient recovery time  
Ramp-up time  
(from 1090 % of VOi)  
2
6
4.5  
5.5  
ms  
0-100 % of max IO  
Start-up time  
(from VI connection to 90% of VOi)  
ts  
tf  
8
10  
ms  
max IO  
IO = 10 % of max IO  
max IO  
0.1  
1.0  
0.2  
1.2  
5.5  
0.3  
1.4  
ms  
ms  
ms  
VI shutdown fall time  
(from VI off to 10 % of VO)  
RC start-up time  
tRC  
max IO  
0.8  
1.1  
ms  
ms  
A
RC shutdown fall time  
(from RC off to 10% of VO)  
IO = 10 % of max IO  
IO  
Output current  
0
10  
Ilim  
Isc  
Current limit threshold  
Short circuit current  
Tref < max Tref  
10.5  
13.2  
8
15.4  
A
Tref = 25ºC, see Note 3  
A
See ripple & noise section,  
max IO, VOi  
VOac  
Output ripple & noise  
50  
100  
mVp-p  
V
OVP  
Over voltage protection  
Tref = +25°C, 0-100% of max IO  
6.1  
Note 1: See Operating Instruction, section Turn-off Input Voltage  
Note 2: VI min 38 V to obtain 5.50 V at 50 W output power.  
Note 3: RMS current in hiccup mode, VO lower than aprox 0.5 V.  
21  
3AMay2007
5.0 V/10 A Typical Characteristics  
PKU 4511  
Efficiency  
Power Dissipation  
[%]  
95  
[W]  
8
90  
85  
80  
75  
6
4
2
0
36 V  
48 V  
53 V  
75 V  
36 V  
48 V  
53 V  
75 V  
70  
0
2
4
6
8
10  
[A]  
0
2
4
6
8
10 [A]  
Dissipated power vs. load current and input voltage at  
ref = +25°C  
Efficiency vs. load current and input voltage at Tref = +25°C  
T
Output Current Derating  
Thermal Resistance  
[A]  
12  
[°C/W]  
14  
3.0 m/s  
12  
10  
8
10  
8
2.0 m/s  
1.5 m/s  
6
6
4
1.0 m/s  
4
2
2
Nat. Conv.  
0
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0[m/s]  
0
20  
40  
60  
80  
100  
[°C]  
Available load current vs. ambient air temperature and airflow at  
VI = 53 V. See Thermal Consideration section.  
Thermal resistance vs. airspeed measured at the converter.  
Tested in wind tunnel with airflow and test conditions as per  
the Thermal consideration section.  
Output Characteristics  
Current Limit Characteristics  
[V]  
[V]  
5.10  
5.00  
4.00  
3.00  
2.00  
1.00  
0.00  
5.05  
36 V  
36 V  
48 V  
53 V  
75 V  
48 V  
53 V  
75 V  
5.00  
4.95  
4.90  
0
2
4
6
8
10 [A]  
6
7
8
9
10  
11  
12  
13  
14 [A]  
Output voltage vs. load current at Tref = +25°C  
Output voltage vs. load current at IO > max IO , Tref = +25°C  
At Vo lower than approx 0.5 V it enters hiccup mode  
22  
3AMay2007
5.0 V/10 A Typical Characteristics  
PKU 4511  
Start-up  
Shut-down  
Start-up enabled by connecting VI at:  
Tref = +25°C, VI = 53 V,  
Top trace: output voltage ( 2 V/div.).  
Bottom trace: input voltage ( 20 V/div.).  
Time scale: ( 2 ms/div.).  
Shut-down enabled by disconnecting VI at:  
Tref = +25°C, VI = 53 V,  
IO = 10 A resistive load.  
Top trace: output voltage ( 2 V/div.).  
Bottom trace: input voltage ( 50 V/div.).  
Time scale: ( 0.2 ms/div.).  
I
O = 10 A resistive load.  
Output Ripple & Noise  
Output Load Transient Response  
Output voltage ripple at:  
Tref = +25°C, VI = 53 V,  
IO = 10 A resistive load.  
Trace: output voltage ( 20 mV/div.).  
Time scale: ( 2 μs/div.).  
Output voltage response to load current step- Top trace: output voltage ( 200 mV/div.).  
change (2.5 — 7.5 — 2.5 A) at:  
Bottom trace: load current ( 5 A/div.).  
Time scale: ( 0.1 ms/div.).  
Tref =+25°C, VI = 53 V.  
Output Voltage Adjust (see operating information)  
Passive adjust  
Active adjust  
The resistor value for an adjusted output voltage is calculated by  
using the following equations:  
The output voltage may be adjusted using a voltage applied to the  
Vadj pin. This voltage is calculated by using the following equation:  
Output Voltage Adjust Upwards, Increase:  
Vdesired 5.00 ⎞  
V  
Vadj = ⎜1.225 + 2.45 ×  
5.11× 5.0  
(
100 + Δ%  
)
511  
5.00  
Radj = ⎜  
10.22kΩ  
1.225 × Δ%  
Δ%  
Example: Upwards => 5.30 V  
Example: Increase 3% =>Vout = 5.15 Vdc  
5.30 5.00 ⎞  
1.225 + 2.45 ×  
V = 1.372 V  
5.11× 5.0  
(100 + 3  
)
511  
3
5.00  
10.22kΩ = 535 kΩ  
1.225 × 3  
Example: Downwards => 4.80 V  
Output Voltage Adjust Downwards, Decrease:  
4.80 5.00 ⎞  
1.225 + 2.45 ×  
V = 1.127 V  
511⎞  
5.00  
Radj = ⎜  
⎟ − 10.22 kΩ  
Δ%  
Example: Decrease 3% =>Vout = 4.85 Vdc  
511⎞  
⎟ − 10.22 kΩ = 160 kΩ  
3
23  
3AMay2007
12 V/4.17 A Electrical Specification  
PKU 4513  
Tref = -30 to +110ºC, VI = 36 to 75 V, sense pins connected to output pins unless otherwise specified under Conditions.  
Typical values given at: Tref = +25°C, VI= 53 V, max IO, unless otherwise specified under Conditions.  
An external capacitor of 1 μF is used on the input during all measurements.  
Characteristics  
Conditions  
min  
36  
typ  
Max  
75  
Unit  
V
VI  
Input voltage range  
Decreasing input voltage  
see Note 1  
Increasing input voltage  
see Note 1  
VIoff  
Turn-off input voltage  
Turn-on input voltage  
29  
32  
31  
33  
V
V
VIon  
33  
33.5  
CI  
Internal input capacitance  
Output power  
0.5  
μF  
PO  
Output voltage initial setting  
50 % of max IO  
max IO  
0
50  
W
88.5  
89.0  
89.5  
89.5  
6
η
Efficiency  
%
50 % of max IO , VI = 48 V  
