PMP5818UWSR [ERICSSON]

DC-DC Regulated Power Supply Module, 1 Output, 88W, Hybrid, ROHS COMPLIANT PACKAGE-11;
PMP5818UWSR
型号: PMP5818UWSR
厂家: ERICSSON    ERICSSON
描述:

DC-DC Regulated Power Supply Module, 1 Output, 88W, Hybrid, ROHS COMPLIANT PACKAGE-11

文件: 总56页 (文件大小:1902K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
C October2012
eoL
44 V, Output up to 16 A / 88 W  
Key Features  
Industry standard POLA™ compatible  
22.1 x 18.93 x 8.5 mm (0.87 x 0.745 x 0.335 in.)  
High efficiency, up to. 96%  
Auto Track™ sequencing pin  
Turbo Trans™ Technology for Ultra-Fast Transient  
Smart Sync Technology  
More than 6.0 million hours MTBF  
General Characteristics  
Operating temperature: -40ºC to 85ºC  
Input under voltage protection  
Start up into a pre-biased output  
Output short-circuit protection  
On/Off inhibit control  
Wide input voltage function  
Wide output voltage adjust function  
Highly automated manufacturing ensures quality  
ISO 9001/14001 certified supplier  
Safety Approvals  
Design for Environment  
Meets requirements in high-  
temperature lead-free soldering  
processes.  
Contents  
General Information  
Safety Specification  
Absolute Maximum Ratings  
............................................................................. 2  
............................................................................. 3  
............................................................................. 4  
Product Program  
Ordering No.  
0.7-5.5V, 16A / 88W  
PMP 5818UW P ..............................................................................  
............................................................................. 5  
............................................................................. 9  
........................................................................... 13  
........................................................................... 18  
........................................................................... 23  
........................................................................... 28  
........................................................................... 33  
........................................................................... 36  
0.7V, 16A / 11.2W Electrical Specification  
1.0V, 16A / 16.0W Electrical Specification  
1.2V, 16A / 19.2W Electrical Specification  
1.5V, 16A / 24.0W Electrical Specification  
1.8V, 16A / 28.8W Electrical Specification  
2.5V, 16A / 40.0W Electrical Specification  
3.3V, 16A / 52.8W Electrical Specification  
5.0V, 16A / 80.0W Electrical Specification  
EMC Specification  
........................................................................... 42  
........................................................................... 42  
........................................................................... 48  
........................................................................... 49  
........................................................................... 51  
........................................................................... 53  
........................................................................... 53  
........................................................................... 56  
Operating Information  
Thermal Consideration  
Connections  
Mechanical Information  
Soldering Information  
Delivery Information  
Product Qualification Specification  
C October2012
eoL
44 V, Output up to 16 A / 88 W  
Quality Statement  
General Information  
The products are designed and manufactured in an industrial  
environment where quality systems and methods like ISO 9000, 6σ  
(sigma), and SPC are intensively in use to boost the continuous  
improvements strategy. Infant mortality or early failures in the products  
are screened out and they are subjected to an ATE-based final test.  
Conservative design rules, design reviews and product qualifications,  
plus the high competence of an engaged work force, contribute to the  
high quality of our products.  
Ordering Information  
See Contents for individual product ordering numbers.  
Option  
SMD pin  
SMD pin with lead-free surface  
Suffix  
S
SR  
Ordering No.  
PMP 5818UW S  
PMP 5818UW SR  
Reliability  
Warranty  
The Mean Time Between Failure (MTBF) is calculated at full output  
power and an operating ambient temperature (TA) of +40°C, which is a  
typical condition in Information and Communication Technology (ICT)  
equipment. Different methods could be used to calculate the predicted  
MTBF and failure rate which may give different results. Ericsson Power  
Modules currently uses Telcordia SR332.  
Warranty period and conditions are defined in Ericsson Power Modules  
General Terms and Conditions of Sale.  
Limitation of Liability  
Ericsson Power Modules does not make any other warranties,  
expressed or implied including any warranty of merchantability or fitness  
for a particular purpose (including, but not limited to, use in life support  
applications, where malfunctions of product can cause injury to a  
person’s health or life).  
Predicted MTBF for the series is:  
-
6.0 million hours according to Telcordia SR332, issue 1, Black box  
technique.  
Telcordia SR332 is a commonly used standard method intended for  
reliability calculations in ICT equipment. The parts count procedure used  
in this method was originally modelled on the methods from MIL-HDBK-  
217F, Reliability Predictions of Electronic Equipment. It assumes that no  
reliability data is available on the actual units and devices for which the  
predictions are to be made, i.e. all predictions are based on generic  
reliability parameters.  
Compatibility with RoHS requirements  
The products are compatible with the relevant clauses and requirements  
of the RoHS directive 2002/95/EC and have a maximum concentration  
value of 0.1% by weight in homogeneous materials for lead, mercury,  
hexavalent chromium, PBB and PBDE and of 0.01% by weight in  
homogeneous materials for cadmium.  
Exemptions in the RoHS directive utilized in Ericsson Power Modules  
products include:  
-
-
-
Lead in high melting temperature type solder (used to solder the  
die in semiconductor packages)  
Lead in glass of electronics components and in electronic ceramic  
parts (e.g. fill material in chip resistors)  
Lead as an alloying element in copper alloy containing up to 4%  
lead by weight (used in connection pins made of Brass)  
The exemption for lead in solder for servers, storage and storage array  
systems, network infrastructure equipment for switching, signaling,  
transmission as well as network management for telecommunication is  
only utilized in surface mount products intended for end-users’ leaded  
SnPb Eutectic soldering processes. (See ordering information table)  
C October2012
eoL
44 V, Output up to 16 A / 88 W  
Safety Specification  
Isolated DC/DC converters  
It is recommended that a slow blow fuse with a rating twice the  
maximum input current per selected product be used at the input of  
General information  
Ericsson Power Modules DC/DC converters and DC/DC regulators are  
designed in accordance with safety standards IEC/EN/UL60950, Safety  
of Information Technology Equipment.  
each DC/DC converter. If an input filter is used in the circuit the fuse  
should be placed in front of the input filter.  
In the rare event of a component problem in the input filter or in the  
DC/DC converter that imposes a short circuit on the input source, this  
fuse will provide the following functions:  
IEC/EN/UL60950 contains requirements to prevent injury or damage  
due to the following hazards:  
Isolate the faulty DC/DC converter from the input power  
source so as not to affect the operation of other parts of the  
system.  
Protect the distribution wiring from excessive current and  
power loss thus preventing hazardous overheating.  
Electrical shock  
Energy hazards  
Fire  
Mechanical and heat hazards  
Radiation hazards  
Chemical hazards  
The galvanic isolation is verified in an electric strength test.  
The test voltage (Viso) between input and output is  
On-board DC-DC converters and DC/DC regulators are defined as  
component power supplies. As components they cannot fully comply  
with the provisions of any Safety requirements without “Conditions of  
Acceptability”. Clearance between conductors and between conductive  
parts of the component power supply and conductors on the board in  
the final product must meet the applicable Safety requirements. Certain  
conditions of acceptability apply for component power supplies with  
limited stand-off (see Mechanical Information for further information). It  
is the responsibility of the installer to ensure that the final product  
housing these components complies with the requirements of all  
applicable Safety standards and Directives for the final product.  
1500 Vdc or 2250 Vdc for 60 seconds (refer to product specification).  
Leakage current is less than 1 µA at nominal input voltage.  
24 V DC systems  
The input voltage to the DC/DC converter is SELV (Safety  
Extra Low Voltage) and the output remains SELV under normal and  
abnormal operating conditions.  
48 and 60 V DC systems  
If the input voltage to the DC/DC converter is 75 Vdc or less, then the  
output remains SELV (Safety Extra Low Voltage) under normal and  
abnormal operating conditions.  
Component power supplies for general use should comply with the  
requirements in IEC60950, EN60950 and UL60950 “Safety of  
information technology equipment”.  
There are other more product related standards, e.g. IEEE802.3af  
“Ethernet LAN/MAN Data terminal equipment power”, and ETS300132-2  
“Power supply interface at the input to telecommunications equipment;  
part 2: DC”, but all of these standards are based on IEC/EN/UL60950  
with regards to safety.  
Single fault testing in the input power supply circuit should be performed  
with the DC/DC converter connected to demonstrate that the input  
voltage does not exceed  
75 Vdc.  
If the input power source circuit is a DC power system, the source may  
be treated as a TNV2 circuit and testing has demonstrated compliance  
with SELV limits and isolation requirements equivalent to Basic  
Insulation in accordance with IEC/EN/UL60950.  
Ericsson Power Modules DC/DC converters and DC/DC regulators are  
UL60950 recognized and certified in accordance with EN60950.  
Non-isolated DC/DC regulators  
The flammability rating for all construction parts of the  
products meets requirements for V-0 class material according to IEC  
60695-11-10.  
The input voltage to the DC/DC regulator is SELV (Safety  
Extra Low Voltage) and the output remains SELV under normal and  
abnormal operating conditions.  
The products should be installed in the end-use equipment, in  
accordance with the requirements of the ultimate application. Normally  
the output of the DC/DC converter is considered as SELV (Safety Extra  
Low Voltage) and the input source must be isolated by minimum Double  
or Reinforced Insulation from the primary circuit (AC mains) in  
accordance with IEC/EN/UL60950.  
C October2012
s
4V, Output up to 16 A / 88 W  
Absolute Maximum Ratings  
Characteristics  
min  
typ  
max  
Unit  
Tref  
TS  
VI  
Operating Temperature (see Thermal Consideration section)  
Storage temperature  
–40  
–40  
85  
125  
14  
°C  
°C  
V
Input voltage  
4.5  
5/12  
Remote Control pin voltage  
Positive logic option  
Negative logic option  
Vin-0.5  
N/A  
N/A  
Open  
N/A  
N/A  
V
VRC  
Vadj  
V
(see Operating Information section)  
Adjust pin voltage (see Operating Information section)  
V
Stress in excess of Absolute Maximum Ratings may cause permanent damage. Absolute Maximum Ratings, sometimes referred to as no destruction limits, are  
normally tested with one parameter at a time exceeding the limits of Output data or Electrical Characteristics. If exposed to stress above these limits, function  
and performance may degrade in an unspecified manner.  
Fundamental Circuit Diagram  
