A42MX04-FPL100M [ETC]

40MX and 42MX FPGA Families; 40MX和42MX FPGA系列
A42MX04-FPL100M
型号: A42MX04-FPL100M
厂家: ETC    ETC
描述:

40MX and 42MX FPGA Families
40MX和42MX FPGA系列

文件: 总123页 (文件大小:854K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
v6.0  
40MX and 42MX FPGA Families  
Features  
HiRel Features  
Commercial, Industrial, Automotive, and Military  
Temperature Plastic Packages  
High Capacity  
Commercial, Military Temperature, and MIL-STD-883  
Ceramic Packages  
Single-Chip ASIC Alternative  
3,000 to 54,000 System Gates  
Up to 2.5 kbits Configurable Dual-Port SRAM  
Fast Wide-Decode Circuitry  
Up to 202 User-Programmable I/O Pins  
QML Certification  
Ceramic Devices Available to DSCC SMD  
Ease of Integration  
Mixed-Voltage Operation (5.0V or 3.3V for core and  
I/Os), with PCI-Compliant I/Os  
High Performance  
Up to 100% Resource Utilization and 100% Pin  
Locking  
5.6 ns Clock-to-Out  
250 MHz Performance  
5 ns Dual-Port SRAM Access  
100 MHz FIFOs  
Deterministic, User-Controllable Timing  
Unique In-System Diagnostic and Verification  
Capability with Silicon Explorer II  
7.5 ns 35-Bit Address Decode  
Low Power Consumption  
IEEE Standard 1149.1 (JTAG) Boundary Scan Testing  
Product Profile  
Device  
A40MX02  
A40MX04  
A42MX09  
A42MX16  
A42MX24  
A42MX36  
Capacity  
System Gates  
SRAM Bits  
3,000  
6,000  
14,000  
24,000  
36,000  
54,000  
2,560  
Logic Modules  
Sequential  
Combinatorial  
Decode  
295  
547  
348  
336  
624  
608  
954  
912  
24  
1,230  
1,184  
24  
Clock-to-Out  
9.5 ns  
9.5 ns  
5.6 ns  
6.1 ns  
6.1 ns  
6.3 ns  
SRAM Modules  
(64x4 or 32x8)  
348  
516  
2
624  
928  
2
954  
1,410  
2
10  
1,230  
1,822  
6
Dedicated Flip-Flops  
Maximum Flip-Flops  
Clocks  
147  
1
273  
1
User I/O (maximum)  
PCI  
57  
69  
104  
140  
176  
Yes  
Yes  
202  
Yes  
Boundary Scan Test (BST)  
Yes  
Packages (by pin count)  
PLCC  
PQFP  
VQFP  
TQFP  
CQFP  
PBGA  
44, 68  
44, 68, 84  
84  
100, 160  
100  
176  
84  
84  
160, 208  
100  
80  
100  
80  
100, 160, 208  
208, 240  
100  
176  
176  
208, 256  
272  
January 2004  
i
© 2004 Actel Corporation  
See the Actel website (www.actel.com) for the latest version of this datasheet.  
40MX and 42MX FPGA Families  
Ordering Information  
_
PQ  
100  
A42MX16  
1
ES  
Application (Temperature Range)  
Blank = Commercial (0 to +70˚C)  
I
=
=
=
=
Industrial (–40 to +85˚C)  
Military (–55 to +125˚C)  
MIL-STD-883  
M
B
A
Automotive (–40 to +125˚C)  
Package Lead Count  
Package Type  
PL  
=
=
=
=
=
=
Plastic Leaded Chip Carrier  
Plastic Quad Flat Pack  
PQ  
TQ  
VQ  
BG  
CQ  
Thin (1.4 mm) Quad Flat Pack  
Very Thin (1.0 mm) Quad Flat Pack  
Plastic Ball Grid Array  
Ceramic Quad Flat Pack  
Speed Grade  
Blank = Standard Speed  
–1  
–2  
–3  
–F  
=
=
=
=
Approximately 15% Faster than Standard  
Approximately 25% Faster than Standard  
Approximately 35% Faster than Standard  
Approximately 40% Slower than Standard  
Part Number  
A40MX02  
A40MX04  
A42MX09  
A42MX16  
A42MX24  
A42MX36  
=
=
=
=
=
3,000 System Gates  
6,000 System Gates  
14,000 System Gates  
24,000 System Gates  
36,000 System Gates  
54,000 System Gates  
=
Plastic Device Resources  
User I/Os  
PLCC  
PLCC  
PLCC  
PQFP  
PQFP  
PQFP  
PQFP  
VQFP  
VQFP  
TQFP  
PBGA  
Device  
A40MX02  
A40MX04  
A42MX09  
A42MX16  
A42MX24  
A42MX36  
44-Pin  
68-Pin  
84-Pin 100-Pin 160-Pin 208-Pin 240-Pin 80-Pin 100-Pin 176-Pin 272-Pin  
34  
34  
57  
57  
57  
69  
83  
83  
57  
69  
69  
72  
72  
72  
101  
125  
125  
83  
83  
104  
140  
150  
140  
176  
176  
202  
202  
Note: Package Definitions  
PLCC = Plastic Leaded Chip Carrier, PQFP = Plastic Quad Flat Pack, TQFP = Thin Quad Flat Pack, VQFP = Very Thin Quad Flat Pack,  
PBGA = Plastic Ball Grid Array  
ii  
v6.0  
40MX and 42MX FPGA Families  
Ceramic Device Resources  
User I/Os  
Device  
A42MX36  
CQFP 208-Pin  
CQFP 256-Pin  
176  
202  
Note: Package Definitions CQFP = Ceramic Quad Flat Pack  
Temperature Grade Offerings  
Package  
PLCC 44  
PLCC 68  
PLCC 84  
PQFP 100  
PQFP 160  
PQFP 208  
PQFP 240  
VQFP 80  
VQFP 100  
TQFP 176  
PBGA 272  
CQFP 208  
CQFP 256  
Note:  
A40MX02  
C, I, M  
A40MX04  
C, I, M  
A42MX09  
A42MX16  
A42MX24  
A42MX36  
C, I, A, M  
C, I, M  
C, I, A, M  
C, I, A, M  
C, I, A, M  
C, I, A, M  
C, I, A, M  
C, I, M  
C, I, M  
C, I, M  
C, I, A, M  
C, I, A, M  
C, I, M  
C, I, A, M  
C, I, A, M  
C, I, A, M  
C, I, A, M  
C, I, A, M  
C, I, A, M  
C, I, A, M  
C, I, A, M  
C, I, A, M  
C, I, A, M  
C, I, A, M  
C, I, M  
C, M, B  
C, M, B  
C = Commercial  
I = Industrial  
A = Automotive  
M = Military  
B = MIL-STD-883 Class B  
Speed Grade Offerings  
– F  
Std  
–1  
–2  
–3  
C
I
A
M
B
Note: Refer to the 40MX and 42MX Automotive Family FPGAs datasheet for details on automotive-grade MX offerings.  
Contact your local Actel representative for device availability.  
v6.0  
iii  
40MX and 42MX FPGA Families  
Table of Contents  
40MX and 42MX FPGA Families  
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1  
MX Architectural Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1  
Other Architectural Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8  
Development Tool Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-13  
Related Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-13  
5.0V Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-14  
5V TTL Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-15  
3.3V Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-16  
3.3V LVTTL Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-17  
Mixed 5.0V/3.3V Operating Conditions (for 42MX Devices Only) . . . . . . . . . . . . . 1-18  
Mixed 5.0V/3.3V Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-18  
Output Drive Characteristics for 5.0V PCI Signaling . . . . . . . . . . . . . . . . . . . . . . . . 1-19  
Output Drive Characteristics for 3.3V PCI Signaling . . . . . . . . . . . . . . . . . . . . . . . . 1-20  
Junction Temperature (T ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-22  
J
Package Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-22  
Timing Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-23  
Parameter Measurement  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-25  
Sequential Module Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-26  
Sequential Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-27  
Decode Module Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-28  
SRAM Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-28  
Dual-Port SRAM Timing Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-28  
Predictable Performance: Tight Delay Distributions . . . . . . . . . . . . . . . . . . . . . . . 1-30  
Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-30  
Temperature and Voltage Derating Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-31  
PCI System Timing Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-35  
PCI Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-35  
Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-36  
Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-77  
Package Pin Assignments  
44-Pin PLCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1  
68-Pin PLCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2  
84-Pin PLCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3  
v6.0  
v
40MX and 42MX FPGA Families  
Table of Contents  
100-Pin PQFP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6  
160-Pin PQFP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9  
208-Pin PQFP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13  
240-Pin PQFP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-17  
80-Pin VQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20  
100-Pin VQFP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-22  
176-Pin TQFP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-24  
208-Pin CQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-28  
256-Pin CQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-31  
272-Pin BGA Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-34  
Datasheet Information  
List of Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1  
Datasheet Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2  
vi  
v6.0  
40MX and 42MX FPGA Families  
40MX and 42MX FPGA Families  
General Description  
MX Architectural Overview  
Actel's 40MX and 42MX families offer a cost-effective  
design solution at 5V. The MX devices are single-chip  
solutions and provide high performance while  
shortening the system design and development cycle.  
MX devices can integrate and consolidate logic  
implemented in multiple PALs, CPLDs, and FPGAs.  
Example applications include high-speed controllers and  
address decoding, peripheral bus interfaces, DSP, and co-  
processor functions.  
The MX devices are composed of fine-grained building  
blocks that enable fast, efficient logic designs. All devices  
within these families are composed of logic modules, I/O  
modules, routing resources and clock networks, which  
are the building blocks for fast logic designs. In addition,  
the A42MX36 device contains embedded dual-port  
SRAM modules, which are optimized for high-speed  
datapath functions such as FIFOs, LIFOs and scratchpad  
memory. A42MX24 and A42MX36 also contain wide-  
decode modules.  
The MX device architecture is based on Actel’s patented  
antifuse technology implemented in a 0.45µm triple-  
metal CMOS process. With capacities ranging from 3,000  
to 54,000 system gates, the MX devices provide  
performance up to 250 MHz, are live on power-up and  
have one-fifth the standby power consumption of  
comparable FPGAs. Actel’s MX FPGAs provide up to 202  
user I/Os and are available in a wide variety of packages  
and speed grades.  
Logic Modules  
The 40MX logic module is an eight-input, one-output  
logic circuit designed to implement a wide range of logic  
functions with efficient use of interconnect routing  
resources (Figure 1-1).  
The logic module can implement the four basic logic  
functions (NAND, AND, OR and NOR) in gates of two,  
three, or four inputs. The logic module can also  
implement a variety of D-latches, exclusivity functions,  
AND-ORs and OR-ANDs. No dedicated hard-wired latches  
or flip-flops are required in the array; latches and flip-  
flops can be constructed from logic modules whenever  
required in the application.  
Actel’s A42MX24 and A42MX36 devices also feature  
MultiPlex I/Os, which support mixed-voltage systems,  
enable programmable PCI, deliver high-performance  
operation at both 5.0V and 3.3V, and provide a low-  
power mode. The devices are fully compliant with the  
PCI Local Bus Specification (version 2.1). They deliver  
200 MHz on-chip operation and 6.1 ns clock-to-output  
performance.  
The 42MX24 and 42MX36 devices include system-level  
features such as IEEE Standard 1149.1 (JTAG) Boundary  
Scan Testing and fast wide-decode modules. In addition,  
the A42MX36 device offers dual-port SRAM for  
implementing fast FIFOs, LIFOs, and temporary data  
storage. The storage elements can efficiently address  
applications requiring wide datapath manipulation and  
can perform transformation functions such as those  
required for telecommunications, networking, and DSP.  
All MX devices are fully tested over automotive and  
military temperature ranges. In addition, the largest  
member of the family, the A42MX36, is available in both  
CQ208 and CQ256 ceramic packages screened to MIL-  
STD-883 levels. For easy prototyping and conversion from  
plastic to ceramic, the CQ208 and PQ208 devices are pin-  
compatible.  
Figure 1-1 40MX Logic Module  
v6.0  
1-1  
40MX and 42MX FPGA Families  
The 42MX devices contain three types of logic modules:  
combinatorial (C-modules), sequential (S-modules) and  
A0  
B0  
decode  
(D-modules).  
Figure 1-2  
illustrates  
the  
S0  
combinatorial logic module. The S-module, shown in  
Figure 1-3, implements the same combinatorial logic  
function as the C-module while adding a sequential  
element. The sequential element can be configured as  
either a D-flip-flop or a transparent latch. The S-module  
register can be bypassed so that it implements purely  
combinatorial logic.  
D00  
D01  
D10  
D11  
Y
S1  
A1  
B1  
Figure 1-2 42MX C-Module Implementation  
D00  
D01  
D00  
D01  
D
D
Q
OUT  
Q
OUT  
Y
Y
D10  
D10  
S0  
S0  
D11  
S1  
D11  
S1  
GATE  
CLR  
Up to 7-Input Function Plus Latch  
D00  
Up to 7-Input Function Plus D-Type Flip-Flop with Clear  
D0  
D01  
D10  
D11  
Y
OUT  
Q
D
Y
OUT  
S0  
D1  
GATE  
S
S1  
CLR  
Up to 8-Input Function (Same as C-Module)  
Up to 4-Input Function Plus Latch with Clear  
Figure 1-3 42MX S-Module Implementation  
1-2  
v6.0  
40MX and 42MX FPGA Families  
A42MX24 and A42MX36 devices contain D-modules,  
which are arranged around the periphery of the device.  
D-modules contain wide-decode circuitry, providing a  
fast, wide-input AND function similar to that found in  
CPLD architectures (Figure 1-4). The D-module allows  
A42MX24 and A42MX36 devices to perform wide-  
decode functions at speeds comparable to CPLDs and  
PALs. The output of the D-module has a programmable  
inverter for active HIGH or LOW assertion. The D-module  
output is hardwired to an output pin, and can also be  
fed back into the array to be incorporated into other  
logic.  
highest order address bits (RDAD5 and WRAD5) are not  
used. The read and write ports of the SRAM block  
contain independent clocks (RCLK and WCLK) with  
programmable polarities offering active HIGH or LOW  
implementation. The SRAM block contains eight data  
inputs (WD[7:0]), and eight outputs (RD[7:0]), which are  
connected to segmented vertical routing tracks.  
The A42MX36 dual-port SRAM blocks provide an optimal  
solution for high-speed buffered applications requiring  
FIFO and LIFO queues. The ACTgen Macro Builder within  
Actel's Designer software provides capability to quickly  
design memory functions with the SRAM blocks. Unused  
SRAM blocks can be used to implement registers for  
other user logic within the design.  
Dual-Port SRAM Modules  
The A42MX36 device contains dual-port SRAM modules  
that have been optimized for synchronous or  
asynchronous applications. The SRAM modules are  
arranged in 256-bit blocks that can be configured as 32x8  
or 64x4. SRAM modules can be cascaded together to  
form memory spaces of user-definable width and depth.  
A block diagram of the A42MX36 dual-port SRAM block  
is shown in Figure 1-5.  
7 Inputs  
Hard-Wire to I/O  
Programmable  
Inverter  
The A42MX36 SRAM modules are true dual-port  
structures containing independent read and write ports.  
Each SRAM module contains six bits of read and write  
addressing (RDAD[5:0] and WRAD[5:0], respectively) for  
64x4-bit blocks. When configured in byte mode, the  
Feedback to Array  
Figure 1-4 A42MX24 and A42MX36 D-Module  
Implementation  
Latches  
WD[7:0]  
[7:0]  
[5:0]  
RDAD[5:0]  
SRAM Module  
32 x 8 or 64 x 4 Port  
Logic  
Latches  
Write  
Port  
Read  
Logic  
(256 Bits)  
[5:0]  
WRAD[5:0]  
MODE  
BLKEN  
WEN  
Read  
Logic  
Latches  
REN  
RD[7:0]  
RCLK  
Write  
Logic  
Routing Tracks  
WCLK  
Figure 1-5 A42MX36 Dual-Port SRAM Block  
v6.0  
1-3  
40MX and 42MX FPGA Families  
Routing Structure  
Segmented  
Horizontal  
Routing  
The MX architecture uses vertical and horizontal routing  
tracks to interconnect the various logic and I/O modules.  
These routing tracks are metal interconnects that may be  
continuous or split into segments. Varying segment  
lengths allow the interconnect of over 90% of design  
tracks to occur with only two antifuse connections.  
Segments can be joined together at the ends using  
antifuses to increase their lengths up to the full length of  
the track. All interconnects can be accomplished with a  
maximum of four antifuses.  
Logic  
Modules  
Antifuses  
Vertical Routing Tracks  
Horizontal Routing  
Figure 1-6 MX Routing Structure  
Horizontal routing tracks span the whole row length or  
are divided into multiple segments and are located in  
between the rows of modules. Any segment that spans  
more than one-third of the row length is considered a  
long horizontal segment. A typical channel is shown in  
Figure 1-6. Within horizontal routing, dedicated routing  
tracks are used for global clock networks and for power  
and ground tie-off tracks. Non-dedicated tracks are used  
for signal nets.  
Clock Networks  
The 40MX devices have one global clock distribution  
network (CLK). A signal can be put on the CLK network  
by being routed through the CLKBUF buffer.  
In 42MX devices, there are two low-skew, high-fanout  
clock distribution networks, referred to as CLKA and  
CLKB. Each network has a clock module (CLKMOD) that  
can select the source of the clock signal from any of the  
following (Figure 1-7 on page 1-5):  
Vertical Routing  
Another set of routing tracks run vertically through the  
module. There are three types of vertical tracks: input,  
output, and long. Long tracks span the column length of  
the module, and can be divided into multiple segments.  
