27LV25630IP [ETC]

x8 EPROM ; X8 EPROM\n
27LV25630IP
型号: 27LV25630IP
厂家: ETC    ETC
描述:

x8 EPROM
X8 EPROM\n

可编程只读存储器 电动程控只读存储器
文件: 总12页 (文件大小:125K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
27LV256  
256K (32K x 8) Low-Voltage CMOS EPROM  
FEATURES  
PACKAGE TYPES  
PDIP  
• Wide voltage range 3.0V to 5.5V  
• High speed performance  
VPP • 1  
28 VCC  
27 A14  
26 A13  
25 A8  
24 A9  
23 A11  
22 OE  
21 A10  
20 CE  
19 O7  
18 O6  
17 O5  
16 O4  
15 O3  
A12  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
O0  
O1  
O2  
2
3
4
- 200 ns access time available at 3.0V  
• CMOS Technology for low power consumption  
- 8 mA Active current at 3.0V  
5
6
7
8
- 20 mA Active current at 5.5V  
9
10  
11  
12  
13  
- 100 µA Standby current  
• Factory programming available  
• Auto-insertion-compatible plastic packages  
• Auto ID aids automated programming  
• Separate chip enable and output enable controls  
• High speed “Express” programming algorithm  
• Organized 32K x 8: JEDEC standard pinouts  
- 28-pin Dual-in-line package  
VSS 14  
PLCC  
5
29  
A6  
A8  
6
28  
A5  
A4  
A3  
A2  
A1  
A0  
NC  
O0  
A9  
7
27  
A11  
- 32-pin PLCC package  
8
26  
25  
24  
23  
22  
21  
NC  
OE  
A10  
CE  
O7  
O6  
9
- 28-pin SOIC package  
10  
11  
12  
13  
- Tape and reel  
• Data Retention > 200 years  
• Available for the following temperature ranges:  
- Commercial:  
- Industrial:  
0˚C to +70˚C  
-40˚C to +85˚C  
SOIC  
VPP  
A12  
A7  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
VCC  
A14  
A13  
A8  
DESCRIPTION  
2
3
A6  
4
The Microchip Technology Inc. 27LV256 is a low volt-  
age (3.0 volt) CMOS EPROM designed for battery pow-  
ered applications. The device is organized as a 32K x  
A5  
5
A9  
A4  
6
A11  
OE  
A10  
CE  
O7  
A3  
7
A2  
8
8
(32K-Byte) non-volatile memory product. The  
A1  
9
27LV256 consumes only 8 mA maximum of active cur-  
rent during a 3.0 volt read operation therefore improv-  
ing battery performance. This device is designed for  
very low voltage applications where conventional 5.0  
volt only EPROMS can not be used. Accessing individ-  
ual bytes from an address transition or from power-up  
(chip enable pin going low) is accomplished in less than  
200 ns at 3.0V. This device allows systems designers  
the ability to use low voltage non-volatile memory with  
today’s' low voltage microprocessors and peripherals in  
battery powered applications.  
A0  
10  
11  
12  
13  
14  
O0  
O1  
O2  
VSS  
O6  
O5  
O4  
O3  
A complete family of packages is offered to provide the  
most flexibility in applications. For surface mount appli-  
cations, PLCC or SOIC packaging is available. Tape  
and reel packaging is also available for PLCC or SOIC  
packages.  
1998 Microchip Technology Inc.  
DS11020G-page 1  
This Material Copyrighted by Its Respective Manufacturer  
27LV256  
TABLE 1-1:  
Name  
PIN FUNCTION TABLE  
Function  
1.0  
ELECTRICAL  
CHARACTERISTICS  
1.1  
Maximum Ratings*  
A0-A14  
CE  
Address Inputs  
Chip Enable  
VCC and input voltages w.r.t. VSS ........-0.6V to +7.25V  
VPP voltage w.r.t. VSS during  
programming .........................................-0.6V to +14V  
OE  
Output Enable  
Programming Voltage  
Data Output  
VPP  