+VSEN  
3
2
1
2
VIN  
VOUT  
1
3
2
1
GND  
-VSEN  
Auto Track  
TRK  
ADJ  
PWM Controller  
Error Amplifier  
Ref  
Turbo Trans  
SmartSync  
GND  
SYNC  
GND  
GND  
Turbo Trans  
UVLO Prog Block  
RC Block  
INH/UVLO  
GND  
C October2012
s
4V, Output up to 16 A / 88 W  
0.7V, 16A / 11.2W Electrical Specification  
PMP 5818UW P  
Tref = -40 to +85ºC, VI = 4.5 to 7.7 V, Radj = 681 kΩ, unless otherwise specified under Conditions.  
Typical values given at: Tref = +25°C, VI= 5 V, max IO , unless otherwise specified under Conditions.  
Additional Cin = 330+22 µF and Cout = 220 µF. See Operating Information section for selection of capacitor types.  
Connect the sense pin, where available, to the output pin.  
Characteristics  
Conditions  
min  
4.5  
typ  
5
max  
Unit  
V
VI  
Input voltage range  
7.7  
VIoff  
VIon  
CI  
Turn-off input voltage  
Turn-on input voltage  
Internal input capacitance  
Output power  
Decreasing input voltage  
Increasing input voltage  
3.9  
4.1  
4.2  
44  
V
4.4  
V
μF  
W
PO  
0
11.2  
50 % of max IO  
max IO  
86.0  
79.9  
2.8  
η
Efficiency  
%
Pd  
Pli  
PRC  
IS  
Power Dissipation  
Input idling power  
Input standby power  
Static Input current  
Switching frequency  
max IO  
3.3  
W
W
IO= 0 A, VI = 5 V  
VI = 5 V (turned off with RC)  
VI = 5 V, max IO  
0-100 % of max IO  
0.17  
4.7  
mW  
A
2.82  
300  
fs  
270  
330  
kHz  
Output voltage initial setting  
and accuracy  
VOi  
Tref = +25°C, VI = 5 V, max IO  
0.689  
0.679  
0.700  
0.711  
0.721  
V
Output voltage tolerance band 10-100 % of max IO  
V
Idling voltage  
Line regulation  
Load regulation  
IO = 0 A  
0.700  
±3  
V
VO  
max IO  
mV  
mV  
VI = 5 V, 0-100 % of max IO  
±2  
Load transient  
VI = 5 V, Load step 25-75-25 % of  
max IO, di/dt = 2.5 A/μs  
Without Turbo Trans  
Vtr  
ttr  
Vtr  
ttr  
tr  
±75  
40  
mV  
μs  
voltage deviation  
Load transient recovery time  
Co =1640 µF Type C  
Load transient  
VI = 5 V, Load step 25-75-25 % of  
max IO, di/dt = 2.5 A/μs  
±40  
30  
mV  
μs  
voltage deviation  
With Turbo Trans  
Load transient recovery time  
Co =1640 µF Type C; RTT =2 kΩ  
Ramp-up time  
(from 1090 % of VOi)  
2.4  
7.1  
ms  
ms  
100 % of max IO  
Start-up time  
(from VI connection to 90 % of VOi)  
ts  
Max IO  
1.1  
9.0  
7.0  
0.3  
9.0  
ms  
ms  
ms  
ms  
ms  
A
VI shut-down fall time.  
tf  
(From VI off to 10 % of VO)  
IO = 0.1 A  
Max IO  
RC start-up time  
tRC tInh  
Max IO  
RC shut-down fall time  
(From RC off to 10 % of VO)  
Io = 0.1 A  
IO  
Output current  
0
16  
C October2012
s
4V, Output up to 16 A / 88 W  
Ilim  
Isc  
Current limit threshold  
Short circuit current  
Tref < max Tref  
Tref = 25ºC  
29  
29  
A
A
See ripple & noise section,  
max IO  
VOac  
Output ripple & noise  
6.1  
mVp-p  
C October2012
s
4V, Output up to 16 A / 88 W  
0.7V, 16A / 11.2W Typical Characteristics  
Efficiency  
PMP 5818UW P  
Power Dissipation  
[%]  
95  
[W]  
4
90  
85  
3
2
1
0
4.5 V  
4.5 V  
5 V  
80  
75  
70  
5 V  
7.7 V  
7.7V  
0
4
8
12  
16 [A]  
0
4
8
12  
16 [A]  
Efficiency vs. load current and input voltage at Tref = +25°C  
Dissipated power vs. load current and input voltage at  
Tref = +25°C  
Output Current Derating  
Thermal Resistance  
[A]  
20  
[°C/W]  
22  
19  
16  
13  
10  
15  
10  
5
2.0 m/s  
1.0 m/s  
0.5 m/s  
Nat. Conv.  
0
0.0  
0.4  
0.8  
1.2  
1.6  
2.0[m/s]  
0
20  
40  
60  
80  
100 [°C]  
Available load current vs. ambient air temperature and airflow at  
VI = 5 V. See Thermal Consideration section.  
Thermal resistance vs. airspeed measured at the converter.  
Tested in wind tunnel with airflow and test conditions as per  
the Thermal consideration section.  
Output Characteristics  
Current Limit Characteristics  
[V]  
[V]  
0.80  
0.705  
0.60  
0.703  
0.701  
0.699  
0.697  
4.5 V  
4.5 V  
5 V  
0.40  
0.20  
0.00  
5 V  
7.7 V  
7.7 V  
20  
24  
28  
32  
36  
40 [A]  
0
4
8
12  
16 [A]  
Output voltage vs. load current at Tref = +25°C  
Output voltage vs. load current at IO > max IO , Tref = +25°C  
C October2012
s
4V, Output up to 16 A / 88 W  
0.7V, 16A / 11.2W Typical Characteristics  
Start-up  
PMP 5818UW P  
Shut-down  
Start-up enabled by connecting VI at:  
Tref = +25°C, VI = 5 V,  
Top trace: output voltage (1 V/div.).  
Bottom trace: input voltage (5 V/div.).  
Shut-down enabled by disconnecting VI at:  
Tref = +25°C, VI = 5 V,  
Top trace: output voltage (1.0 V/div.).  
Bottom trace: input voltage (5 V/div.).  
Output Ripple & Noise  
Output Load Transient Response  
With Turbo Trans  
Without Turbo Trans  
Output voltage ripple at:  
Tref = +25°C, VI = 5 V,  
IO = 16 A resistive load.  
Trace: output voltage (10 mV/div.).  
Time scale: (2 µs/div.).  
Output voltage response to load current  
step-change (4-12-4 A) at:  
Top trace: output voltage (100 mV/div.).  
Middle trace: output voltage (100 mV/div.).  
Bottom trace: load current (10 A/div.).  
Tref =+25°C, VI = 5 V.  
Output Voltage Adjust (see operating information)  
Passive adjust  
The resistor value for an adjusted output voltage is calculated by  
using the equations in the operating information.  
0.69  
RSET =10kΩ×  
1.43kΩ  
Vo 0.69  
C October2012
s
4V, Output up to 16 A / 88 W  
1.0V, 16A / 16.0W Electrical Specification  
PMP 5818UW P  
Tref = -40 to +85ºC, VI = 4.5 to 11 V, Radj = 20.8 kΩ, unless otherwise specified under Conditions.  
Typical values given at: Tref = +25°C, VI= 5 V, max IO , unless otherwise specified under Conditions.  
Additional Cin = 330+22 µF and Cout = 220 µF. See Operating Information section for selection of capacitor types.  
Connect the sense pin, where available, to the output pin.  
Characteristics  
Conditions  
min  
4.5  
typ  
5
max  
Unit  
V
VI  
Input voltage range  
11  
VIoff  
VIon  
CI  
Turn-off input voltage  
Turn-on input voltage  
Internal input capacitance  
Output power  
Decreasing input voltage  
Increasing input voltage  
3.9  
4.1  
4.2  
44  
V
4.4  
16  
V
μF  
W
PO  
0
50 % of max IO  
max IO  
89.0  
84.3  
3.0  
η
Efficiency  
%
Pd  
Pli  
PRC  
IS  
Power Dissipation  
Input idling power  
Input standby power  
Static Input current  
Switching frequency  
max IO  
3.5  
W
W
IO= 0 A, VI = 5 V  
VI = 5 V (turned off with RC)  
VI = 5 V, max IO  
0-100 % of max IO  
0.20  
4.7  
mW  
A
3.83  
300  
fs  
270  
330  
kHz  
Output voltage initial setting  
and accuracy  
VOi  
Tref = +25°C, VI = 5 V, max IO  
0.985  
0.970  
1.000  
1.015  
1.030  
V
Output voltage tolerance band 10-100 % of max IO  
V
Idling voltage  
Line regulation  
Load regulation  
IO = 0 A  
1.000  
±3  
V
VO  
max IO  
mV  
mV  
VI = 5 V, 0-100 % of max IO  
±2  
Load transient  
VI = 5 V, Load step 25-75-25 % of  
max IO, di/dt = 2.5 A/μs  
Without Turbo Trans  
Vtr  
ttr  
Vtr  
ttr  
tr  
±75  
40  
mV  
μs  
voltage deviation  
Load transient recovery time  
Co =1640 µF Type C  
Load transient  
VI = 5 V, Load step 25-75-25 % of  
max IO, di/dt = 2.5 A/μs  
±40  
30  
mV  
μs  
voltage deviation  
With Turbo Trans  
Load transient recovery time  
Co =1640 µF Type C; RTT =2 kΩ  
Ramp-up time  
(from 1090 % of VOi)  
2.5  
6.8  
ms  
ms  
100 % of max IO  
Start-up time  
(from VI connection to 90 % of VOi)  
ts  
Max IO  
1.1  
13.1  
6.9  
ms  
ms  
ms  
ms  
ms  
A
VI shut-down fall time.  
tf  
(From VI off to 10 % of VO)  
IO = 0.1 A  
Max IO  
RC start-up time  
tRC tInh  
Max IO  
0.4  
RC shut-down fall time  
(From RC off to 10 % of VO)  
Io = 0.1 A  
13.8  
IO  
Output current  
0
16  
C October2012
s
4V, Output up to 16 A / 88 W  
Ilim  
Isc  
Current limit threshold  
Short circuit current  
Tref < max Tref  
Tref = 25ºC  
29  
29  
A
A
See ripple & noise section,  
max IO  
VOac  
Output ripple & noise  
7.8  
mVp-p  
C October2012
s
4V, Output up to 16 A / 88 W  
1.0V, 16A / 16.0W Typical Characteristics  
Efficiency  
PMP 5818UW P  
Power Dissipation  
[%]  
95  
[W]  
4
90  
85  
3
2
1
0
4.5 V  
4.5 V  
5 V  
80  
75  
70  
5 V  
11 V  
11V  
0
4
8
12  
16 [A]  
0
4
8
12  
16 [A]  
Efficiency vs. load current and input voltage at Tref = +25°C  
Dissipated power vs. load current and input voltage at  
Tref = +25°C  
Output Current Derating  
Thermal Resistance  
[A]  
20  
[°C/W]  
22  
15  
10  
5
19  
16  
13  
10  
2.0 m/s  
1.0 m/s  
0.5 m/s  
Nat. Conv.  
0
0.0  
0.4  
0.8  
1.2  
1.6  
2.0[m/s]  
0
20  
40  
60  
80  
100 [°C]  
Available load current vs. ambient air temperature and airflow at  
VI = 5 V. See Thermal Consideration section.  
Thermal resistance vs. airspeed measured at the converter.  
Tested in wind tunnel with airflow and test conditions as per  
the Thermal consideration section.  
Output Characteristics  
Current Limit Characteristics  
[V]  
[V]  
1.20  
1.003  
0.90  
1.001  
4.5 V  
4.5 V  
0.999  
0.997  
0.995  
0.60  
0.30  
0.00  
5 V  
5 V  
11 V  
11 V  
0
4
8
12  
16 [A]  
20  
24  
28  
32  
36  
40 [A]  
Output voltage vs. load current at Tref = +25°C  
Output voltage vs. load current at IO > max IO , Tref = +25°C  
C October2012
s
4V, Output up to 16 A / 88 W  
1.0V, 16A / 16.0W Typical Characteristics  
Start-up  
PMP 5818UW P  
Shut-down  
Start-up enabled by connecting VI at:  
Tref = +25°C, VI = 5 V,  
Top trace: output voltage (1 V/div.).  
Bottom trace: input voltage (5 V/div.).  
Shut-down enabled by disconnecting VI at:  
Tref = +25°C, VI = 5 V,  
Top trace: output voltage (1 V/div.).  
Bottom trace: input voltage (5 V/div.).  
Output Ripple & Noise  
Output Load Transient Response  
With Turbo Trans  
Without Turbo Trans  
Output voltage ripple at:  
Tref = +25°C, VI = 5 V,  
IO = 16 A resistive load.  
Trace: output voltage (10 mV/div.).  
Time scale: (2 µs/div.).  
Output voltage response to load current  
step-change (4-12-4 A) at:  
Top trace: output voltage (100 mV/div.).  
Middle trace: output voltage (100 mV/div.).  
Bottom trace: load current (10 A/div.).  
Tref =+25°C, VI = 5 V.  
Output Voltage Adjust (see operating information)  
Passive adjust  
The resistor value for an adjusted output voltage is calculated by  
using the equations in the operating information.  
0.69  
RSET =10kΩ×  
1.43kΩ  
Vo 0.69  
C October2012
s
4V, Output up to 16 A / 88 W  
1.2V, 16A / 19.2W Electrical Specification  
PMP 5818UW P  
Tref = -40 to +85ºC, VI = 4.5 to 13.2 V, Radj = 12.1 kΩ, unless otherwise specified under Conditions.  
Typical values given at: Tref = +25°C, VI= 5/12 V, max IO , unless otherwise specified under Conditions.  
Additional Cin = 330+22 µF and Cout = 220 µF. See Operating Information section for selection of capacitor types.  
Connect the sense pin, where available, to the output pin.  
Characteristics  
Conditions  
min  
4.5  
typ  
5/12  
4.1  
max  
Unit  
V
VI  
Input voltage range  
13.2  
VIoff  
VIon  
CI  
Turn-off input voltage  
Turn-on input voltage  
Internal input capacitance  
Output power  
Decreasing input voltage  
Increasing input voltage  
3.9  
V
4.3  
4.4  
V
44  
μF  
W
PO  
0
19.2  
VI = 5 V, 50 % of max IO  
VI = 5 V, max IO  
90.3  
86.0  
86.8  
84.7  
3.1  
VI = 5 V  
Efficiency  
η
%
VI = 12 V, 50 % of max IO  
VI = 12 V, max IO  
VI = 12 V  
VI = 5 V, max IO  
3.6  
4.0  
W
W
Pd  
Power Dissipation  
Input idling power  
Input standby power  
VI = 12 V, max IO  
3.5  
VI = 5 V, IO= 0 A  
0.22  
0.64  
4.7  
W
Pli  
VI = 12 V, IO= 0 A  
W
VI = 5 V (turned off with RC)  
VI = 12 V (turned off with RC)  
VI = 5 V, max IO  
mW  
mW  
A
PRC  
33.9  
4.5  
IS  
fs  
Static Input current  
Switching frequency  
VI = 12 V, max IO  
1.9  
A
0-100 % of max IO  
270  
300  
330  
kHz  
Output voltage initial setting  
and accuracy  
VOi  
Tref = +25°C, VI = 5/12 V, max IO  
1.182  
1.164  
1.200  
1.218  
1.236  
V
Output voltage tolerance band 10-100 % of max IO  
V
V
VI = 5 V, IO = 0 A  
Idling voltage  
1.199  
1.200  
±3  
VO  
VI = 12 V, IO = 0 A  
Line regulation  
Load regulation  
max IO  
mV  
mV  
VI = 5/12 V, 0-100 % of max IO  
±2  
Load transient  
VI = 5 V, Load step 25-75-25 % of  
max IO, di/dt = 2.5 A/μs  
Without Turbo Trans  
Vtr  
ttr  
±75  
40  
mV  
μs  