Each segment in an input track is dedicated to the input  
of a particular module; each segment in an output track  
is dedicated to the output of a particular module. Long  
segments are uncommitted and can be assigned during  
routing. Each output segment spans four channels (two  
above and two below), except near the top and bottom  
of the array, where edge effects occur. Long vertical  
tracks contain either one or two segments. An example  
of vertical routing tracks and segments is shown in  
Figure 1-6.  
Externally from the CLKA pad, using CLKBUF  
buffer  
Externally from the CLKB pad, using CLKBUF  
buffer  
Internally from the CLKINTA input, using CLKINT  
buffer  
Internally from the CLKINTB input, using CLKINT  
buffer  
The clock modules are located in the top row of I/O  
modules. Clock drivers and a dedicated horizontal clock  
track are located in each horizontal routing channel.  
Clock input pads in both 40MX and 42MX devices can  
also be used as normal I/Os, bypassing the clock  
networks.  
Antifuse Structures  
An antifuse is a "normally open" structure. The use of  
antifuses to implement a programmable logic device  
results in highly testable structures as well as efficient  
programming algorithms. There are no pre-existing  
connections; temporary connections can be made using  
pass transistors. These temporary connections can isolate  
individual antifuses to be programmed and individual  
circuit structures to be tested, which can be done before  
and after programming. For instance, all metal tracks can  
be tested for continuity and shorts between adjacent  
tracks, and the functionality of all logic modules can be  
verified.  
The A42MX36 device has four additional register control  
resources, called quadrant clock networks (Figure 1-8 on  
page 1-5). Each quadrant clock provides a local, high-  
fanout resource to the contiguous logic modules within  
its quadrant of the device. Quadrant clock signals can  
originate from specific I/O pins or from the internal array  
and can be used as a secondary register clock, register  
clear, or output enable.  
1-4  
v6.0  
40MX and 42MX FPGA Families  
CLKB  
CLKA  
CLKINB  
CLKINA  
From  
S0  
S1  
Pads  
Internal  
Signal  
CLKMOD  
CLKO(17)  
CLKO(16)  
CLKO(15)  
Clock  
Drivers  
CLKO(2)  
CLKO(1)  
Clock Tracks  
Figure 1-7 Clock Networks of 42MX Devices  
QCLKA  
QCLKC  
Quad  
Clock  
Modul  
Quad  
Clock  
Modul  
QCLK1  
QCLK3  
QCLKD  
QCLKB  
*QCLK1IN  
*QCLK3IN  
S0 S1  
S1 S0  
Quad  
Clock  
Modul  
Quad  
Clock  
Modul  
QCLK2  
QCLK4  
*QCLK2IN  
*QCLK4IN  
S0 S1  
S1 S0  
Note: *QCLK1IN, QCLK2IN, QCLK3IN, and QCLK4IN are internally-generated signals.  
Figure 1-8 Quadrant Clock Network of A42MX36 Devices  
v6.0  
1-5  
40MX and 42MX FPGA Families  
MultiPlex I/O Modules  
42MX devices feature Multiplex I/Os and support 5.0V,  
3.3V, and mixed 3.3V/5.0V operations.  
STD  
Signal  
The MultiPlex I/O modules provide the interface between  
the device pins and the logic array. Figure 1-9 is a block  
diagram of the 42MX I/O module. A variety of user  
functions, determined by a library macro selection, can  
be implemented in the module. (Refer to the Antifuse  
Macro Library Guide for more information.) All 42MX I/O  
modules contain tristate buffers, with input and output  
latches that can be configured for input, output, or  
bidirectional operation.  
Output  
PCI  
Drive  
PCI Enable  
Fuse  
Figure 1-10 PCI Output Structure of A42MX24 and  
A42MX36 Devices  
All 42MX devices contain flexible I/O structures, where  
each output pin has a dedicated output-enable control  
(Figure 1-9). The I/O module can be used to latch input or  
output data, or both, providing fast set-up time. In  
addition, the Actel Designer software tools can build a D-  
type flip-flop using a C-module combined with an I/O  
module to register input and output signals. Refer to the  
Antifuse Macro Library Guide for more details.  
Other Architectural Features  
Performance  
MX devices can operate with internal clock frequencies  
of 250 MHz, enabling fast execution of complex logic  
functions. MX devices are live on power-up and do not  
require auxiliary configuration devices and thus are an  
optimal platform to integrate the functionality  
contained in multiple programmable logic devices. In  
addition, designs that previously would have required a  
gate array to meet performance can be integrated into  
an MX device with improvements in cost and time-to-  
market. Using timing-driven place-and-route (TDPR)  
tools, designers can achieve highly deterministic device  
performance.  
A42MX24 and A42MX36 devices also offer selectable PCI  
output drives, enabling 100% compliance with version  
2.1 of the PCI specification. For low-power systems, all  
inputs and outputs are turned off to reduce current  
consumption to below 500µA.  
To achieve 5.0V or 3.3V PCI-compliant output drives on  
A42MX24 and A42MX36 devices, a chip-wide PCI fuse is  
programmed via the Device Selection Wizard in the  
Designer software (Figure 1-10). When the PCI fuse is not  
programmed, the output drive is standard.  
Actel's Designer software development tools provide a  
design library of I/O macro functions that can implement  
all I/O configurations supported by the MX FPGAs.  
User Security  
The Actel FuseLock provides robust security against  
design theft. Special security fuses are hidden in the  
fabric of the device and prevent unauthorized users from  
accessing the programming and/or probe interfaces. It is  
virtually impossible to identify or bypass these fuses  
without damaging the device, making Actel antifuse  
FPGAs immune to both invasive and noninvasive attacks.  
EN  
Q
D
PAD  
From Array  
To Array  
Special security fuses in 40MX devices include the Probe  
Fuse and Program Fuse. The former disables the probing  
circuitry while the latter prohibits further programming  
of all fuses, including the Probe Fuse. In 42MX devices,  
there is the Security Fuse which, when programmed,  
both disables the probing circuitry and prohibits further  
programming of the device.  
G/CLK*  
Q
D
G/CLK*  
Note: *Can be configured as a Latch or D Flip-Flop (Using  
Look for this symbol to ensure your valuable IP is secure.  
C-Module)  
For more information, refer to Actel's Implementation of  
Security in Actel Antifuse FPGAs application note.  
Figure 1-9 42MX I/O Module  
1-6  
v6.0  
40MX and 42MX FPGA Families  
nonprogrammed), Silicon Sculptor II also allows self-test  
to verify its own hardware extensively.  
The procedure for programming an MX device using  
Silicon Sculptor II is as follows:  
1. Load the .AFM file  
u
e
Figure 1-11 Fuselock  
2. Select the device to be programmed  
3. Begin programming  
Programming  
When the design is ready to go to production, Actel  
offers device volume-programming services either  
through distribution partners or via In-House  
Programming from the factory.  
Device programming is supported through the Silicon  
Sculptor series of programmers. Silicon Sculptor II is a  
compact, robust, single-site and multi-site device  
programmer for the PC. With standalone software,  
Silicon Sculptor II is designed to allow concurrent  
programming of multiple units from the same PC.  
For more details on programming MX devices, please  
refer to the Programming Antifuse Devices and the  
Silicon Sculptor II user's guides.  
Silicon Sculptor II programs devices independently to  
achieve the fastest programming times possible. After  
being programmed, each fuse is verified to insure that it  
has been programmed correctly. Furthermore, at the end  
of programming, there are integrity tests that are run to  
ensure no extra fuses have been programmed. Not only  
Power Supply  
MX devices are designed to operate in both 5.0V and  
3.3V environments. In particular, 42MX devices can  
operate in mixed 5.0V/3.3V systems. Table 1 describes the  
voltage support of MX devices.  
does  
it  
test  
fuses  
(both  
programmed  
and  
Table 1 •  
Device  
40MX  
Voltage Support of MX Devices  
VCC  
5.0V  
3.3V  
VCCA  
VCCI  
Maximum Input Tolerance  
Nominal Output Voltage  
5.5V  
3.6V  
5.5V  
3.6V  
5.5V  
5.0V  
3.3V  
5.0V  
3.3V  
3.3V  
42MX  
5.0V  
3.3V  
5.0V  
5.0V  
3.3V  
3.3V  
Power-Up/Down in Mixed-Voltage Mode  
Low Power Mode  
When powering up 42MX in mixed voltage mode  
(VCCA = 5.0V and VCCI = 3.3V), VCCA must be greater than  
or equal to VCCI throughout the power-up sequence. If  
VCCI exceeds VCCA during power up, either the I/Os' input  
protection junction on the I/Os will be forward-biased or  
the I/Os will be at logical HIGH, and ICC rises to high  
levels. For power-down, any sequence with VCCA and  
VCCI can be implemented.  
42MX devices have been designed with a Low Power  
Mode. This feature, activated with setting the special LP  
pin to HIGH for a period longer than 800 ns, is  
particularly useful for battery-operated systems where  
battery life is a primary concern. In this mode, the core of  
the device is turned off and the device consumes minimal  
power with low standby current. In addition, all input  
buffers are turned off, and all outputs and bidirectional  
buffers are tristated. Since the core of the device is  
turned off, the states of the registers are lost. The device  
must be re-initialized when exiting Low Power Mode. I/  
Os can be driven during LP mode, and clock pins should  
be driven HIGH or LOW and should not float to avoid  
drawing current. To exit LP mode, the LP pin must be  
pulled LOW for over 200 µs to allow for charge pumps to  
power up, and device initialization will begin.  
v6.0  
1-7  
40MX and 42MX FPGA Families  
The power dissipated by a CMOS circuit can be expressed  
by the equation:  
Power Dissipation  
The general power consumption of MX devices is made  
up of static and dynamic power and can be expressed  
with the following equation:  
2
Power (µW) = CEQ * VCCA * F(1)  
where:  
C
EQ =Equivalent capacitance expressed in picofarads (pF)  
CCA =Power supply in volts (V)  
V
General Power Equation  
F =Switching frequency in megahertz (MHz)  
P = [ICCstandby + ICCactive] * VCCI + IOL* VOL* N  
+ IOH * (VCCI – VOH) * M  
Equivalent Capacitance  
where:  
Equivalent capacitance is calculated by measuring  
ICCactive at a specified frequency and voltage for each  
circuit component of interest. Measurements have been  
I
CCstandby is the current flowing when no inputs or  
outputs are changing.  
ICCactive is the current flowing due to CMOS  
switching.  
made over a range of frequencies at a fixed value of V  
.
CC  
Equivalent capacitance is frequency-independent, so the  
results can be used over a wide range of operating  
conditions. Equivalent capacitance values are shown  
below.  
IOL, IOH are TTL sink/source currents.  
VOL, VOH are TTL level output voltages.  
N equals the number of outputs driving TTL loads to  
VOL  
M equals the number of outputs driving TTL loads to  
VOH  
.
C
Values for Actel MX FPGAs  
EQ  
.
Modules (CEQM)3.5  
Accurate values for N and M are difficult to determine  
because they depend on the family type, on design  
details, and on the system I/O. The power can be divided  
into two components: static and active.  
Input Buffers (CEQI)6.9  
Output Buffers (CEQO)18.2  
Routed Array Clock Buffer Loads (CEQCR)1.4  
To calculate the active power dissipated from the  
complete design, the switching frequency of each part of  
the logic must be known. The equation below shows a  
piece-wise linear summation over all components.  
2
Static Power Component  
The static power due to standby current is typically a  
small component of the overall power consumption.  
Standby power is calculated for commercial, worst-case  
conditions. The static power dissipation by TTL loads  
depends on the number of outputs driving, and on the  
DC load current. For instance, a 32-bit bus sinking 4mA at  
0.33V will generate 42mW with all outputs driving LOW,  
and 140mW with all outputs driving HIGH. The actual  
dissipation will average somewhere in between, as I/Os  
switch states with time.  
Power = VCCA * [(m x CEQM * fm)Modules  
+
(n * CEQI * fn)Inputs + (p * (CEQO + CL) *  
fp)outputs  
+
0.5 * (q1 * CEQCR * fq1  
)
+ (r1  
+ (r2  
*
*
routed_Clk1  
fq1  
)
+
routed_Clk1  
0.5 * (q2 * CEQCR * fq2  
)
routed_Clk2  
fq2  
)
(2)  
routed_Clk2  
where:  
m
= Number of logic modules switching at  
frequency fm  
Active Power Component  
n
= Number of input buffers switching at  
frequency fn  
Power dissipation in CMOS devices is usually dominated  
by the dynamic power dissipation. Dynamic power  
consumption is frequency-dependent and is a function of  
the logic and the external I/O. Active power dissipation  
results from charging internal chip capacitances of the  
interconnect, unprogrammed antifuses, module inputs,  
and module outputs, plus external capacitances due to  
PC board traces and load device inputs. An additional  
component of the active power dissipation is the totem  
pole current in the CMOS transistor pairs. The net effect  
can be associated with an equivalent capacitance that  
can be combined with frequency and voltage to  
represent active power dissipation.  
p
= Number of output buffers switching at  
frequency fp  
q1  
q2  
r1  
r2  
= Number of clock loads on the first routed array  
clock  
= Number of clock loads on the second routed  
array clock  
= Fixed capacitance due to first routed array  
clock  
= Fixed capacitance due to second routed array  
clock  
1-8  
v6.0  
40MX and 42MX FPGA Families  
resources. Silicon Explorer II's noninvasive method does  
not alter timing or loading effects, thus shortening the  
debug cycle and providing a true representation of the  
device under actual functional situations.  
CEQM = Equivalent capacitance of logic modules in pF  
CEQI = Equivalent capacitance of input buffers in pF  
CEQO = Equivalent capacitance of output buffers in pF  
C
EQCR = Equivalent capacitance of routed array clock in  
Silicon Explorer II samples data at 100 MHz  
(asynchronous) or 66 MHz (synchronous). Silicon Explorer  
II attaches to a PC's standard COM port, turning the PC  
into a fully functional 18-channel logic analyzer. Silicon  
Explorer II allows designers to complete the design  
verification process at their desks and reduces  
verification time from several hours per cycle to a few  
seconds.  
pF  
CL  
fm  
fn  
= Output load capacitance in pF  
= Average logic module switching rate in MHz  
= Average input buffer switching rate in MHz  
= Average output buffer switching rate in MHz  
= Average first routed array clock rate in MHz  
= Average second routed array clock rate in MHz  
fp  
fq1  
fq2  
Silicon Explorer II is used to control the MODE, DCLK, SDI  
and SDO pins in MX devices to select the desired nets for  
debugging. The user simply assigns the selected internal  
nets in the Silicon Explorer II software to the PRA/PRB  
output pins for observation. Probing functionality is  
activated when the MODE pin is held HIGH.  
Fixed Capacitance Values for MX FPGAs (pF)  
r1  
r2  
Device Type  
A40MX02  
A40MX04  
A42MX09  
A42MX16  
A42MX24  
A42MX36  
routed_Clk1  
routed_Clk2  
41.4  
68.6  
118  
165  
185  
220  
N/A  
N/A  
118  
165  
185  
220  
Figure 1-12 illustrates the interconnection between  
Silicon Explorer II and 40MX devices, while Figure 1-13  
on page 1-10 illustrates the interconnection between  
Silicon Explorer II and 42MX devices  
To allow for probing capabilities, the security fuses must  
not be programmed. (Refer to <zBlue>“User Security”  
section on page 6 for the security fuses of 40MX and  
42MX devices). Table 2 on page 1-10 summarizes the  
possible device configurations for probing.  
Test Circuitry and Silicon Explorer II Probe  
MX devices contain probing circuitry that provides built-  
in access to every node in a design, via the use of Silicon  
Explorer II. Silicon Explorer II is an integrated hardware  
and software solution that, in conjunction with the  
Designer software, allow users to examine any of the  
internal nets of the device while it is operating in a  
prototyping or a production system. The user can probe  
into an MX device without changing the placement and  
routing of the design and without using any additional  
PRA and PRB pins are dual-purpose pins. When the  
"Reserve  
Probe  
Pin"  
is  
checked  
in  
the  
Designer software, PRA and PRB pins are reserved as  
dedicated outputs for probing. If PRA and PRB pins are  
required as user I/Os to achieve successful layout and  
"Reserve Probe Pin" is checked, the layout tool will  
override the option and place user I/Os on PRA and PRB  
pins.  
16 Logic Analyzer Channels  
40MX  
Serial Connection  
to Windows PC  
MODE  
SDI  
DCLK  
Silicon  
Explorer II  
SDO  
PRA  
PRB  
Figure 1-12 Silicon Explorer II Setup with 40MX  
v6.0  
1-9  
40MX and 42MX FPGA Families  
16 Logic Analyzer Channels  
42MX  
Serial Connection  
to Windows PC  
MODE  
SDI  
DCLK  
Silicon  
Explorer II  
SDO  
PRA  
PRB  
Figure 1-13 Silicon Explorer II Setup with 42MX  
Table 2 •  
Device Configuration Options for Probe Capability  
Security Fuse(s)  
Programmed  
MODE  
LOW  
HIGH  
PRA, PRB1  
User I/Os2  
SDI, SDO, DCLK1  
User I/Os2  
No  
No  
Probe Circuit Outputs  
Probe Circuit Secured  
Probe Circuit Inputs  
Probe Circuit Secured  
Yes  
Notes:  
1. Avoid using SDI, SDO, DCLK, PRA and PRB pins as input or bidirectional ports. Since these pins are active during probing, input  
signals will not pass through these pins and may cause contention.  