Voltage on A9 w.r.t. VSS.......................-0.6V to +13.5V  
Output voltage w.r.t. VSS.................-0.6V to VCC +1.0V  
Storage temperature .......................... -65˚C to +150˚C  
Ambient temp. with power applied...... -65˚C to +125˚C  
O0 - O7  
VCC  
+5V or +3V Power Supply  
Ground  
VSS  
*Notice: Stresses above those listed under “Maximum Ratings”  
may cause permanent damage to the device. This is a stress rat-  
ing only and functional operation of the device at those or any  
other conditions above those indicated in the operation listings of  
this specification is not implied. Exposure to maximum rating con-  
ditions for extended periods may affect device reliability.  
NC  
No Connection; No Internal  
Connection  
NU  
Not Used; No External Connection Is  
Allowed  
TABLE 1-2:  
READ OPERATION DC CHARACTERISTICS  
VCC = +5V ±10% or 3.0V where indicated  
Commercial:  
Industrial:  
Tamb = 0˚C to +70˚C  
Tamb = -40˚C to +85˚C  
Parameter  
Part*  
Status  
Symbol Min.  
Max.  
Units Conditions  
Input Voltages  
all  
Logic "1"  
Logic "0"  
VIH  
VIL  
2.0  
-0.5  
VCC+1  
0.8  
V
V
Input Leakage  
all  
all  
ILI  
-10  
2.4  
10  
µA VIN = 0 to VCC  
Output Voltages  
Logic "1"  
Logic "0"  
VOH  
VOL  
V
V
IOH = -400 µA  
IOL = 2.1 mA  
0.45  
10  
6
Output Leakage  
all  
all  
ILO  
-10  
µA VOUT = 0V to VCC  
Input Capacitance  
CIN  
pF VIN = 0V; Tamb = 25°C;  
f = 1 MHz  
Output Capacitance  
all  
COUT  
12  
pF VOUT = 0V; Tamb = 25°C;  
f = 1 MHz  
Power Supply Current,  
Active  
C
I
TTL input  
TTL input  
ICC1  
ICC2  
20 @ 5.0V  
8 @ 3.0V  
25 @ 5.0V  
10 @ 3.0V  
mA VCC = 5.5V; VPP = VCC  
mA f = 1 MHz;  
mA OE = CE = VIL;  
mA IOUT = 0 mA;  
VIL = -0.1 to 0.8V;  
VIH = 2.0 to VCC;  
Note 1  
Power Supply Current,  
Standby  
C
I
TTL input  
TTL input  
ICC(S)  
1 @ 3.0V  
2 @ 3.0V  
mA  
mA  
all  
CMOS input  
100 @ 3.0V µA CE=VCC ± 0.2V  
* Parts: C=Commercial Temperature Range  
I =Industrial Temperature Ranges  
Note 1: Typical active current increases .75 mA per MHz up to operating frequency for all temperature ranges.  
DS11020G-page 2  
1998 Microchip Technology Inc.  
This Material Copyrighted by Its Respective Manufacturer  
27LV256  
TABLE 1-3:  
READ OPERATION AC CHARACTERISTICS  
AC Testing Waveform:  
Output Load:  
VIH = 2.4V and VIL = 0.45V; VOH = 2.0V VOL = 0.8V  
1 TTL Load + 100 pF  
Input Rise and Fall Times: 10 ns  
Ambient Temperature:  
Commercial:  
Industrial:  
Tamb = 0˚C to +70˚C  
Tamb = -40˚C to +85˚C  
27HC256-20  
27HC256-25  
27HC256-30  
Parameter  
Sym  
Units  
Conditions  
Min  
Max  
Min  
Max  
Min  
Max  
Address to Output Delay  
CE to Output Delay  
OE to Output Delay  
tACC  
tCE  
0
200  
200  
100  
50  
0
250  
250  
125  
50  
0
300  
300  
125  
50  
ns  
ns  
ns  
ns  
CE = OE = VIL  
OE = VIL  
tOE  
CE = VIL  
CE or OE to O/P High  
Impedance  
tOFF  
Output Hold from  
Address CE or OE,  
whichever goes first  
tOH  
0
0
0
ns  
FIGURE 1-1: READ WAVEFORMS  
VIH  
Address  
VIL  
Address valid  
VIH  
CE  
VIL  
tCE(2)  
VIH  
OE  
VIL  
tOFF(1,3)  
tOH  
tOE(2)  
VOH  
Outputs  
O0 - O7  
High Z  
High Z  
Valid Output  
VOL  
tACC  
Notes: (1) tOFF is specified for OE or CE, whichever occurs first  
(2) OE may be delayed up to tCE - tOE after the falling edge of CE without impact on tCE  