voltage deviation  
Load transient recovery time  
Co =1640 µF Type C  
Load transient  
VI = 5 V, Load step 25-75-25 % of  
max IO, di/dt = 2.5 A/μs  
Vtr  
ttr  
±40  
30  
mV  
μs  
voltage deviation  
With Turbo Trans  
Load transient recovery time  
Co =1640 µF Type C; RTT =2 kΩ  
Load transient  
VI = 12 V, Load step 25-75-25 % of  
max IO, di/dt = 2.5 A/μs  
Vtr  
ttr  
±70  
30  
mV  
voltage deviation  
Without Turbo Trans  
Load transient recovery time  
μs  
C October2012
s
4V, Output up to 16 A / 88 W  
Co =1640 µF Type C  
Load transient  
VI = 12 V, Load step 25-75-25 % of  
Vtr  
ttr  
tr  
±55  
30  
mV  
μs  
voltage deviation  
max IO, di/dt = 2.5 A/μs  
With Turbo Trans  
Load transient recovery time  
Co =1640 µF Type C; RTT =2 kΩ  
Ramp-up time  
2.5  
6.9  
2.7  
ms  
ms  
ms  
(from 1090 % of VOi)  
VI = 5 V, 100 % of max IO  
Start-up time  
ts  
tr  
(from VI connection to 90 % of VOi)  
Ramp-up time  
(from 1090 % of VOi)  
VI = 12 V, 100 % of max IO  
Start-up time  
ts  
6.9  
ms  
(from VI connection to 90 % of  
VOi)  
VI shut-  
Max IO  
1.4  
16.6  
0.4  
ms  
ms  
ms  
VI = 5 V  
down fall  
IO = 0.1 A  
Max IO  
time.  
tf  
(From VI off  
VI = 12 V  
to 10 % of  
IO = 0.1 A  
19.8  
ms  
VO)  
VI = 5 V , Max IO  
VI = 12 V , Max IO  
Max IO  
7.0  
6.8  
0.4  
7.1  
0.3  
ms  
ms  
ms  
ms  
ms  
RC start-up time  
RC shut-  
VI = 5 V  
down fall  
Io = 0.1 A  
tRC tInh  
time  
Max IO  
(From RC off  
VI = 12 V  
to 10 % of  
Io = 0.1 A  
19.2  
ms  
VO)  
IO  
Output current  
Current limit threshold  
Short circuit current  
0
16  
A
A
A
Ilim  
Isc  
Tref < max Tref  
Tref = 25ºC  
30  
30  
See ripple & noise section,  
max IO  
VOac  
Output ripple & noise VI = 5 V  
9.0  
mVp-p  
mVp-p  
Output ripple & noise VI = 12 See ripple & noise section,  
max IO  
VOac  
11.3  
V
C October2012
s
4V, Output up to 16 A / 88 W  
1.2V, 16A / 19.2W Typical Characteristics  
Efficiency  
PMP 5818UW P  
Power Dissipation  
[%]  
95  
[W]  
4
90  
85  
3
2
1
0
4.5 V  
4.5 V  
5 V  
5 V  
80  
75  
70  
13.2V  
12.0V  
13.2 V  
12.0V  
0
4
8
12  
16 [A]  
0
4
8
12  
16 [A]  
Efficiency vs. load current and input voltage at Tref = +25°C  
Dissipated power vs. load current and input voltage at  
Tref = +25°C  
Output Current Derating  
Thermal Resistance  
[A]  
20  
[°C/W]  
23  
21  
19  
17  
15  
13  
15  
10  
5
2.0 m/s  
1.0 m/s  
0.5 m/s  
Nat. Conv.  
0
0.0  
0.4  
0.8  
1.2  
1.6  
2.0[m/s]  
0
20  
40  
60  
80  
100 [°C]  
Available load current vs. ambient air temperature and airflow at  
VI = 12 V. See Thermal Consideration section.  
Thermal resistance vs. airspeed measured at the converter.  
Tested in wind tunnel with airflow and test conditions as per  
the Thermal consideration section.  
Output Characteristics  
Current Limit Characteristics  
[V]  
[V]  
1.203  
1.50  
1.20  
1.201  
4.5V  
4.5 V  
0.90  
0.60  
0.30  
5 V  
5 V  
13.2 V  
12.0V  
1.199  
1.197  
1.195  
13.2 V  
12.0V  
0.00  
0
4
8
12  
16 [A]  
20  
24  
28  
32  
36  
40 [A]  
Output voltage vs. load current at Tref = +25°C  
Output voltage vs. load current at IO > max IO , Tref = +25°C  
C October2012
s
4V, Output up to 16 A / 88 W  
1.2V, 16A / 19.2W Typical Characteristics VI = 5 V  
Start-up  
PMP 5818UW P  
Shut-down  
Start-up enabled by connecting VI at:  
Tref = +25°C, VI = 5 V,  
Top trace: output voltage (1 V/div.).  
Bottom trace: input voltage (5 V/div.).  
Shut-down enabled by disconnecting VI at:  
Tref = +25°C, VI = 5 V,  
Top trace: output voltage (1 V/div.).  
Bottom trace: input voltage (5 V/div.).  
Output Ripple & Noise  
Output Load Transient Response  
With Turbo Trans  
Without Turbo Trans  
Output voltage ripple at:  
Tref = +25°C, VI = 5 V,  
IO = 16 A resistive load.  
Trace: output voltage (10 mV/div.).  
Time scale: (2 µs/div.).  
Output voltage response to load current  
step-change (4-12-4 A) at:  
Top trace: output voltage (100 mV/div.).  
Middle trace: output voltage (100 mV/div.).  
Bottom trace: load current (10 A/div.).  
Tref =+25°C, VI = 5 V.  
Output Voltage Adjust (see operating information)  
Passive adjust  
The resistor value for an adjusted output voltage is calculated by  
using the equations in the operating information.  
0.69  
RSET =10kΩ×  
1.43kΩ  
Vo 0.69  
C October2012
s
4V, Output up to 16 A / 88 W  
1.2V, 16A / 19.2W Typical Characteristics VI = 12 V  
Start-up  
PMP 5818UW P  
Shut-down  
Start-up enabled by connecting VI at:  
Tref = +25°C, VI = 12 V,  
Top trace: output voltage (1 V/div.).  
Bottom trace: input voltage (10 V/div.).  
Shut-down enabled by disconnecting VI at:  
Tref = +25°C, VI = 12 V,  
Top trace: output voltage (1.0 V/div.).  
Bottom trace: input voltage (10 V/div.).  
Output Ripple & Noise  
Output Load Transient Response  
With Turbo Trans  
Without Turbo Trans  
Output voltage ripple at:  
Tref = +25°C, VI = 12 V,  
IO = 16 A resistive load.  
Trace: output voltage (10 mV/div.).  
Time scale: (2 µs/div.).  
Output voltage response to load current  
step-change (4-12-4 A) at:  
Top trace: output voltage (100 mV/div.).  
Middle trace: output voltage (100 mV/div.).  
Bottom trace: load current (10 A/div.).  
Tref =+25°C, VI = 12 V.  
Output Voltage Adjust (see operating information)  
Passive adjust  
Active adjust  
The resistor value for an adjusted output voltage is calculated by  
using the equations in the operating information.  
0.69  
The output voltage may be adjusted using a current/voltage  
applied to the Vadj pin. This current/voltage is calculated by using  
the equations in the operating information.  
RSET =10kΩ×  
1.43kΩ  
Vo 0.69  
C October2012
s
4V, Output up to 16 A / 88 W  
1.5V, 16A / 24.0W Electrical Specification  
PMP 5818UW P  
Tref = -40 to +85ºC, VI = 4.5 to 14 V, Radj = 7.09 kΩ, unless otherwise specified under Conditions.  
Typical values given at: Tref = +25°C, VI= 5/12 V, max IO , unless otherwise specified under Conditions.  
Additional Cin = 330+22 µF and Cout = 220 µF. See Operating Information section for selection of capacitor types.  
Connect the sense pin, where available, to the output pin.  
Characteristics  
Conditions  
min  
4.5  
typ  
5/12  
4.1  
max  
Unit  
V
VI  
Input voltage range  
14  
VIoff  
VIon  
CI  
Turn-off input voltage  
Turn-on input voltage  
Internal input capacitance  
Output power  
Decreasing input voltage  
Increasing input voltage  
3.9  
V
4.3  
4.4  
24  
V
44  
μF  
W
PO  
0
VI = 5 V, 50 % of max IO  
VI = 5 V, max IO  
91.5  
87.9  
87.5  
86.1  
3.3  
VI = 5 V  
Efficiency  
η
%
VI = 12 V, 50 % of max IO  
VI = 12 V, max IO  
VI = 12 V  
VI = 5 V, max IO  
3.8  
4.4  
W
W
Pd  
Power Dissipation  
Input idling power  
Input standby power  
VI = 12 V, max IO  
3.9  
VI = 5 V, IO= 0 A  
0.27  
0.86  
4.7  
W
Pli  
VI = 12 V, IO= 0 A  
W
VI = 5 V (turned off with RC)  
VI = 12 V (turned off with RC)  
VI = 5 V, max IO  
mW  
mW  
A
PRC  
26.4  
5.5  
IS  
fs  
Static Input current  
Switching frequency  
VI = 12 V, max IO  
2.3  
A
0-100 % of max IO  
270  
300  
330  
kHz  
Output voltage initial setting  
and accuracy  
VOi  
Tref = +25°C, VI = 5/12 V, max IO  
1.477  
1.455  
1.500  
1.523  
1.545  
V
Output voltage tolerance band 10-100 % of max IO  
V
V
VI = 5 V, IO = 0 A  
Idling voltage  
1.500  
1.500  
±3  
VO  
VI = 12 V, IO = 0 A  
Line regulation  
Load regulation  
max IO  
mV  
mV  
VI = 5/12 V, 0-100 % of max IO  
±2  
Load transient  
VI = 5 V, Load step 25-75-25 % of  
max IO, di/dt = 2.5 A/μs  
Without Turbo Trans  
Vtr  
ttr  
±75  
40  
mV  
μs  
voltage deviation  
Load transient recovery time  
Co =1640 µF Type C  
Load transient  
VI = 5 V, Load step 25-75-25 % of  
max IO, di/dt = 2.5 A/μs  
Vtr  
ttr  
±40  
30  
mV  
μs  
voltage deviation  
With Turbo Trans  
Load transient recovery time  
Co =1640 µF Type C; RTT =2 kΩ  
Load transient  
VI = 12 V, Load step 25-75-25 % of  
max IO, di/dt = 2.5 A/μs  
Vtr  
ttr  
±70  
30  
mV  
voltage deviation  
Without Turbo Trans  
Load transient recovery time  
μs  
C October2012
s
4V, Output up to 16 A / 88 W  
Co =1640 µF Type C  
Load transient  
VI = 12 V, Load step 25-75-25 % of  
Vtr  
ttr  
tr  
±55  
30  
mV  
μs  
voltage deviation  
max IO, di/dt = 2.5 A/μs  
With Turbo Trans  
Load transient recovery time  
Co =1640 µF Type C; RTT =2 kΩ  
Ramp-up time  
3.1  
7.0  
3.0  
ms  
ms  
ms  
(from 1090 % of VOi)  
VI = 5 V, 100 % of max IO  
Start-up time  
ts  
tr  
(from VI connection to 90 % of VOi)  
Ramp-up time  
(from 1090 % of VOi)  
VI = 12 V, 100 % of max IO  
Start-up time  
ts  
6.9  
ms  
(from VI connection to 90 % of  
VOi)  
VI shut-  
Max IO  
1.6  
24.6  
0.6  
ms  
ms  
ms  
VI = 5 V  
down fall  
IO = 0.1 A  
Max IO  
time.  
tf  
(From VI off  
VI = 12 V  
to 10 % of  
IO = 0.1 A  
21.4  
ms  
VO)  
VI = 5 V , Max IO  
VI = 12 V , Max IO  
Max IO  
7.0  
6.9  
ms  
ms  
ms  
ms  
ms  
RC start-up time  
RC shut-  
0.5  
VI = 5 V  
down fall  
Io = 0.1 A  
22.4  
0.5  
tRC tInh  
time  
Max IO  
(From RC off  
VI = 12 V  
to 10 % of  
Io = 0.1 A  
22.3  
ms  
VO)  
IO  
Output current  
Current limit threshold  
Short circuit current  
0
16  
A
A
A
Ilim  
Isc  
Tref < max Tref  
Tref = 25ºC  
30  
30  
See ripple & noise section,  
max IO  
VOac  
Output ripple & noise VI = 5 V  
10.2  
13.4  
mVp-p  
mVp-p  
Output ripple & noise VI = 12 See ripple & noise section,  
max IO  
VOac  
V
C October2012
s
4V, Output up to 16 A / 88 W  
1.5V, 16A / 24.0W Typical Characteristics  
Efficiency  
PMP 5818UW P  
Power Dissipation  
[%]  
95  
[W]  
5
4
3
2
1
0
90  
85  
4.5 V  
4.5 V  
5.0 V  
14.0 V  
12.0V  
5.0 V  
14.0V  
12.0V  
80  
75  
70  
0
4
8
12  
16 [A]  
0
4
8
12  
16 [A]  
Efficiency vs. load current and input voltage at Tref = +25°C  
Dissipated power vs. load current and input voltage at  
Tref = +25°C  
Output Current Derating  
Thermal Resistance  
[A]  
20  
[°C/W]  
23  
21  
19  
17  
15  
13  
15  
10  
5
2.0 m/s  
1.0 m/s  
0.5 m/s  
Nat. Conv.  
0
0
20  
40  
60  
80  
100 [°C]  
0.0  
0.4  
0.8  
1.2  
1.6  
2.0[m/s]  
Available load current vs. ambient air temperature and airflow at  
VI = 12 V. See Thermal Consideration section.  
Thermal resistance vs. airspeed measured at the converter.  
Tested in wind tunnel with airflow and test conditions as per  
the Thermal consideration section.  
Output Characteristics  
Current Limit Characteristics  
[V]  
[V]  
1.80  
1.503  
1.50  
1.20  
1.501  
4.5V  
4.5 V  
5.0 V  
5.0 V  
0.90  
0.60  
0.30  
0.00  
1.499  
1.497  
1.495  
14.0 V  
12.0V  
14.0 V  
12.0V  
0
4
8
12  
16 [A]  
20  
24  
28  
32  
36  
40 [A]  
Output voltage vs. load current at Tref = +25°C  
Output voltage vs. load current at IO > max IO , Tref = +25°C  
C October2012
s
4V, Output up to 16 A / 88 W  
1.5V, 16A / 24.0W Typical Characteristics VI = 5 V  
Start-up  
PMP 5818UW P  
Shut-down  
Start-up enabled by connecting VI at:  
Tref = +25°C, VI = 5 V,  
Top trace: output voltage (1 V/div.).  
Bottom trace: input voltage (5 V/div.).  
Shut-down enabled by disconnecting VI at:  
Tref = +25°C, VI = 5 V,  
Top trace: output voltage (1 V/div.).  
Bottom trace: input voltage (5 V/div.).  
Output Ripple & Noise  
Output Load Transient Response  
With Turbo Trans  
Without Turbo Trans  
Output voltage ripple at:  
Tref = +25°C, VI = 5 V,  
IO = 16 A resistive load.  
Trace: output voltage (10 mV/div.).  
Time scale: (2 µs/div.).  
Output voltage response to load current  
step-change (4-12-4 A) at:  
Top trace: output voltage (100 mV/div.).  
Middle trace: output voltage (100 mV/div.).  
Bottom trace: load current (10 A/div.).  
Tref =+25°C, VI = 5 V.  
Output Voltage Adjust (see operating information)  
Passive adjust  
The resistor value for an adjusted output voltage is calculated by  
using the equations in the operating information.  
0.69  
RSET =10kΩ×  
1.43kΩ  
Vo 0.69  
C October2012
s
4V, Output up to 16 A / 88 W  
1.5V, 16A / 24.0W Typical Characteristics VI = 12 V  
Start-up  
PMP 5818UW P  
Shut-down  
Start-up enabled by connecting VI at:  
Tref = +25°C, VI = 12 V,  
Top trace: output voltage (1 V/div.).  