max IO, VI = 48 V  
max IO  
Pd  
Pli  
Power Dissipation  
Input idling power  
Input standby power  
Switching frequency  
9.5  
W
W
IO = 0 A  
2
PRC  
fs  
(turned off with RC)  
0-100 % of max IO  
0.15  
320  
W
290  
350  
kHz  
Output voltage initial setting and  
accuracy  
VOi  
Tref = +25°C, VI = 53 V, max IO  
11.76  
12.00  
12.24  
V
See operating information and note 2  
0-100 % of max IO  
Output adjust range  
Output voltage tolerance band  
Idling voltage  
9.60  
11.64  
11.70  
13.20  
12.36  
12.30  
50  
V
V
VO  
IO = 0 A  
V
Line regulation  
max IO  
20  
20  
mV  
mV  
Load regulation  
VI = 53 V, 0-100 % of max IO  
50  
Load transient  
voltage deviation  
VI = 53 V, Load step 25-75-25 % of  
max IO, di/dt = 1 A/μs,  
Vtr  
ttr  
tr  
±500  
14  
±1000  
50  
mV  
μs  
Load transient recovery time  
Ramp-up time  
(from 1090 % of VOi)  
8
11  
17  
ms  
0-100 % of max IO  
Start-up time  
(from VI connection to 90 % of VOi)  
ts  
tf  
13  
16  
22  
ms  
max IO  
IO = 10 % of max IO  
max IO  
0.1  
2
0.2  
2.5  
14  
0.3  
3
ms  
ms  
ms  
VI shut-down fall time  
(from VI off to 10 % of VO)  
RC start-up time  
tRC  
max IO  
0.2  
2.5  
ms  
ms  
A
RC shut-down fall time  
(from RC off to 10 % of VO)  
IO = 10 % of max IO  
IO  
Output current  
0
4.17  
6.5  
Ilim  
Isc  
Current limit threshold  
Short circuit current  
Tref < max Tref  
see Note 3  
4.4  
5.3  
4.2  
A
A
See ripple & noise section,  
max IO, VOi  
VOac  
Output ripple & noise  
60  
15  
120  
mVp-p  
V
OVP  
Over voltage protection  
0-100 % of max IO  
Note 1: See Operating Instruction, section Turn-off Input Voltage  
Note 2: VI min 38 V to obtain 13.2 V at 50 W output power.  
Note 3: RMS current in hiccup mode, VO lower than aprox 0.5 V.  
24  
3AMay2007
12 V/4.17 A Typical Characteristics  
PKU 4513  
Efficiency  
Power Dissipation  
[%]  
95  
[W]  
10  
8
6
4
2
0
90  
85  
80  
75  
36 V  
48 V  
53 V  
75 V  
36 V  
48 V  
53 V  
75 V  
70  
0
1
2
3
4
[A]  
[A]  
0
1
2
3
4
Dissipated power vs. load current and input voltage at  
ref = +25°C  
Efficiency vs. load current and input voltage at Tref = +25°C  
T
Output Current Derating  
Thermal Resistance  
[A]  
5
[°C/W]  
14  
12  
10  
8
3.0 m/s  
2.0 m/s  
1.5 m/s  
1.0 m/s  
4
3
2
1
0
6
4
2
Nat. Conv.  
0
0
20  
40  
60  
80  
100  
[°C]  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0[m/s]  
Available load current vs. ambient air temperature and airflow at  
VI = 53 V. See Thermal Consideration section.  
Thermal resistance vs. airspeed measured at the converter.  
Tested in wind tunnel with airflow and test conditions as per  
the Thermal consideration section.  
Output Characteristics  
Current Limit Characteristics  
[V]  
[V]  
12.20  
12.00  
8.00  
12.10  
12.00  
11.90  
11.80  
36 V  
48 V  
53 V  
75 V  
36 V  
48 V  
53 V  
75 V  
4.00  
0.00  
0
1
2
3
4
[A]  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0 [A]  
Output voltage vs. load current at Tref = +25°C  
Output voltage vs. load current at IO > max IO , Tref = +25°C  
At Vo lower than approx 0.5 V the module enters hiccup mode  
25  
3AMay2007
12 V/4.17 A Typical Characteristics  
PKU 4513  
Start-up  
Shut-down  
Start-up enabled by connecting VI at:  
Tref = +25°C, VI = 53 V,  
Top trace: output voltage ( 5 V/div.).  
Bottom trace: input voltage ( 50 V/div.).  
Time scale: ( 5 ms/div.).  
Shut-down enabled by disconnecting VI at:  
Tref = +25°C, VI = 53 V,  
IO = 4.2 A resistive load.  
Top trace: output voltage ( 5 V/div.).  
Bottom trace: input voltage ( 50 V/div.).  
Time scale: ( 0.2 ms/div.).  
I
O = 4.2 A resistive load.  
Output Ripple & Noise  
Output Load Transient Response  
Output voltage ripple at:  
Tref = +25°C, VI = 53 V,  
IO = 4.2 A resistive load.  
Trace: output voltage ( 20 mV/div.).  
Time scale: ( 2 μs/div.).  
Output voltage response to load current step- Top trace: output voltage (1 V/div.).  
change (1.05 - 3.15 - 1.05 A) at:  
Bottom trace: load current ( 1 A/div.).  
Time scale: ( 0.1 ms/div.).  
Tref =+25°C, VI = 53 V.  
Output Voltage Adjust (see operating information)  
Passive adjust  
Active adjust  
The resistor value for an adjusted output voltage is calculated by  
using the following equations:  
The output voltage may be adjusted using a voltage applied to the  
Vadj pin. This voltage is calculated by using the following equation:  
Output Voltage Adjust Upwards, Increase:  
Vdesired 12.0 ⎞  
Vadj = ⎜1.225 + 2.45×  
V  
5.11×12.0  
(
100 + Δ%  
)
511  
12.0  
Radj = ⎜  
10.22kΩ  
1.225×Δ%  
Δ%  
Example: Upwards => 12.5 V  
Example: Increase 4% =>Vout = 12.48 V  
12.5 12.0 ⎞  
1.225 + 2.45 ×  
V = 1.33 V  
5.11×12.0  
(
100 + 4  
)
511  
4
12.0  
10.22kΩ = 1164 kΩ  
1.225 × 4  
Example: Downwards => 11.0 V  
Output Voltage Adjust Downwards, Decrease:  
11.0 12.0 ⎞  
V = 1.02 V  
1.225 + 2.45×  
511⎞  
12.0  
Radj = ⎜  
⎟ − 10.22 kΩ  
Δ%  
Example: Decrease 2% =>Vout = 11.76 V  
511⎞  
⎟ − 10.22 kΩ = 245 kΩ  
2
26  
3AMay2007
15 V/3.3 A Electrical Specification  
PKU 4515  