(3) This parameter is sampled and is not 100% tested.  
1998 Microchip Technology Inc.  
DS11020G-page 3  
This Material Copyrighted by Its Respective Manufacturer  
27LV256  
TABLE 1-4:  
PROGRAMMING DC CHARACTERISTICS  
Ambient Temperature: Tamb = 25°C ± 5°C  
VCC = 6.5V ± 0.25V, VPP = 13.0V ± 0.25V  
Parameter  
Status  
Symbol  
Min  
Max.  
Units  
Conditions  
Input Voltages  
Logic”1”  
Logic”0”  
VIH  
VIL  
2.0  
-0.1  
VCC+1  
0.8  
V
V
Input Leakage  
ILI  
-10  
2.4  
10  
µA  
VIN = 0V to VCC  
Output Voltages  
Logic”1”  
Logic”0”  
VOH  
VOL  
V
V
IOH = -400 µA  
IOL = 2.1 mA  
0.45  
20  
VCC Current, program & verify  
VPP Current, program  
ICC2  
IPP2  
VH  
mA  
mA  
V
Note 1  
Note 1  
25  
A9 Product Identification  
11.5  
12.5  
Note 1: VCC must be applied simultaneously or before VPP and removed simultaneously or after VPP.  
TABLE 1-5:  
PROGRAMMING AC CHARACTERISTICS  
for Program, Program Verify  
and Program Inhibit Modes  
AC Testing Waveform: VIH=2.4V and VIL=0.45V; VOH=2.0V; VOL=0.8V  
Output Load: 1 TLL Load + 100pF  
Ambient Temperature: Tamb=25°C±5°C  
VCC= 6.5V ± 0.25V, VPP =13.0V ± 0.25V  
Parameter  
Symbol  
Min. Max. Units  
Remarks  
Address Set-Up Time  
Data Set-Up Time  
Data Hold Time  
tAS  
tDS  
2
2
µs  
µs  
µs  
µs  
ns  
µs  
µs  
µs  
µs  
µs  
ns  
tDH  
2
Address Hold Time  
Float Delay (2)  
tAH  
0
tDF  
0
130  
VCC Set-Up Time  
Program Pulse Width (1)  
CE Set-Up Time  
tVCS  
tPW  
tCES  
tOES  
tVPS  
tOE  
2
95  
2
105  
100 µs typical  
OE Set-Up Time  
2
VPP Set-Up Time  
Data Valid from OE  
2
100  
Note 1: For express algorithm, initial programming width tolerance is 100 µs ±5%.  
2: This parameter is only sampled and not 100% tested. Output float is defined as the point where data is no  
longer driven (see timing diagram).  
DS11020G-page 4  
1998 Microchip Technology Inc.  
This Material Copyrighted by Its Respective Manufacturer  
27LV256  
FIGURE 1-2: PROGRAMMING WAVEFORMS  
Program  
Verify  
VIH  
Address  
Data  
Address Stable  
VIL  
VIH  
VIL  
tAS  
tDS  
tAH  
High Z  
Data Stable  
Data Out Valid  
tDF  
(1)  
tDH  
13.0V(2)  
5.0V  
6.5V(2)  
5.0V  
VIH  
VPP  
VCC  
CE  
tVPS  
tVCS  
VIL  
tOES  
tPW  
tOE  
(1)  
VIH  
OE  
tOPW  
VIL  
Notes:  
(1) tDF and tOE are characteristics of the device but must be accommodated by the programmer  
(2) VCC = 6.5V ±0.25V, VPP = VH = 13.0V ±0.25V for express algorithm  
TABLE 1-6:  
MODES  
Operation Mode  
CE  
OE  
VPP  
A9  
O0 - O7  
Read  
VIL  
VIL  
VIH  
VIH  
VIH  
VIL  
VIL  
VIL  
VIH  
VIL  
VIH  
X
VCC  
VH  
X
X
DOUT  
DIN  
Program  
Program Verify  
Program Inhibit  
Standby  
VH  
X
DOUT  
VH  
X
High Z  
VCC  
VCC  
VCC  
X
High Z  
Output Disable  
Identity  
VIH  
VIL  
X
High Z  
VH  
Identity Code  
X = Don’t Care  
1.2  
Read Mode  
For Read operations, if the addresses are stable, the  
address access time (tACC) is equal to the delay from  
CE to output (tCE). Data is transferred to the output  
after a delay from the falling edge of OE (tOE).  
(See Timing Diagrams and AC Characteristics)  
Read Mode is accessed when:  
a) the CE pin is low to power up (enable) the chip  
b) the OE pin is low to gate the data to the output  
pins  
1998 Microchip Technology Inc.  
DS11020G-page 5  