Bottom trace: input voltage (10 V/div.).  
Shut-down enabled by disconnecting VI at:  
Tref = +25°C, VI = 12 V,  
Top trace: output voltage (1 V/div.).  
Bottom trace: input voltage (5 V/div.).  
Output Ripple & Noise  
Output Load Transient Response  
With Turbo Trans  
Without Turbo Trans  
Output voltage ripple at:  
Tref = +25°C, VI = 12 V,  
IO = 16 A resistive load.  
Trace: output voltage (10 mV/div.).  
Time scale: (2 µs/div.).  
Output voltage response to load current  
step-change (4-12-4 A) at:  
Top trace: output voltage (100 mV/div.).  
Middle trace: output voltage (100 mV/div.).  
Bottom trace: load current (10 A/div.).  
Tref =+25°C, VI = 12 V.  
Output Voltage Adjust (see operating information)  
Passive adjust  
Active adjust  
The resistor value for an adjusted output voltage is calculated by  
using the equations in the operating information.  
0.69  
The output voltage may be adjusted using a current/voltage  
applied to the Vadj pin. This current/voltage is calculated by using  
the equations in the operating information.  
RSET =10kΩ×  
1.43kΩ  
Vo 0.69  
C October2012
s
4V, Output up to 16 A / 88 W  
1.8V, 16A / 28.8W Electrical Specification  
PMP 5818UW P  
Tref = -40 to +85ºC, VI = 4.5 to 14 V, Radj = 4.78 kΩ, unless otherwise specified under Conditions.  
Typical values given at: Tref = +25°C, VI= 5/12 V, max IO , unless otherwise specified under Conditions.  
Additional Cin = 330+22 µF and Cout = 220 µF. See Operating Information section for selection of capacitor types.  
Connect the sense pin, where available, to the output pin.  
Characteristics  
Conditions  
min  
4.5  
typ  
5/12  
4.1  
max  
Unit  
V
VI  
Input voltage range  
14  
VIoff  
VIon  
CI  
Turn-off input voltage  
Turn-on input voltage  
Internal input capacitance  
Output power  
Decreasing input voltage  
Increasing input voltage  
3.9  
V
4.3  
4.4  
V
44  
μF  
W
PO  
0
28.8  
VI = 5 V, 50 % of max IO  
VI = 5 V, max IO  
92.5  
89.3  
88.7  
87.1  
3.5  
VI = 5 V  
Efficiency  
η
%
VI = 12 V, 50 % of max IO  
VI = 12 V, max IO  
VI = 12 V  
VI = 5 V, max IO  
4.0  
4.8  
W
W
Pd  
Power Dissipation  
Input idling power  
Input standby power  
VI = 12 V, max IO  
4.3  
VI = 5 V, IO= 0 A  
0.30  
0.75  
1.6  
W
Pli  
VI = 12 V, IO= 0 A  
W
VI = 5 V (turned off with RC)  
VI = 12 V (turned off with RC)  
VI = 5 V, max IO  
mW  
mW  
A
PRC  
33.9  
6.5  
IS  
fs  
Static Input current  
Switching frequency  
VI = 12 V, max IO  
2.8  
A
0-100 % of max IO  
270  
300  
330  
kHz  
Output voltage initial setting  
and accuracy  
VOi  
Tref = +25°C, VI = 5/12 V, max IO  
1.773  
1.746  
1.800  
1.827  
1.854  
V
Output voltage tolerance band 10-100 % of max IO  
V
V
VI = 5 V, IO = 0 A  
Idling voltage  
1.801  
1.802  
±3  
VO  
VI = 12 V, IO = 0 A  
Line regulation  
Load regulation  
max IO  
mV  
mV  
VI = 5/12 V, 0-100 % of max IO  
±2  
Load transient  
VI = 5 V, Load step 25-75-25 % of  
max IO, di/dt = 2.5 A/μs  
Without Turbo Trans  
Vtr  
ttr  
±75  
40  
mV  
μs  
voltage deviation  
Load transient recovery time  
Co =1640 µF Type C  
Load transient  
VI = 5 V, Load step 25-75-25 % of  
max IO, di/dt = 2.5 A/μs  
Vtr  
ttr  
±40  
30  
mV  
μs  
voltage deviation  
With Turbo Trans  
Load transient recovery time  
Co =1640 µF Type C; RTT =2 kΩ  
Load transient  
VI = 12 V, Load step 25-75-25 % of  
max IO, di/dt = 2.5 A/μs  
Vtr  
ttr  
±70  
30  
mV  
voltage deviation  
Without Turbo Trans  
Load transient recovery time  
μs  
C October2012
s
4V, Output up to 16 A / 88 W  
Co =1640 µF Type C  
Load transient  
VI = 12 V, Load step 25-75-25 % of  
Vtr  
ttr  
tr  
±60  
30  
mV  
μs  
voltage deviation  
max IO, di/dt = 2.5 A/μs  
With Turbo Trans  
Load transient recovery time  
Co =1640 µF Type C; RTT =2 kΩ  
Ramp-up time  
2.9  
7.0  
2.8  
ms  
ms  
ms  
(from 1090 % of VOi)  
VI = 5 V, 100 % of max IO  
Start-up time  
ts  
tr  
(from VI connection to 90 % of VOi)  
Ramp-up time  
(from 1090 % of VOi)  
VI = 12 V, 100 % of max IO  
Start-up time  
ts  
7.0  
ms  
(from VI connection to 90 % of  
VOi)  
VI shut-  
Max IO  
1.5  
26.2  
0.7  
ms  
ms  
ms  
VI = 5 V  
down fall  
IO = 0.1 A  
Max IO  
time.  
tf  
(From VI off  
VI = 12 V  
to 10 % of  
IO = 0.1 A  
29.2  
ms  
VO)  
VI = 5 V , Max IO  
VI = 12 V , Max IO  
Max IO  
7.0  
6.9  
ms  
ms  
ms  
ms  
ms  
RC start-up time  
RC shut-  
0.6  
VI = 5 V  
down fall  
Io = 0.1 A  
26.5  
0.6  
tRC tInh  
time  
Max IO  
(From RC off  
VI = 12 V  
to 10 % of  
Io = 0.1 A  
27.4  
ms  
VO)  
IO  
Output current  
Current limit threshold  
Short circuit current  
0
16  
A
A
A
Ilim  
Isc  
Tref < max Tref  
Tref = 25ºC  
30  
30  
See ripple & noise section,  
max IO  
VOac  
Output ripple & noise VI = 5 V  
11.3  
14.8  
mVp-p  
mVp-p  
Output ripple & noise VI = 12 See ripple & noise section,  
max IO  
VOac  
V
C October2012
s
4V, Output up to 16 A / 88 W  
1.8V, 16A / 28.8W Typical Characteristics  
Efficiency  
PMP 5818UW P  
Power Dissipation  
[%]  
95  
[W]  
5
4
3
2
1
0
90  
85  
80  
75  
70  
4.5 V  
5.0 V  
14.0V  
12.0V  
4.5 V  
5.0 V  
14.0 V  
12.0V  
0
4
8
12  
16 [A]  
0
4
8
12  
16 [A]  
Efficiency vs. load current and input voltage at Tref = +25°C  
Dissipated power vs. load current and input voltage at  
Tref = +25°C  
Output Current Derating  
Thermal Resistance  
[A]  
20  
[°C/W]  
23  
21  
19  
17  
15  
13  
15  
10  
5
2.0 m/s  
1.0 m/s  
0.5 m/s  
Nat. Conv.  
0
0
20  
40  
60  
80  
100 [°C]  
0.0  
0.4  
0.8  
1.2  
1.6  
2.0[m/s]  
Available load current vs. ambient air temperature and airflow at  
VI = 12 V. See Thermal Consideration section.  
Thermal resistance vs. airspeed measured at the converter.  
Tested in wind tunnel with airflow and test conditions as per  
the Thermal consideration section.  
Output Characteristics  
Current Limit Characteristics  
[V]  
[V]  
1.805  
2.50  
2.00  
1.803  
4.5V  
4.5 V  
1.50  
1.00  
0.50  
0.00  
5.0 V  
5.0 V  
1.801  
1.799  
1.797  
14.0 V  
12.0V  
14.0 V  
12.0V  
0
4
8
12  
16 [A]  
20  
24  
28  
32  
36  
40 [A]  
Output voltage vs. load current at Tref = +25°C  
Output voltage vs. load current at IO > max IO , Tref = +25°C  
C October2012
s
4V, Output up to 16 A / 88 W  
1.8V, 16A / 28.8W Typical Characteristics VI = 5 V  
Start-up  
PMP 5818UW P  
Shut-down  
Start-up enabled by connecting VI at:  
Tref = +25°C, VI = 5 V,  
Top trace: output voltage (1 V/div.).  
Bottom trace: input voltage (5 V/div.).  
Shut-down enabled by disconnecting VI at:  
Tref = +25°C, VI = 5 V,  
Top trace: output voltage (1 V/div.).  
Bottom trace: input voltage (5 V/div.).  
Output Ripple & Noise  
Output Load Transient Response  
With Turbo Trans  
Without Turbo Trans  
Output voltage ripple at:  
Tref = +25°C, VI = 5 V,  
IO = 16 A resistive load.  
Trace: output voltage (10 mV/div.).  
Time scale: (2 µs/div.).  
Output voltage response to load current  
step-change (4-12-4 A) at:  
Top trace: output voltage (100 mV/div.).  
Middle trace: output voltage (100 mV/div.).  
Bottom trace: load current (10 A/div.).  
Tref =+25°C, VI = 5 V.  
Output Voltage Adjust (see operating information)  
Passive adjust  
The resistor value for an adjusted output voltage is calculated by  
using the equations in the operating information.  
0.69  
RSET =10kΩ×  
1.43kΩ  
Vo 0.69  
C October2012
s
4V, Output up to 16 A / 88 W  
1.8V, 16A / 28.8W Typical Characteristics VI = 12 V  
Start-up  
PMP 5818UW P  
Shut-down  
Start-up enabled by connecting VI at:  
Tref = +25°C, VI = 12 V,  
Top trace: output voltage (1 V/div.).  
Bottom trace: input voltage (10 V/div.).  
Shut-down enabled by disconnecting VI at:  
Tref = +25°C, VI = 12 V,  
Top trace: output voltage (1 V/div.).  
Bottom trace: input voltage (10 V/div.).  
Output Ripple & Noise  
Output Load Transient Response  
With Turbo Trans  
Without Turbo Trans  
Output voltage ripple at:  
Tref = +25°C, VI = 12 V,  
IO = 16 A resistive load.  
Trace: output voltage (10 mV/div.).  
Time scale: (2 µs/div.).  
Output voltage response to load current  
step-change (4-12-4 A) at:  
Top trace: output voltage (100 mV/div.).  
Middle trace: output voltage (100 mV/div.).  
Bottom trace: load current (10 A/div.).  
Tref =+25°C, VI = 12 V.  
Output Voltage Adjust (see operating information)  
Passive adjust  
Active adjust  
The resistor value for an adjusted output voltage is calculated by  
using the equations in the operating information.  
0.69  
The output voltage may be adjusted using a current/voltage  
applied to the Vadj pin. This current/voltage is calculated by using  
the equations in the operating information.  
RSET =10kΩ×  
1.43kΩ  
Vo 0.69  
C October2012
s
4V, Output up to 16 A / 88 W  
2.5V, 16A / 40.0W Electrical Specification  
PMP 5818UW P  
Tref = -40 to +85ºC, VI = 4.5 to 14 V, Radj = 2.38 kΩ, unless otherwise specified under Conditions.  
Typical values given at: Tref = +25°C, VI= 5/12 V, max IO , unless otherwise specified under Conditions.  
Additional Cin = 330+22 µF and Cout = 220 µF. See Operating Information section for selection of capacitor types.  
Connect the sense pin, where available, to the output pin.  
Characteristics  
Conditions  
min  
4.5  
typ  
5/12  
4.1  
max  
Unit  
V
VI  
Input voltage range  
14  
VIoff  
VIon  
CI  
Turn-off input voltage  
Turn-on input voltage  
Internal input capacitance  
Output power  
Decreasing input voltage  
Increasing input voltage  
3.9  
V
4.3  
4.4  
33  
V
44  
μF  
W
PO  
0
VI = 5 V, 50 % of max IO  
VI = 5 V, max IO  
94.2  
91.9  
90.2  
89.4  
3.6  
VI = 5 V  
Efficiency  
η
%
VI = 12 V, 50 % of max IO  
VI = 12 V, max IO  
VI = 12 V  
VI = 5 V, max IO  
4.1  
5.3  
W
W
Pd  
Power Dissipation  
Input idling power  
Input standby power  
VI = 12 V, max IO  
4.8  
VI = 5 V, IO= 0 A  
0.34  
0.99  
4.7  
W
Pli  
VI = 12 V, IO= 0 A  
W
VI = 5 V (turned off with RC)  
VI = 12 V (turned off with RC)  
VI = 5 V, max IO  
mW  
mW  
A
PRC  
26.4  
8.8  
IS  
fs  
Static Input current  
Switching frequency  
VI = 12 V, max IO  
3.8  
A
0-100 % of max IO  
270  
300  
330  
kHz  
Output voltage initial setting  
and accuracy  
VOi  
Tref = +25°C, VI = 5/12 V, max IO  
2.462  
2.425  
2.500  
2.538  
2.575  
V
Output voltage tolerance band 10-100 % of max IO  
V
V
VI = 5 V, IO = 0 A  
Idling voltage  
2.501  
2.503  
±3  
VO  
VI = 12 V, IO = 0 A  
Line regulation  
Load regulation  
max IO  
mV  
mV  
VI = 5/12 V, 0-100 % of max IO  
±2  
Load transient  
VI = 5 V, Load step 25-75-25 % of  
max IO, di/dt = 2.5 A/μs  
Without Turbo Trans  
Vtr  
ttr  
±75  
40  
mV  
μs  
voltage deviation  
Load transient recovery time  
Co =1640 µF Type C  
Load transient  
VI = 5 V, Load step 25-75-25 % of  
max IO, di/dt = 2.5 A/μs  
Vtr  
ttr  
±40  
30  
mV  
μs  
voltage deviation  
With Turbo Trans  
Load transient recovery time  
Co =1640 µF Type C; RTT =2 kΩ  
Load transient  
VI = 12 V, Load step 25-75-25 % of  
max IO, di/dt = 2.5 A/μs  
Vtr  
ttr  
±70  
30  
mV  
voltage deviation  
Without Turbo Trans  
Load transient recovery time  
μs  
C October2012
s
4V, Output up to 16 A / 88 W  
Co =1640 µF Type C  
Load transient  
VI = 12 V, Load step 25-75-25 % of  
Vtr  
ttr  
tr  
±65  
30  
mV  
μs  
voltage deviation  
max IO, di/dt = 2.5 A/μs  
With Turbo Trans  
Load transient recovery time  
Co =1640 µF Type C; RTT =2 kΩ  
Ramp-up time  
3.2  
7.1  
3.1  
ms  
ms  
ms  
(from 1090 % of VOi)  
VI = 5 V, 100 % of max IO  
Start-up time  
ts  
tr  
(from VI connection to 90 % of VOi)  
Ramp-up time  
(from 1090 % of VOi)  
VI = 12 V, 100 % of max IO  
Start-up time  
ts  
6.9  
ms  
(from VI connection to 90 % of  
VOi)  
VI shut-  
Max IO  
1.5  
37.5  
0.9  
ms  
ms  
ms  
VI = 5 V  
down fall  
IO = 0.1 A  
Max IO  
time.  
tf  
(From VI off  
VI = 12 V  
to 10 % of  
IO = 0.1 A  
41.2  
ms  
VO)  
VI = 5 V , Max IO  
VI = 12 V , Max IO  
Max IO  
6.7  
6.8  
ms  
ms  
ms  
ms  
ms  
RC start-up time  
RC shut-  
0.8  
VI = 5 V  
down fall  
Io = 0.1 A  
38.6  
0.8  
tRC tInh  
time  
Max IO  
(From RC off  
VI = 12 V  
to 10 % of  
Io = 0.1 A  