Tref = -30 to +110ºC, VI = 36 to 75 V, sense pins connected to output pins unless otherwise specified under Conditions.  
Typical values given at: Tref = +25°C, VI= 53 V, max IO, unless otherwise specified under Conditions.  
An external capacitor of 1 μF is used on the input during all measurements.  
Characteristics  
Conditions  
min  
36  
typ  
Max  
75  
Unit  
V
VI  
Input voltage range  
Decreasing input voltage  
see Note 1  
Increasing input voltage  
see Note 1  
VIoff  
Turn-off input voltage  
Turn-on input voltage  
27  
32  
28  
29  
V
V
VIon  
33  
33.5  
CI  
Internal input capacitance  
Output power  
0.5  
μF  
PO  
Output voltage initial setting  
50 % of max IO  
max IO  
0
49.5  
9.5  
W
89.5  
88.7  
89.9  
88.8  
6.3  
η
Efficiency  
%
50 % of max IO , VI = 48 V  
max IO, VI = 48 V  
max IO  
Pd  
Pli  
Power Dissipation  
Input idling power  
Input standby power  
Switching frequency  
W
W
IO = 0 A  
1.8  
PRC  
fs  
(turned off with RC)  
0-100 % of max IO  
0.14  
320  
W
290  
350  
kHz  
Output voltage initial setting and  
accuracy  
VOi  
Tref = +25°C, VI = 53 V, max IO  
14.70  
15.00  
15.30  
V
Output adjust range  
Output voltage tolerance band  
Idling voltage  
See operating information  
0-100 % of max IO  
12.00  
14.55  
14.55  
16.50  
15.45  
15.45  
65  
V
V
VO  
IO = 0 A  
V
Line regulation  
max IO  
30  
12  
mV  
mV  
Load regulation  
VI = 53 V, 0-100 % of max IO  
50  
Load transient  
voltage deviation  
VI = 53 V, Load step 25-75-25 % of  
max IO, di/dt = 1 A/μs,  
Vtr  
ttr  
tr  
±800  
30  
±1600  
60  
mV  
μs  
Load transient recovery time  
Ramp-up time  
(from 1090 % of VOi)  
3
8
6
9
ms  
0-100 % of max IO  
Start-up time  
(from VI connection to 90 % of VOi)  
ts  
tf  
12  
16  
ms  
max IO  
IO = 10 % of max IO  
max IO  
0.2  
2.5  
0.4  
3
0.8  
3.5  
ms  
ms  
ms  
VI shut-down fall time  
(from VI off to 10 % of VO)  
RC start-up time  
10  
tRC  
max IO  
0.25  
1.2  
ms  
ms  
A
RC shut-down fall time  
(from RC off to 10 % of VO)  
IO = 10 % of max IO  
IO  
Output current  
0
3.3  
5
Ilim  
Isc  
Current limit threshold  
Short circuit current  
Tref < max Tref  
see Note 2  
3.6  
4.3  
3.0  
A
A
See ripple & noise section,  
max IO, VOi  
VOac  
Output ripple & noise  
65  
19  
130  
mVp-p  
V
OVP  
Over voltage protection  
0-100 % of max IO  
Note 1: See Operating information section Turn-off Input Voltage.  
Note 2: RMS current in hiccup mode, VO lower than aprox 0.5 V.  
27  
3AMay2007
15 V/3.3 A Typical Characteristics  
PKU 4515  
Efficiency  
Power Dissipation  
[%]  
95  
[W]  
10  
8
6
4
2
0
90  
85  
80  
75  
36 V  
48 V  
53 V  
75 V  
36 V  
48 V  
53 V  
75 V  
70  
0
0
1
2
3
1
2
3
[A]  
[A]  
Dissipated power vs. load current and input voltage at  
ref = +25°C  
Efficiency vs. load current and input voltage at Tref = +25°C  
T
Output Current Derating  
Thermal Resistance  
[A]  
4
[°C/W]  
14  
12  
10  
8
3
2
1
0
3.0 m/s  
2.0 m/s  
6
1.5 m/s  
4
1.0 m/s  
2
Nat. Conv.  
0
[m/s]  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
[°C]  
0
20  
40  
60  
80  
100  
Available load current vs. ambient air temperature and airflow at  
VI = 53 V. See Thermal Consideration section.  
Thermal resistance vs. airspeed measured at the converter.  
Tested in wind tunnel with airflow and test conditions as per  
the Thermal consideration section.  
Output Characteristics  
Current Limit Characteristics  
[V]  
[V]  
15 . 3 0  
20.00  
15 . 2 0  
15 . 10  
15 . 0 0  
14 . 9 0  
14 . 8 0  
14 . 7 0  
15 . 0 0  
10 . 0 0  
5.00  
0.00  
36 V  
48 V  
53 V  
75 V  
36 V  
48 V  
53 V  
75 V  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
[A]  
0
1
2
3
[A]  
Output voltage vs. load current at Tref = +25°C  
Output voltage vs. load current at IO > max IO , Tref = +25°C  
At Vo lower than approx 0.5 V the module enters hiccup mode  
28  
3AMay2007
15V/3.3 A Typical Characteristics  
PKU 4515  
Start-up  
Shut-down  
Start-up enabled by connecting VI at:  
Tref = +25°C, VI = 53 V,  
Top trace: output voltage ( 5 V/div.).  
Bottom trace: input voltage ( 50 V/div.).  
Time scale: ( 5 ms/div.).  
Shut-down enabled by disconnecting VI at:  
Tref = +25°C, VI = 53 V,  
IO = 3.3 A resistive load.  
Top trace: output voltage ( 5 V/div.).  
Bottom trace: input voltage ( 50 V/div.).  
Time scale: ( 0.2 ms/div.).  
I
O = 3.3 A resistive load.  
Output Ripple & Noise  
Output Load Transient Response  
Output voltage ripple at:  
Tref = +25°C, VI = 53 V,  
IO = 3.3 A resistive load.  
Trace: output voltage ( 50 mV/div.).  
Time scale: ( 2 μs/div.).  
Output voltage response to load current step- Top trace: output voltage (1 V/div.).  
change (0.82 — 2.47 — 0.82 A) at:  
Bottom trace: load current ( 1 A/div.).  
Time scale: ( 0.1 ms/div.).  
Tref =+25°C, VI = 53 V.  
Output Voltage Adjust (see operating information)  
Passive adjust  
Active adjust  
The resistor value for an adjusted output voltage is calculated by  
using the following equations:  
The output voltage may be adjusted using a voltage applied to the  