2. If no user signal is assigned to these pins, they will behave as unused I/Os in this mode. See the <zBlue>“Pin Descriptions” section  
on page 77 for information on unused I/O pins.  
Each test section is accessed through the TAP, which has  
four associated pins: TCK (test clock input), TDI and TDO  
(test data input and output), and TMS (test mode  
selector).  
Design Consideration  
It is recommended to use a series 70termination  
resistor on every probe connector (SDI, SDO, MODE,  
DCLK, PRA and PRB). The 70series termination is used  
The TAP controller is a four-bit state machine. The '1's  
to prevent data transmission corruption during probing  
and '0's represent the values that must be present at TMS  
and reading back the checksum.  
at a rising edge of TCK for the given state transition to  
occur. IR and DR indicate that the instruction register or  
IEEE Standard 1149.1 Boundary Scan Test  
(BST) Circuitry  
the data register is operating in that state.  
The TAP controller receives two control inputs (TMS and  
TCK) and generates control and clock signals for the rest  
42MX24 and 42MX36 devices are compatible with IEEE  
of the test logic architecture. On power-up, the TAP  
Standard 1149.1 (informally known as Joint Testing  
controller enters the Test-Logic-Reset state. To guarantee  
Action Group Standard or JTAG), which defines a set of  
a reset of the controller from any of the possible states,  
hardware architecture and mechanisms for cost-effective  
TMS must remain high for five TCK cycles.  
board-level testing. The basic MX boundary-scan logic  
42MX24 and 42MX36 devices support three types of test  
circuit is composed of the TAP (test access port), TAP  
data registers: bypass, device identification, and  
controller, test data registers and instruction register  
boundary scan. The bypass register is selected when no  
(Figure 1-14 on page 1-11). This circuit supports all  
other register needs to be accessed in a device. This  
mandatory IEEE 1149.1 instructions (EXTEST, SAMPLE/  
speeds up test data transfer to other devices in a test  
PRELOAD and BYPASS) and some optional instructions.  
data path. The 32-bit device identification register is a  
Table 3 on page 1-11 describes the ports that control  
shift register with four fields (lowest significant byte  
JTAG testing, while Table 4 on page 1-11 describes the  
(LSB), ID number, part number and version). The  
test instructions supported by these MX devices.  
boundary-scan register observes and controls the state of  
each I/O pin.  
1-10  
v6.0  
40MX and 42MX FPGA Families  
Each I/O cell has three boundary-scan register cells, each  
with a serial-in, serial-out, parallel-in, and parallel-out  
pin. The serial pins are used to serially connect all the  
boundary-scan register cells in a device into a boundary-  
scan register chain, which starts at the TDI pin and ends  
at the TDO pin. The parallel ports are connected to the  
internal core logic tile and the input, output and control  
ports of an I/O buffer to capture and load data into the  
register to control or observe the logic state of each I/O.  
Boundary Scan Register  
Output  
MUX  
TDO  
Bypass  
Register  
Control Logic  
JTAG  
TMS  
Instruction  
Decode  
TAP Controller  
TCK  
JTAG  
TDI  
Instruction  
Register  
Figure 1-14 42MX IEEE 1149.1 Boundary Scan Circuitry  
Table 3 •  
Test Access Port Descriptions  
Port  
Description  
TMS  
(Test  
Mode Serial input for the test logic control bits. Data is captured on the rising edge of the test logic clock (TCK).  
Select)  
TCK (Test Clock Input) Dedicated test logic clock used serially to shift test instruction, test data, and control inputs on the rising edge  
of the clock, and serially to shift the output data on the falling edge of the clock. The maximum clock frequency  
for TCK is 20 MHz.  
TDI (Test Data Input)  
Serial input for instruction and test data. Data is captured on the rising edge of the test logic clock.  
TDO  
Output)  
(Test  
Data Serial output for test instruction and data from the test logic. TDO is set to an Inactive Drive state (high  
impedance) when data scanning is not in progress.  
Table 4 •  
Supported BST Public Instructions  
Instruction  
IR Code (IR2.IR0)  
Instruction Type  
Description  
EXTEST  
000  
Mandatory  
Allows the external circuitry and board-level interconnections to  
be tested by forcing a test pattern at the output pins and  
capturing test results at the input pins.  
SAMPLE/PRELOAD  
HIGH Z  
001  
101  
110  
Mandatory  
Optional  
Optional  
Allows a snapshot of the signals at the device pins to be  
captured and examined during operation  
Tristates all I/Os to allow external signals to drive pins. Please  
refer to the IEEE Standard 1149.1 specification.  
CLAMP  
Allows state of signals driven from component pins to be  
determined from the Boundary-Scan Register. Please refer to  
the IEEE Standard 1149.1 specification for details.  
BYPASS  
111  
Mandatory  
Enables the bypass register between the TDI and TDO pins. The  
test data passes through the selected device to adjacent devices  
in the test chain.  
v6.0  
1-11  
40MX and 42MX FPGA Families  
JTAG Mode Activation  
The JTAG test logic circuit is activated in the Designer  
software by selecting Tools -> Device Selection. This  
brings up the Device Selection dialog box as shown in  
Figure 1-15. The JTAG test logic circuit can be enabled by  
clicking the "Reserve JTAG Pins" check box. Table 5  
explains the pins' behavior in either mode.  
Figure 1-15 Device Selection Wizard  
Table 5 •  
Boundary Scan Pin Configuration and Functionality  
Reserve JTAG  
TCK  
Checked  
Unchecked  
User I/O  
BST input; must be terminated to logical HIGH or LOW to avoid floating  
BST input; may float or be tied to HIGH  
TDI, TMS  
TDO  
User I/O  
BST output; may float or be connected to TDI of another device  
User I/O  
TRST Pin and TAP Controller Reset  
Boundary Scan Description Language  
(BSDL) File  
An active reset (TRST) pin is not supported; however, MX  
devices contain power-on circuitry that resets the  
boundary scan circuitry upon power-up. Also, the TMS  
pin is equipped with an internal pull-up resistor. This  
allows the TAP controller to remain in or return to the  
Test-Logic-Reset state when there is no input or when a  
logical 1 is on the TMS pin. To reset the controller, TMS  
must be HIGH for at least five TCK cycles.  
Conforming to the IEEE Standard 1149.1 requires that  
the operation of the various JTAG components be  
documented. The BSDL file provides the standard format  
to describe the JTAG components that can be used by  
automatic test equipment software. The file includes the  
instructions that are supported, instruction bit pattern,  
and the boundary-scan chain order. For an in-depth  
discussion on BSDL files, please refer to Actel BSDL Files  
Format Description application note.  
Actel BSDL files are grouped into two categories -  
generic and device-specific. The generic files assign all  
user I/Os as inouts. Device-specific files assign user I/Os as  
inputs, outputs or inouts.  
Generic files for MX devices are available on Actel's website  
at http://www.actel.com/techdocs/models/bsdl.html.  
1-12  
v6.0  
40MX and 42MX FPGA Families  
Development Tool Support  
Related Documents  
The MX family of FPGAs is fully supported by both Actel's  
Libero™ Integrated Design Environment and Designer  
FPGA Development software. Actel Libero IDE is a design  
management environment that streamlines the design  
flow. Libero IDE provides an integrated design manager  
that seamlessly integrates design tools while guiding the  
user through the design flow, managing all design and  
log files, and passing necessary design data among tools.  
Additionally, Libero IDE allows users to integrate both  
schematic and HDL synthesis into a single flow and verify  
the entire design in a single environment. Libero IDE  
includes Synplify® for Actel from Synplicity®, ViewDraw  
for Actel from Mentor Graphics, ModelSim™ HDL  
Simulator from Mentor Graphics®, WaveFormer Lite™  
from SynaptiCAD™, and Designer software from Actel.  
Refer to the Libero IDE flow (located on Actel’s website)  
diagram for more information.  
Application Notes  
Actel BSDL Files Format Description  
www.actel.com/documents/BSDLformat_AN.pdf  
Programming Antifuse Devices  
http://www.actel.com/documents/  
AntifuseProgram_AN.pdf  
Actel's Implementation of Security in Actel Antifuse  
FPGAs  
www.actel.com/documents/Antifuse_Security_AN.pdf  
User’s Guides and Manuals  
Antifuse Macro Library Guide  
www.actel.com/documents/libguide_UG.pdf  
Silicon Sculptor II  
Actel's Designer software is a place-and-route tool and  
provides a comprehensive suite of backend support tools  
for FPGA development. The Designer software includes  
www.actel.com/techdocs/manuals/default.asp#programmers  
timing-driven place-and-route, and  
a
world-class  
integrated static timing analyzer and constraints editor.  
With the Designer software, a user can lock his/her  
design pins before layout while minimally impacting the  
results of place-and-route. Additionally, the back-  
annotation flow is compatible with all the major  
simulators and the simulation results can be cross-probed  
with Silicon Explorer II, Actel’s integrated verification  
and logic analysis tool. Another tool included in the  
Designer software is the ACTgen macro builder, which  
easily creates popular and commonly used logic  
functions for implementation into your schematic or HDL  
design. Actel's Designer software is compatible with the  
most popular FPGA design entry and verification tools  
from companies such as Mentor Graphics, Synplicity,  
Synopsys, and Cadence Design Systems. The Designer  
software is available for both the Windows and UNIX  
operating systems.  
Miscellaneous  
Libero IDE Flow Diagram  
www.actel.com/products/tools/libero/flow.html  
Actel's Designer software is compatible with the most  
popular FPGA design entry and verification tools from  
companies such as Mentor Graphics, Synplicity, Synopsys,  
and Cadence Design Systems. The Designer software is  
available for both the Windows and UNIX operating  
systems.  
v6.0  
1-13  
40MX and 42MX FPGA Families  
5.0V Operating Conditions  
Table 6 •  
Symbol  
VCC  
Absolute Maximum Ratings for 40MX Devices*  
Parameter  
Limits  
Units  
DC Supply Voltage  
Input Voltage  
–0.5 to +7.0  
V
V
VI  
–0.5 to VCC+0.5  
–0.5 to VCC+0.5  
–65 to +150  
VO  
Output Voltage  
V
tSTG  
Storage Temperature  
°C  
Note: *Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to  
absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the  
Recommended Operating Conditions.  
Table 7 •  
Symbol  
VCCI  
Absolute Maximum Ratings for 42MX Devices*  
Parameter  
Limits  
Units  
DC Supply Voltage for I/Os  
DC Supply Voltage for Array  
Input Voltage  
–0.5 to +7.0  
V
V
VCCA  
VI  
–0.5 to +7.0  
–0.5 to VCCI+0.5  
–0.5 to VCCI+0.5  
–65 to +150  
V
VO  
Output Voltage  
V
tSTG  
Storage Temperature  
°C  
Note: *Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to  
absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the  
Recommended Operating Conditions.  
Table 8 •  
Recommended Operating Conditions  
Parameter  
Commercial  
Industrial  
-40 to +85  
4.5 to 5.5  
4.5 to 5.5  
4.5 to 5.5  
Military  
–55 to +125  
4.5 to 5.5  
4.5 to 5.5  
4.5 to 5.5  
Units  
Temperature Range*  
VCC (40MX)  
0 to +70  
°C  
V
4.75 to 5.25  
4.75 to 5.25  
4.75 to 5.25  
VCCA (42MX)  
V
VCCI (42MX)  
V
Note: *Ambient temperature (TA) is used for commercial and industrial grades; case temperature (TC) is used for military grades.  
1-14  
v6.0  
40MX and 42MX FPGA Families  
5V TTL Electrical Specifications  
Table 9 •  
5V TTL Electrical Specifications  
Commercial  
Commercial -F  
Industrial  
Military  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Units  
V
1
VOH  
IOH = -10mA  
2.4  
2.4  
IOH = -4mA  
3.7  
3.7  
V
1
VOL  
IOL = 10mA  
IOL = 6mA  
0.5  
0.5  
V
0.4  
0.8  
0.4  
0.8  
V
VIL  
-0.3  
2.0  
2.0  
0.8  
VCC+0.3  
VCCI+0.3  
-10  
-0.3  
2.0  
2.0  
0.8  
VCC+0.3  
VCCI+0.3  
-10  
-0.3  
2.0  
2.0  
-0.3  
2.0  
2.0  
V
VIH (40MX)  
VCC+0.3  
VCCI+0.3  
-10  
VCC+0.3  
VCCI+0.3  
-10  
V
VIH (42MX)  
V
IIL  
VIN = 0.5V  
VIN = 2.7V  
µA  
µA  
ns  
IIH  
-10  
-10  
-10  
-10  
Input  
Transition  
500  
500  
500  
500  
Time, TR and TF  
C
IO I/O Capacitance  
10  
3
10  
25  
10  
10  
10  
25  
pF  
Standby  
ICC  
Current,  
A40MX02,  
A40MX04  
mA  
2
A42MX09  
A42MX16  
5
6
25  
25  
25  
25  
25  
25  
25  
25  
25  
mA  
mA  
mA  
A42MX24,  
A42MX36  
20  
Low-Power  
Standby Current  
Mode 42MX devices  
only  
0.5  
ICC - 5.0  
ICC - 5.0  
ICC - 5.0  
mA  
IIO, I/O source sink Can be derived from the IBIS model (http://www.actel.com/techdocs/models/ibis.html)  
current  
Notes:  
1. Only one output tested at a time. VCC/VCCI = min.  
2. All outputs unloaded. All inputs = VCC/VCCI or GND.  
v6.0  
1-15  
40MX and 42MX FPGA Families  
3.3V Operating Conditions  
Table 10 Absolute Maximum Ratings for 40MX Devices*  
Symbol  
VCC  
Parameter  
DC Supply Voltage  
Limits  
Units  
–0.5 to +7.0  
V
V
VI  
Input Voltage  
–0.5 to VCC+0.5  
–0.5 to VCC+0.5  
–65 to +150  
VO  
Output Voltage  
Storage Temperature  
V
tSTG  
°C  
Note: *Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to  
absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the  
Recommended Operating Conditions.  
Table 11 Absolute Maximum Ratings for 42MX Devices*  
Symbol  
VCCI  
VCCA  
VI  
Parameter  
DC Supply Voltage for I/Os  
DC Supply Voltage for Array  
Input Voltage  
Limits  
Units  
–0.5 to +7.0  
V
V
–0.5 to +7.0  
–0.5 to VCCI+0.5  
–0.5 to VCCI+0.5  
–65 to +150  
V
VO  
Output Voltage  
V
tSTG  
Storage Temperature  
°C  
Note: *Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to  
absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the  
Recommended Operating Conditions.  
Table 12 Recommended Operating Conditions  
Parameter  
Commercial  
0 to +70  
Industrial  
–40 to +85  
3.0 to 3.6  
3.0 to 3.6  
3.0 to 3.6  
Military  
–55 to +125  
3.0 to 3.6  
3.0 to 3.6  
3.0 to 3.6  
Units  
Temperature Range*  
VCC (40MX)  
°C  
V
3.0 to 3.6  
3.0 to 3.6  
3.0 to 3.6  
VCCA (42MX)  
V
VCCI (42MX)  
V
Note: *Ambient temperature (TA) is used for commercial and industrial grades; case temperature (TC) is used for military grades.  
1-16  
v6.0  
40MX and 42MX FPGA Families  
3.3V LVTTL Electrical Specifications  
Table 13 3.3V LVTTL Electrical Specifications  
Commercial  
Commercial -F  
Industrial  
Military  
Symbol  
Parameter  
IOH = –4mA  
IOL = 6mA  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max. Units  
1
VOH  
2.15  
2.15  
2.4  
2.4  
V
1
VOL  
0.4  
0.8  
0.4  
0.8  
0.48  
0.8  
0.48  
0.8  
V
V
VIL  
–0.3  
2.0  
–0.3  
2.0  
–0.3  
2.0  
–0.3  
2.0  
VIH (40MX)  
VCC+0.3  
VCCI+0.3  
–10  
VCC+0.3  
VCCI+0.3  
–10  
VCC+0.3  
VCCI+0.3  
–10  
VCC+0.3  
VCCI+0.3  
–10  
V
VIH (42MX)  
2.0  
2.0  
2.0  
2.0  
V
IIL  
µA  
µA  
ns  
IIH  
–10  
–10  
–10  
–10  
Input Transition Time,  
TR and TF  
500  
500  
500  
500  
CIO I/O Capacitance  
10  
3
10  
25  
10  
10  
10  
25  
pF  
2
Standby Current, ICC  
A40MX02,  
A40MX04  
mA  
A42MX09  
A42MX16  
5
6
25  
25  
25  
25  
25  
25  
25  
25  
25  
mA  
mA  
mA  
A42MX24,  
A42MX36  
15  
Low-Power  
Mode  
42MX  
0.5  
ICC - 5.0  
ICC - 5.0  
ICC - 5.0  
mA  
Standby Current  
devices only  
IIO, I/O source sink Can be derived from the IBIS model (http://www.actel.com/techdocs/models/ibis.html)  
current  
Notes:  
1. Only one output tested at a time. VCC/VCCI = min.  
2. All outputs unloaded. All inputs = VCC/VCCI or GND.  
v6.0  
1-17  
40MX and 42MX FPGA Families  
Mixed 5.0V/3.3V Operating Conditions (for 42MX Devices Only)  
Table 14 Absolute Maximum Ratings*  
Symbol  
VCCI  
VCCA  
VI  
Parameter  
DC Supply Voltage for I/Os  
DC Supply Voltage for Array  
Input Voltage  
Limits  
Units  
–0.5 to +7.0  
V
V
–0.5 to +7.0  
–0.5 to VCCI+0.5  
–0.5 to VCCI+0.5  
–65 to +150  
V
VO  
Output Voltage  
V
tSTG  
Storage Temperature  
°C  
Note: *Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to  
absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the  
Recommended Operating Conditions.  