38.5  
ms  
VO)  
IO  
Output current  
Current limit threshold  
Short circuit current  
0
16  
A
A
A
Ilim  
Isc  
Tref < max Tref  
Tref = 25ºC  
30  
30  
See ripple & noise section,  
max IO  
VOac  
Output ripple & noise VI = 5 V  
12.9  
21.6  
mVp-p  
mVp-p  
Output ripple & noise VI = 12 See ripple & noise section,  
max IO  
VOac  
V
C October2012
s
4V, Output up to 16 A / 88 W  
2.5V, 16A / 40.0W Typical Characteristics  
Efficiency  
PMP 5818UW P  
Power Dissipation  
[%]  
100  
[W]  
6
95  
90  
5
3
2
0
4.5 V  
4.5 V  
5.0 V  
14.0 V  
12.0V  
5.0 V  
14.0V  
12.0V  
85  
80  
75  
0
4
8
12  
16 [A]  
0
4
8
12  
16 [A]  
Efficiency vs. load current and input voltage at Tref = +25°C  
Dissipated power vs. load current and input voltage at  
Tref = +25°C  
Output Current Derating  
Thermal Resistance  
[A]  
20  
[°C/W]  
21  
15  
10  
5
18  
15  
12  
9
2.0 m/s  
1.0 m/s  
0.5 m/s  
Nat. Conv.  
0
0.0  
0.4  
0.8  
1.2  
1.6  
2.0[m/s]  
0
20  
40  
60  
80  
100 [°C]  
Available load current vs. ambient air temperature and airflow at  
VI = 5 V. See Thermal Consideration section.  
Thermal resistance vs. airspeed measured at the converter.  
Tested in wind tunnel with airflow and test conditions as per  
the Thermal consideration section.  
Output Characteristics  
Current Limit Characteristics  
[V]  
[V]  
2.507  
3.00  
2.50  
2.505  
4.5V  
2.00  
1.50  
1.00  
0.50  
0.00  
4.5 V  
5.0 V  
14.0 V  
12.0V  
5.0 V  
2.503  
2.501  
2.499  
14.0 V  
12.0V  
0
4
8
12  
16 [A]  
20  
24  
28  
32  
36  
40 [A]  
Output voltage vs. load current at Tref = +25°C  
Output voltage vs. load current at IO > max IO , Tref = +25°C  
C October2012
s
4V, Output up to 16 A / 88 W  
2.5V, 16A / 40.0W Typical Characteristics VI = 5 V  
Start-up  
PMP 5818UW P  
Shut-down  
Start-up enabled by connecting VI at:  
Tref = +25°C, VI = 5 V,  
Top trace: output voltage (1 V/div.).  
Bottom trace: input voltage (5 V/div.).  
Shut-down enabled by disconnecting VI at:  
Tref = +25°C, VI = 5 V,  
Top trace: output voltage (1 V/div.).  
Bottom trace: input voltage (5 V/div.).  
Output Ripple & Noise  
Output Load Transient Response  
With Turbo Trans  
Without Turbo Trans  
Output voltage ripple at:  
Tref = +25°C, VI = 5 V,  
IO = 16 A resistive load.  
Trace: output voltage (10 mV/div.).  
Time scale: (2 µs/div.).  
Output voltage response to load current  
step-change (4-12-4 A) at:  
Top trace: output voltage (100 mV/div.).  
Middle trace: output voltage (100 mV/div.).  
Bottom trace: load current (10 A/div.).  
Tref =+25°C, VI = 5 V.  
Output Voltage Adjust (see operating information)  
Passive adjust  
The resistor value for an adjusted output voltage is calculated by  
using the equations in the operating information.  
0.69  
RSET =10kΩ×  
1.43kΩ  
Vo 0.69  
C October2012
s
4V, Output up to 16 A / 88 W  
2.5V, 16A / 40.0W Typical Characteristics VI = 12 V  
Start-up  
PMP 5818UW P  
Shut-down  
Start-up enabled by connecting VI at:  
Tref = +25°C, VI = 12 V,  
Top trace: output voltage (1 V/div.).  
Bottom trace: input voltage (10 V/div.).  
Shut-down enabled by disconnecting VI at:  
Tref = +25°C, VI = 12 V,  
Top trace: output voltage (1 V/div.).  
Bottom trace: input voltage (10 V/div.).  
Output Ripple & Noise  
Output Load Transient Response  
With Turbo Trans  
Without Turbo Trans  
Output voltage ripple at:  
Tref = +25°C, VI = 12 V,  
IO = 16 A resistive load.  
Trace: output voltage (10 mV/div.).  
Time scale: (2 µs/div.).  
Output voltage response to load current  
step-change (4-12-4 A) at:  
Top trace: output voltage (100 mV/div.).  
Middle trace: output voltage (100 mV/div.).  
Bottom trace: load current (10 A/div.).  
Tref =+25°C, VI = 12 V.  
Output Voltage Adjust (see operating information)  
Passive adjust  
The resistor value for an adjusted output voltage is calculated by  
using the equations in the operating information.  
0.69  
RSET =10kΩ×  
1.43kΩ  
Vo 0.69  
C October2012
s
4V, Output up to 16 A / 88 W  
3.3V, 16A / 52.8W Electrical Specification  
PMP 5818UW P  
Tref = -40 to +85ºC, VI = 4.5 to 14 V, Radj = 1.21 kΩ, unless otherwise specified under Conditions.  
Typical values given at: Tref = +25°C, VI= 5/12 V, max IO , unless otherwise specified under Conditions.  
Additional Cin = 330+22 µF and Cout = 220 µF. See Operating Information section for selection of capacitor types.  
Connect the sense pin, where available, to the output pin.  
Characteristics  
Conditions  
min  
4.5  
typ  
5/12  
4.1  
max  
Unit  
V
VI  
Input voltage range  
14  
VIoff  
VIon  
CI  
Turn-off input voltage  
Turn-on input voltage  
Internal input capacitance  
Output power  
Decreasing input voltage  
Increasing input voltage  
3.9  
V
4.3  
4.4  
V
44  
μF  
W
PO  
0
52.8  
VI = 5 V, 50 % of max IO  
VI = 5 V, max IO  
95.8  
94.0  
91.3  
90.8  
3.4  
VI = 5 V  
Efficiency  
η
%
VI = 12 V, 50 % of max IO  
VI = 12 V, max IO  
VI = 12 V  
VI = 5 V, max IO  
3.9  
5.9  
W
W
Pd  
Power Dissipation  
Input idling power  
Input standby power  
VI = 12 V, max IO  
5.4  
VI = 5 V, IO= 0 A  
0.31  
1.31  
1.6  
W
Pli  
VI = 12 V, IO= 0 A  
W
VI = 5 V (turned off with RC)  
VI = 12 V (turned off with RC)  
VI = 5 V, max IO  
mW  
mW  
A
PRC  
26.4  
11.3  
4.9  
IS  
fs  
Static Input current  
Switching frequency  
VI = 12 V, max IO  
A
0-100 % of max IO  
270  
300  
330  
kHz  
Output voltage initial setting  
and accuracy  
VOi  
Tref = +25°C, VI = 5/12 V, max IO  
3.250  
3.201  
3.300  
3.350  
3.399  
V
Output voltage tolerance band 10-100 % of max IO  
V
V
VI = 5 V, IO = 0 A  
Idling voltage  
3.304  
3.306  
±3  
VO  
VI = 12 V, IO = 0 A  
Line regulation  
Load regulation  
max IO  
mV  
mV  
VI = 5/12 V, 0-100 % of max IO  
±2  
Load transient  
VI = 5 V, Load step 25-75-25 % of  
max IO, di/dt = 2.5 A/μs  
Without Turbo Trans  
Vtr  
ttr  
±75  
40  
mV  
μs  
voltage deviation  
Load transient recovery time  
Co =1640 µF Type C  
Load transient  
VI = 5 V, Load step 25-75-25 % of  
max IO, di/dt = 2.5 A/μs  
Vtr  
ttr  
±40  
30  
mV  
μs  
voltage deviation  
With Turbo Trans  
Load transient recovery time  
Co =1640 µF Type C; RTT =2 kΩ  
Load transient  
VI = 12 V, Load step 25-75-25 % of  
max IO, di/dt = 2.5 A/μs  
Vtr  
ttr  
±80  
30  
mV  
voltage deviation  
Without Turbo Trans  
Load transient recovery time  
μs  
C October2012
s
4V, Output up to 16 A / 88 W  
Co =1640 µF Type C  
Load transient  
VI = 12 V, Load step 25-75-25 % of  
Vtr  
ttr  
tr  
±75  
30  
mV  
μs  
voltage deviation  
max IO, di/dt = 2.5 A/μs  
With Turbo Trans  
Load transient recovery time  
Co =1640 µF Type C; RTT =2 kΩ  
Ramp-up time  
3.3  
7.0  
3.3  
ms  
ms  
ms  
(from 1090 % of VOi)  
VI = 5 V, 100 % of max IO  
Start-up time  
ts  
tr  
(from VI connection to 90 % of VOi)  
Ramp-up time  
(from 1090 % of VOi)  
VI = 12 V, 100 % of max IO  
Start-up time  
ts  
6.9  
ms  
(from VI connection to 90 % of  
VOi)  
VI shut-  
Max IO  
1.2  
50.2  
1.2  
ms  
ms  
ms  
VI = 5 V  
down fall  
IO = 0.1 A  
Max IO  
time.  
tf  
(From VI off  
VI = 12 V  
to 10 % of  
IO = 0.1 A  
50.5  
ms  
VO)  
VI = 5 V , Max IO  
VI = 12 V , Max IO  
Max IO  
6.9  
6.8  
ms  
ms  
ms  
ms  
ms  
RC start-up time  
RC shut-  
1.4  
VI = 5 V  
down fall  
Io = 0.1 A  
51.6  
1.1  
tRC tInh  
time  
Max IO  
(From RC off  
VI = 12 V  
to 10 % of  
Io = 0.1 A  
53.9  
ms  
VO)  
IO  
Output current  
Current limit threshold  
Short circuit current  
0
16  
A
A
A
Ilim  
Isc  
Tref < max Tref  
Tref = 25ºC  
30  
30  
See ripple & noise section,  
max IO  
VOac  
Output ripple & noise VI = 5 V  
11.3  
28.1  
mVp-p  
mVp-p  
Output ripple & noise VI = 12 See ripple & noise section,  
max IO  
VOac  
V
C October2012
s
4V, Output up to 16 A / 88 W  
3.3V, 16A / 52.8W Typical Characteristics  
Efficiency  
PMP 5818UW P  
Power Dissipation  
[%]  
100  
[W]  
8
95  
90  
85  
80  
75  
6
4
2
0
4.5 V  
5.0 V  
14.0V  
12.0V  
4.5 V  
5.0 V  
14.0 V  
12.0V  
0
4
8
12  
16 [A]  
0
4
8
12  
16 [A]  
Efficiency vs. load current and input voltage at Tref = +25°C  
Dissipated power vs. load current and input voltage at  
Tref = +25°C  
Output Current Derating  
Thermal Resistance  
[A]  
20  
[°C/W]  
21  
15  
10  
5
18  
15  
12  
9
2.0 m/s  
1.0 m/s  
0.5 m/s  
Nat. Conv.  
0
0.0  
0.4  
0.8  
1.2  
1.6  
2.0[m/s]  
0
20  
40  
60  
80  
100 [°C]  
Available load current vs. ambient air temperature and airflow at  
VI = 5 V. See Thermal Consideration section.  
Thermal resistance vs. airspeed measured at the converter.  
Tested in wind tunnel with airflow and test conditions as per  
the Thermal consideration section.  
Output Characteristics  
Current Limit Characteristics  
[V]  
[V]  
4.00  
3.311  
3.20  
3.309  
4.5V  
4.5 V  
2.40  
1.60  
0.80  
0.00  
3.307  
3.305  
3.303  
3.301  
5.0 V  
5.0 V  
14.0 V  
12.0V  
14.0 V  
12.0V  
0
4
8
12  
16 [A]  
20  
24  
28  
32  
36  
40 [A]  
Output voltage vs. load current at Tref = +25°C  
Output voltage vs. load current at IO > max IO , Tref = +25°C  
C October2012
s
4V, Output up to 16 A / 88 W  
3.3V, 16A / 52.8W Typical Characteristics VI = 5 V  
Start-up  
PMP 5818UW P  
Shut-down  
Start-up enabled by connecting VI at:  
Tref = +25°C, VI = 5 V,  
Top trace: output voltage (1 V/d iv.).  
Bottom trace: input voltage (5 V/div.).  
Shut-down enabled by disconnecting VI at:  
Tref = +25°C, VI = 5 V,  
Top trace: output voltage (1 V/div.).  
Bottom trace: input voltage (5 V/div.).  
Output Ripple & Noise  
Output Load Transient Response  
With Turbo Trans  
Without Turbo Trans  
Output voltage ripple at:  
Tref = +25°C, VI = 5 V,  
IO = 16 A resistive load.  
Trace: output voltage (10 mV/div.).  
Time scale: (2 µs/div.).  
Output voltage response to load current  
step-change (4-12-4 A) at:  
Top trace: output voltage (100 mV/div.).  
Middle trace: output voltage (100 mV/div.).  
Bottom trace: load current (10 A/div.).  
Tref =+25°C, VI = 5 V.  
Output Voltage Adjust (see operating information)  
Passive adjust  
The resistor value for an adjusted output voltage is calculated by  
using the equations in the operating information.  
0.69  
RSET =10kΩ×  
1.43kΩ  
Vo 0.69  
C October2012
s
4V, Output up to 16 A / 88 W  
3.3V, 16A / 52.8W Typical Characteristics VI = 12 V  
Start-up  
PMP 5818UW P  
Shut-down  
Start-up enabled by connecting VI at:  
Tref = +25°C, VI = 12 V,  
Top trace: output voltage (1 V/div.).  
Bottom trace: input voltage (10 V/div.).  
Shut-down enabled by disconnecting VI at:  
Tref = +25°C, VI = 12 V,  
Top trace: output voltage (1 V/div.).  
Bottom trace: input voltage (10 V/div.).  
Output Ripple & Noise  
Output Load Transient Response  
With Turbo Trans  
Without Turbo Trans  
Output voltage ripple at:  
Tref = +25°C, VI = 12 V,  
IO = 16 A resistive load.  
Trace: output voltage (10 mV/div.).  
Time scale: (2 µs/div.).  
Output voltage response to load current  
step-change (4-12-4 A) at:  
Top trace: output voltage (100 mV/div.).  
Middle trace: output voltage (100 mV/div.).  
Bottom trace: load current (10 A/div.).  
Tref =+25°C, VI = 12 V.  
Output Voltage Adjust (see operating information)  
Passive adjust  
The resistor value for an adjusted output voltage is calculated by  
using the equations in the operating information.  
0.69  
RSET =10kΩ×  
1.43kΩ  
Vo 0.69  
C October2012
s
4V, Output up to 16 A / 88 W  
5.0V, 16A / 80.0W Electrical Specification  
PMP 5818UW P  
Tref = -40 to +85ºC, VI = 7 to 14 V, Radj = 171 Ω, unless otherwise specified under Conditions.  
Typical values given at: Tref = +25°C, VI= 12 V, max IO , unless otherwise specified under Conditions.  
Additional Cin = 330+22 µF and Cout = 220 µF. See Operating Information section for selection of capacitor types.  
Connect the sense pin, where available, to the output pin.  
Characteristics  
Conditions  
min  
7
typ  
12  
max  
Unit  
V
VI  
Input voltage range  
14  
VIoff  
VIon  
CI  
Turn-off input voltage  
Turn-on input voltage  
Internal input capacitance  
Output power  
Decreasing input voltage  
Increasing input voltage  
4.5  
4.7  
4.8  
44  