Vadj pin. This voltage is calculated by using the following equation:  
Output Voltage Adjust Upwards, Increase:  
Vdesired 15.0 ⎞  
V  
Vadj = ⎜1.225 + 2.45 ×  
5.11×15.0  
(
100 + Δ%  
)
511  
15.0  
Radj =  
10.22 kΩ  
1.225 × Δ%  
Δ%  
Example: Upwards => 15.60 V  
Example: Increase 4% =>Vout = 15.60 V  
15.6 15.0 ⎞  
1.225 + 2.45 ×  
V = 1.323 V  
5.11× 15.0  
(
100 + 4  
)
511  
4
15.0  
10.22kΩ = 1489 kΩ  
1.225 × 4  
Example: Downwards => 14.70 V  
Output Voltage Adjust Downwards, Decrease:  
14.7 15.0 ⎞  
V = 1.176 V  
1.225 + 2.45 ×  
511⎞  
15.0  
Radj = ⎜  
⎟ − 10.22 kΩ  
Δ%  
Example: Decrease 2% =>Vout = 14.70 V  
511⎞  
⎟ − 10.22 kΩ = 245 kΩ  
2
29  
3AMay2007
EMC Specification  
Conducted EMI measured according to EN55022, CISPR 22  
and FCC part 15J (see test set-up). See Design Note 009 for  
further information. The fundamental switching frequency is  
320 kHz for PKU 4511 PI @ VI = 53 V, max IO.  
Conducted EMI Input terminal value (typ)  
Test set-up  
Layout recommendation  
The radiated EMI performance of the DC/DC converter will  
depend on the PCB layout and ground layer design.  
It is also important to consider the stand-off of the DC/DC  
converter.  
If a ground layer is used, it should be connected to the output  
of the DC/DC converter and the equipment ground or  
chassis.  
EMI without filter  
External filter (class B)  
Required external input filter in order to meet class B in  
EN 55022, CISPR 22 and FCC part 15J.  
A ground layer will increase the stray capacitance in the PCB  
and improve the high frequency EMC performance.  
Output ripple and noise  
Filter components:  
C1, 2, 6 = 1 μF/100 V  
Ceramic  
Output ripple and noise measured according to figure below.  
See Design Note 022 for detailed information.  
C3  
L1  
L2  
C3, 4 = 2.2 nF/1500 V  
Ceramic  
C1  
C2  
C6  
DC/DC  
C5 = 100 μF/100 V  
Electrolytic  
C5  
Load  
C4  
L1,L2 = 1.47 mH  
2.8 A, Common Mode  
Output ripple and noise test setup  
EMI with filter  
30  
3AMay2007
be enhanced by addition of external capacitance as  
Operating information  
described under External Decoupling Capacitors. If the input  
voltage source contains significant inductance, the addition of  
a 100 μF capacitor across the input of the converter will  
ensure stable operation. The capacitor is not required when  
powering the DC/DC converter from an input source with an  
inductance below 10 μH.  
Input Voltage  
The input voltage range 36 to 75 Vdc meets the requirements  
of the European Telecom Standard ETS 300 132-2 for normal  
input voltage range in —48 and —60 Vdc systems, -40.5 to -  
57.0 V and —50.0 to -72 V respectively.  
At input voltages exceeding 75 V, the power loss will be  
higher than at normal input voltage and Tref must be limited to  
absolute max +110°C. The absolute maximum continuous  
input voltage is 80 Vdc.  
External Decoupling Capacitors  
When powering loads with significant dynamic current  
requirements, the voltage regulation at the point of load can  
be improved by addition of decoupling capacitors at the load.  
The most effective technique is to locate low ESR ceramic  
and electrolytic capacitors as close to the load as possible,  
using several parallel capacitors to lower the effective ESR.  
The ceramic capacitors will handle high-frequency dynamic  
load changes while the electrolytic capacitors are used to  
handle low frequency dynamic load changes. Ceramic  
capacitors will also reduce any high frequency noise at the  
load.  
Turn-off Input Voltage  
The DC/DC converters monitor the input voltage and will turn  
on and turn off at predetermined levels.  
The minimum hysteresis between turn on and turn off input  
voltage is 1 V. On the 15 V version the minimum hysteresis  
between turn on and turn off input voltage is 3 V.  
It is equally important to use low resistance and low  
inductance PCB layouts and cabling.  
Remote Control (RC)  
The products are fitted with a  
remote control function referenced  
to the primary negative input  
connection (- In), with negative and  
positive logic options available.  
The RC function allows the  
converter to be turned on/off by an  
external device like a  
semiconductor or mechanical  
switch. The RC pin has an internal  
pull up resistor to + In.  
External decoupling capacitors will become part of the  
control loop of the DC/DC converter and may affect the  
stability margins. As a “rule of thumb”, 100 μF/A of output  
current can be added without any additional analysis. The  
ESR of the capacitors is a very important parameter. Ericsson  
Power Modules guarantee stable operation with a verified  
ESR value of >10 mΩ across the output connections.  
For further information please contact your local Ericsson  
Power Modules representative.  
The maximum required sink current is 0.6 mA. When the RC  
pin is left open, the voltage generated on the RC pin is  
10 — 22 V. The maximum allowable leakage current of the  