Table 15 Recommended Operating Conditions  
Parameter  
Temperature Range*  
VCCA  
Commercial  
0 to +70  
Industrial  
-40 to +85  
4.5 to 5.5  
3.0 to 3.6  
Military  
–55 to +125  
4.5 to 5.5  
3.0 to 3.6  
Units  
°C  
V
4.75 to 5.25  
3.14 to 3.47  
VCCI  
V
Note: *Ambient temperature (TA) is used for commercial and industrial grades; case temperature (TC) is used for military grades.  
Mixed 5.0V/3.3V Electrical Specifications  
Table 16 Mixed 5.0V/3.3V Electrical Specifications  
Commercial Commercial '-F 'Industrial  
Military  
Symbol  
Parameter  
Min. Max.  
Min.  
Max. Min. Max. Min. Max. Units  
1
VOH  
IOH = –10mA  
2.4  
2.4  
V
I
OH = –4mA  
3.7  
3.7  
V
V
1
VOL  
IOL = 10mA  
IOL = 6mA  
0.5  
0.5  
0.8  
0.4  
0.8  
0.4  
0.8  
V
VIL  
VIH  
IL  
–0.3  
0.8  
–0.3  
–0.3  
–0.3  
V
2.0 VCCI+0.3 2.0  
VCCI+0.3 2.0 VCCI+0.3 2.0 VCCI+0.3  
V
VIN = 0.5V  
VIN = 2.7V  
–10  
–10  
500  
10  
5
–10  
–10  
500  
10  
–10  
–10  
500  
10  
–10  
–10  
500  
10  
µA  
µA  
ns  
pF  
mA  
mA  
mA  
IH  
Input Transition Time, TR and TF  
CIO I/O Capacitance  
2
Standby Current, ICC  
A42MX09  
A42MX16  
25  
25  
25  
6
25  
25  
25  
A42MX24, A42MX36  
20  
0.5  
25  
25  
25  
Low-Power Mode Standby Current  
ICC - 5.0  
ICC - 5.0  
ICC - 5.0 mA  
IIO I/O source sink current  
Can be derived from the IBIS model (http://www.actel.com/techdocs/models/ibis.html)  
Notes:  
1. Only one output tested at a time. VCCI = min.  
2. All outputs unloaded. All inputs = VCCI or GND.  
1-18  
v6.0  
40MX and 42MX FPGA Families  
Output Drive Characteristics for 5.0V PCI Signaling  
MX PCI device I/O drivers were designed specifically for high-performance PCI systems. Figure 1-16 on page 1-21 shows  
the typical output drive characteristics of the MX devices. MX output drivers are compliant with the PCI Local Bus  
Specification.  
Table 17 DC Specification (5.0V PCI Signaling)1  
PCI  
MX  
Symbol  
VCCI  
VIH  
Parameter  
Condition  
Min.  
4.75  
2.0  
Max.  
5.25  
Min.  
4.75  
2.0  
Max.  
5.252  
VCCI + 0.3  
0.8  
Units  
V
Supply Voltage for I/Os  
Input High Voltage  
VCC + 0.5  
0.8  
V
VIL  
Input Low Voltage  
–0.5  
–0.3  
V
IIH  
Input High Leakage Current  
Input Low Leakage Current  
Output High Voltage  
VIN = 2.7V  
VIN=0.5V  
70  
10  
µA  
µA  
V
IIL  
–70  
–10  
VOH  
IOUT = –2 mA  
2.4  
I
OUT = –6 mA  
3.84  
VOL  
Output Low Voltage  
IOUT = 3 mA,  
6 mA  
0.55  
0.33  
V
CIN  
Input Pin Capacitance  
CLK Pin Capacitance  
Pin Inductance  
10  
12  
20  
10  
10  
pF  
pF  
CCLK  
LPIN  
5
< 8 nH3  
nH  
Notes:  
1. PCI Local Bus Specification, Version 2.1, Section 4.2.1.1.  
2. Maximum rating for VCCI –0.5V to 7.0V.  
3. Dependent upon the chosen package. PCI recommends QFP and BGA packaging to reduce pin inductance and capacitance.  
Table 18 AC Specifications (5.0V PCI Signaling)*  
PCI  
MX  
Symbol  
Parameter  
Condition  
Min.  
Max.  
Min.  
Max.  
Units  
ICL  
Low Clamp Current  
–5 < VIN –1  
–25 + (VIN +1)  
/0.015  
–60  
–10  
mA  
Slew (r)  
Slew (f)  
Output Rise Slew Rate  
Output Fall Slew Rate  
0.4V to 2.4V load  
2.4V to 0.4V load  
1
1
5
5
1.8  
2.8  
2.8  
4.3  
V/ns  
V/ns  
Note: *PCI Local Bus Specification, Version 2.1, Section 4.2.1.2.  
v6.0  
1-19  
40MX and 42MX FPGA Families  
Output Drive Characteristics for 3.3V PCI Signaling  
Table 19 DC Specification (3.3V PCI Signaling)1  
PCI  
MX  
Symbol  
VCCI  
VIH  
Parameter  
Supply Voltage for I/Os  
Input High Voltage  
Condition  
Min.  
3.0  
Max.  
3.6  
Min.  
3.0  
Max.  
3.6  
Units  
V
V
0.5  
VCC + 0.5  
0.8  
0.5  
VCCI + 0.3  
0.8  
VIL  
Input Low Voltage  
–0.5  
–0.3  
V
IIH  
Input High Leakage Current  
Input Leakage Current  
Output High Voltage  
Output Low Voltage  
VIN = 2.7V  
70  
10  
µA  
µA  
V
IIL  
–70  
–10  
VOH  
VOL  
IOUT = –2 mA  
0.9  
5
3.3  
IOUT = 3 mA,  
6 mA  
0.1  
0.1 VCCI  
V
CIN  
Input Pin Capacitance  
CLK Pin Capacitance  
Pin Inductance  
10  
12  
20  
10  
10  
pF  
pF  
CCLK  
LPIN  
< 8 nH3  
nH  
Notes:  
1. PCI Local Bus Specification, Version 2.1, Section 4.2.2.1.  
2. Maximum rating for VCCI –0.5V to 7.0V.  
3. Dependent upon the chosen package. PCI recommends QFP and BGA packaging to reduce pin inductance and capacitance.  
Table 20 AC Specifications for (3.3V PCI Signaling)*  
PCI  
MX  
Symbol  
Parameter  
Condition  
Min.  
Max.  
Min.  
Max.  
Units  
ICL  
Low Clamp Current  
–5 < VIN –1  
–25 + (VIN +1)  
/0.015  
–60  
–10  
mA  
Slew (r)  
Slew (f)  
Output Rise Slew Rate  
Output Fall Slew Rate  
0.2V to 0.6V load  
0.6V to 0.2V load  
1
1
4
4
1.8  
2.8  
2.8  
4.0  
V/ns  
V/ns  
Note: *PCI Local Bus Specification, Version 2.1, Section 4.2.2.2.  
1-20  
v6.0  
40MX and 42MX FPGA Families  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
–0.05  
–0.10  
–0.15  
–0.20  
PCI I OL Maximum  
MX PCI IOL  
PCI I OL Minimum  
0
1
2
3
4
5
6
PCI I OH Maximum  
MX PCI IOH  
PCI I OH Minimum  
Voltage Out (V)  
Figure 1-16 Typical Output Drive Characteristics (Based Upon Measured Data)  
v6.0  
1-21  
40MX and 42MX FPGA Families  
P = Power  
= Junction to ambient of package. θ numbers are  
located in the Package Thermal Characteristics table  
below.  
Junction Temperature (T )  
J
θ
ja  
ja  
The temperature variable in the Designer software refers  
to the junction temperature, not the ambient  
temperature. This is an important distinction because the  
heat generated from dynamic power consumption is  
usually hotter than the ambient temperature. EQ 1-1,  
shown below, can be used to calculate junction  
temperature.  
Package Thermal Characteristics  
The device junction-to-case thermal characteristic is θjc,  
and the junction-to-ambient air characteristic is θja. The  
thermal characteristics for θja are shown with two  
different air flow rates.  
EQ 1-1  
Junction Temperature = T + Ta(1)  
The maximum junction temperature is 150°C.  
Where:  
Maximum power dissipation for commercial- and  
Ta = Ambient Temperature  
industrial-grade devices is a function of θ .  
ja  
T = Temperature gradient between junction (silicon)  
A sample calculation of the absolute maximum power  
dissipation allowed for a TQFP 176-pin package at  
commercial temperature and still air is as follow:  
and ambient  
T = θja * P(2)  
Max. junction temp. (°C) Max. ambient temp. (°C) 150°C 70°C  
--------------------------------------------------------------------------------------------------------------------------------- ----------------------------------  
= 2.86W  
Maximum Power Allowed =  
=
θja(°C/W)  
28°C/W  
The maximum power dissipation for military-grade devices is a function of θ . A sample calculation of the absolute  
jc  
maximum power dissipation allowed for CQFP 208-pin package at military temperature and still air is as follows:  
Max. junction temp. (°C) Max. ambient temp. (°C) 150°C 125°C  
--------------------------------------------------------------------------------------------------------------------------------- -------------------------------------  
Maximum Power Allowed =  
=
= 3.97W  
θjc(°C/W)  
6.3°C/W  
Table 21 Package Thermal Characteristics  
θja  
1.0 m/s  
2.5 m/s  
Plastic Packages  
Pin Count  
100  
160  
208  
240  
44  
θjc  
12.0  
10.0  
8.0  
Still Air  
27.8  
26.2  
26.1  
25.6  
20.0  
25.0  
22.5  
24.7  
38.2  
35.3  
18.3  
200 ft/min. 500 ft/min.  
Units  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Plastic Quad Flat Pack  
23.4  
22.8  
22.5  
22.3  
24.5  
21.0  
18.9  
19.9  
31.9  
29.4  
14.9  
21.2  
21.1  
20.8  
20.8  
22.0  
19.4  
17.6  
18.0  
29.4  
27.1  
13.9  
Plastic Quad Flat Pack  
Plastic Quad Flat Pack  
Plastic Quad Flat Pack  
8.5  
Plastic Leaded Chip Carrier  
Plastic Leaded Chip Carrier  
Plastic Leaded Chip Carrier  
Thin Plastic Quad Flat Pack  
Very Thin Plastic Quad Flat Pack  
Very Thin Plastic Quad Flat Pack  
Plastic Ball Grid Array  
16.0  
13.0  
12.0  
11.0  
12.0  
10.0  
3.0  
68  
84  
176  
80  
100  
272  
Ceramic Packages  
Ceramic Quad Flat Pack  
Ceramic Quad Flat Pack  
208  
256  
2.0  
2.0  
22.0  
20.0  
19.8  
16.5  
18.0  
15.0  
°C/W  
°C/W  
1-22  
v6.0  
40MX and 42MX FPGA Families  
Timing Models  
Predicted  
Routing  
Delays  
Input Delay  
I/O Module  
Internal Delays  
Output Delay  
I/O Module  
t
INYL=0.62 ns  
t
IRD2=2.59 ns  
Logic Module  
t
DLH=3.32 ns  
t
t
IRD1=2.09 ns  
RD1=1.28 ns  
t
t
t
IRD4=3.64 ns  
t
ENHZ=7.92 ns  
RD2=1.80 ns  
PD=1.24 ns  
t
t
IRD8=5.73 ns  
t
RD4=2.33 ns  
CO=1.24 ns  
t
RD8=4.93 ns  
Array  
Clock  
t
CKH=4.55 ns  
FO=128  
F
MAX=180 MHz  
Note:  
* Values are shown for 40MX ‘–3’ speed devices at 5.0V worst-case commercial conditions.  
Figure 1-17 40MX Timing Model*  
Input Delays  
Internal Delays Predicted  
Output Delays  
Routing  
Delays  
I/O Module  
t
I/O Module  
IRD1=2.0 ns  
t
INYL=0.8 ns  
Combinatorial  
Logic Module  
t
t
DLH=2.5 ns  
RD1=0.7 ns  
t
t
t
t
D
Q
RD2=1.9 ns  
RD4=1.4 ns  
RD8=2.3 ns  
PD=1.2 ns  
I/O Module  
G
t
DLH=2.5 ns  
Sequential  
Logic Module  
t
t
t
INH=0.0 ns  
INSU=0.3 ns  
INGL=1.3 ns  
Combin  
D
Q
D
G
Q
t
atoria l  
-
RD1=0.70 ns  
t
ENHZ=4.9 ns  
Logic  
include  
t
t
t
OUTH=0.00 ns  
OUTSU=0.3 ns  
GLH=2.6 ns  
t
t
t
SUD=0.3 ns  
HD=0.00 ns  
CO=1.3 ns  
Array  
Clocks  
FO = 32  
t
CKH=2.70 ns  
F
t
MAX=296 MHz  
LCO=5.2 ns (light loads, pad-to-pad)  
Notes: *Values are shown for A42MX09 ‘–3’ at 5.0V worst-case commercial conditions.  
† Input module predicted routing delay.  
Figure 1-18 42MX Timing Model*  
v6.0  
1-23  
40MX and 42MX FPGA Families  
Input Delays  
Internal Delays Predicted  
Output Delays  
Routing  
Delays  
I/O Module  
t
I/O Module  
IRD1=2.0 ns  
t
INYL=0.8 ns  
Combinatorial  
Logic Module  
t
t
DLH=2.5 ns  
RD1=0.7 ns  
t
t
t
t
D
Q
RD2=1.9 ns  
RD4=1.4 ns  
RD8=2.3 ns  
PD=1.2 ns  
I/O Module  
G
t
DLH=2.5 ns  
Sequential  
Logic Module  
t
t
t
INH=0.0 ns  
INSU=0.3 ns  
INGL=1.3 ns  
Combin  
D
Q
D
G
Q
t
atoria l  
-
RD1=0.70 ns  
t
ENHZ=4.9 ns  
Logic  
include  
t
t
t
OUTH=0.00 ns  
OUTSU=0.3 ns  
GLH=2.6 ns  
t
t
t
SUD=0.3 ns  
HD=0.00 ns  
CO=1.3 ns  
Array  
Clocks  
FO = 32  
t
CKH=2.70 ns  
F
t
MAX=296 MHz  
LCO=5.2 ns (light loads, pad-to-pad)  
Notes: * Values are shown for A42MX36 ‘–3’ at 5.0V worst-case commercial conditions.  
** Load-dependent  
Figure 1-19 42MX Timing Model (Logic Functions Using Quadrant Clocks)  
Input Delays  
I/O Module  
t
t
INPY=1.0ns  
IRD1=2.0ns  
D
G
Q
Predicted  
Routing  
Delays  
I/O Module  
DLH=2.6ns  
t
t
t
t
INSU=0.5ns  
INH=0.0ns  
INGO=1.4ns  
RD [7:0]  
RDAD [5:0]  
REN  
WD [7:0]  
t
RD1=0.9ns  
WRAD [5:0]  
BLKEN  
D
G
Q
WEN  
WCLK  
RCLK  
t
t
t
t
t
ADSU=1.6ns  
ADSU=1.6ns  
GHL=2.9ns  
LSU=0.5ns  
LH=0.0ns  
t
t
ADH=0.0ns  
ADH=0.0ns  
Array  
t
t
WENSU=2.7ns  
RENSU=0.6ns  
Clocks  
t
t
BENS=2.8ns  
RCO=3.4ns  
FMAX =167 MHz  
Note: *Values are shown for A42MX36 ‘–3 at 5.0V worst-case commercial conditions.  
Figure 1-20 42MX Timing Model (SRAM Functions)  
1-24  
v6.0  
40MX and 42MX FPGA Families  
Parameter Measurement  
E
D
To AC test loads (shown below)  
PAD  
TRIBUFF  
In  
E
E
50% 50%  
50% 50%  
VCCI  
50%  
VOH  
50%  
VOH  
1.5V  
1.5V  
PAD  
1.5V  
PAD  
GND  
PAD  
90%  
t
ENHZ  
1.5V  
10%  
ENLZ  
VOL  
VOL  
t
t
DHL  
t
t
DLH  
t
ENZL  
ENZH  
Figure 1-21 Output Buffer Delays  
Load 1  
Load 2  
(Used to measure propagation delay)  
(Used to measure rising/falling edges)  
VCCI  
GND  
To the output under test  
t
t
t
R to V  
for PLZ/ PZL  
CCI  
t
35 pF  
R to GND for PHZ/ PZH  
R=1k  
To the output under test  
35 pF  
Figure 1-22 AC Test Loads  
S
Y
A
Y
PA D  
INBUF  
B
S, A or B  
Y
50% 50%  
50%  
3V  
1.5V 1.5V  
50%  
PAD  
0V  
VCCI  
50%  
t
PLH  
PHL  
t
50%  
Y
GND  
Y
50%  
50%  
t
t
t
PHL  
PLH  
INYL  
INYH  
Figure 1-24 Module Delays  
Figure 1-23 Input Buffer Delays  
v6.0  
1-25  
40MX and 42MX FPGA Families  
Sequential Module Timing Characteristics  
PRE  
CLR  
Y
D
E
CLK  
(Positive Edge-Triggered)  
t
HD  
D*  
G, CLK  
t
t
A
t
SUD  
WCLKA  
t
t
SU EN A  
WCLKI  
t
HENA  
E
t
CO  
Q
t
RS  
PRE, CLR  
t
WASYN  
Note: *D represents all data functions involving A, B, and S for multiplexed flip-flops.  