This Material Copyrighted by Its Respective Manufacturer  
27LV256  
1.3  
Standby Mode  
1.6  
Verify  
The standby mode is defined when the CE pin is high  
(VIH) and a program mode is not defined. Output Dis-  
able  
After the array has been programmed it must be veri-  
fied to ensure that all the bits have been correctly pro-  
grammed. This mode is entered when all of the  
following conditions are met:  
1.4  
Output Enable  
a) VCC is at the proper level  
b) VPP is at the proper VH level  
c) the CE pin is high  
This feature eliminates bus contention in multiple bus  
microprocessor systems and the outputs go to a high  
impedance when the following condition is true:  
d) the OE line is low  
The OE pin is high and program mode is not  
defined.  
1.7  
Inhibit  
When Programming multiple devices in parallel with dif-  
ferent data, only CE needs to be under separate control  
to each device. By pulsing the CE line low on a partic-  
ular device, that device will be programmed, and all  
other devices with CE held high will not be programmed  
with the data although address and data are available  
on their input pins.  
1.5  
Programming Mode  
The Express algorithm has been developed to improve  
on the programming throughput times in a production  
environment. Up to 10 100-microsecond pulses are  
applied until the byte is verified. No over-programming  
is required. A flowchart of the express algorithm is  
shown in Figure 1.  
1.8  
Identity Mode  
Programming takes place when:  
In this mode specific data is outputted which identifies  
the manufacturer as Microchip Technology Inc. and  
device type. This mode is entered when Pin A9 is taken  
to VH (11.5V to 12.5V). The CE and OE lines must be  
at VIL. A0 is used to access any of the two non-eras-  
able bytes whose data appears on O0 through O7.  
a) VCC is brought to the proper voltage  
b) VPP is brought to the proper VH level  
c) the OE pin is high  
d) the CE pin is low  
Since the erased state is “1” in the array, programming  
of “0” is required. The address to be programmed is set  
via pins A0-A14 and the data to be programmed is pre-  
sented to pins O0-O7. When data and address are sta-  
ble, a low-going pulse on the CE line programs that  
location.  
Pin  
Identity  
Input  
Output  
A0 0 O O O O O O O  
H
e
x
7
6
5
4
3
2
1
0
Manufacturer  
Device Type*  
VIL  
VIH  
0
1
0
0
1
0
0
0
1
1
0
1
0
0
1
0
29  
8C  
* Code subject to change.  
DS11020G-page 6  
1998 Microchip Technology Inc.  
This Material Copyrighted by Its Respective Manufacturer  
27LV256  
FIGURE 1-3: PROGRAMMING EXPRESS ALGORITHM  
Conditions:  
Tamb = 25+/-5C  
VCC = 6.5+/-0.25V  
VPP = 13.0+/-0.25V  
Start  
ADDR = First Location  
VCC = 6.5V  
VPP = 13.0V  
X = 0  
Program one 100 µs pulse  
Increment X  
Verify  
Byte  
Pass  
Fail  
No  
Yes  
Device  
Failed  
X = 10?  
Last  
Address?  
Yes  
No  
Increment Address  
VCC = VPP = 4.5V, 5.5V  
All  
Yes  
bytes  
= original  
data?  
No  
Device  
Passed  
Device  
Failed  
1998 Microchip Technology Inc.  
DS11020G-page 7  
This Material Copyrighted by Its Respective Manufacturer  
27LV256  
NOTES:  
DS11020G-page 8  
1998 Microchip Technology Inc.  
This Material Copyrighted by Its Respective Manufacturer  
27LV256  
NOTES:  
