5962-9459902MXX [ETC]

CMOS NV SRAM 8K X 8 AUTOSTORE NONVOLATILE STATIC RAM; CMOS NV SRAM 8K ×8自动存储非易失性静态RAM
5962-9459902MXX
型号: 5962-9459902MXX
厂家: ETC    ETC
描述:

CMOS NV SRAM 8K X 8 AUTOSTORE NONVOLATILE STATIC RAM
CMOS NV SRAM 8K ×8自动存储非易失性静态RAM

存储 内存集成电路 静态存储器 CD
文件: 总10页 (文件大小:74K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STK12C68-M  
CMOS nvSRAM  
8K x 8 AutoStore™  
Nonvolatile Static RAM  
MIL-STD-883 / SMD # 5962-94599  
DESCRIPTION  
FEATURES  
The Simtek STK12C68-M is a fast static RAM (40, 45  
and 55ns), with a nonvolatile EEPROM element incor-  
porated in each static memory cell. The SRAM can be  
• 40, 45 and 55ns Access Times  
• 15 mA I at 200ns Access Speed  
CC  
• Automatic STORE to EEPROM on Power Down  
• Hardware or Software initiated STORE to  
EEPROM  
read and written an unlimited number of times, while  
independent nonvolatile data resides in EEPROM.  
Data transfers from the SRAM to the EEPROM (the  
STOREoperation)takeplaceautomaticallyuponpower  
down using charge stored in an external 100 µF  
capacitor. Transfers from the EEPROM to the SRAM  
(the RECALL operation) take place automatically on  
power up. Software sequences may also be used to  
• Automatic STORE Timing  
• 100,000 STORE cycles to EEPROM  
• 10 year data retention in EEPROM  
• Automatic RECALL on Power Up  
• Software initiated RECALL from EEPROM  
• Unlimited RECALL cycles from EEPROM  
• Single 5V±10% Operation  
initiate both STORE and RECALL operations.  
STORE can also be initiated via a single pin.  
A
The STK12C68-M is available in the following pack-  
ages: a 28-pin 300 mil ceramic DIP and 28-pad LCC.  
• Available in multiple standard packages  
LOGIC BLOCK DIAGRAM  
PIN CONFIGURATIONS  
1
V
28  
V
CCX  
CAP  
EEPROM ARRAY  
256 x 256  
2
3
27  
26  
W
A
A
A
A
A
A
12  
HSB  
7
3
2
28 27  
26  
A3  
25  
24  
1
4
5
A
A
A
G
8
9
6
4
5
A
A
HSB  
6
5
4
STORE  
5
25  
24  
23  
22  
21  
A
A
A
8
9
A4  
23  
22  
6
7
6
4
11  
A
A
A
A
A5  
7
RECALL  
STATIC RAM  
3
3
2
1
0
11  
8
9
21  
20  
8
A
A
A
E
G
A
E
10  
TOP VIEW  
2
1
0
0
A6  
ARRAY  
9
10  
A7  
10  
11  
19  
18  
10  
A
DQ  
DQ  
DQ  
DQ  
DQ  
7
6
20  
19  
18  
A
DQ  
DQ  
A 0  
A12  
256 x 256  
11  
12  
DQ  
DQ  
DQ  
0
1
7
6
A8  
A9  
17  
16  
15  
12  
13  
14  
DQ  
DQ  
V
5
4
1
2
13 14 15 16 17  
HSB  
STORE/  
RECALL  
CONTROL  
3
SS  
A
12  
28 - 300 C-DIP  
28 - LCC  
DQ0  
COLUMN I/O  
DQ1  
DQ2  
DQ3  
PIN NAMES  
A
- A  
12  
Address Inputs  
0
COLUMN DECODER  
W
Write Enable  
Data In/Out  
DQ - DQ  
0
7
DQ4  
DQ5  
E
Chip Enable  
Output Enable  
Power (+5V)  
Ground  
A0  
A1  
A2  
A
A11  
10  
G
E
G
DQ6  
DQ7  
V
CCX  
V
SS  
V
Capacitor  
CAP  
W
Hardware Store/Busy  
HSB  
4-53  
STK12C68-M  
a
ABSOLUTE MAXIMUM RATINGS  
Voltage on typical input relative to V . . . . . . . . . . . . . –0.6V to 7.0V Note a: Stresses greater than those listed under "Absolute Maximum  
SS  
Voltage on DQ and G. . . . . . . . . . . . . . . . . . .–0.5V to (V +0.5V)  
Ratings" may cause permanent damage to the device. This is a stress  
rating only, and functional operation of the device at conditions above  
those indicated in the operational sections of this specification is not  
implied. Exposuretoabsolutemaximumratingconditionsforextended  
0-7  
CC  
Temperature under bias . . . . . . . . . . . . . . . . . . . . . . –55°C to 125°C  
Storage temperature. . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C  
Power dissipation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1W  
DC output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15mA periods may affect reliability.  
(One output at a time, one second duration)  
d
DC CHARACTERISTICS  