Figure 1-25 Flip-Flops and Latches  
1-26  
v6.0  
40MX and 42MX FPGA Families  
Sequential Timing Characteristics  
PA D  
G
DATA  
IBDL  
CLK PA D  
DATA  
t
INH  
G
t
INSU  
t
HEXT  
CLK  
t
SU EXT  
Figure 1-26 Input Buffer Latches  
D
PAD  
OBDLHS  
G
D
G
t
OUTSU  
t
OUTH  
Figure 1-27 Output Buffer Latches  
v6.0  
1-27  
40MX and 42MX FPGA Families  
Decode Module Timing  
A
B
C
D
E
Y
H
F
G
A–G, H  
Y
50%  
t
PHL  
t
PLH  
Figure 1-28 Decode Module Timing  
SRAM Timing Characteristics  
Read Port  
Write Port  
WRAD [5:0]  
BLKEN  
RDAD [5:0]  
LEW  
RAM Array  
32x8 or 64x4  
(256 Bits)  
WEN  
REN  
WCLK  
RCLK  
WD [7:0]  
RD [7:0]  
Figure 1-29 SRAM Timing Characteristics  
Dual-Port SRAM Timing Waveforms  
tRCKHL  
tRCKHL  
WCLK  
tADSU  
tADH  
WD[7:0]  
WRAD[5:0]  
Valid  
tWENSU  
tWENH  
WEN  
tBENSU  
tBENH  
Valid  
BLKEN  
Note: Identical timing for falling edge clock.  
Figure 1-30 42MX SRAM Write Operation  
1-28  
v6.0  
40MX and 42MX FPGA Families  
tCKHL  
tRCKHL  
RCLK  
REN  
tRENSU  
tRENH  
tADSU  
Valid  
tADH  
RDAD[5:0]  
tRCO  
tDOH  
Old Data  
New Data  
RD[7:0]  
Note: Identical timing for falling edge clock.  
Figure 1-31 42MX SRAM Synchronous Read Operation  
t RDADV  
ADDR1  
RDAD[5:0]  
RD[7:0]  
ADDR2  
tRPD  
tDOH  
Data 1  
Data 2  
Figure 1-32 42MX SRAM Asynchronous Read Operation—Type 1 (Read Address Controlled)  
WEN  
tWENSU  
tWENH  
WD[7:0]  
WRAD[5:0]  
BLKEN  
Valid  
tADH  
tADSU  
WCLK  
tRPD  
tDOH  
Old Data  
New Data  
RD[7:0]  
Figure 1-33 42MX SRAM Asynchronous Read Operation—Type 2 (Write Address Controlled)  
v6.0  
1-29  
40MX and 42MX FPGA Families  
Predictable Performance: Tight Delay Distributions  
Propagation delay between logic modules depends on  
Critical Nets and Typical Nets  
the resistive and capacitive loading of the routing tracks,  
the interconnect elements, and the module inputs being  
driven. Propagation delay increases as the length of  
routing tracks, the number of interconnect elements, or  
the number of inputs increases.  
Propagation delays are expressed only for typical nets,  
which are used for initial design performance evaluation.  
Critical net delays can then be applied to the most timing  
critical paths. Critical nets are determined by net  
property assignment in Actel's Designer software prior to  
placement and routing. Up to 6% of the nets in a design  
may be designated as critical.  
From a design perspective, the propagation delay can be  
statistically correlated or modeled by the fanout  
(number of loads) driven by a module. Higher fanout  
usually requires some paths to have longer routing  
tracks.  
Long Tracks  
The MX FPGAs deliver a tight fanout delay distribution,  
which is achieved in two ways: by decreasing the delay of  
the interconnect elements and by decreasing the number  
of interconnect elements per path.  
Some nets in the design use long tracks, which are  
special routing resources that span multiple rows,  
columns, or modules. Long tracks employ three and  
sometimes four antifuse connections, which increase  
capacitance and resistance, resulting in longer net delays  
for macros connected to long tracks. Typically, up to  
6 percent of nets in a fully utilized device require long  
tracks. Long tracks add approximately a 3 ns to a 6 ns  
delay, which is represented statistically in higher fanout  
(FO=8) routing delays in the data sheet specifications  
section, shown in Table 28 on page 1-36.  
Actel’s patented antifuse offers a very low resistive/  
capacitive interconnect. The antifuses, fabricated in  
0.45 µm lithography, offer nominal levels of 100Ω  
resistance and 7.0fF capacitance per antifuse.  
MX fanout distribution is also tight due to the low  
number of antifuses required for each interconnect path.  
The proprietary architecture limits the number of  
antifuses per path to a maximum of four, with  
90 percent of interconnects using only two antifuses.  
Timing Derating  
MX devices are manufactured with a CMOS process.  
Therefore, device performance varies according to  
temperature, voltage, and process changes. Minimum  
timing parameters reflect maximum operating voltage,  
minimum operating temperature and best-case  
processing. Maximum timing parameters reflect  
minimum operating voltage, maximum operating  
temperature and worst-case processing.  
Timing Characteristics  
Device timing characteristics fall into three categories:  
family-dependent, device-dependent, and design-  
dependent. The input and output buffer characteristics  
are common to all MX devices. Internal routing delays  
are device-dependent; actual delays are not determined  
until after place-and-route of the user's design is  
complete. Delay values may then be determined by using  
the Designer software utility or by performing  
simulation with post-layout delays.  
1-30  
v6.0  
40MX and 42MX FPGA Families  
Temperature and Voltage Derating Factors  
Table 22 42MX Temperature and Voltage Derating Factors  
(Normalized to TJ = 25°C, VCCA = 5.0V)  
Temperature  
25°C  
42MX Voltage  
–55°C  
0.93  
0.88  
0.85  
0.84  
0.83  
–40°C  
0.95  
0.90  
0.87  
0.86  
0.85  
0°C  
1.05  
1.00  
0.96  
0.95  
0.94  
70°C  
1.25  
1.18  
1.15  
1.12  
1.10  
85°C  
1.29  
1.22  
1.18  
1.14  
1.13  
125°C  
1.41  
1.34  
1.29  
1.28  
1.26  
4.50  
4.75  
5.00  
5.25  
5.50  
1.09  
1.03  
1.00  
0.97  
0.96  
1.50  
1.40  
1.30  
1.20  
1.10  
1.00  
0.90  
0.80  
0.70  
0.60  
–55˚C  
–40˚C  
0˚C  
25˚C  
70˚C  
85˚C  
125˚C  
4.50  
4.75  
5.00  
5.25  
5.50  
Voltage (V)  
Note: This derating factor applies to all routing and propagation delays.  
Figure 1-34 42MX Junction Temperature and Voltage Derating Curves  
(Normalized to TJ = 25°C, VCCA = 5.0V)  
v6.0  
1-31  
40MX and 42MX FPGA Families  
Table 23 40MX Temperature and Voltage Derating Factors  
(Normalized to TJ = 25°C, VCC = 5.0V)  
Temperature  
25°C  
40MX Voltage  
–55°C  
0.89  
0.84  
0.82  
0.80  
0.79  
–40°C  
0.93  
0.88  
0.85  
0.82  
0.82  
0°C  
1.02  
0.97  
0.94  
0.91  
0.90  
70°C  
1.25  
1.18  
1.15  
1.12  
1.10  
85°C  
1.31  
1.24  
1.20  
1.16  
1.15  
125°C  
1.45  
1.37  
1.33  
1.29  
1.28  
4.50  
4.75  
5.00  
5.25  
5.50  
1.09  
1.03  
1.00  
0.97  
0.96  
1.50  
1.40  
1.30  
1.20  
1.10  
1.00  
0.90  
0.80  
0.70  
0.60  
–55˚C  
–40˚C  
0˚C  
25˚C  
70˚C  
85˚C  
125˚C  
4.50  
4.75  
5.00  
Voltage (V)  
5.25  
5.50  
Note: This derating factor applies to all routing and propagation delays.  
Figure 1-35 40MX Junction Temperature and Voltage Derating Curves  
(Normalized to TJ = 25°C, VCC = 5.0V)  
1-32  
v6.0  
40MX and 42MX FPGA Families  
Table 24 42MX Temperature and Voltage Derating Factors  
(Normalized to TJ = 25°C, VCCA = 3.3V)  
Temperature  
25°C  
42MX Voltage  
–55°C  
0.97  
–40°C  
1.00  
0°C  
1.10  
0.96  
0.92  
70°C  
1.32  
1.15  
1.10  
85°C  
1.36  
1.18  
1.13  
125°C  
1.45  
3.00  
3.30  
3.60  
1.15  
0.84  
0.87  
1.00  
1.26  
0.81  
0.84  
0.96  
1.21  
1.60  
1.50  
1.40  
1.30  
1.20  
1.10  
1.00  
0.90  
0.80  
0.70  
0.60  
0.50  
0.40  
55˚C  
40˚C  
0˚C  
25˚C  
70˚C  
85˚C  
125˚C  
3.00  
3.30  
3.60  
Voltage (V)  
(V)  
Note: This derating factor applies to all routing and propagation delays.  
Figure 1-36 42MX Junction Temperature and Voltage Derating Curves  
(Normalized to TJ = 25°C, VCCA = 3.3V)  
v6.0  
1-33  
40MX and 42MX FPGA Families  
Table 25 40MX Temperature and Voltage Derating Factors  
(Normalized to TJ = 25°C, VCC = 3.3V)  
Temperature  
25°C  
40MX Voltage  
–55°C  
1.08  
–40°C  
1.12  
0°C  
1.21  
0.96  
0.92  
70°C  
1.50  
1.19  
1.14  
85°C  
1.64  
1.30  
1.25  
125°C  
2.00  
3.00  
3.30  
3.60  
1.26  
0.86  
0.89  
1.00  
1.59  
0.83  
0.85  
0.96  
1.53  
2.20  
2.00  
1.80  
1.60  
1.40  
1.20  
1.00  
0.80  
0.60  
55˚C  
40˚C  
0˚C  
25˚C  
70˚C  
85˚C  
125˚C  
3.00  
3.30  
Voltage (V)  
3.60  
Note: This derating factor applies to all routing and propagation delays.  
Figure 1-37 40MX Junction Temperature and Voltage Derating Curves  
(Normalized to TJ = 25°C, VCC = 3.3V)  
1-34  
v6.0  
40MX and 42MX FPGA Families  
PCI System Timing Specification  
Table 26 and Table 27 list the critical PCI timing  
parameters and the corresponding timing parameters  
for the MX PCI-compliant devices.  
PCI Models  
Actel provides synthesizable VHDL and Verilog-HDL  
models for a PCI Target interface, a PCI Target and  
Target+DMA Master interface. Contact your Actel sales  
representative for more details.  
Table 26 Clock Specification for 33 MHz PCI  
PCI  
A42MX24  
Min. Max.  
A42MX36  
Min. Max.  
Symbol  
tCYC  
Parameter  
Min.  
30  
Max.  
Units  
ns  
CLK Cycle Time  
CLK High Time  
CLK Low Time  
4.0  
1.9  
1.9  
4.0  
1.9  
1.9  
tHIGH  
11  
ns  
tLOW  
11  
ns  
Table 27 Timing Parameters for 33 MHz PCI  
PCI  
A42MX24  
A42MX36  
Symbol  
tVAL  
Parameter  
Min.  
Max.  
Min.  
Max.  
9.0  
9.0  
4.0  
8.31  
Min.  
Max.  
9.0  
9.0  
4.0  
8.31  
Units  
ns  
CLK to Signal Valid—Bused Signals  
CLK to Signal Valid—Point-to-Point  
Float to Active  
2
2 2  
2
11  
12  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
tVAL(PTP)  
tON  
ns  
ns  
tOFF  
Active to Float  
28  
ns  
tSU  
Input Set-Up Time to CLK—Bused Signals  
Input Set-Up Time to CLK—Point-to-Point  
Input Hold to CLK  
7
1.5  
1.5  
0
1.5  
1.5  
0
ns  
tSU(PTP)  
tH  
10, 12 2  
ns  
0
ns  
Notes:  
1. TOFF is system dependent. MX PCI devices have 7.4 ns turn-off time, reflection is typically an additional 10 ns.  
2. REQ# and GNT# are point-to-point signals and have different output valid delay and input setup times than do bussed signals.  
GNT# has a setup of 10; REW# has a setup of 12.  
v6.0  
1-35  
40MX and 42MX FPGA Families  
Timing Characteristics  
Table 28 A40MX02 Timing Characteristics (Nominal 5.0V Operation)  
(Worst-Case Commercial Conditions, VCC = 4.75V, TJ = 70°C)  
‘–3’ Speed  
‘–2’ Speed  
‘–1’ Speed ‘Std’ Speed ‘–F’ Speed  
Parameter Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Logic Module Propagation Delays  
tPD1  
tPD2  
tCO  
tGO  
tRS  
Single Module  
1.2  
2.7  
1.2  
1.2  
1.2  
1.4  
3.1  
1.4  
1.4  
1.4  
1.6  
3.5  
1.6  
1.6  
1.6  
1.9  
4.1  
1.9  
1.9  
1.9  
2.7  
5.7  
2.7  
2.7  
2.7  
ns  
ns  
ns  
ns  
ns  
Dual-Module Macros  
Sequential Clock-to-Q  
Latch G-to-Q  
Flip-Flop (Latch) Reset-to-Q  
Logic Module Predicted Routing Delays1  
tRD1  
tRD2  
tRD3  
tRD4  
tRD8  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
1.3  
1.8  
2.3  
2.9  
4.9  
1.5  
2.1  
2.7  
3.3  
5.7  
1.7  
2.4  
3.0  
3.7  
6.5  
2.0  
2.8  
3.6  
4.4  
7.6  
2.8  
3.9  
ns  
ns  
ns  
ns  
ns  
5.0  
6.1  
10.6  
Logic Module Sequential Timing2  
tSUD  
Flip-Flop (Latch) Data Input Set-Up 3.1  
3.5  
0.0  
3.5  
0.0  
3.8  
4.0  
0.0  
4.0  
0.0  
4.3  
4.7  
0.0  
4.7  
0.0  
5.0  
6.6  
0.0  
6.6  
0.0  
7.0  
ns  
ns  
ns  
ns  
ns  
3
tHD  
Flip-Flop (Latch) Data Input Hold  
Flip-Flop (Latch) Enable Set-Up  
Flip-Flop (Latch) Enable Hold  
0.0  
3.1  
0.0  
3.3  
tSUENA  
tHENA  
tWCLKA  
Flip-Flop (Latch)  
Clock Active Pulse Width  
tWASYN  
Flip-Flop (Latch)  
Asynchronous Pulse Width  
3.3  
4.8  
3.8  
5.6  
4.3  
6.3  
5.0  
7.5  
7.0  
ns  
tA  
Flip-Flop Clock Input Period  
10.4  
ns  
fMAX  
Flip-Flop (Latch) Clock  
Frequency (FO = 128)  
181  
168  
154  
134  
80  
MHz  
Input Module Propagation Delays  
tINYH  
Pad-to-Y HIGH  
Pad-to-Y LOW  
0.7  
0.6  
0.8  
0.7  
0.9  
0.8  
1.1  
1.0  
1.5  
1.3  
ns  
ns  
tINYL  
Notes:  
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating  
device performance. Post-route timing analysis or simulation is required to determine actual performance.  
2. Set-up times assume fanout of 3. Further testing information can be obtained from the Timer utility.  
3. The hold time for the DFME1A macro may be greater than 0 ns. Use the Timer tool from the Designer software to check the hold  
time for this macro.  
4. Delays based on 35pF loading.  
1-36  
v6.0  
40MX and 42MX FPGA Families  
Table 28 A40MX02 Timing Characteristics (Nominal 5.0V Operation) (Continued)  
(Worst-Case Commercial Conditions, VCC = 4.75V, TJ = 70°C)  
‘–3’ Speed  
‘–2’ Speed  
‘–1’ Speed ‘Std’ Speed ‘–F’ Speed  
Parameter Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Input Module Predicted Routing Delays1  
tIRD1  
tIRD2  
tIRD3  
tIRD4  
tIRD8  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
2.1  
2.6  
3.1  
3.6  
5.7  
2.4  
3.0  
3.6  
4.2  
6.6  
2.2  
3.4  
4.1  
4.8  
7.5  
3.2  
4.0  
4.8  
5.6  
8.8  
4.5  
5.6  
ns  
ns  
ns  
ns  
ns  
6.7  
7.8  
12.4  
Global Clock Network  
tCKH Input Low to HIGH FO = 16  
4.6  
4.6  
5.3  
5.3  
6.0  
6.0  
7.0  
7.0  
9.8  
9.8  
ns  
ns  
FO = 128  
tCKL  
Input High to LOW FO = 16  
FO = 128  
4.8  
4.8  
5.6  
5.6  
6.3  
6.3  
7.4  
7.4  
10.4  
10.4  
tPWH  
tPWL  
tCKSW  
tP  
Minimum Pulse  
Width HIGH  
FO = 16  
FO = 128  
2.2  
2.4  
2.6  
2.7  
2.9  
3.1  
3.4  
3.6  
4.8  
5.1  
ns  
Minimum Pulse  
Width LOW  
FO = 16  
FO = 128  
2.2  
2.4  
2.6  
2.7  
2.9  
3.01  
3.4  
3.6  
4.8  
5.1  
ns  
Maximum Skew  
FO = 16  
FO = 128  
0.4  
0.5  
0.5  
0.6  
0.5  
0.7  
0.6  
0.8  
0.8  
1.2  
ns  
Minimum Period  
FO = 16  
FO = 128  
4.7  
4.8  
5.4  
5.6  
6.1  
6.3  
7.2  
7.5  
10.0  
10.4  
ns  
fMAX  
Notes:  
Maximum  
Frequency  
FO = 16  
FO = 128  
188  
181  
175  
168  
160  
154  
139  
134  
83  
80  
MHz  
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating  
device performance. Post-route timing analysis or simulation is required to determine actual performance.  