1998 Microchip Technology Inc.  
DS11020G-page 9  
This Material Copyrighted by Its Respective Manufacturer  
27LV256  
NOTES:  
DS11020G-page 10  
1998 Microchip Technology Inc.  
This Material Copyrighted by Its Respective Manufacturer  
27LV256  
27LV256 Product Identification System  
To order or to obtain information, e.g., on pricing or delivery, please use the listed part numbers, and refer to the factory or the listed  
sales offices.  
27LV256  
25  
I
/P  
L = Plastic Leaded Chip Carrier  
P = Plastic DIP (600 Mil)  
Package:  
SO = Plastic SOIC (300 Mil)  
Temperature  
Range:  
Blank = 0˚C to +70˚C  
I = -40˚C to +85˚C  
20 = 200 ns  
25 = 250 ns  
30 = 300 ns (SOIC only)  
Access  
Time:  
Device:  
27LV256  
256K (32K x 8) Low-Voltage CMOS EPROM  
1998 Microchip Technology Inc.  
DS11020G-page 11  
This Material Copyrighted by Its Respective Manufacturer  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
AMERICAS (continued)  
ASIA/PACIFIC (continued)  
Corporate Office  
Toronto  
Singapore  
Microchip Technology Inc.  
Microchip Technology Inc.  
Microchip Technology Singapore Pte Ltd.  
200 Middle Road  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-786-7200 Fax: 480-786-7277  
Technical Support: 480-786-7627  
Web Address: http://www.microchip.com  
5925 Airport Road, Suite 200  
Mississauga, Ontario L4V 1W1, Canada  
Tel: 905-405-6279 Fax: 905-405-6253  
#07-02 Prime Centre  
Singapore 188980  
Tel: 65-334-8870 Fax: 65-334-8850  
Taiwan, R.O.C  
Microchip Technology Taiwan  
10F-1C 207  
Tung Hua North Road  
Taipei, Taiwan, ROC  
ASIA/PACIFIC  
Hong Kong  
Microchip Asia Pacific  
Unit 2101, Tower 2  
Atlanta  
Microchip Technology Inc.  
500 Sugar Mill Road, Suite 200B  
Atlanta, GA 30350  
Metroplaza  
223 Hing Fong Road  
Kwai Fong, N.T., Hong Kong  
Tel: 852-2-401-1200 Fax: 852-2-401-3431  
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139  
Tel: 770-640-0034 Fax: 770-640-0307  
Boston  
EUROPE  
Microchip Technology Inc.  
5 Mount Royal Avenue  
Marlborough, MA 01752  
Tel: 508-480-9990 Fax: 508-480-8575  
Beijing  
United Kingdom  
Microchip Technology, Beijing  
Unit 915, 6 Chaoyangmen Bei Dajie  
Dong Erhuan Road, Dongcheng District  
New China Hong Kong Manhattan Building  
Beijing 100027 PRC  
Arizona Microchip Technology Ltd.  
505 Eskdale Road  
Winnersh Triangle  
Wokingham  
Berkshire, England RG41 5TU  
Tel: 44 118 921 5858 Fax: 44-118 921-5835  
Denmark  
Microchip Technology Denmark ApS  
Regus Business Centre  
Lautrup hoj 1-3  
Ballerup DK-2750 Denmark  
Tel: 45 4420 9895 Fax: 45 4420 9910  
Chicago  
Microchip Technology Inc.  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
Tel: 86-10-85282100 Fax: 86-10-85282104  
India  
Tel: 630-285-0071 Fax: 630-285-0075  
Dallas  
Microchip Technology Inc.  
4570 Westgrove Drive, Suite 160  
Addison, TX 75248  
Microchip Technology Inc.  
India Liaison Office  
No. 6, Legacy, Convent Road  
Bangalore 560 025, India  
Tel: 91-80-229-0061 Fax: 91-80-229-0062  
Tel: 972-818-7423 Fax: 972-818-2924  
Dayton  
Microchip Technology Inc.  
Two Prestige Place, Suite 150  
Miamisburg, OH 45342  
Tel: 937-291-1654 Fax: 937-291-9175  
Detroit  
Microchip Technology Inc.  
Tri-Atria Office Building  
32255 Northwestern Highway, Suite 190  
Farmington Hills, MI 48334  