switch is 50 μA. With “negative logic” the converter will turn  
on when the input voltage is applied with the RC connected  
to the - In. Turn off is achieved by leaving the RC pin open, or  
connected to a voltage higher than 8 V referenced to —In.  
The second option is “positive logic” remote control, which  
can be ordered by adding the suffix “P” to the end of the part  
number. The converter will turn on when the input voltage is  
applied with the RC pin open. Turn off is achieved by  
connecting the RC pin to the - In. To ensure safe turn off the  
voltage difference between RC pin and the - In pin shall be  
less than 1 V. The converter will restart automatically when  
this connection is opened.  
See Design Note 021 for detailed information.  
Input and Output Impedance  
The impedance of both the input source and the load will  
interact with the impedance of the DC/DC converter. It is  
important that the input source has low characteristic  
impedance. The converters are designed for stable operation  
without external capacitors connected to the output. It is  
recommended to use an external capacitor of minimum 1 μF  
on the the input. The performance in some applications can  
31  
3AMay2007
exceeds 135°C the converter will shut down. The DC/DC  
converter will make continuous attempts to start up (non-  
latching mode) and resume normal operation automatically  
when the temperature has dropped >5°C below the  
temperature threshold.  
Operating information continued  
Output Voltage Adjust (Vadj  
)
The DC/DC converters have an Output Voltage Adjust pin  
(Vadj). This pin can be used to adjust the output voltage above  
or below Output voltage initial setting.  
Over Voltage Protection (OVP)  
When increasing the output voltage, the voltage at the output  
pins (including any remote sense compensation ) must be  
kept below the threshold of the over voltage protection, (OVP)  
to prevent the converter from shutting down. At increased  
output voltages the maximum power rating of the converter  
remains the same, and the max output current must be  
decreased correspondingly.  
To increase the voltage the resistor should be connected  
between the Vadj pin and +Sense pin. The resistor value of the  
Output voltage adjust function is according to information  
given under the Output section for the respective product.  
To decrease the output voltage, the resistor should be  
connected between the Vadj pin and —Sense pin.  
The converters have output over voltage protection that will  
shut down the converter in over voltage conditions. The  
converter will make continuous attempts to start up (non-  
latching mode, hiccup) and resume normal operation  
automatically after removal of the over voltage condition.  
Over Current Protection (OCP)  
The converters include current limiting circuitry for protection  
at continuous overload.  
The output voltage will decrease towards zero for output  
currents in excess of max output current (max IO). If the  
output voltage decreases down to 0.5-0.6 V the converter  
shuts down and will make continuous attempts to start up  
(non-latching mode, hiccup). The converter will resume  
normal operation after removal of the overload. The load  
distribution should be designed for the maximum output short  
circuit current specified.  
Pre-bias Start-up  
The product has a Pre-bias start up functionality and will not  
sink current during start up if a pre-bias source is present at  
the output terminals.  
Typical Pre-bias source levels for no negative current:  
Up to 0.5 V for PKU 4318L (1.2 V)  
Up to 0.7 V for PKU 4318H (1.5 V)  
Up to 1.0 V for PKU 4418G (1.8 V)  
Up to 1.5 V for PKU 4319 (2.5 V)  
Up to 2.0 V for PKU 4510 (3.3 V)  
Up to 3.0 V for PKU 4511 (5 V)  
Up to 6.0 V for PKU 4513 (12 V)  
Up to 9.0 V for PKU 4515 (15 V)  
Parallel Operation  
Two converters may be paralleled for redundancy if the total  
power is equal or less than PO max. It is not recommended to  
parallel the converters without using external current sharing  
circuits.  
See Design Note 006 for detailed information.  
Remote Sense  
The DC/DC converters have remote sense that can be used  
to compensate for voltage drops between the output and the  
point of load. The sense traces should be located close to the  
PCB ground layer to reduce noise susceptibility. The remote  
sense circuitry will compensate for up to 10% voltage drop  
between output pins and the point of load.  
If the remote sense is not needed +Sense should be  
connected to +Out and -Sense should be connected to -Out.  
Over Temperature Protection (OTP)  
The converters are protected from thermal overload by an  
internal over temperature shutdown circuit.  
When Tref as defined in thermal consideration section  
32  
3AMay2007
Thermal Consideration  
General  
Ambient Temperature Calculation  
The converters are designed to operate in different thermal  
environments and sufficient cooling must be provided to  
ensure reliable operation.  