(V = 5.0V ± 10%)  
CC  
SYMBOL  
PARAMETER  
MIN  
MAX  
UNITS  
NOTES  
b
I
Average V Current  
CC  
85  
80  
75  
8
mA  
mA  
mA  
mA  
t
t
t
= 40ns  
CC  
1
AVAV  
AVAV  
AVAV  
= 45ns  
= 55ns  
I
Average V Current During STORE  
CC  
All inputs 0.2V or (V – 0.2V)  
CC  
2
CC  
b
I
Average V Current  
CC  
15  
4
mA  
mA  
E 0.2V, W (V – 0.2V)  
CC  
CC  
3
at t  
= 200ns  
others 0.2V or (V – 0.2V)  
AVAV  
CC  
I
Average VCC current during AutoStore™ cycle  
All inputs 0.2V or (V - 0.2V)  
CC  
4
CC  
c
I
Average V Current  
CC  
35  
32  
28  
mA  
mA  
mA  
t
t
t
= 40ns  
= 45ns  
= 55ns  
SB  
1
AVAV  
AVAV  
AVAV  
(Standby, Cycling TTL Input Levels)  
E V ; all others cycling  
IH  
b
I
Average V Current  
CC  
4
mA  
µA  
µA  
E (V – 0.2V)  
CC  
2
CC  
(Standby, Stable CMOS Input Levels)  
Input Leakage Current (Any Input)  
I
±1  
±5  
V
V
V
V
= max  
CC  
ILK  
= V to V  
SS  
IN  
CC  
I
Off State Output Leakage Current  
= max  
OLK  
CC  
= V to V  
CC  
OUT  
SS  
V
Input Logic "1" Voltage  
Input Logic "0" Voltage  
Output Logic "1" Voltage  
Output Logic "0" Voltage  
Operating Temperature  
2.2  
V
+.5  
V
V
All Inputs  
All Inputs  
IH  
CC  
V
IL  
V
–.5  
0.8  
SS  
V
2.4  
V
I
I
= –4mA except HSB  
= 8mA except HSB  
OH  
OUT  
OUT  
V
0.4  
V
OL  
T
A
–55  
125  
°C  
Note b: I  
and I  
are dependent on output loading and cycle rate. The specified values are obtained with outputs unloaded.  
3
CC  
CC  
1
Note c: Bringing E V will not produce standby current levels until any nonvolatile cycle in progress has timed out. See MODE SELECTION table.  
IH  
Note d: V reference levels throughout this datasheet refer to V  
CC  
if that is where the power supply connection is made, or V  
if V  
is connected to ground.  
CCX  
CAP  
CCX  
AC TEST CONDITIONS  
5.0V  
Input Pulse Levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . VSS to 3V  
Input Rise and Fall Times. . . . . . . . . . . . . . . . . . . . . . . . . . 5ns  
Input and Output Timing Reference Levels. . . . . . . . . . . . . . 1.5V  
Output Load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Figure 1  
480 Ohms  
Output  
30pF  
CAPACITANCE (T =25°C, f=1.0MHz)  
A
INCLUDING  
SCOPE  
255 Ohms  
AND FIXTURE  
SYMBOL  
PARAMETER  
Input Capacitance  
Output Capacitance  
MAX  
UNITS  
pF  
CONDITIONS  
V = 0 to 3V  
V = 0 to 3V  
C
8
7
IN  
C
pF  
OUT  
Figure 1: AC Output Loading  
4-54  
STK12C68-M  
SRAM MEMORY OPERATION  
d
(V = 5.0V ± 10%)  
CC  
READ CYCLES #1 & #2  
SYMBOLS  
NO.  
STK12C68-40M  
STK12C68-45M  
STK12C68-55M  
UNITS  
PARAMETER  
#1, #2  
Alt.  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
1
2
t
t
Chip Enable Access Time  
40  
45  
55  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ELQV  
AVAV  
AVQV  
GLQV  
AXQX  
ELQX  
EHQZ  
GLQX  
ACS  
t
t
t
t
t
t
t
t
t
t
t
Read Cycle Time  
40  
45  
55  
RC  
g
3
t
Address Access Time  
40  
20  
45  
25  
55  
35  
AA  
4
t
Output Enable to Data Valid  
Output Hold After Address Change  
Chip Enable to Output Active  
Chip Disable to Output Inactive  
Output Enable to Output Active  
Output Disable to Output Inactive  
Chip Enable to Power Active  
Chip Disable to Power Standby  
OE  
5
t
5
5
5
5
5
5
OH  
6
t
LZ  
h
7
t
17  
17  
35  
20  
20  
45  
25  
25  
55  
HZ  
8
t
0
0
0
0
0
0
OLZ  
h
9
t
GHQZ  
OHZ  
e
10  
11  
t
ELICCH  
EHICCL  
PA  
c,e  
t
PS  
Note c: Bringing E V will not produce standby currents until any nonvolatile cycle in progress has timed out. See MODE SELECTION table.  
IH  
Note e: Parameter guaranteed but not tested.  
Note f: For READ CYCLE #1 and #2, W is high for entire cycle.  
Note g: Device is continuously selected with E low and G low.  