Tel: 248-538-2250 Fax: 248-538-2260  
Japan  
France  
Microchip Technology Intl. Inc.  
Benex S-1 6F  
Arizona Microchip Technology SARL  
Parc d’Activite du Moulin de Massy  
43 Rue du Saule Trapu  
3-18-20, Shinyokohama  
Kohoku-Ku, Yokohama-shi  
Kanagawa 222-0033 Japan  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
Batiment A - ler Etage  
91300 Massy, France  
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79  
Germany  
Arizona Microchip Technology GmbH  
Gustav-Heinemann-Ring 125  
D-81739 München, Germany  
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44  
Korea  
Microchip Technology Korea  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea  
Tel: 82-2-554-7200 Fax: 82-2-558-5934  
Shanghai  
Microchip Technology  
RM 406 Shanghai Golden Bridge Bldg.  
2077 Yan’an Road West, Hong Qiao District  
Shanghai, PRC 200335  
Italy  
Los Angeles  
Arizona Microchip Technology SRL  
Centro Direzionale Colleoni  
Palazzo Taurus 1 V. Le Colleoni 1  
20041 Agrate Brianza  
Microchip Technology Inc.  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
Tel: 949-263-1888 Fax: 949-263-1338  
New York  
Microchip Technology Inc.  
150 Motor Parkway, Suite 202  
Hauppauge, NY 11788  
Tel: 631-273-5305 Fax: 631-273-5335  
Milan, Italy  
Tel: 39-039-65791-1 Fax: 39-039-6899883  
Tel: 86-21-6275-5700 Fax: 86 21-6275-5060  
11/15/99  
San Jose  
Microchip received QS-9000 quality system  
certification for its worldwide headquarters,  
design and wafer fabrication facilities in  
Chandler and Tempe, Arizona in July 1999. The  
Company’s quality system processes and  
procedures are QS-9000 compliant for its  
PICmicro® 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs and microperipheral  
products. In addition, Microchips quality  
system for the design and manufacture of  
development systems is ISO 9001 certified.  
Microchip Technology Inc.  
2107 North First Street, Suite 590  
San Jose, CA 95131  
Tel: 408-436-7950 Fax: 408-436-7955  
All rights reserved. © 1999 Microchip Technology Incorporated. Printed in the USA. 11/99  
Printed on recycled paper.  
Information contained in this publication regarding device applications and the like is intended for suggestion only and may be superseded by updates. No representation or warranty is given and no liability is assumed  
by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchips products  
as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights. The Microchip  
logo and name are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights reserved. All other trademarks mentioned herein are the property of their respective companies.  
1999 Microchip Technology Inc.  
This Material Copyrighted by Its Respective Manufacturer  

相关型号:

ETC

27LV25630L

x8 EPROM
ETC

27LV25630P

x8 EPROM
ETC

27LV25630SO

x8 EPROM
ETC

27LV256T-25I/L

32K X 8 OTPROM, 250 ns, PQCC32, PLASTIC, LCC-32
MICROCHIP

27LV256_04

256K (32K x 8) Low-Voltage CMOS EPROM
MICROCHIP

27LV512-20/J

64K X 8 UVPROM, 200 ns, CDIP28, 0.600 INCH, CERDIP-28
MICROCHIP

27LV512-20/K

64K X 8 UVPROM, 200 ns, CQCC32, CERAMIC, LCC-32
MICROCHIP
ETC

27LV512-20/P

64K X 8 OTPROM, 200 ns, PDIP28, PLASTIC, DIP-28
MICROCHIP

27LV512-20/SO

64K X 8 OTPROM, 200 ns, PDSO28, 0.300 INCH, PLASTIC, SOIC-28
MICROCHIP
ETC