By using the thermal resistance the maximum allowed  
ambient temperature can be calculated.  
Cooling is achieved mainly by conduction, from the pins to  
the host board, and convection, which is dependent on the  
airflow across the converter. Increased airflow enhances the  
cooling of the converter.  
1. The power loss is calculated by using the formula  
((1/η) - 1) × output power = power losses (Pd).  
η = efficiency of converter. For example 89.2 % = 0.892  
2. Find the thermal resistance (Rth) in the Thermal Resistance  
graph found in the Output section for each model.  
Calculate the temperature increase (ΔT).  
ΔT = Rth x Pd  
The Output Current Derating graph found in the Output  
section for each model provides the available output current  
vs. ambient air temperature and air velocity at Vin = 53 V.  
The DC/DC converter is tested on a 254 x 254 mm,  
35 μm (1 oz), 8-layer test board mounted vertically in a wind  
tunnel with a cross-section of 305 x 305 mm.  
3. Max allowed ambient temperature is:  
Max Tref - ΔT.  
Proper cooling of the DC/DC converter can be verified by  
measuring the temperature at positions P1. The temperature  
at these positions should not exceed the max values provided  
in the table below.  
Example PKU 4510 (@ VI 53 V &15 A) at 1 m/s:  
1
1. ((  
) - 1) × 49.5 W = 5.99 W  
0.892  
2. 5.99 W × 9.2°C/W = 55.1°C  
See Design Note 019 for further information.  
3. 110 °C — 55.1°C = max ambient temperature is 54.9°C  
The actual temperature will be dependent on several factors  
such as the PCB size, number of layers and direction of  
airflow.  
Position  
P1  
Device  
Mosfet  
Designation  
Tref  
Max value  
110ºC  
P1  
Definition of reference temperature (Tref  
)
The reference temperature is used to monitor the temperature  
limits of the product. Temperatures above maximum Tref are  
not allowed and may cause degradation or permanent  
damage to the product. Tref is also used to define the  
temperature range for normal operating conditions.  
Tref is defined by the design and used to guarantee safety  
margins, proper operation and high reliability of the module.  
33  
3AMay2007
Connections  
Top View  
Pin  
1
Designation  
+In  
Function  
Positive Input  
2
3
4
5
6
7
8
RC  
Remote Control  
Negative Input  
-In  
-Out  
-Sen  
Vadj  
Negative Output  
Negative Sense  
Output Voltage Adjust  
Positive Sense  
+Sen  
+Out  
Positive Output  
34  
3AMay2007
Mechanical Information - Surface mount version  
35  
3AMay2007
Mechanical Information - Through hole mount version  
36  
3AMay2007
Soldering Information - Surface Mounting  
SnPb solder processes  
The surface mount version of the product is intended for  
convection or vapor phase reflow SnPb and Pb-free  
processes. To achieve a good and reliable soldering result,  
make sure to follow the recommendations from the solder  
paste supplier, to use state-of-the-art reflow equipment and  
For conventional SnPb solder processes, the product is  
qualified for MSL 1 according to IPC/JEDEC standard  
J-STD-020C.  
reflow profiling techniques as well as the following guidelines. During reflow, TP must not exceed +225°C at any time.  
Lead-free (Pb-free) solder processes  
A no-clean flux is recommended to avoid entrapment of  
cleaning fluids in cavities inside the product or between the  
product and the host board. The cleaning residues may affect  
long time reliability and isolation voltage.  
For Pb-free solder processes, the product is qualified for  
MSL 3 according to IPC/JEDEC standard J-STD-020C.  
During reflow, TP must not exceed +260°C at any time.  
Minimum Pin Temperature Recommendations  
Pin number 8 is chosen as reference location for the minimum  
pin temperature recommendations since this will likely be the  
coolest solder joint during the reflow process.  
Temperature  
Ramp-up  
TP  
Ramp-down  
(cooling)  
Pin 8 for measurement of minimum  
solder joint temperature, TPIN  
TL  
Reflow  
Preheat  
Time 25 °C to peak  
25 °C  
Time  
Pb-free assembly  
Profile features  
Sn/Pb eutectic  
assembly  
Pin 2 for measurement of maximum peak product  
reflow temperature, TP  
Average ramp-up rate  
3°C/s max  
+183°C  
3°C/s max  
+221°C  
Solder melting  
TL  
SnPb solder processes  
temperature (typical)  
For Pb solder processes, a pin temperature (TPIN) in excess of  
the solder melting temperature (TL, +183°C for Sn63/Pb37) for  
more than 30 seconds, and a peak temperature of +210°C is  
recommended to ensure a reliable solder joint.  
Peak product temperature TP  
Average ramp-down rate  
+225°C  
+260°C  
6°C/s max  
6°C/s max  
Time 25 °C to peak  
temperature  
6 minutes max  
8 minutes max  
Lead-free (Pb-free) solder processes  
For Pb-free solder processes, a pin temperature (TPIN) in  
excess of the solder melting temperature (TL, +217 to +221°C  
for Sn/Ag/Cu solder alloys) for more than 30 seconds, and a  
peak temperature of +235°C on all solder joints is  
Soldering Information — Through Hole Mounting  
The through hole mount version of the product is intended for  