V
5.0  
80  
V
μF  
W
PO  
0
50 % of max IO  
max IO  
92.8  
92.6  
6.5  
η
Efficiency  
%
Pd  
Pli  
PRC  
IS  
Power Dissipation  
Input idling power  
Input standby power  
Static Input current  
Switching frequency  
max IO  
7.0  
W
W
IO= 0 A, VI = 12 V  
VI = 12 V (turned off with RC)  
VI = 12 V, max IO  
0-100 % of max IO  
1.8  
33.9  
7.3  
mW  
A
fs  
270  
300  
330  
kHz  
Output voltage initial setting  
and accuracy  
VOi  
Tref = +25°C, VI = 12 V, max IO  
4.925  
4.850  
5.000  
5.075  
5.150  
V
Output voltage tolerance band 10-100 % of max IO  
V
Idling voltage  
Line regulation  
Load regulation  
IO = 0 A  
5.004  
±3  
V
VO  
max IO  
mV  
mV  
VI = 12 V, 0-100 % of max IO  
±2  
Load transient  
VI = 12 V, Load step 25-75-25 % of  
max IO, di/dt = 2.5 A/μs  
Without Turbo Trans  
Vtr  
ttr  
Vtr  
ttr  
tr  
±80  
40  
mV  
μs  
voltage deviation  
Load transient recovery time  
Co =1640 µF Type C  
Load transient  
VI = 12 V, Load step 25-75-25 % of  
max IO, di/dt = 2.5 A/μs  
±70  
30  
mV  
μs  
voltage deviation  
With Turbo Trans  
Load transient recovery time  
Co =1640 µF Type C; RTT =2 kΩ  
Ramp-up time  
(from 1090 % of VOi)  
3.0  
7.0  
ms  
ms  
100 % of max IO  
Start-up time  
(from VI connection to 90 % of VOi)  
ts  
Max IO  
1.6  
78.3  
7.0  
ms  
ms  
ms  
ms  
ms  
A
VI shut-down fall time.  
tf  
(From VI off to 10 % of VO)  
IO = 0.1 A  
Max IO  
RC start-up time  
tRC tInh  
Max IO  
0.7  
RC shut-down fall time  
(From RC off to 10 % of VO)  
Io = 0.1 A  
81.2  
IO  
Output current  
0
16  
C October2012
s
4V, Output up to 16 A / 88 W  
Ilim  
Isc  
Current limit threshold  
Short circuit current  
Tref < max Tref  
Tref = 25ºC  
29  
29  
A
A
See ripple & noise section,  
max IO  
VOac  
Output ripple & noise  
40.2  
mVp-p  
C October2012
s
4V, Output up to 16 A / 88 W  
5.0V, 16A / 80.0W Typical Characteristics  
Efficiency  
PMP 5818UW P  
Power Dissipation  
[%]  
100  
[W]  
10  
8
6
4
2
0
95  
90  
7.0 V  
7.0 V  
12 V  
14 V  
85  
80  
75  
12 V  
14V  
0
4
8
12  
16 [A]  
0
4
8
12  
16 [A]  
Efficiency vs. load current and input voltage at Tref = +25°C  
Dissipated power vs. load current and input voltage at  
Tref = +25°C  
Output Current Derating  
Thermal Resistance  
[A]  
20  
[°C/W]  
17  
15  
10  
5
15  
13  
11  
9
2.0 m/s  
1.0 m/s  
0.5 m/s  
Nat. Conv.  
0
0
20  
40  
60  
80  
100 [°C]  
0.0  
0.4  
0.8  
1.2  
1.6  
2.0[m/s]  
Available load current vs. ambient air temperature and airflow at  
VI = 12 V. See Thermal Consideration section.  
Thermal resistance vs. airspeed measured at the converter.  
Tested in wind tunnel with airflow and test conditions as per  
the Thermal consideration section.  
Output Characteristics  
Current Limit Characteristics  
[V]  
[V]  
5.011  
6.00  
5.00  
4.00  
5.009  
7.0 V  
5.007  
5.005  
5.003  
5.001  
7.0 V  
12 V  
14 V  
3.00  
2.00  
1.00  
0.00  
12 V  
14 V  
0
4
8
12  
16 [A]  
20  
24  
28  
32  
36  
40 [A]  
Output voltage vs. load current at Tref = +25°C  
Output voltage vs. load current at IO > max IO , Tref = +25°C  
C October2012
s
4V, Output up to 16 A / 88 W  
5.0V, 16A / 80.0W Typical Characteristics  
Start-up  
PMP 5818UW P  
Shut-down  
Start-up enabled by connecting VI at:  
Tref = +25°C, VI = 12 V,  
Top trace: output voltage (1 V/div.).  
Bottom trace: input voltage (10 V/div.).  
Shut-down enabled by disconnecting VI at:  
Tref = +25°C, VI = 12 V,  
Top trace: output voltage (1 V/div.).  
Bottom trace: input voltage (10 V/div.).  
Output Ripple & Noise  
Output Load Transient Response  
With Turbo Trans  
Without Turbo Trans  
Output voltage ripple at:  
Tref = +25°C, VI = 12 V,  
IO = 16 A resistive load.  
Trace: output voltage (10 mV/div.).  
Time scale: (2 µs/div.).  
Output voltage response to load current  
step-change (4-12-4 A) at:  
Top trace: output voltage (100 mV/div.).  
Middle trace: output voltage (100 mV/div.).  
Bottom trace: load current (10 A/div.).  
Tref =+25°C, VI = 12 V.  
Output Voltage Adjust (see operating information)  
Passive adjust  
The resistor value for an adjusted output voltage is calculated by  
using the equations in the operating information.  
0.69  
RSET =10kΩ×  
1.43kΩ  
Vo 0.69  
E
42  
Technical Specification  
EN/LZT 146 388 R1C October 2012  
PMP 5000 series PoL Regulator  
Input 4.5 - 14 V, Output up to 16 A / 88 W  
© Ericsson AB  
Output ripple and noise  
EMC Specification  
Output ripple and noise measured according to figure below.  
See Design Note 022 for detailed information.  
Conducted EMI measured according to test set-up.  
The fundamental switching frequency is 300 kHz for  
PMP 5818UW P @ VI = 5/12 V, max IO.  
Conducted EMI Input terminal value (typ)  
TBD  
Output ripple and noise test setup  
Operating information  
Extended information for POLA products is found in  
Application Note 205.  
EMI without filter  
Input Voltage  
The input voltage range 4.5 to 14 Vdc makes the product  
easy to use in intermediate bus applications when powered  
by a regulated bus converter.  
Turn-off Input Voltage  
TBD  
The DC/DC regulators monitor the input voltage and will turn  
on and turn off at predetermined levels.  
The minimum hysteresis between turn on and turn off input  
voltage is 0.1V.  
Remote Control (RC) Inhibit  
The products are fitted with a  
remote control function referenced  
to positive logic. The RC function  
allows the regulator to be turned  
on/off by an external device like a  
semiconductor or mechanical  
switch. The RC pin has an internal  
pull up resistor to + In.  
Test set-up  
Layout recommendation  
The radiated EMI performance of the DC/DC regulator will  
depend on the PCB layout and ground layer design.  
It is also important to consider the stand-off of the DC/DC  
regulator.  
If a ground layer is used, it should be connected to the output  
of the DC/DC regulator and the equipment ground or chassis.  
The maximum required sink current is 1 mA. When the RC pin  
is left open, the voltage generated on the RC pin is  
4.5 — 14 V. The regulator will turn on when the input voltage is  
applied with the RC pin open. Turn off is achieved by  
connecting the RC pin to the - In. To ensure safe turn off the  
voltage difference between RC pin and the - In pin shall be  
less than 1V. The regulator will restart automatically when this  
connection is opened.  
A ground layer will increase the stray capacitance in the PCB  
and improve the high frequency EMC performance.  
E
43  
Technical Specification  
EN/LZT 146 388 R1C October 2012  
PMP 5000 series PoL Regulator  
Input 4.5 - 14 V, Output up to 16 A / 88 W  
© Ericsson AB  
across the input of the regulator will ensure stable operation.  
The capacitor is not required when powering the DC/DC  
regulator from an input source with an inductance below  
10 μH.  
External Capacitors  
Input capacitors:  
The PMP 5818UW P requires a combination of one 22 μF  
X5R/X7R ceramic and 330 μF electrolytic type. The ripple  
current rating of the electrolytic capacitor must be at least  
950 mA rms. The ripple current rating must increase to 1500  
mA rms when Vo > 2.1V and Io 11A.  
If using the ceramic capacitor as the input capacitor, the PMP  
5818UW P needs a minimum input capacitance of 300 μF. In  
addition, output capacitor also need ceramic capacitor, PMP  
5818UW P needs a minimum output capacitance of 300 μF.  
External Decoupling Capacitors  
When powering loads with significant dynamic current  
requirements, the voltage regulation at the point of load can  
be improved by addition of decoupling capacitors at the load.  
The most effective technique is to locate low ESR ceramic  
and electrolytic capacitors as close to the load as possible,  
using several parallel capacitors to lower the effective ESR.  
The ceramic capacitors will handle high-frequency dynamic  
load changes while the electrolytic capacitors are used to  
handle low frequency dynamic load changes. Ceramic  
capacitors will also reduce any high frequency noise at the  
load.  
For high-performance/transient application, or wherever the  
input source performance is degraded, 680 μF of input  
capacitance is recommended. The additional input  
capacitance above the minimum level insures an optimized  
performance.  
It is equally important to use low resistance and low  
inductance PCB layouts and cabling.  
Output capacitors:  
The PMP 5818UW P requires a minimum output capacitance  
of 220 μF of aluminium, polymer-aluminum, tantalum, or  
polymer-tantalum type.  
External decoupling capacitors will become part of the  
control loop of the DC/DC regulator and may affect the  
stability margins. As a “rule of thumb”, 100 μF/A of output  
current can be added without any additional analysis. The  
ESR of the capacitors is a very important parameter. Power  
Modules guarantee stable operation with a verified ESR value  
of >10 macross the output connections.  
The required capacitance above the minimum will be  
determined by actual transient deviation requirements.  
When using one or more non-ceramic capacitors, the  
calculated equivalent ESR should be no lower than 4 mΩ  
(7mΩ using the manufacturer’s maximum ESR for a single  
capacitor).  
For further information please contact your local Ericsson  
Power Modules representative.  
Output Voltage Adjust (Vadj  
)
Turbo TransTM allows the designer to optimize the  
capacitance load according to the system transient design  
requirement. High quality, ultra-low ESR capacitors are  
required to maximize Turbo TransTM effectiveness. Capacitors  
with a capacitance (μF)×ESR (m) 10,000 m× μF are  
required.  
The DC/DC regulators have an Output Voltage Adjust pin  
(Vadj). This pin can be used to adjust the output voltage above  
or below Output voltage initial setting.  
To increase or decrease the voltage, the resistor should be  
connected between the Vadj pin and GND pin. The resistor  
value of the output voltage adjust function is according to  
information given under the output section for the respective  
product.  
Required Capacitor with Turbo Trans. See the Turbo TransTM  
Application information for Capacitor Selection.  
Capacitor Type Group by ESR (Equivalent Series Resistance)  
Type A = (100<capacitance×ESR1,000)  
Type B = (1,000<capacitance×ESR5,000)  
Type C = (5,000<capacitance×ESR10,000)  
Input And Output Impedance  
P M P 5 8 1 8 U W  
P
The impedance of both the input source and the load will  
interact with the impedance of the DC/DC regulator. It is  
important that the input source has low characteristic  
impedance. The regulators are designed for stable operation  
without external capacitors connected to the input or output.  
The performance in some applications can be enhanced by  
addition of external capacitance as described under External  
Decoupling Capacitors. If the input voltage source contains  
significant inductance, the addition of a 100 μF capacitor  
Parallel Operation  
Two regulators may be paralleled for redundancy if the total  
power is equal or less than PO max. It is not recommended to  
parallel the regulators without using external current sharing  
E
44  
Technical Specification  
EN/LZT 146 388 R1C October 2012  
PMP 5000 series PoL Regulator  
Input 4.5 - 14 V, Output up to 16 A / 88 W  
© Ericsson AB  
circuits.  
The UVLO characteristic is defined by the ON threshold (VTHD  
voltage. Below the ON threshold, the Inhibit control is  
overridden, and the moudule does not produce an output.  
The hysterisis voltage, which is the difference between the  
ON and OFF threshold voltage, is set at 500 mV. The  
hysteresis prevents start up oscillations, which can occur if  
the input voltage drops slightly when the modules begins to  
draw current from the input source.  
)
Remote Sense  
The DC/DC regulators have remote sense that can be used to  
compensate for voltage drops between the output and the  
point of load. The sense traces should be located close to the  
PCB ground layer to reduce noise susceptibility. The remote  