Note h: Measured ± 200mV from steady state output voltage.  
f,g  
READ CYCLE #1  
2
AVAV  
t
ADDRESS  
3
t
AVQV  
5
t
AXQX  
DQ (Data Out)  
DATA VALID  
f
READ CYCLE #2  
2
AVAV  
t
ADDRESS  
E
1
ELQV  
t
11  
EHICCL  
t
6
ELQX  
t
7
t
4
EHQZ  
t
GLQV  
G
8
9
t
t
GLQX  
GHQZ  
DQ (Data Out)  
DATA VALID  
10  
ELICCH  
t
ACTIVE  
I
STANDBY  
CC  
4-55  
STK12C68-M  
d
WRITE CYCLES #1 & #2  
(V = 5.0V ± 10%)  
CC  
SYMBOLS  
NO.  
STK12C68-40M  
STK12C68-45M  
STK12C68-55M  
UNITS  
PARAMETER  
#1  
#2  
Alt.  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
t
t
t
t
t
t
t
t
t
t
Write Cycle Time  
35  
30  
30  
18  
0
45  
35  
35  
20  
0
55  
45  
45  
25  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
AVAV  
WLEH  
ELEH  
DVEH  
EHDX  
AVEH  
AVEL  
EHAX  
WC  
WP  
CW  
DW  
DH  
t
t
t
t
t
t
t
t
t
t
Write Pulse Width  
WLWH  
t
Chip Enable to End of Write  
Data Set-up to End of Write  
Data Hold After End of Write  
Address Set-up to End of Write  
Address Set-up to Start of Write  
Address Hold After End of Write  
Write Enable to Output Disable  
Output Active After End of Write  
ELWH  
t
DVWH  
t
WHDX  
t
30  
0
35  
0
45  
0
AVWH  
AW  
AS  
t
AVWL  
t
0
0
0
WHAX  
WR  
WZ  
OW  
h,j  
t
17  
20  
25  
WLQZ  
t
5
5
5
WHQX  
Note h: Measured ±200mV from steady state output voltage.  
Note i: E or W must be V during address transitions.  
IH  
Note j: If W is low when E goes low, the outputs remain in the high impedance state.  
i
WRITE CYCLE #1: W CONTROLLED  
12  
AVAV  
t
ADDRESS  
14  
ELWH  
19  
t
t
WHAX  
E
17  
t
AVWH  
18  
AVWL  
13  
WLWH  
t
t
W
15  
DVWH  
16  
WHDX  
t
t
DATA IN  
DATA VALID  
20  
WLQZ  
21  
t
t
WHQX  
HIGH IMPEDANCE  
PREVIOUS DATA  
DATA OUT  
i
WRITE CYCLE #2: E CONTROLLED  
12  
AVAV  
t
ADDRESS  
18  
AVEL  
14  
ELEH  
19  
EHAX  
t
t
t
E
17  
AVEH  
t
13  
WLEH  
t
W
DATA IN  
15  
DVEH  
16  
t
t
EHDX  
DATA VALID  
HIGH IMPEDANCE  
DATA OUT  
4-56  
STK12C68-M  
NONVOLATILE MEMORY OPERATION  
MODE SELECTION  
E
W
HSB  
A
- A (hex)  
0
MODE  
I/O  
POWER  
NOTES  
12  
H
L
L
L
X
H
L
H
H
H
H
X
Not Selected  
Read SRAM  
Output High Z  
Output Data  
Input Data  
Standby  
Active  
Active  
Active  
X
l
X
Write SRAM  
H
0000  
1555  
0AAA  
1FFF  
10F0  
0F0F  
0000  
1555  
0AAA  
1FFF  
10F0  
0F0E  
X
Read SRAM  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output High Z  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output High Z  
Output High Z  
k,l  
k,l  
k,l  
k,l  
k,l  
k
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Nonvolatile STORE  
Read SRAM  
L
H
H
Active  
k,l  
k,l  
k,l  
k,l  
k,l  
k
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Nonvolatile RECALL  
STORE/Inhibit  
X
X
L
I
/Standby  
m
CC  
2
Note k: The six consecutive addresses must be in order listed - (0000, 1555, 0AAA, 1FFF, 10F0, 0F0F) for a STORE cycle or (0000, 1555, 0AAA, 1FFF, 10F0,  
0F0E) for a RECALL cycle. W must be high during all six consecutive cycles. See STORE cycle and RECALL cycle tables and diagrams for further details.  
Note l: I/O state assumes that G V . Activation of nonvolatile cycles does not depend on the state of G.  
IL  
Note m: HSB initiated STORE operation actually occurs only if a WRITE has been done since last STORE operation. After the STORE (if any) completes, the  
part will go into standby mode inhibiting all operation until HSB rises.  
HARDWARE STORE /RECALL  
SYMBOLS  
NO.  
PARAMETER  
MIN  
MAX  
UNITS  
NOTES  
22  
23  
24  
25  
26  
t
t
t
t
t
RECALL Cycle Duration  
STORE Cycle Duration  
HSB Low to Inhibit On  
20  
10  
µs  
ms  
µs  
ns  
ns  
V
Note o  
RECALL  
STORE  
t
V
4.5V  
CC  
HLHH  
t
1
DELAY  
HLQZ  
t
HSB High to Inhibit Off  