manual or wave soldering. When wave soldering is used, the  
temperature on the pins is specified to maximum 270°C for  
maximum 10 seconds.  
recommended to ensure a reliable solder joint.  
Peak Product Temperature Requirements  
A maximum preheat rate of 4°C/s and temperature of max of  
150°C is suggested. When soldering by hand, care should be  
taken to avoid direct contact between the hot soldering iron  
tip and the pins for more than a few second  
Pin number 2 is chosen as reference location for the  
maximum (peak) allowed product temperature, (TP), since this  
will likely be the warmest part of the product during the reflow  
process.  
s in order to prevent overheating.  
To avoid damage or performance degradation of the product,  
the reflow profile should be optimized to avoid excessive  
heating. A sufficiently extended preheat time is recommended  
to ensure an even temperature across the host PCB, for both  
small and large devices. To reduce the risk of excessive  
heating it is also recommended to reduce the time in the  
reflow zone as much as possible.  
A no-clean flux is recommended to avoid entrapment of  
cleaning fluids in cavities inside the product or between the  
product and the host board. The cleaning residues may affect  
long time reliability and isolation voltage.  
37  
3AMay2007
Delivery Package Information  
Carrier Tape Specifications  
The surface mount and through hole version of the products  
are delivered in antistatic injection molded trays (Jedec  
design guide 4.10D standard) and the surface mount version  
also in antistatic carrier tape (EIA 481 standard).  
Material  
PS, antistatic  
Surface resistance  
Bakability  
< 107 Ohm/square  
The tape is not bakable  
56 mm [2.2 inch]  
36 mm [1.42 inch]  
11.4 mm [0.449 inch]  
380 mm [15 inch]  
200 products /reel  
3 kg/full reel  
Tape width  
Pocket pitch  
Pocket depth  
Reel diameter  
Reel capacity  
Reel weight  
Tray Specifications  
Material  
PPE, antistatic  
Surface resistance  
105 < Ohm/square < 1012  
The trays can be baked at maximum  
125°C for 48 hours maximum  
Bakability  
Tray capacity  
Tray thickness  
Box capacity  
Tray weight  
30 products/tray  
20 mm, [0.787 inch]  
150 products 5 full trays/box  
520 g full tray, 130 g empty  
Dry Pack Information  
The surface mount version of the product is delivered in trays  
or tape & reel. These inner shipment containers are dry  
packed in standard moisture barrier bags according to  
IPC/JEDEC standard J-STD-033 (Handling, packing, shipping  
and use of moisture/reflow sensitivity surface mount devices).  
Using products in high temperature Pb-free soldering  
processes requires dry pack storage and handling. In case  
the products have been stored in an uncontrolled  
environment and no longer can be considered dry, the  
modules must be baked according to J-STD-033.  
38  
3AMay2007
Product Qualification Specification 3.  
Characteristics  
External visual inspection  
Dry heat  
IPC-A-610  
IEC 60068-2-2 Bd  
Temperature  
Duration  
+125°C  
1000 h  
Cold (in operation)  
Damp heat  
IEC 60068-2-1 Ad  
IEC 60068-2-67 Cy  
Temperature TA  
Duration  
-45°C  
72 h  
Temperature  
Humidity  
Duration  
+85°C  
85 % RH  
1000 hours  
Operational life test  
MIL-STD-202G method 108A  
IEC 60068-2-14 Na  
Duration  
1000 h  
Change of temperature  
(Temperature cycling)  
Temperature range  
Number of cycles  
Dwell/transfer time  
-40 to +100°C  
1000  
15 min/0-1 min  
Vibration, broad band random  
IEC 60068-2-64 Fh, method 1  
Frequency  
Spectral density  
Duration  
10 to 500 Hz  
0.07 g2/Hz  
10 min in each 3 perpendicular  
directions  
Mechanical shock  
IEC 60068-2-27 Ea  
Peak acceleration  
Duration  
Pulse shape  
Directions  
100 g  
6 ms  
Half sine  
6
Number of pulses  
18 (3 + 3 in each perpendicular  
direction)  
Robustness of terminations  
IEC 60068-2-21 Test Ua1  
Plated through hole mount  
products  
All leads  
IEC 60068-2-21 Test Ue1  
Surface mount products  
All leads  
Resistance to soldering heat 1  
Moisture reflow sensitivity 2  
Solderability  
IEC 60068-2-20 Tb Method 1A  
Solder temperature  
Duration  
270°C  
10-13 s  
J-STD-020C  
level 1 (SnPb-eutectic)  
level 3 (Pb Free)  
225°C  
260°C  
IEC 60068-2-20 test Ta 1  
Preconditioning  
Temperature, SnPb Eutectic  
Temperature, Pb-free  
Steam ageing  
235°C  
260°C  
IEC 60068-2-58 test Td 2  
Preconditioning  
Temperature, SnPb Eutectic  
Temperature, Pb-free  
150°C dry bake 16 h  
215°C  
235°C  
Immersion in cleaning solvents  
IEC 60068-2-45 XA  
Method 2  
Water  
Glycol ether  
Isopropanol  
+55°C  
+35°C  
+35°C  
Electrostatic discharge  
susceptibility  
IEC 61340-3-1, JESD 22-A114  
IEC 61340-3-2, JESD 22-A115  
Human body model (HBM)  
Machine Model (MM)  
Class 2, 2000 V  
Class 3, 200 V  
Note 1: Only for products intended for wave soldering  
Note 2: Only for products intended for reflow soldering  
Note 3: Qualification of surface mount version pending  