2. Set-up times assume fanout of 3. Further testing information can be obtained from the Timer utility.  
3. The hold time for the DFME1A macro may be greater than 0 ns. Use the Timer tool from the Designer software to check the hold  
time for this macro.  
4. Delays based on 35pF loading.  
v6.0  
1-37  
40MX and 42MX FPGA Families  
Table 28 A40MX02 Timing Characteristics (Nominal 5.0V Operation) (Continued)  
(Worst-Case Commercial Conditions, VCC = 4.75V, TJ = 70°C)  
‘–3’ Speed  
‘–2’ Speed  
‘–1’ Speed ‘Std’ Speed ‘–F’ Speed  
Parameter Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
TTL Output Module Timing4  
tDLH  
tDHL  
tENZH  
Data-to-Pad HIGH  
Data-to-Pad LOW  
3.3  
4.0  
3.7  
3.8  
4.6  
4.3  
4.3  
5.2  
4.9  
5.1  
6.1  
5.8  
7.2  
8.6  
8.0  
ns  
ns  
ns  
Enable Pad  
HIGH  
Z
to  
to  
tENZL  
tENHZ  
tENLZ  
Enable Pad  
LOW  
Z
4.7  
7.9  
5.9  
5.4  
9.1  
6.8  
6.1  
10.4  
7.7  
7.2  
12.2  
9.0  
10.1  
17.1  
12.6  
ns  
ns  
ns  
Enable Pad HIGH to  
Z
Enable Pad LOW to  
Z
dTLH  
dTHL  
Delta LOW to HIGH  
Delta HIGH to LOW  
0.02  
0.03  
0.02  
0.03  
0.03  
0.03  
0.03  
0.04  
0.04  
0.06  
ns/pF  
ns/pF  
CMOS Output Module Timing4  
tDLH  
tDHL  
tENZH  
Data-to-Pad HIGH  
Data-to-Pad LOW  
3.9  
3.4  
3.4  
4.5  
3.9  
3.9  
5.1  
4.4  
4.4  
6.05  
5.2  
8.5  
7.3  
7.3  
ns  
ns  
ns  
Enable Pad  
HIGH  
Z
to  
to  
5.2  
tENZL  
tENHZ  
tENLZ  
Enable Pad  
LOW  
Z
4.9  
7.9  
5.9  
5.6  
9.1  
6.8  
6.4  
10.4  
7.7  
7.5  
12.2  
9.0  
10.5  
17.0  
12.6  
ns  
ns  
ns  
Enable Pad HIGH to  
Z
Enable Pad LOW to  
Z
dTLH  
Delta LOW to HIGH  
Delta HIGH to LOW  
0.03  
0.02  
0.04  
0.02  
0.04  
0.03  
0.05  
0.03  
0.07  
0.04  
ns/pF  
ns/pF  
dTHL  
Notes:  
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating  
device performance. Post-route timing analysis or simulation is required to determine actual performance.  
2. Set-up times assume fanout of 3. Further testing information can be obtained from the Timer utility.  
3. The hold time for the DFME1A macro may be greater than 0 ns. Use the Timer tool from the Designer software to check the hold  
time for this macro.  
4. Delays based on 35pF loading.  
1-38  
v6.0  
40MX and 42MX FPGA Families  
Table 29 A40MX02 Timing Characteristics (Nominal 3.3V Operation)  
(Worst-Case Commercial Conditions, VCC = 3.0V, TJ = 70°C)  
‘–3’ Speed  
‘–2’ Speed  
‘–1’ Speed ‘Std’ Speed ‘–F’ Speed  
Parameter Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Logic Module Propagation Delays  
tPD1  
tPD2  
tCO  
tGO  
tRS  
Single Module  
1.7  
3.7  
1.7  
1.7  
1.7  
2.0  
4.3  
2.0  
2.0  
2.0  
2.3  
4.9  
2.3  
2.3  
2.3  
2.7  
5.7  
2.7  
2.7  
2.7  
3.7  
8.0  
3.7  
3.7  
3.7  
ns  
ns  
ns  
ns  
ns  
Dual-Module Macros  
Sequential Clock-to-Q  
Latch G-to-Q  
Flip-Flop (Latch) Reset-to-Q  
Logic Module Predicted Routing Delays1  
tRD1  
tRD2  
tRD3  
tRD4  
tRD8  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
2.0  
2.7  
3.4  
4.2  
7.1  
2.2  
3.1  
3.9  
4.8  
8.2  
2.5  
3.5  
4.4  
5.4  
9.2  
3.0  
4.1  
4.2  
5.7  
ns  
ns  
ns  
ns  
ns  
5.2  
7.3  
6.3  
8.9  
10.9  
15.2  
Logic Module Sequential Timing2  
tSUD  
Flip-Flop (Latch) Data Input Set-Up 4.3  
4.9  
0.0  
4.9  
0.0  
5.3  
5.6  
0.0  
5.6  
0.0  
6.0  
6.6  
0.0  
6.6  
0.0  
7.0  
9.2  
0.0  
9.2  
0.0  
9.8  
ns  
ns  
ns  
ns  
ns  
3
tHD  
Flip-Flop (Latch) Data Input Hold  
Flip-Flop (Latch) Enable Set-Up  
Flip-Flop (Latch) Enable Hold  
0.0  
4.3  
0.0  
tSUENA  
tHENA  
tWCLKA  
Flip-Flop (Latch) Clock Active 4.6  
Pulse Width  
tWASYN  
Flip-Flop (Latch)  
Asynchronous Pulse Width  
4.6  
5.3  
7.8  
6.0  
8.9  
7.0  
9.8  
ns  
tA  
Flip-Flop Clock Input Period  
6.8  
10.4  
14.6  
ns  
fMAX  
Flip-Flop (Latch) Clock  
Frequency (FO = 128)  
109  
101  
92  
80  
48  
MHz  
Input Module Propagation Delays  
tINYH  
Pad-to-Y HIGH  
Pad-to-Y LOW  
1.0  
0.9  
1.1  
1.0  
1.3  
1.1  
1.5  
1.3  
2.1  
1.9  
ns  
ns  
tINYL  
Notes:  
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating  
device performance. Post-route timing analysis or simulation is required to determine actual performance.  
2. Set-up times assume fanout of 3. Further testing information can be obtained from the Timer utility.  
3. The hold time for the DFME1A macro may be greater than 0 ns. Use the Timer tool from the Designer software to check the hold  
time for this macro.  
4. Delays based on 35 pF loading.  
v6.0  
1-39  
40MX and 42MX FPGA Families  
Table 29 A40MX02 Timing Characteristics (Nominal 3.3V Operation) (Continued)  
(Worst-Case Commercial Conditions, VCC = 3.0V, TJ = 70°C)  
‘–3’ Speed  
‘–2’ Speed  
‘–1’ Speed ‘Std’ Speed ‘–F’ Speed  
Parameter Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Input Module Predicted Routing Delays1  
tIRD1  
tIRD2  
tIRD3  
tIRD4  
tIRD8  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
2.9  
3.6  
4.4  
5.1  
8.0  
3.4  
4.2  
3.8  
4.8  
4.5  
5.6  
6.3  
7.8  
ns  
ns  
ns  
ns  
ns  
5.0  
5.7  
6.7  
9.4  
5.9  
6.7  
7.8  
11.0  
17.3  
9.26  
10.5  
12.6  
Global Clock Network  
tCKH  
tCKL  
tPWH  
tPWL  
tCKSW  
tP  
Input LOW to HIGH FO = 16  
6.4  
6.4  
7.4  
7.4  
8.3  
8.3  
9.8  
9.8  
13.7  
13.7  
ns  
ns  
FO = 128  
Input HIGH to LOW FO = 16  
FO = 128  
6.7  
6.7  
7.8  
7.8  
8.8  
8.8  
10.4  
10.4  
14.5  
14.5  
Minimum Pulse  
Width HIGH  
FO = 16  
FO = 128  
3.1  
3.3  
3.6  
3.8  
4.1  
4.3  
4.8  
5.1  
6.7  
7.1  
ns  
Minimum Pulse  
Width LOW  
FO = 16  
FO = 128  
3.1  
3.3  
3.6  
3.8  
4.1  
4.3  
4.8  
5.1  
6.7  
7.1  
ns  
Maximum Skew  
FO = 16  
0.6  
0.8  
0.6  
0.9  
0.7  
1.0  
0.8  
1.2  
1.2  
1.6  
ns  
FO = 128  
Minimum Period  
FO = 16  
6.5  
6.8  
7.5  
7.8  
8.5  
8.9  
10.1  
10.4  
14.1  
14.6  
ns  
FO = 128  
fMAX  
Maximum Frequency FO = 16  
FO = 128  
113  
109  
105  
101  
96  
92  
83  
80  
50  
48  
MHz  
TTL Output Module Timing4  
tDLH  
Data-to-Pad HIGH  
4.7  
5.6  
5.4  
6.4  
6.1  
7.3  
7.2  
8.6  
10.0  
12.0  
11.3  
14.1  
23.9  
17.7  
0.06  
0.08  
ns  
ns  
tDHL  
Data-to-Pad LOW  
tENZH  
tENZL  
tENHZ  
tENLZ  
dTLH  
Enable Pad Z to HIGH  
Enable Pad Z to LOW  
Enable Pad HIGH to Z  
Enable Pad LOW to Z  
Delta LOW to HIGH  
Delta HIGH to LOW  
5.2  
6.0  
6.8  
8.1  
ns  
6.6  
7.6  
8.6  
10.1  
17.1  
12.6  
0.04  
0.06  
ns  
11.1  
8.2  
12.8  
9.5  
14.5  
10.7  
0.04  
0.05  
ns  
ns  
0.03  
0.04  
0.03  
0.04  
ns/pF  
ns/pF  
dTHL  
Notes:  
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating  
device performance. Post-route timing analysis or simulation is required to determine actual performance.  
2. Set-up times assume fanout of 3. Further testing information can be obtained from the Timer utility.  
3. The hold time for the DFME1A macro may be greater than 0 ns. Use the Timer tool from the Designer software to check the hold  
time for this macro.  
4. Delays based on 35 pF loading.  
1-40  
v6.0  
40MX and 42MX FPGA Families  
Table 29 A40MX02 Timing Characteristics (Nominal 3.3V Operation) (Continued)  
(Worst-Case Commercial Conditions, VCC = 3.0V, TJ = 70°C)  
‘–3’ Speed  
‘–2’ Speed  
‘–1’ Speed ‘Std’ Speed ‘–F’ Speed  
Parameter Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
CMOS Output Module Timing4  
tDLH  
Data-to-Pad HIGH  
5.5  
4.8  
6.4  
5.5  
7.2  
6.2  
8.5  
7.3  
11.9  
10.2  
10.2  
14.7  
23.9  
17.7  
0.10  
0.06  
ns  
ns  
tDHL  
Data-to-Pad LOW  
tENZH  
tENZL  
tENHZ  
tENLZ  
dTLH  
Enable Pad Z to HIGH  
Enable Pad Z to LOW  
Enable Pad HIGH to Z  
Enable Pad LOW to Z  
Delta LOW to HIGH  
Delta HIGH to LOW  
4.7  
5.5  
6.2  
7.3  
ns  
6.8  
7.9  
8.9  
10.5  
17.1  
12.6  
0.07  
0.04  
ns  
11.1  
8.2  
12.8  
9.5  
14.5  
10.7  
0.06  
0.04  
ns  
ns  
0.05  
0.03  
0.05  
0.03  
ns/pF  
ns/pF  
dTHL  
Notes:  
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating  
device performance. Post-route timing analysis or simulation is required to determine actual performance.  
2. Set-up times assume fanout of 3. Further testing information can be obtained from the Timer utility.  
3. The hold time for the DFME1A macro may be greater than 0 ns. Use the Timer tool from the Designer software to check the hold  
time for this macro.  
4. Delays based on 35 pF loading.  
v6.0  
1-41  
40MX and 42MX FPGA Families  
Table 30 A40MX04 Timing Characteristics (Nominal 5.0V Operation)  
(Worst-Case Commercial Conditions, VCC = 4.75V, TJ = 70°C)  
‘–3’ Speed  
‘–2’ Speed  
‘–1’ Speed ‘Std’ Speed ‘–F’ Speed  
Parameter Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Logic Module Propagation Delays  
tPD1  
tPD2  
tCO  
tGO  
tRS  
Single Module  
1.2  
2.3  
1.2  
1.2  
1.2  
1.4  
3.1  
1.4  
1.4  
1.4  
1.6  
3.5  
1.6  
1.6  
1.6  
1.9  
4.1  
1.9  
1.9  
1.9  
2.7  
5.7  
2.7  
2.7  
2.7  
ns  
ns  
ns  
ns  
ns  
Dual-Module Macros  
Sequential Clock-to-Q  
Latch G-to-Q  
Flip-Flop (Latch) Reset-to-Q  
Logic Module Predicted Routing Delays1  
tRD1  
tRD2  
tRD3  
tRD4  
tRD8  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
1.2  
1.9  
2.4  
2.9  
5.0  
1.6  
2.2  
2.8  
3.4  
5.8  
1.8  
2.5  
3.2  
3.9  
6.6  
2.1  
2.9  
3.7  
4.5  
7.8  
3.0  
4.1  
ns  
ns  
ns  
ns  
ns  
5.2  
6.3  
10.9  
Logic Module Sequential Timing2  
tSUD  
Flip-Flop (Latch) Data Input Set-Up 3.1  
3.5  
0.0  
3.5  
0.0  
3.8  
4.0  
0.0  
4.0  
0.0  
4.3  
4.7  
0.0  
4.7  
0.0  
5.0  
6.6  
0.0  
6.6  
0.0  
7.0  
ns  
ns  
ns  
ns  
ns  
3
tHD  
Flip-Flop (Latch) Data Input Hold  
Flip-Flop (Latch) Enable Set-Up  
Flip-Flop (Latch) Enable Hold  
0.0  
3.1  
0.0  
tSUENA  
tHENA  
tWCLKA  
Flip-Flop (Latch) Clock Active 3.3  
Pulse Width  
tWASYN  
Flip-Flop (Latch)  
Asynchronous Pulse Width  
3.3  
3.8  
5.6  
4.3  
6.3  
5.0  
7.5  
7.0  
ns  
tA  
Flip-Flop Clock Input Period  
4.8  
10.4  
ns  
fMAX  
Flip-Flop (Latch) Clock Frequency  
(FO = 128)  
181  
167  
154  
134  
80  
MHz  
Input Module Propagation Delays  
tINYH  
Pad-to-Y HIGH  
Pad-to-Y LOW  
0.7  
0.6  
0.8  
0.7  
0.9  
0.8  
1.1  
1.0  
1.5  
1.3  
ns  
ns  
tINYL  
Notes:  
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating  
device performance. Post-route timing analysis or simulation is required to determine actual performance.  
2. Set-up times assume fanout of 3. Further testing information can be obtained from the Timer utility.  
3. The hold time for the DFME1A macro may be greater than 0 ns. Use the Timer utility from the Designer software to check the hold  
time for this macro.  
4. Delays based on 35 pF loading.  
1-42  
v6.0  
40MX and 42MX FPGA Families  
Table 30 A40MX04 Timing Characteristics (Nominal 5.0V Operation) (Continued)  
(Worst-Case Commercial Conditions, VCC = 4.75V, TJ = 70°C)  
‘–3’ Speed  
‘–2’ Speed  
‘–1’ Speed ‘Std’ Speed ‘–F’ Speed  
Parameter Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Input Module Predicted Routing Delays1  
tIRD1  
tIRD2  
tIRD3  
tIRD4  
tIRD8  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
2.1  
2.6  
3.1  
3.6  
5.7  
2.4  
3.0  
3.6  
4.2  
6.6  
2.2  
3.4  
4.1  
4.8  
7.5  
3.2  
4.0  
4.8  
5.6  
8.8  
4.5  
5.6  
ns  
ns  
ns  
ns  
ns  
6.7  
7.8  
12.4  
Global Clock Network  
tCKH  
tCKL  
tPWH  
tPWL  
tCKSW  
tP  
Input Low to HIGH FO = 16  
4.6  
4.6  
5.3  
5.3  
6.0  
6.0  
7.0  
7.0  
9.8  
9.8  
ns  
ns  
FO = 128  
Input High to LOW FO = 16  
FO = 128  
4.8  
4.8  
5.6  
5.6  
6.3  
6.3  
7.4  
7.4  
10.4  
10.4  
Minimum  
Width HIGH  
Pulse FO = 16  
FO = 128  
2.2  
2.4  
2.6  
2.7  
2.9  
3.1  
3.4  
3.6  
4.8  
5.1  
ns  
Minimum  
Width LOW  
Pulse FO = 16  
FO = 128  
2.2  
2.4  
2.6  
2.7  
2.9  
3.01  
3.4  
3.6  
4.8  
5.1  
ns  
Maximum Skew  
FO = 16  
0.4  
0.5  
0.5  
0.6  
0.5  
0.7  
0.6  
0.8  
0.8  
1.2  
ns  
FO = 128  
Minimum Period  
FO = 16  
4.7  
4.8  
5.4  
5.6  
6.1  
6.3  
7.2  
7.5  
10.0  
10.4  
ns  
FO = 128  
fMAX  
Maximum  
Frequency  
FO = 16  
FO = 128  
188  
181  
175  
168  
160  
154  
139  
134  
83  
80  
MHz  
TTL Output Module Timing4  
tDLH  
Data-to-Pad HIGH  
3.3  
4.0  
3.8  
4.6  
4.3  
5.2  
5.1  
6.1  
7.2  
ns  
ns  
tDHL  
Data-to-Pad LOW  
8.6  
tENZH  
tENZL  
tENHZ  
tENLZ  
dTLH  
Enable Pad Z to HIGH  
Enable Pad Z to LOW  
Enable Pad HIGH to Z  
Enable Pad LOW to Z  
Delta LOW to HIGH  
Delta HIGH to LOW  
3.7  
4.3  
4.9  
5.8  
8.0  
ns  
4.7  
5.4  
6.1  
7.2  
10.1  
17.1  
12.6  
0.04  
0.06  
ns  
7.9  
9.1  
10.4  
7.7  
12.2  
9.0  
ns  
5.9  
6.8  
ns  
0.02  
0.03  
0.02  
0.03  
0.03  
0.03  
0.03  
0.04  
ns/pF  
ns/pF  
dTHL  
Notes:  
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating  
device performance. Post-route timing analysis or simulation is required to determine actual performance.  