External STORE Pulse Width  
Low Voltage Trigger Level  
HSB Output Low Current  
HSB Output High Current  
300  
4.5  
60  
Note e  
Note e  
RECOVER  
ASSERT  
HHQX  
t
250  
4.0  
3
HLHX  
V
I
SWITCH  
mA  
µA  
HSB = V , Note e, n  
OL  
HSB_OL  
HSB_OH  
I
5
HSB = V , Note e, n  
IL  
Note e: These parameters guaranteed but not tested.  
Note n: HSB is an I/O that has a weak internal pullup; it is basically an open drain output. It is meant to allow up to 32 STK12C68-Ms to be ganged together for  
simultaneous storing. Do not use HSB to pullup any external circuitry other than other STK12C68-M HSB pins.  
Note o: A RECALL cycle is initiated automatically at power up when V exceeds V  
CC  
. t  
is measured from the point at which V exceeds 4.5V.  
CC  
SWITCH RECALL  
HARDWARE STORE /RECALL  
V
SWITCH  
V
26  
ASSERT  
CAP  
24  
DELAY  
t
t
HSB  
W
22  
RECALL  
24  
DELAY  
25  
t
t
t
RECOVER  
RECALL  
STORE  
23  
STORE  
23  
STORE  
23  
t
t
t
STORE  
SRAM  
Inhibit  
Power Up RECALL Brown Out RECALL  
Power Down STORE  
HSB Initiated STORE  
Software STORE  
4-57  
STK12C68-M  
d
SOFTWARE STORE/RECALL CYCLE  
(V = 5.0V ± 10%)  
CC  
SYMBOLS  
STK12C68-40M  
STK12C68-45M  
STK12C68-55M  
UNITS  
NO.  
PARAMETER  
Std.  
Alt.  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
28  
29  
30  
31  
32  
t
t
t
t
t
t
STORE/RECALL Initiation Cycle Time  
Chip Enable to Output Inactive  
Address Set-up to Chip Enable  
Chip Enable Pulse Width  
35  
45  
55  
ns  
ns  
ns  
ns  
ns  
AVAV  
RC  
p
85  
85  
85  
ELQZ  
t
t
t
0
25  
0
0
35  
0
0
45  
0
AVELN  
ELEHN  
AE  
EP  
EA  
q,r  
Chip Disable to Address Change  
EHAXN  
Note p: Once the software STORE or RECALL cycle is initiated, it completes automatically, ignoring all inputs.  
Note q: Noise on the E pin may trigger multiple read cycles from the same address and abort the address sequence.  
Note r: If the Chip Enable Pulse Width is less than t (see READ CYCLE #2) but greater than or equal to t , then the data may not be valid at the end  
ELQV  
ELEHN  
of the low pulse, however the STORE or RECALL will still be initiated.  
Note s: W must be HIGH when E is LOW during the address sequence in order to initiate a nonvolatile cycle. G may be either HIGH or LOW throughout.  
Addresses #1 through #6 are found in the MODE SELECTION table. Address #6 determines whether the STK12C68-M performs a STORE or RECALL.  
Note t: E must be used to clock in the address sequence for the Software STORE and RECALL cycles.  
q,r,t  
SOFTWARE STORE/RECALL CYCLE  
28  
AVAV  
28  
AVAV  
t
t
ADDRESS  
E
ADDRESS #1  
ADDRESS #2  
ADDRESS #6  
30  
AVELN  
32  
31  
ELEHN  
t
t
EHAXN  
t
23  
STORE  
22  
t
t
RECALL  
29  
t
ELQZ  
HIGH IMPEDANCE  
DQ(Data Out)  
VALID  
VALID  
4-58  
STK12C68-M  
DEVICE OPERATION  
The STK12C68-M has two separate modes of opera- address locations. By relying on READ cycles only, the  
tion: SRAM mode and nonvolatile mode. In SRAM STK12C68-M implements nonvolatile operation while  
mode, the memory operates as a standard fast static remaining compatible with standard 8Kx8 SRAMs.  
RAM. In nonvolatile mode, data is transferred from During the STORE cycle, an erase of the previous  
SRAM to EEPROM (the STORE operation) or from nonvolatile data is first performed, followed by a pro-  
EEPROMtoSRAM(theRECALL operation). Inthismode gram of the nonvolatile elements. The program opera-  
SRAM functions are disabled.  
tion copies the SRAM data into the nonvolatile ele-  
ments. Once a STORE cycle is initiated, further input  
STORE cycles may be initiated under user control via a and output are disabled until the cycle is completed.  
software sequence or HSB assertion and are also  