sense circuitry will compensate for up to 10% voltage drop  
between output pins and the point of load.  
The UVLO feature of the PMP 5818UW P module allows for  
limited adjustment of the ON threshold voltage. The  
If the remote sense is not needed +Sense should be  
connected to +Out and -Sense should be connected to -Out.  
adjustment is made via the Inhibit/UVLO Prog control pin (Pin  
11) using a single resistor (see figure below). When pin 11 is  
left open, the ON threshold voltage is intermally set to its  
default value, which is 4.3 volts. The ON threshold might need  
to be raised if the module is powered from a tightly regulated  
12 V bus. Adjusting the threshold voltage prevents the  
module from operating if the input bus fails to completely rise  
to its specified regulation voltage.  
Over Temperature Protection (OTP)  
The regulators are protected from thermal overload by an  
internal over temperature shutdown circuit.  
When Tref as defined in thermal consideration section  
exceeds the OTP threshold, the regulator will shut down. The  
DC/DC regulator will make continuous attempts to start up  
(non-latching mode) and resume normal operation  
automatically when the temperature has dropped >10°C  
below the temperature threshold.  
The below equation determines the value of RUVLO required  
to adjust VTHD to a new value. The default value is 4.3 V and it  
may only be adjusted to a higher value.  
Over Current Protection (OCP)  
9690 (137 × V THD  
137 × V THD 585  
)
The regulators include current limiting circuitry for protection  
at continuous overload.  
The output voltage will decrease towards zero for output  
currents in excess of max output current (max IO). The  
regulator will resume normal operation after removal of the  
overload. The load distribution should be designed for the  
maximum output short circuit current specified.  
R UVLO  
=
(kΩ )  
Soft-start Power Up  
The above table lists the standard resistor values for RUVLO for  
different values of the ON threshold (VTHD) voltage.  
The figure of UVLO Program Resistor Placement is as follow.  
From the moment a valid input voltage is applied, the soft-  
start control introduces a short time-delay (typically 5-10 ms)  
before allowing the output voltage to rise.  
The initial rise in input current when the input voltage first  
starts to rise is the charge current drawn by the input  
capacitors. Power-up is complete within 15 ms.  
P M P 5 8 1 8 U W  
P
Auto Track™ Function  
Auto TrackTM was designed to simplify the amount of circuitry  
required to make the output voltage from each module  
power up and power down in sequence. The sequencing of  
two or more supply voltages during power up is a common  
requirement for complex mixed-signal applications, that use  
dual-voltage VLSI ICs such as DSPs, micro-processors and  
ASICs.  
Turbo TransTM Technology  
Adjustable Undervoltage Lockout  
Turbo TransTM optimizes the transient response of the  
regulator with added external capacitance using a single  
external resistor. The benefits of this technology include:  
reduced output capacitance, minimized output voltage  
deviation following a load transient, and enhanced stability  
when using ultra-low ESR output capacitors. The amout of  
output capacitance required to meet a target output voltage  
deviation, is reduded with Turbo TransTM activated. Likewise,  
The regualtors incorporate an input undervoltage lockout  
(UVLO). The UVLO feature prevents the operation of the  
module until there is a sufficient input voltage to produce a  
valid output voltage. This enables the module to provide a  
clean, monotonic powerup for the load circuit and also limit  
the magnitude of current drawn from regulator’s input source  
during the power-up sequence.  
E
45  
Technical Specification  
EN/LZT 146 388 R1C October 2012  
PMP 5000 series PoL Regulator  
Input 4.5 - 14 V, Output up to 16 A / 88 W  
© Ericsson AB  
for a given amout of output capacitance, with Turbo Trans  
engaged, the amplitude of the voltage deviation following a  
load transient is reduced. Applications requiring tight  
transient voltage tolerances and minimized capacitor footprint  
area benefit from this technology.  
Utilizing Turbo TransTM requires connecting a resistor, RTT  
,
between the +Sense pin (pin 6) and the Turbo Trans pin (pin  
9), The value of the resistor directly corresponds to the  
amount of output capacitance required. For the PMP  
5818UW P, the minimum required capacitance is 2200 μF.  
When using Turbo TransTM, capacitors with a  
capacitance×ESR product below 10,000 μF×mare required.  
To see the benefit of Turbo TransTM, follow the 5mV/A  
marking across to the “Without Turbo TransTM” plot. Following  
that point down shows that more than 4,500 μF of output  
capacitance is required to meet the same transient deviation  
RTT Resistor Selection  
The Turbo TransTM resistor value, RTT can be determined from  
the Turbo TransTM programming equation, see the equation  
below.  
limit. This is the benefit of Turbo TransTM  
.
A typical Turbo TransTM application schematic is also shown.  
C
o
1 (  
)
1500  
R TT = 40 ×  
( k Ω )  
C
o
5 × (  
) 1  
1500  
Where Co is the total output capacitance in μF. Co values  
greater than or equal to 1500 μF require RTT to be a short,  
0. To ensure stability, a minimum amount of output capacitance is  
required for a given RTT resistor value.The value of RTT must be  
calculated using the minimum required output capacitance.  
E
46  
Technical Specification  
EN/LZT 146 388 R1C October 2012  
PMP 5000 series PoL Regulator  
Input 4.5 - 14 V, Output up to 16 A / 88 W  
© Ericsson AB  
RTT Resistor Selection  
The Turbo TransTM resistor value, RTT can be determined from  
the Turbo TransTM programming equation, see the equation  
below.  
C
o
1 (  
)
1100  
R TT = 40  
×
( k Ω )  
C
o
5 × (  
) 1  
1100  
Where Co is the total output capacitance in μF. Co values  
greater than or equal to 1100 μF require RTT to be a short,  
0.To ensure stability, a minimum amount of output capacitance is  
required for a given RTT resistor value.The value of RTT must be  
calculated using the minimum required output capacitance.  
RTT Resistor Selection  
The Turbo Trans resistor value, RTT can be determined from  
the Turbo TransTM programming equation, see the equation  
below.  
C
o
1 (  
)
1980  
R
= 40 ×  
( k Ω )  
TT  
5 × C + 880  
o
(
) 1  
1980  
Where Co is the total output capacitance in μF. Co values  
greater than or equal to 1980 μF require RTT to be a short,  
0.To ensure stability, a minimum amount of output capacitance is  
required for a given RTT resistor value.The value of RTT must be  
calculated using the minimum required output capacitance.  
E
47  
Technical Specification  
EN/LZT 146 388 R1C October 2012  
PMP 5000 series PoL Regulator  
Input 4.5 - 14 V, Output up to 16 A / 88 W  
© Ericsson AB  
output voltage and swiching frequency. Operationally, the  
maximum input voltage is inversely proportional to switching  
frequency. Synchronizing to a higher frequency causes  
greater restrictions on the input voltage range. For a given  
switching frequency, the below figure shows how the  
maximum input voltage varies with output voltage.  
PMP 5818UW P  
For example, for a module operating at 400 KHz and an  
output voltage of 1.2 V, the maximum input voltage is 10 V.  
Exceeding the maximum input voltage may cause in an  
increase in output ripple voltage and increased output voltage  
variation.  
As shown in the below figure, input voltage below 6 V can  
operate down to the minimum output voltage over the entire  
synchronization frequency range.  
Smart Sync  
Smart Sync is a feature that allows multiple power modules to  
be synchronized to a common frequency. Driving the Smart  
Sync pins with an external oscillator set to the desired  
frequency, synchronizes all connected modules to the  
selected frequency. The synchronization frequency can be  
higher or lower than the nominal swithing frequency of the  
modules within the range of 240 KHz to 400 KHz.  
Synchroizing modules powered from the same bus eliminates  
beat frequencies reflected back to the input supply, and also  
reduces EMI filtering requirements. Eliminating the slow beat  
frequencies (usually < 10 KHz) allows the EMI filter to be  
designed to attenuate only the synchronization frequency.  
Power modules can also be synchronized out of phase to  
minimize ripple current and reduce input capacitance  
requirements. The below figure shows a standard circuit with  
two modules syncronized 180out of phase using a D flip-  
flop.  
PMP 5818UW P  
PMP 5818UW P  
The maximum input voltage allowed for proper  
synchronization is duty cycle limited. When using Smart Sync,  
the maximum allowable input voltage varies as a function of  
E
48  
Technical Specification  
EN/LZT 146 388 R1C October 2012  
PMP 5000 series PoL Regulator  
Input 4.5 - 14 V, Output up to 16 A / 88 W  
© Ericsson AB  
Thermal Consideration  
General  
The regulators are designed to operate in different thermal  
environments and sufficient cooling must be provided to  
ensure reliable operation.  
Cooling is achieved mainly by conduction, from the pins to  
the host board, and convection, which is dependant on the  
airflow across the regulator. Increased airflow enhances the  
cooling of the regulator.  
The Output Current Derating graph found in the Output  
section for each model provides the available output current  
vs. ambient air temperature and air velocity at Vin = 5/12 V.  
The DC/DC regulator is tested on a 10.2 x 10.2 mm,  
35 μm (1 oz), 4-layer test board mounted vertically in a wind  
tunnel with a cross-section of 305 x 305 mm.  
Proper cooling of the DC/DC regulator can be verified by  
measuring the temperature at positions P1, P2 and P3. The  
temperature at these positions should not exceed the max  
values provided in the table below.  
Note that the max value is the absolute maximum rating  
(non destruction) and that the electrical Output data is  
guaranteed up to ambient temperature +85°C.  
See Design Note 019 for further information.  
Position  
P1  
Device  
Pcb  
Designation  
max value  
130º C  
P2  
P3  
Mosfet  
130º C  
130º C  
Inductor  
Tref  
E
49  
Technical Specification  
EN/LZT 146 388 R1C October 2012  
PMP 5000 series PoL Regulator  
Input 4.5 - 14 V, Output up to 16 A / 88 W  
© Ericsson AB  
Thermal Consideration continued  
Connections  
Definition of reference temperature (Tref  
)
The reference temperature is used to monitor the temperature  
limits of the product. Temperatures above maximum Tref are  
not allowed and may cause degradation or permanent  
damage to the product. Tref is also used to define the  
temperature range for normal operating conditions.  
Tref is defined by the design and used to guarantee safety  
margins, proper operation and high reliability of the module.  
Ambient Temperature Calculation  
By using the thermal resistance the maximum allowed  
ambient temperature can be calculated.  
1. The power loss is calculated by using the formula  
((1/η) - 1) × output power = power losses (Pd).  
η = efficiency of regulator. E.g 89.5 % = 0.895  
Pin Designation Function  
1
SmartSync This input pin sychronizes the switching  
frequency of the module to external clock  
frequency. The SmartSync feature can be  
used to sychronize the switching  
2. Find the thermal resistance (Rth) in the Thermal Resistance  
graph found in the Output section for each model.  
Calculate the temperature increase (ΔT).  
ΔT = Rth x Pd  
frequency of multipe PMP 5818UW P  
modules, aiding EMI noise suppression  
efforts. If unused, this pin should be  
connected to GND (PIN 3). For more  
information, please review the Application  
Information section.  
3. Max allowed ambient temperature is:  
Max Tref - ΔT.  
E.g PMP 5818UW P at 0m/s:  
1
2
3
VI  
The positive input voltage power node to  
the module, which is referenced to  
common GND.  
1. ((  
) - 1) × 80 W = 6.39 W  