2. Set-up times assume fanout of 3. Further testing information can be obtained from the Timer utility.  
3. The hold time for the DFME1A macro may be greater than 0 ns. Use the Timer utility from the Designer software to check the hold  
time for this macro.  
4. Delays based on 35 pF loading.  
v6.0  
1-43  
40MX and 42MX FPGA Families  
Table 30 A40MX04 Timing Characteristics (Nominal 5.0V Operation) (Continued)  
(Worst-Case Commercial Conditions, VCC = 4.75V, TJ = 70°C)  
‘–3’ Speed  
‘–2’ Speed  
‘–1’ Speed ‘Std’ Speed ‘–F’ Speed  
Parameter Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
CMOS Output Module Timing1  
tDLH  
Data-to-Pad HIGH  
3.9  
3.4  
4.5  
3.9  
5.1  
4.4  
6.05  
5.2  
8.5  
ns  
ns  
tDHL  
Data-to-Pad LOW  
7.3  
tENZH  
tENZL  
tENHZ  
tENLZ  
dTLH  
Enable Pad Z to HIGH  
Enable Pad Z to LOW  
Enable Pad HIGH to Z  
Enable Pad LOW to Z  
Delta LOW to HIGH  
Delta HIGH to LOW  
3.4  
3.9  
4.4  
5.2  
7.3  
ns  
4.9  
5.6  
6.4  
7.5  
10.5  
17.0  
12.6  
0.07  
0.04  
ns  
7.9  
9.1  
10.4  
7.7  
12.2  
9.0  
ns  
5.9  
6.8  
ns  
0.03  
0.02  
0.04  
0.02  
0.04  
0.03  
0.05  
0.03  
ns/pF  
ns/pF  
dTHL  
Notes:  
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating  
device performance. Post-route timing analysis or simulation is required to determine actual performance.  
2. Set-up times assume fanout of 3. Further testing information can be obtained from the Timer utility.  
3. The hold time for the DFME1A macro may be greater than 0 ns. Use the Timer utility from the Designer software to check the hold  
time for this macro.  
4. Delays based on 35 pF loading.  
1-44  
v6.0  
40MX and 42MX FPGA Families  
Table 31 A40MX04 Timing Characteristics (Nominal 3.3V Operation)  
(Worst-Case Commercial Conditions, VCC = 3.0V, TJ = 70°C)  
‘–3’ Speed  
‘–2’ Speed  
‘–1’ Speed ‘Std’ Speed ‘–F’ Speed  
Parameter Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Logic Module Propagation Delays  
tPD1  
tPD2  
tCO  
tGO  
tRS  
Single Module  
1.7  
3.7  
1.7  
1.7  
1.7  
2.0  
4.3  
2.0  
2.0  
2.0  
2.3  
4.9  
2.3  
2.3  
2.3  
2.7  
5.7  
2.7  
2.7  
2.7  
3.7  
8.0  
3.7  
3.7  
3.7  
ns  
ns  
ns  
ns  
ns  
Dual-Module Macros  
Sequential Clock-to-Q  
Latch G-to-Q  
Flip-Flop (Latch) Reset-to-Q  
Logic Module Predicted Routing Delays1  
tRD1  
tRD2  
tRD3  
tRD4  
tRD8  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
1.9  
2.7  
3.4  
4.1  
7.1  
2.2  
3.1  
3.9  
4.8  
8.1  
2.5  
3.5  
4.4  
5.4  
9.2  
3.0  
4.1  
4.2  
5.7  
ns  
ns  
ns  
ns  
ns  
5.2  
7.3  
6.3  
8.9  
10.9  
15.2  
Logic Module Sequential Timing2  
tSUD  
Flip-Flop (Latch) Data Input Set-Up 4.3  
5.0  
0.0  
5.0  
0.0  
5.3  
5.6  
0.0  
5.6  
0.0  
5.6  
6.6  
0.0  
6.6  
0.0  
7.0  
9.2  
0.0  
9.2  
0.0  
9.8  
ns  
ns  
ns  
ns  
ns  
3
tHD  
Flip-Flop (Latch) Data Input Hold  
Flip-Flop (Latch) Enable Set-Up  
Flip-Flop (Latch) Enable Hold  
0.0  
4.3  
0.0  
tSUENA  
tHENA  
tWCLKA  
Flip-Flop (Latch) Clock Active 4.6  
Pulse Width  
tWASYN  
Flip-Flop (Latch)  
Asynchronous Pulse Width  
4.6  
5.3  
7.8  
5.6  
8.9  
7.0  
9.8  
ns  
tA  
Flip-Flop Clock Input Period  
6.8  
10.4  
14.6  
ns  
fMAX  
Flip-Flop (Latch) Clock Frequency  
(FO = 128)  
109  
101  
92  
80  
48  
MHz  
Input Module Propagation Delays  
tINYH  
Pad-to-Y HIGH  
Pad-to-Y LOW  
1.0  
0.9  
1.1  
1.0  
1.3  
1.1  
1.5  
1.3  
2.1  
1.9  
ns  
ns  
tINYL  
Notes:  
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating  
device performance. Post-route timing analysis or simulation is required to determine actual performance.  
2. Set-up times assume fanout of 3. Further testing information can be obtained from the Timer utility.  
3. The hold time for the DFME1A macro may be greater than 0 ns. Use the Timer tool from the Designer software to check the hold  
time for this macro.  
4. Delays based on 35 pF loading.  
v6.0  
1-45  
40MX and 42MX FPGA Families  
Table 31 A40MX04 Timing Characteristics (Nominal 3.3V Operation) (Continued)  
(Worst-Case Commercial Conditions, VCC = 3.0V, TJ = 70°C)  
‘–3’ Speed  
‘–2’ Speed  
‘–1’ Speed ‘Std’ Speed ‘–F’ Speed  
Parameter Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Input Module Predicted Routing Delays1  
tIRD1  
tIRD2  
tIRD3  
tIRD4  
tIRD8  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
2.9  
3.6  
4.4  
5.1  
8.0  
3.3  
4.2  
5.0  
5.9  
9.3  
3.8  
4.8  
4.5  
5.6  
6.3  
7.8  
ns  
ns  
ns  
ns  
ns  
5.7  
6.7  
9.4  
6.7  
7.8  
11.0  
17.2  
10.5  
12.4  
Global Clock Network  
tCKH  
tCKL  
tPWH  
tPWL  
tCKSW  
tP  
Input LOW to HIGH FO = 16  
6.4  
6.4  
7.4  
7.4  
8.4  
8.4  
9.9  
9.9  
13.8  
13.8  
ns  
ns  
FO = 128  
Input HIGH to LOW FO = 16  
FO = 128  
6.8  
6.8  
7.8  
7.8  
8.9  
8.9  
10.4  
10.4  
14.6  
14.6  
Minimum Pulse  
Width HIGH  
FO = 16  
FO = 128  
3.1  
3.3  
3.6  
3.8  
4.1  
4.3  
4.8  
5.1  
6.7  
7.1  
ns  
Minimum Pulse  
Width LOW  
FO = 16  
FO = 128  
3.1  
3.3  
3.6  
3.8  
4.1  
4.3  
4.8  
5.1  
6.7  
7.1  
ns  
Maximum Skew  
FO = 16  
0.6  
0.8  
0.6  
0.9  
0.7  
1.0  
0.8  
1.2  
1.2  
1.6  
ns  
FO = 128  
Minimum Period  
FO = 16  
6.5  
6.8  
7.5  
7.8  
8.5  
8.9  
10.1  
10.4  
14.1  
14.6  
ns  
FO = 128  
fMAX  
Maximum Frequency FO = 16  
FO = 128  
113  
109  
105  
101  
96  
92  
83  
80  
50  
48  
MHz  
TTL Output Module Timing4  
tDLH  
Data-to-Pad HIGH  
4.7  
5.6  
5.4  
6.4  
6.1  
7.3  
7.2  
8.6  
10.0  
12.0  
11.3  
14.1  
23.9  
17.7  
0.06  
0.08  
ns  
ns  
tDHL  
Data-to-Pad LOW  
tENZH  
tENZL  
tENHZ  
tENLZ  
dTLH  
Enable Pad Z to HIGH  
Enable Pad Z to LOW  
Enable Pad HIGH to Z  
Enable Pad LOW to Z  
Delta LOW to HIGH  
Delta HIGH to LOW  
5.2  
6.0  
6.9  
8.1  
ns  
6.6  
7.6  
8.6  
10.1  
17.1  
12.6  
0.04  
0.06  
ns  
11.1  
8.2  
12.8  
9.5  
14.5  
10.7  
0.04  
0.05  
ns  
ns  
0.03  
0.04  
0.03  
0.04  
ns/pF  
ns/pF  
dTHL  
Notes:  
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating  
device performance. Post-route timing analysis or simulation is required to determine actual performance.  
2. Set-up times assume fanout of 3. Further testing information can be obtained from the Timer utility.  
3. The hold time for the DFME1A macro may be greater than 0 ns. Use the Timer tool from the Designer software to check the hold  
time for this macro.  
4. Delays based on 35 pF loading.  
1-46  
v6.0  
40MX and 42MX FPGA Families  
Table 31 A40MX04 Timing Characteristics (Nominal 3.3V Operation) (Continued)  
(Worst-Case Commercial Conditions, VCC = 3.0V, TJ = 70°C)  
‘–3’ Speed  
‘–2’ Speed  
‘–1’ Speed ‘Std’ Speed ‘–F’ Speed  
Parameter Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
CMOS Output Module Timing4  
tDLH  
Data-to-Pad HIGH  
5.5  
4.8  
6.4  
5.5  
7.2  
6.2  
8.5  
7.3  
11.9  
10.2  
10.2  
14.7  
23.9  
17.7  
0.10  
0.06  
ns  
ns  
tDHL  
Data-to-Pad LOW  
tENZH  
tENZL  
tENHZ  
tENLZ  
dTLH  
Enable Pad Z to HIGH  
Enable Pad Z to LOW  
Enable Pad HIGH to Z  
Enable Pad LOW to Z  
Delta LOW to HIGH  
Delta HIGH to LOW  
4.7  
5.5  
6.2  
7.3  
ns  
6.8  
7.9  
8.9  
10.5  
17.1  
12.6  
0.07  
0.04  
ns  
11.1  
8.2  
12.8  
9.5  
14.5  
10.7  
0.06  
0.04  
ns  
ns  
0.05  
0.03  
0.05  
0.03  
ns/pF  
ns/pF  
dTHL  
Notes:  
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating  
device performance. Post-route timing analysis or simulation is required to determine actual performance.  
2. Set-up times assume fanout of 3. Further testing information can be obtained from the Timer utility.  
3. The hold time for the DFME1A macro may be greater than 0 ns. Use the Timer tool from the Designer software to check the hold  
time for this macro.  
4. Delays based on 35 pF loading.  
v6.0  
1-47  
40MX and 42MX FPGA Families  
Table 32 A42MX09 Timing Characteristics (Nominal 5.0V Operation)  
(Worst-Case Commercial Conditions, VCCA = 4.75V, TJ = 70°C)  
‘–3’ Speed  
‘–2’ Speed  
‘–1’ Speed ‘Std’ Speed ‘–F’ Speed  
Parameter Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Logic Module Propagation Delays1  
tPD1  
tCO  
tGO  
tRS  
Single Module  
1.2  
1.3  
1.2  
1.2  
1.3  
1.4  
1.4  
1.6  
1.5  
1.6  
1.6  
1.8  
1.8  
1.9  
1.8  
2.1  
2.5  
2.7  
2.6  
2.9  
ns  
ns  
ns  
ns  
Sequential Clock-to-Q  
Latch G-to-Q  
Flip-Flop (Latch) Reset-to-Q  
Logic Module Predicted Routing Delays2  
tRD1  
tRD2  
tRD3  
tRD4  
tRD8  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
0.7  
0.9  
1.2  
1.4  
2.3  
0.8  
1.0  
1.3  
1.5  
2.6  
0.9  
1.2  
1.5  
1.7  
2.9  
1.0  
1.4  
1.7  
2.0  
3.4  
1.4  
1.9  
2.4  
2.9  
4.8  
ns  
ns  
ns  
ns  
ns  
Logic Module Sequential Timing3, 4  
tSUD  
Flip-Flop (Latch) Data Input Set-Up 0.3  
0.4  
0.0  
0.5  
0.0  
3.8  
0.4  
0.0  
0.5  
0.0  
4.3  
0.5  
0.0  
0.6  
0.0  
5.0  
0.7  
0.0  
0.8  
0.0  
7.0  
ns  
ns  
ns  
ns  
ns  
tHD  
Flip-Flop (Latch) Data Input Hold  
Flip-Flop (Latch) Enable Set-Up  
Flip-Flop (Latch) Enable Hold  
0.0  
0.4  
0.0  
tSUENA  
tHENA  
tWCLKA  
Flip-Flop (Latch) Clock Active 3.4  
Pulse Width  
tWASYN  
Flip-Flop (Latch) Asynchronous 4.5  
Pulse Width  
4.9  
5.6  
6.6  
9.2  
ns  
tA  
Flip-Flop Clock Input Period  
Input Buffer Latch Hold  
3.5  
0.0  
0.3  
0.0  
0.3  
3.8  
0.0  
0.3  
0.0  
0.3  
4.3  
0.0  
0.4  
0.0  
0.4  
5.1  
0.0  
0.4  
0.0  
0.4  
7.1  
0.0  
0.6  
0.0  
0.6  
ns  
ns  
tINH  
tINSU  
tOUTH  
tOUTSU  
fMAX  
Notes:  
Input Buffer Latch Set-Up  
Output Buffer Latch Hold  
Output Buffer Latch Set-Up  
Flip-Flop (Latch) Clock Frequency  
ns  
ns  
ns  
268  
244  
224  
195  
117  
MHz  
1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating  
device performance. Post-route timing analysis or simulation is required to determine actual performance.  
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be  
obtained from the Timer utility.  
4. Set-up and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External setup/  
hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to  
the G input subtracts (adds) to the internal setup (hold) time.  
5. Delays based on 35 pF loading.  
1-48  
v6.0  
40MX and 42MX FPGA Families  
Table 32 A42MX09 Timing Characteristics (Nominal 5.0V Operation) (Continued)  
(Worst-Case Commercial Conditions, VCCA = 4.75V, TJ = 70°C)  
‘–3’ Speed  
‘–2’ Speed  
‘–1’ Speed ‘Std’ Speed ‘–F’ Speed  
Parameter Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Input Module Propagation Delays  
tINYH  
tINYL  
tINGH  
tINGL  
Pad-to-Y HIGH  
Pad-to-Y LOW  
G to Y HIGH  
G to Y LOW  
1.0  
0.8  
1.3  
1.3  
1.2  
0.9  
1.4  
1.4  
1.3  
1.0  
1.6  
1.6  
1.6  
1.2  
1.9  
1.9  
2.2  
1.7  
2.7  
2.7  
ns  
ns  
ns  
ns  
Input Module Predicted Routing Delays2  
tIRD1  
tIRD2  
tIRD3  
tIRD4  
tIRD8  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
2.0  
2.3  
2.5  
2.8  
3.7  
2.2  
2.5  
2.8  
3.1  
4.1  
2.5  
2.9  
3.2  
3.5  
4.7  
3.0  
3.4  
3.7  
4.1  
5.5  
4.2  
4.7  
5.2  
5.7  
7.7  
ns  
ns  
ns  
ns  
ns  
Global Clock Network  
tCKH Input LOW to HIGH FO = 32  
2.4  
2.7  
2.7  
3.0  
3.0  
3.4  
3.6  
4.0  
5.0  
5.5  
ns  
ns  
FO = 256  
tCKL  
tPWH  
tPWL  
Input HIGH to LOW FO = 32  
FO = 256  
3.5  
3.9  
3.9  
4.3  
4.4  
4.9  
5.2  
5.7  
7.3  
8.0  
ns  
ns  
Minimum Pulse  
Width HIGH  
FO = 32  
FO = 256  
1.2  
1.3  
1.4  
1.5  
1.5  
1.7  
1.8  
2.0  
2.5  
2.7  
ns  
ns  
Minimum Pulse  
Width LOW  
FO = 32  
FO = 256  
1.2  
1.3  
1.4  
1.5  
1.5  
1.7  
1.8  
2.0  
2.5  
2.7  
ns  
ns  
tCKSW  
tSUEXT  
tHEXT  
tP  
Maximum Skew  
FO = 32  
FO = 256  
0.3  
0.3  
0.3  
0.3  
0.4  
0.4  
0.5  
0.5  
0.6  
0.6  
ns  
ns  
Input Latch External FO = 32  
Set-Up FO = 256  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
ns  
ns  
Input Latch External FO = 32  
Hold  
2.3  
2.2  
2.6  
2.4  
3.0  
3.3  
3.5  
3.9  
4.9  
5.5  
ns  
ns  
FO = 256  
Minimum Period  
FO = 32  
FO = 256  
3.4  
3.7  
3.7  
4.1  
4.0  
4.5  
4.7  
5.2  
7.8  
8.6  
ns  
ns  
fMAX  
Notes:  
Maximum Frequency FO = 32  
FO = 256  
296  
268  
269  
244  
247  
224  
215  
195  
129  
117  
MHz  
MHz  
1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating  
device performance. Post-route timing analysis or simulation is required to determine actual performance.  