automatically initiated when the power supply voltage Because a sequence of addresses is used for STORE  
level of the chip falls below V  
. RECALL opera- initiation, it is critical that no other read or write ac-  
SWITCH  
tions are automatically initiated upon power-up and cesses intervene in the sequence or the sequence will  
whenever the power supply voltage level rises above be aborted.  
V
. RECALL cycles may also be initiated by a  
SWITCH  
software sequence.  
To initiate the STORE cycle the following READ se-  
quence must be performed:  
SRAM READ  
The STK12C68-M performs a READ cycle whenever E  
andGareLOW andHSBandWareHIGH. Theaddress  
specified on pins A  
databyteswillbeaccessed. WhentheREADisinitiated  
by an address transition, the outputs will be valid after  
1. Read address  
2. Read address  
3. Read address  
4. Read address  
5. Read address  
6. Read address  
0000 (hex)  
1555 (hex)  
0AAA (hex)  
1FFF (hex)  
10F0 (hex)  
0F0F (hex)  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Initiate STORE Cycle  
determines which of the 8192  
0-12  
a delay of t  
outputs will be valid at t  
. If the READ is initiated by E or G, the  
AVQV  
Once the sixth address in the sequence has been  
entered, the STORE cycle will commence and the chip  
will be disabled. It is important that READ cycles and  
not WRITE cycles be used in the sequence, although it  
is not necessary that G be LOW for the sequence to be  
or at t  
, whichever is  
ELQV  
GLQV  
later. The data outputs will repeatedly respond to  
address changes within the t access time without  
the need for transitions on any control input pins, and  
will remain valid until another address change or until  
E or G is brought HIGH or W or HSB is brought LOW.  
AVQV  
valid. Afterthet  
cycletimehasbeenfulfilled, the  
STORE  
SRAM will again be activated for READ and WRITE  
operation.  
SRAM WRITE  
A write cycle is performed whenever E and W are LOW  
andHSBishigh. Theaddressinputsmustbestableprior  
to entering the WRITE cycle and must remain stable  
untileitherEorWgoHIGH at the endof the cycle. The  
SOFTWARE RECALL  
A RECALL cycle of the EEPROM data into the SRAM is  
initiated with a sequence of READ operations in a  
manner similar to the STORE initiation. To initiate the  
RECALL cycle the following sequence of READ opera-  
tions must be performed:  
data on pins DQ will be written into the memory if it  
0-7  
is valid t  
before the end of a W controlled WRITE  
DVWH  
or t  
before the end of an E controlled WRITE.  
DVEH  
1. Read address  
2. Read address  
3. Read address  
4. Read address  
5. Read address  
6. Read address  
0000(hex)  
1555 (hex)  
0AAA (hex)  
1FFF (hex)  
10F0 (hex)  
0F0E (hex)  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Initiate RECALL Cycle  
ItisrecommendedthatGbekeptHIGHduringtheentire  
WRITE cycle to avoid data bus contention on the  
common I/O lines. If G is left LOW, internal circuitry will  
turn off the output buffers t  
after W goes LOW.  
WLQZ  
Internally, RECALL is a two step procedure. First, the  
SRAM data is cleared and second, the nonvolatile  
information is transferred into the SRAM cells. The  
RECALL operation in no way alters the data in the  
SOFTWARE STORE  
The STK12C68-M software STORE cycle is initiated by  
executing sequential READ cycles from six specific  
4-59  
STK12C68-M  
EEPROMcells. Thenonvolatiledatacanberecalledan connected together. Each chip contains a small inter-  
unlimited number of times.  
nalcurrentsourcetopullHSBHIGH whenitisnotbeing  
driven low. To decrease the sensitivity of this signal to  
noise generated on the PC board, it may optionally be  