0.926  
2. 6.39 W × 15.8°C/W = 101.0°C  
GND  
This is the common ground connection  
for the VI and Vo power connections. It is  
also the 0 Vdc reference for the control  
inputs.  
3. 130 °C — 101.0°C = max ambient temperature is 29.0°C  
The actual temperature will be dependent on several factors  
such as the PCB size, number of layers and direction of  
airflow.  
4
GND  
This is the common ground connection  
for the VI and Vo power connections. It is  
also the 0 Vdc reference for the control  
inputs.  
5
6
Vo  
The regulated positive power output with  
respect to the GND.  
+Sense  
The sense input allows the regulation  
circuit to compensate for voltage drop  
between the module and the load. The  
+Sense pin should always be connected  
to Vo , either at the load for optimal  
voltage accuracy, or at the module (pin 5).  
E
50  
Technical Specification  
EN/LZT 146 388 R1C October 2012  
PMP 5000 series PoL Regulator  
Input 4.5 - 14 V, Output up to 16 A / 88 W  
© Ericsson AB  
7
-Sense  
The sense input allows the regulation  
circuit to compensate for voltage drop  
between the module and the load. For  
optimal voltage accuracy, -Sense must  
be connectted to GND(pin 4) , very close  
to the module (within 10 cm).  
11 Inhibit/  
The Inhibit pin is an open-collector/drain,  
UVLO Adjust negative logic input that is referenced to  
GND. Applying a low level ground signal  
to this input disables the module’s output  
voltage. If the Inhibit pin is left open-  
circuit, the module produces an output  
whenever a valid input source is applied.  
This input is not compatible with TTL  
logic devices and should not be tied VI or  
other voltage.  
8
Vo Adjust  
A 0.05 W 1% resistor must be directly  
connected between this pin and pin 7 (-  
Sense) to set the output voltage to a  
value higher than 0.69 V. The  
This pin is also used for input  
undervoltage lockout (UVLO)  
temperature stability of the resistor  
should be 100 ppm/(or better). The  
setpoint range for the output voltage is  
from 0.69V to 5.5 V. If left open circuit,  
the output voltage defaults to its lowest  
value. For further information, on output  
voltage adjustment see the related  
application note. The specification table  
gives the preferred resistor values for a  
number of standard output voltages..  
programming. Connecting a resistor from  
this pin to GND (Pin 3) allows the ON  
threshold of the UVLO to be adjusted  
higher than the default value.  
9
Turbo Trans This input pin adjusts the transient  
response of the regulator. To activate the  
Turbo TransTM feature, a 1%, 50mW  
resistor must be connected between this  
pin and pin 6 (+Sense) very close to the  
module. For a given value of output  
capacitance, a reduction in peak output  
voltage deviation is achieved by using  
this feature. If unused, this pin must be  
left open-circuit. External capacitance  
must never be connected to this pin  
unless the Turbo TransTM resistor value is  
a short, 0.  
10 Track  
This is an analog control input that  
enables the output voltage to follow an  
external voltage. This pin becomes active  
typically 20 ms after the input voltage has  
been applied, and allows direct control of  
the output voltage from 0 V up to the  
nominal set-point voltage. Within the  
control voltage is raised above this range,  
the module regulates at its set-point  
voltage. The features allows the output  
voltage to rise simultaneously with other  
modules powered from the same input  
bus. If unused, this input should be  
connected to VI .  
NOTE: Due to the undervoltage lockout  
feature, the output of the module cannot  
follow its own input voltage during power  
up. For more information, see the related  
application note.  
1  
C October2012
eoL
44 V, Output up to 16 A / 88 W  
Mechanical Information (Surface mount version)  
2  
C October2012
eoL
44 V, Output up to 16 A / 88 W  
Mechanical Information (Through hole mount version)  
3  
C October2012
eoL
44 V, Output up to 16 A / 88 W  
+221°C for Sn/Ag/Cu solder alloys) for more than 30  
Soldering Information - Surface Mounting  
The surface mount version of the product is intended for  
convection or vapor phase reflow SnPb or Pb-free  
processes. To achieve a good and reliable soldering result,  
make sure to follow the recommendations from the solder  
paste supplier, to use state-of-the-art reflow equipment and  
reflow profiling techniques as well as the following  
guidelines.  
seconds, and a peak temperature of +235°C on all solder  
joints is recommended to ensure a reliable solder joint.  
A no-clean flux is recommended to avoid entrapment of  
cleaning fluids in cavities inside the product or between the  
product and the host board. The cleaning residues may  
affect long time reliability and isolation voltage.  
Peak Product Temperature Requirements  
Pin 1 is chosen as reference location for the maximum  
(peak) allowed product temperature (TP) since this will likely  
be the warmest part of the product during the reflow  
process.  
Minimum Pin Temperature Recommendations  
Pin number 8 is chosen as reference location for the  
minimum pin temperature recommendations since this will  
likely be the coolest solder joint during the reflow process.  
To avoid damage or performance degradation of the  
product, the reflow profile should be optimized to avoid  
excessive heating. A sufficiently extended preheat time is  
recommended to ensure an even temperature across the  
host PCB, for both small and large devices. To reduce the  
risk of excessive heating is also recommended to reduce the  
time in the reflow zone as much as possible.  
Pin 8 for measurement of minimum  
solder joint temperature, TPIN  
SnPb solder processes  
For SnPb solder processes, the product is qualified for MSL  
1 according to IPC/JEDEC standard J-STD-020C.  
Pin 1 for measurement of maximum  
peak product reflow temperature, TP  
SnPb solder processes  
During reflow, TP must not exceed +225°C at any time.  
For SnPb solder processes, a pin temperature (TPIN) in  
excess of the solder melting temperature, (TL, +183°C for  
Sn63/Pb37) for more than 30 seconds, and a peak  
temperature of +210°C is recommended to ensure a reliable  
solder joint.  
Lead-free (Pb-free) solder processes  
For Pb-free solder processes, the product is qualified for  
MSL 3 according to IPC/JEDEC standard J-STD-020C.  
During reflow, TP must not exceed +260°C at any time.  
Lead-free (Pb-free) solder processes  
For Pb-free solder processes, a pin temperature (TPIN) in  
excess of the solder melting temperature (TL, +217 to  
4  
C October2012
eoL
44 V, Output up to 16 A / 88 W  
Temperature  
Ramp-up  
TP  
Ramp-down  
(cooling)  
TL  
Reflow  
Preheat  
Time 25 °C to peak  
25 °C  
Time  
Reflow process specifications  
Average ramp-up rate  
Sn/Pb eutectic  
3 °C/s max  
+183°C  
Pb-free  
3 °C/s max  
+221°C  
Solder melting  
TL  
temperature (typical)  
Minimum time above TL  
30 s  
30 s  
Minimum pin  
temperature  
TPIN +210°C  
+235°C  
Peak product  
temperature  
TP  
+225°C  
+260°C  
Average ramp-down rate  
Time 25 °C to peak  
6°C/s max  
6°C/s max  
6 minutes max  
8 minutes max  
5  
C October2012
eoL
44 V, Output up to 16 A / 88 W  
Soldering Information – Through Hole Mounting  
The through hole mount version of the product is intended  
for manual or wave soldering. When wave soldering is used,  
the temperature on the pins is specified to maximum 270 °C  
for maximum 10 seconds.  
A maximum preheat rate of 4°C/s and a temperature of max  
of +150°C is suggested. When soldering by hand, care  
should be taken to avoid direct contact between the hot  
soldering iron tip and the pins for more than a few seconds  
in order to prevent overheating.  
Carrier Tape Specifications  
A no-clean flux is recommended to avoid entrapment of  
cleaning fluids in cavities inside the product or between the  
product and the host board. The cleaning residues may  
affect long time reliability and isolation voltage.  
Material  
Antistatic PS  
Surface resistance  
Bakability  
107 < Ohm/square < 1012  
The tape is not bakable.  
44 mm [1.732 inch]  
32 mm [1.260 inch]  
9.09 mm [0.358 inch]  
381 mm [15 inch]  
Tape width  
Pocket pitch  
Pocket depth  
Reel diameter  
Reel capacity  
Delivery Package Information  
The TH version products are delivered in antistatic trays.  
The SMD version products are delivered in antistatic trays  
and antistatic carrier tape (EIA 481 standard).  
200 products /reel  
Non-Dry Pack Information  
Tray Specifications  
The through hole mount version of product is delivered in  
non-dry packing trays.  
Material  
Antistatic PET  
Surface resistance  
Tray capacity  
Tray thickness  
Box capacity  
Bakability  
106 < Ohm/square < 1012  
42 products/tray  
The lead (Pb) surface mount version of product is delivered  
in non-dry packing trays or tape & reel.  
13 mm [0.512 inch]  
Dry Pack Information  
210 products ( 5 full trays/box)  
The tray is not bakable.  
The lead free (Pb-free) surface mount version of the product  
is delivered in trays or tape & reel. These inner shipment  
containers are dry packed in standard moisture barrier bags  
according to IPC/JEDEC standard J-STD-033 (Handling,  
packing, shipping and use of moisture/reflow sensitivity  
surface mount devices).  
Using products in high temperature Pb-free soldering  
processes requires dry pack storage and handling. In case  
the products have been stored in an uncontrolled  
environment and no longer can be considered dry, the  
modules must be baked according to J-STD-033.  
56  
C October2012
eoL
44 V, Output up to 16 A / 88 W  
Product Qualification Specification  
Characteristics  
External visual inspection  
IPC-A-610  
Change of temperature  
(Temperature cycling)  
IEC 60068-2-14 Na  
Temperature range  
Number of cycles  
Dwell/transfer time  
-40 to +100 °C  
1000  
15 min/0-1 min  
Cold (in operation)  
Damp heat  
IEC 60068-2-1 Ad  
IEC 60068-2-67 Cy  
Temperature TA  
Duration  
-45°C  
72 h  
Temperature  
Humidity  
+85 °C  
85 % RH  
1000 hours  
Duration  
Dry heat  
IEC 60068-2-2 Bd  
Temperature  
Duration  
+125 °C  
1000 h  
Immersion in cleaning solvents  
Mechanical shock  
IEC 60068-2-45 XA  
Method 2  
Water  
+55° C  
+35° C  
Glycol ether  
IEC 60068-2-27 Ea  
Peak acceleration  
Duration  
100 g  
6 ms  
1
Moisture reflow sensitivity  
J-STD-020C  
level 1 (SnPb-eutectic)  
level 3 (Pb Free)  
225° C  
260° C  
Operational life test  
MIL-STD-202G method 108A  
Duration  
1000 h  
2
Resistance to soldering heat  
IEC 60068-2-20 Tb  
Method 1A  
Solder temperature  
Duration  
270° C  
10-13 s  
Robustness of terminations  
Solderability  
IEC 60068-2-21 Test Ua1  
IEC 60068-2-21 Test Ue1  
Through hole mount products  
Surface mount products  
All leads  
All leads  
1
IEC 60068-2-58 test Td  
Preconditioning  
150 °C dry bake 16 h  
215° C  
Temperature, SnPb Eutectic  
Temperature, Pb-free  
235° C  
2
IEC 60068-2-20 test Ta  
Preconditioning  
Steam ageing  
235 ° C  
Temperature, SnPb Eutectic  
Temperature, Pb-free  
245 ° C  
Vibration, broad band random  
IEC 60068-2-64 Fh, method 1  
Frequency  
10 to 500 Hz  
0.07 g2/Hz  
Spectral density  
Duration  
10 min in each perpendicular  
direction  
Note 1: Only for products intended for reflow soldering (surface mount products)  
Note 2: Only for products intended for wave soldering (plated through hole products)  

相关型号:

PMP6025W

RELAY SSR PROP CNTL PNL MNT 25A
ETC

PMP6025WH

RELAY SSR PROP CNTL PNL MNT 25A
ETC

PMP6025WP

RELAY SSR PROP CNTL PNL MNT 25A
ETC

PMP6025WPH

RELAY SSR PROP CNTL PNL MNT 25A
ETC

PMP6050W

RELAY SSR PROP CNTL PNL MNT 50A
ETC

PMP6050WH

RELAY SSR PROP CNTL PNL MNT 50A
ETC

PMP6050WP

RELAY SSR PROP CNTL PNL MNT 50A
ETC

PMP6050WPH

RELAY SSR PROP CNTL PNL MNT 50A
ETC

PMP6090W

RELAY SSR PROP CNTL PNL MNT 90A
ETC

PMP6090WH

RELAY SSR PROP CNTL PNL MNT 90A
ETC

PMP6090WP

RELAY SSR PROP CNTL PNL MNT 90A
ETC

PMP6090WPH

RELAY SSR PROP CNTL PNL MNT 90A
ETC