相关型号:

PKU4318LSILA

DC-DC Regulated Power Supply Module, 1 Output, 30W, Hybrid, ROHS COMPLIANT PACKAGE-8
ERICSSON

PKU4318LSIP

DC-DC Regulated Power Supply Module, 1 Output, 30W, Hybrid, ROHS COMPLIANT PACKAGE-8
ERICSSON

PKU4318LSIPLA

DC-DC Regulated Power Supply Module, 1 Output, 30W, Hybrid, ROHS COMPLIANT PACKAGE-8
ERICSSON

PKU4319PI

DC-DC Regulated Power Supply Module, 1 Output, 37.5W, Hybrid, ROHS COMPLIANT PACKAGE-8
ERICSSON

PKU4319PILB

DC-DC Regulated Power Supply Module, 1 Output, 37.5W, Hybrid, ROHS COMPLIANT PACKAGE-8
ERICSSON

PKU4319PIP

DC-DC Regulated Power Supply Module, 1 Output, 37.5W, Hybrid, ROHS COMPLIANT PACKAGE-8
ERICSSON

PKU4319PIPLA

DC-DC Regulated Power Supply Module, 1 Output, 37.5W, Hybrid, ROHS COMPLIANT PACKAGE-8
ERICSSON

PKU4319SILA

DC-DC Regulated Power Supply Module, 1 Output, 37.5W, Hybrid, ROHS COMPLIANT PACKAGE-8
ERICSSON

PKU4319SIPLA

DC-DC Regulated Power Supply Module, 1 Output, 37.5W, Hybrid, ROHS COMPLIANT PACKAGE-8
ERICSSON

PKU4416Z

DC-DC Regulated Power Supply Module,
ERICSSON

PKU4418GPI

DC-DC Regulated Power Supply Module, 1 Output, 45W, Hybrid, ROHS COMPLIANT PACKAGE-8
ERICSSON

PKU4418GPILB

DC-DC Regulated Power Supply Module, 1 Output, 45W, Hybrid, ROHS COMPLIANT PACKAGE-8
ERICSSON