AUTOMATIC RECALL  
During power up, or after any low power condition  
pulled to V  
via an external resistor with a value  
CCX  
such that the combined load of the resistor and all  
parallel chip connections does not exceed I at  
(V  
< V  
), when V  
exceeds the sense  
CAP  
SWITCH  
CAP  
voltage of V  
, a RECALL cycle will automatically  
HSB_OL  
SWITCH  
V
V
. Do not connect this or any other pull-up to the  
be initiated. After the initiation of this automatic RE-  
CALL, if V falls below V , then another RE-  
CALL operation will be performed whenever V  
OL  
node.  
CAP  
CAP  
SWITCH  
CAP  
If HSB is to be connected to external circuits other than  
otherSTK12C68-Ms,anexternalpull-upresistorshould  
be used.  
again rises above V  
.
SWITCH  
If the STK12C68-M is in a WRITE state at the end of  
power-up RECALL, the SRAM data will be corrupted.  
To help avoid this situation, a 10K Ohm resistor should  
During any STORE operation, regardless of how it was  
initiated, the STK12C68-M will continue to drive the  
HSB pin low, releasing it only when the STORE is  
complete. Upon completion of a STORE operation, the  
part will be disabled until HSB actually goes HIGH.  
be connected between W and system V  
.
CC  
HARDWARE PROTECT  
The STK12C68-M offers hardware protection against  
inadvertent STORE operation during low voltage  
AUTOMATIC STORE OPERATION  
During normal operation, the STK12C68-M will draw  
conditions. When V  
< V  
all externally  
SWITCH,  
CAP  
initiated STORE operations will be inhibited.  
current from V  
to charge up a capacitor connected  
CCX  
to the V  
pin. This stored charge will be used by the  
HSB OPERATION  
CAP  
chip to perform a single STORE operation. After power  
up, when the voltage on the V pin drops below  
The Hardware Store Busy pin (HSB) is an open drain  
circuit acting as both input and output to perform two  
different functions. When driven low by the internal  
chip circuitry it indicates that a STORE operation (initi-  
ated via any means) is in progress within the chip.  
When driven low by external circuitry for longer than  
CAP  
V
V
, the part will automatically disconnect the  
SWITCH  
CAP  
pin from V  
and initiate a STORE operation.  
CCX  
Figure 1 shows the proper connection of capacitors for  
automaticstoreoperation. Thechargestoragecapaci-  
tor should have a capacity of at least 100µF (± 20%) at  
6V. Each STK12C68-M must have its own 100µF  
capacitor. Each STK12C68-M must have a high  
quality, high frequency bypass capacitor of 0.1µF  
t
, the chip will conditionally initiate a STORE  
ASSERT  
operation after t  
.
DELAY  
READ and WRITE operations that are in progress when  
HSB is driven low (either by internal or external cir-  
cuitry) will be allowed to complete before the STORE  
operation is performed, in the following manner. After  
HSB goes low, the part will continue normal SRAM  
connected between V  
traces that are as short as possible.  
and V , using leads and  
CAP  
SS  
If the AutoStore™ function is not required, then V  
should be tied directly to the power supply and V  
operations for t  
. During t  
, a transition on  
CAP  
CCX  
DELAY  
DELAY  
any address or control signal will terminate SRAM  
operation and cause the STORE to commence. Note  
that if an SRAM write is attempted after HSB has been  
forced low, the write will not occur and the STORE  
operation will begin immediately.  
should be tied to ground. In this mode, STORE opera-  
tions may be triggered through software control or the  
HSB pin. In either event, V  
have a proper bypass capacitor connected to it.  
(Pin 1) must always  
CAP  
In order to prevent unneededSTORE operations, auto-  
matic STOREs as well as those initiated by externally  
driving HSB LOW will be ignored unless at least one  
Hardware-Store-Busy (HSB) is a high speed, low drive  
capability bi-directional control line. In order to allow a  
bankofSTK12C68-MstoperformsynchronizedSTORE  
functions, the HSB pin from a number of chips may be  
4-60  
STK12C68-M  
WRITE operationhastakenplacesincethemostrecent access cycle time is longer than 55ns. Figure 2 below  
STORE cycle. NotethatifHSBisdrivenlowviaexternal shows the relationship between I and access times  
CC  
circuitry and no WRITEs have taken place, the part will for READ cycles. All remaining inputs are assumed to  
still be disabled until HSB is allowed to return HIGH. cycle, and current consumption is given for all inputs at  
SoftwareinitiatedSTORE cyclesareperformedregard- CMOS orTTLlevels. Figure3showsthesamerelation-  
less of whether or not a WRITE operation has taken ship for WRITE cycles. When E is HIGH, the chip  
place.  
consumes only standby currents, and these plots do  
not apply.  
PREVENTING AUTOMATIC STORES  
The cycle time used in Figure 2 corresponds to the  
length of time from the later of the last address transi-  
tion or E goingLOW to the earlier of E going HIGH or the  
next address transition. W is assumed to be HIGH,  
while the state of G does not matter. Additional current  
is consumed when the address lines change state  
while E is asserted. The cycle time used in Figure 3  
corresponds to the length of time from the later of W or  
E going LOW to the earlier of W or E going HIGH.  
The AutoStore™ function can be disabled on the fly by  
holding HSB HIGH with a driver capable of sourcing  
15mA at a VOH of at least 2.2V as it will have to  
overpower the internal pull-down device that drives  
HSB low for 50ns at the onset of an AutoStore™.  
When the STK12C68-M is connected for  
AutoStore™operation(systemV connectedtoV  
CC  
CCX  
and a 100uF capacitor on V  
) and V  
crosses  
CAP  
CC  
V
on the way down, the STK12C68 will attempt  
SWITCH  
topullHSB LOW;ifHSBdoesn'tactuallygetbelowV ,  
IL  
Theoverallaveragecurrentdrawnbythepartdepends  
on the following items: 1) CMOS or TTL input levels; 2)  
the time during which the chip is disabled (E HIGH); 3)  
the cycle time for accesses (E LOW); 4) the ratio of  
reads to writes; 5) the operating temperature; 6) the  
the part will stop trying to pull HSB LOW and abort the  
AutoStore™attempt.  
LOW AVERAGE ACTIVE POWER  
The STK12C68-M has been designed to draw signifi-  
cantlylesspowerwhenEisLOW (chipenabled)butthe  
V
level; and 7) output load.  
CC  
V
CAP  
V
CCX  
Power  
Supply  
100  
80  
100  
80  
1
28  
26  
10K Ohms  
(optional)  
HSB  
60  
60  
40  
+
100uF  
± 20%  
0.1uF  
Bypass  
nvSRAM  
40  
20  
0
TTL  
TTL  
CMOS  
150 200  
20  
0
CMOS  
V
SS  
14  
50  
100  
50  
100  
150  
200  
Cycle Time (ns)  
Cycle Time (ns)  
Figure 2  
(Max) Reads  
Figure 3  
(Max) Writes  
Figure 1  
Schematic Diagram  
I
CC  
I
CC  
Note: Typical at 25° C  
4-61  
STK12C68-M  
ORDERING INFORMATION  
STK12C68 - 5 C 40 M  
Temperature Range  
M = Military (-55 to 125 degrees C)  
Access Time  
40 = 40ns  
45 = 45ns  
55 = 55ns  
Package  
C = Ceramic 28 pin 300-mil DIP with gold lead finish  
K = Ceramic 28 pin 300-mil DIP with solder DIP finish  
L = Ceramic 28 pin LCC  
Retention / Endurance  
10 years / 100,000 cycles  
5962-94599 01 MX X  
Lead Finish  
A =Solder DIP lead finish  
C =Gold lead DIP finish  
X =lead finish "A" or "C" is acceptable  
Package  
MX = Ceramic 28 pin 300-mil DIP  
MY = Ceramic 28 pin LCC  
Access Time  
01 = 55ns  
02 = 45ns  
4-62  

相关型号:

5962-9459902MYA

CMOS NV SRAM 8K X 8 AUTOSTORE NONVOLATILE STATIC RAM
ETC

5962-9459902MYC

CMOS NV SRAM 8K X 8 AUTOSTORE NONVOLATILE STATIC RAM
ETC

5962-9459902MYX

CMOS NV SRAM 8K X 8 AUTOSTORE NONVOLATILE STATIC RAM
ETC

5962-9459903MXA

Non-Volatile SRAM, 8KX8, 35ns, CMOS, CDIP28, 0.300 INCH, CERAMIC, DIP-28
SIMTEK

5962-9459903MXC

8KX8 NON-VOLATILE SRAM, 35ns, CDIP28, 0.300 INCH, CERAMIC, DIP-28
ROCHESTER

5962-9459903MXC

Non-Volatile SRAM, 8KX8, 35ns, CMOS, CDIP28, 0.300 INCH, CERAMIC, DIP-28
CYPRESS

5962-9459903MXC

Non-Volatile SRAM, 8KX8, 35ns, CMOS, CDIP28, 0.300 INCH, CERAMIC, DIP-28
SIMTEK

5962-9459903MXX

NVRAM (EEPROM Based)
ETC

5962-9459903MYA

Non-Volatile SRAM, 8KX8, 35ns, CMOS, CQCC28, CERAMIC, LCC-28
CYPRESS

5962-9459903MYX

NVRAM (EEPROM Based)
ETC

5962-9459904MXA

8KX8 NON-VOLATILE SRAM, 55ns, CDIP28, 0.300 INCH, CERAMIC, DIP-28
CYPRESS

5962-9459904MXC

Non-Volatile SRAM, 8KX8, 55ns, CMOS, CDIP28, 0.300 INCH, CERAMIC, DIP-28
CYPRESS