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be  
obtained from the Timer utility.  
4. Set-up and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External setup/  
hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to  
the G input subtracts (adds) to the internal setup (hold) time.  
5. Delays based on 35 pF loading.  
v6.0  
1-49  
40MX and 42MX FPGA Families  
Table 32 A42MX09 Timing Characteristics (Nominal 5.0V Operation) (Continued)  
(Worst-Case Commercial Conditions, VCCA = 4.75V, TJ = 70°C)  
‘–3’ Speed  
‘–2’ Speed  
‘–1’ Speed ‘Std’ Speed ‘–F’ Speed  
Parameter Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
TTL Output Module Timing5  
tDLH  
tDHL  
tENZH  
tENZL  
tENHZ  
tENLZ  
tGLH  
tGHL  
tLSU  
Data-to-Pad HIGH  
Data-to-Pad LOW  
Enable Pad Z to HIGH  
Enable Pad Z to LOW  
Enable Pad HIGH to Z  
Enable Pad LOW to Z  
G-to-Pad HIGH  
2.5  
2.9  
2.6  
2.9  
4.9  
5.3  
2.6  
2.6  
2.7  
3.2  
2.9  
3.2  
5.4  
5.9  
2.9  
2.9  
3.1  
3.6  
3.3  
3.7  
6.2  
6.7  
3.3  
3.3  
3.6  
4.3  
3.9  
4.3  
7.3  
7.9  
3.8  
3.8  
5.1  
6.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
5.5  
6.1  
10.2  
11.1  
5.3  
G-to-Pad LOW  
5.3  
I/O Latch Set-Up  
0.5  
0.0  
0.5  
0.0  
0.6  
0.0  
0.7  
0.0  
1.0  
0.0  
tLH  
I/O Latch Hold  
tLCO  
I/O Latch Clock-to-Out (Pad-to-  
Pad), 64 Clock Loading  
5.2  
7.4  
5.8  
8.2  
6.6  
9.3  
7.7  
10.8  
15.3  
tACO  
Array Clock-to-Out (Pad-to-Pad),  
64 Clock Loading  
10.9  
ns  
dTLH  
Capacity Loading, LOW to HIGH  
Capacity Loading, HIGH to LOW  
0.03  
0.04  
0.03  
0.04  
0.03  
0.04  
0.04  
0.05  
0.06 ns/pF  
0.07 ns/pF  
dTHL  
Notes:  
1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating  
device performance. Post-route timing analysis or simulation is required to determine actual performance.  
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be  
obtained from the Timer utility.  
4. Set-up and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External setup/  
hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to  
the G input subtracts (adds) to the internal setup (hold) time.  
5. Delays based on 35 pF loading.  
1-50  
v6.0  
40MX and 42MX FPGA Families  
Table 32 A42MX09 Timing Characteristics (Nominal 5.0V Operation) (Continued)  
(Worst-Case Commercial Conditions, VCCA = 4.75V, TJ = 70°C)  
‘–3’ Speed  
‘–2’ Speed  
‘–1’ Speed ‘Std’ Speed ‘–F’ Speed  
Parameter Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
CMOS Output Module Timing5  
tDLH  
tDHL  
tENZH  
tENZL  
tENHZ  
tENLZ  
tGLH  
tGHL  
tLSU  
Data-to-Pad HIGH  
Data-to-Pad LOW  
Enable Pad Z to HIGH  
Enable Pad Z to LOW  
Enable Pad HIGH to Z  
Enable Pad LOW to Z  
G-to-Pad HIGH  
2.4  
2.9  
2.7  
2.9  
4.9  
5.3  
4.2  
4.2  
2.7  
3.2  
2.9  
3.2  
5.4  
5.9  
4.6  
4.6  
3.1  
3.6  
3.3  
3.7  
6.2  
6.7  
5.2  
5.2  
3.6  
4.3  
3.9  
4.3  
7.3  
7.9  
6.1  
6.1  
5.1  
6.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
5.5  
6.1  
10.2  
11.1  
8.6  
G-to-Pad LOW  
8.6  
I/O Latch Set-Up  
0.5  
0.0  
0.5  
0.0  
0.6  
0.0  
0.7  
0.0  
1.0  
0.0  
tLH  
I/O Latch Hold  
tLCO  
I/O Latch Clock-to-Out (Pad-to-  
Pad), 64 Clock Loading  
5.2  
7.4  
5.8  
8.2  
6.6  
9.3  
7.7  
10.8  
15.3  
tACO  
Array Clock-to-Out (Pad-to-Pad),  
64 Clock Loading  
10.9  
ns  
dTLH  
Capacity Loading, LOW to HIGH  
Capacity Loading, HIGH to LOW  
0.03  
0.04  
0.03  
0.04  
0.03  
0.04  
0.04  
0.05  
0.06 ns/pF  
0.07 ns/pF  
dTHL  
Notes:  
1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating  
device performance. Post-route timing analysis or simulation is required to determine actual performance.  
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be  
obtained from the Timer utility.  
4. Set-up and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External setup/  
hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to  
the G input subtracts (adds) to the internal setup (hold) time.  
5. Delays based on 35 pF loading.  
v6.0  
1-51  
40MX and 42MX FPGA Families  
Table 33 A42MX09 Timing Characteristics (Nominal 3.3V Operation)  
(Worst-Case Commercial Conditions, VCCA = 3.0V, TJ = 70°C)  
‘–3’ Speed  
‘–2’ Speed  
‘–1’ Speed ‘Std’ Speed ‘–F’ Speed  
Parameter Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Logic Module Propagation Delays1  
tPD1  
tCO  
tGO  
tRS  
Single Module  
1.6  
1.8  
1.7  
2.0  
1.8  
2.0  
1.9  
2.2  
2.1  
2.3  
2.1  
2.5  
2.5  
2.7  
2.5  
2.9  
3.5  
3.8  
3.5  
4.1  
ns  
ns  
ns  
ns  
Sequential Clock-to-Q  
Latch G-to-Q  
Flip-Flop (Latch) Reset-to-Q  
Logic Module Predicted Routing Delays2  
tRD1  
tRD2  
tRD3  
tRD4  
tRD8  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
1.0  
1.3  
1.6  
1.9  
3.2  
1.1  
1.4  
1.8  
2.1  
3.6  
1.2  
1.6  
2.0  
2.4  
4.1  
1.4  
1.9  
2.4  
2.9  
4.8  
2.0  
2.7  
3.3  
4.0  
6.7  
ns  
ns  
ns  
ns  
ns  
Logic Module Sequential Timing 3, 4  
tSUD  
Flip-Flop (Latch) Data Input Set-Up 0.5  
0.5  
0.0  
0.6  
0.0  
5.3  
0.6  
0.0  
0.7  
0.0  
6.0  
0.7  
0.0  
0.8  
0.0  
7.0  
0.9  
0.0  
1.2  
0.0  
9.8  
ns  
ns  
ns  
ns  
ns  
tHD  
Flip-Flop (Latch) Data Input Hold  
Flip-Flop (Latch) Enable Set-Up  
Flip-Flop (Latch) Enable Hold  
0.0  
0.6  
0.0  
tSUENA  
tHENA  
tWCLKA  
Flip-Flop (Latch) Clock Active 4.7  
Pulse Width  
tWASYN  
Flip-Flop (Latch) Asynchronous 6.2  
Pulse Width  
6.9  
7.8  
9.2  
12.9  
ns  
tA  
Flip-Flop Clock Input Period  
Input Buffer Latch Hold  
5.0  
0.0  
0.3  
0.0  
0.3  
5.6  
0.0  
0.3  
0.0  
0.3  
6.2  
0.0  
0.3  
0.0  
0.3  
7.1  
0.0  
0.4  
0.0  
0.4  
9.9  
0.0  
0.6  
0.0  
0.6  
ns  
ns  
tINH  
tINSU  
tOUTH  
tOUTSU  
fMAX  
Input Buffer Latch Set-Up  
Output Buffer Latch Hold  
Output Buffer Latch Set-Up  
ns  
ns  
ns  
Flip-Flop (Latch) Clock  
Frequency  
161  
146  
135  
117  
70  
MHz  
Notes:  
1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating  
device performance. Post-route timing analysis or simulation is required to determine actual performance.  
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be  
obtained from the Timer utility.  
4. Set-up and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External setup/  
hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to  
the G input subtracts (adds) to the internal setup (hold) time.  
5. Delays based on 35 pF loading.  
1-52  
v6.0  
40MX and 42MX FPGA Families  
Table 33 A42MX09 Timing Characteristics (Nominal 3.3V Operation) (Continued)  
(Worst-Case Commercial Conditions, VCCA = 3.0V, TJ = 70°C)  
‘–3’ Speed  
‘–2’ Speed  
‘–1’ Speed ‘Std’ Speed ‘–F’ Speed  
Parameter Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Input Module Propagation Delays  
tINYH  
tINYL  
tINGH  
tINGL  
Pad-to-Y HIGH  
Pad-to-Y LOW  
G to Y HIGH  
G to Y LOW  
1.5  
1.2  
1.8  
1.8  
1.6  
1.3  
2.0  
2.0  
1.8  
1.4  
2.3  
2.3  
2.17  
1.7  
2.7  
3.0  
2.4  
3.7  
3.7  
ns  
ns  
ns  
ns  
2.7  
Input Module Predicted Routing Delays2  
tIRD1  
tIRD2  
tIRD3  
tIRD4  
tIRD8  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
2.8  
3.2  
3.5  
3.9  
5.2  
3.2  
3.5  
3.9  
4.3  
5.8  
3.6  
4.0  
4.4  
4.9  
6.6  
4.2  
4.7  
5.2  
5.7  
7.7  
5.9  
6.6  
ns  
ns  
ns  
ns  
ns  
7.3  
8.0  
10.8  
Global Clock Network  
tCKH Input LOW to HIGH FO = 32  
4.1  
4.5  
4.5  
5.0  
5.1  
5.6  
6.0  
6.7  
8.4  
9.3  
ns  
ns  
FO = 256  
tCKL  
tPWH  
tPWL  
Input HIGH to LOW FO = 32  
FO = 256  
5.0  
5.4  
5.5  
6.0  
6.2  
6.8  
7.3  
8.0  
10.2  
11.2  
ns  
ns  
Minimum  
Width HIGH  
Pulse FO = 32  
FO = 256  
1.7  
1.9  
1.9  
2.1  
2.1  
2.3  
2.5  
2.7  
3.5  
3.8  
ns  
ns  
Minimum  
Width LOW  
Pulse FO = 32  
FO = 256  
1.7  
1.9  
1.9  
2.1  
2.1  
2.3  
2.5  
2.7  
3.5  
3.8  
ns  
ns  
tCKSW  
tSUEXT  
tHEXT  
tP  
Maximum Skew  
FO = 32  
FO = 256  
0.4  
0.4  
0.5  
0.5  
0.5  
0.5  
0.6  
0.6  
0.9  
0.9  
ns  
ns  
Input Latch External FO = 32  
Set-Up FO = 256  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
ns  
ns  
Input Latch External FO = 32  
Hold  
3.3  
3.7  
3.7  
4.1  
4.2  
4.6  
4.9  
5.5  
6.9  
7.6  
ns  
ns  
FO = 256  
Minimum Period  
FO = 32  
FO = 256  
5.6  
6.1  
6.2  
6.8  
6.7  
7.4  
7.8  
8.5  
12.9  
14.2  
ns  
ns  
fMAX  
Notes:  
Maximum  
Frequency  
FO = 32  
FO = 256  
177  
161  
161  
146  
148  
135  
129  
117  
77  
70  
MHz  
MHz  
1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating  
device performance. Post-route timing analysis or simulation is required to determine actual performance.  
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be  
obtained from the Timer utility.  
4. Set-up and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External setup/  
hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to  
the G input subtracts (adds) to the internal setup (hold) time.  
5. Delays based on 35 pF loading.  
v6.0  
1-53  
40MX and 42MX FPGA Families  
Table 33 A42MX09 Timing Characteristics (Nominal 3.3V Operation) (Continued)  
(Worst-Case Commercial Conditions, VCCA = 3.0V, TJ = 70°C)  
‘–3’ Speed  
‘–2’ Speed  
‘–1’ Speed ‘Std’ Speed ‘–F’ Speed  
Parameter Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
TTL Output Module Timing5  
tDLH  
tDHL  
tENZH  
Data-to-Pad HIGH  
Data-to-Pad LOW  
3.4  
4.0  
3.7  
3.8  
4.5  
4.1  
4.3  
5.1  
4.6  
5.1  
6.1  
5.5  
7.1  
8.3  
7.6  
ns  
ns  
ns  
Enable Pad  
HIGH  
Z
to  
to  
tENZL  
tENHZ  
tENLZ  
Enable Pad  
LOW  
Z
4.1  
6.9  
7.5  
4.5  
7.6  
8.3  
5.1  
8.6  
9.4  
6.1  
8.5  
ns  
ns  
ns  
Enable Pad HIGH to  
Z
10.2  
11.1  
14.2  
15.5  
Enable Pad LOW to  
Z
tGLH  
tGHL  
tLSU  
tLH  
G-to-Pad HIGH  
G-to-Pad LOW  
I/O Latch Set-Up  
I/O Latch Hold  
5.8  
5.8  
6.5  
6.5  
7.3  
7.3  
8.6  
8.6  
12.0  
12.0  
ns  
ns  
ns  
ns  
ns  
0.7  
0.0  
0.8  
0.0  
0.9  
0.0  
1.0  
0.0  
1.4  
0.0  
tLCO  
I/O Latch Clock-to-  
Out (Pad-to-Pad),  
64 Clock Loading  
8.7  
9.7  
10.9  
15.4  
12.9  
18.1  
18.0  
25.3  
tACO  
Array Clock-to-Out  
(Pad-to-Pad),  
12.2  
13.5  
ns  
64 Clock Loading  
dTLH  
Capacity Loading,  
LOW to HIGH  
0.00  
0.09  
0.00  
0.10  
0.00  
0.10  
0.10  
0.10  
0.01 ns/pF  
0.10 ns/pF  
dTHL  
Capacity Loading,  
HIGH to LOW  
Notes:  
1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating  
device performance. Post-route timing analysis or simulation is required to determine actual performance.  
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be  
obtained from the Timer utility.  
4. Set-up and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External setup/  
hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to  
the G input subtracts (adds) to the internal setup (hold) time.  
5. Delays based on 35 pF loading.  
1-54  
v6.0  
40MX and 42MX FPGA Families  
Table 33 A42MX09 Timing Characteristics (Nominal 3.3V Operation) (Continued)  
(Worst-Case Commercial Conditions, VCCA = 3.0V, TJ = 70°C)  
‘–3’ Speed  
‘–2’ Speed  
‘–1’ Speed ‘Std’ Speed ‘–F’ Speed  
Parameter Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
CMOS Output Module Timing5  
tDLH  
tDHL  
tENZH  
tENZL  
tENHZ  
tENLZ  
tGLH  
tGHL  
tLSU  
Data-to-Pad HIGH  
Data-to-Pad LOW  
Enable Pad Z to HIGH  
Enable Pad Z to LOW  
Enable Pad HIGH to Z  
Enable Pad LOW to Z  
G-to-Pad HIGH  
3.4  
4.1  
3.7  
4.1  
6.9  
7.5  
5.8  
5.8  
3.8  
4.5  
4.1  
4.5  
7.6  
8.3  
6.5  
6.5  
5.5  
4.2  
4.6  
5.1  
8.6  
9.4  
7.3  
7.3  
6.4  
5.0  
9.0  
7.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
5.5  
7.6  
6.1  
8.5  
10.2  
11.1  
8.6  
14.2  
15.5  
12.0  
12.0  
G-to-Pad LOW  
8.6  
I/O Latch Set-Up  
0.7  
0.0  
0.8  
0.0  
0.9  
0.0  
1.0  
0.0  
1.4  
0.0  
tLH  
I/O Latch Hold  
tLCO  
I/O Latch Clock-to-Out (Pad-to-  
Pad), 64 Clock Loading  
8.7  
9.7  
10.9  
15.4  
12.9  
18.1  
18.0  
25.3  
tACO  
Array Clock-to-Out (Pad-to-Pad),  
64 Clock Loading  
12.2  
13.5  
ns  
dTLH  
Capacity Loading, LOW to HIGH  
Capacity Loading, HIGH to LOW  
0.04  
0.05  
0.04  
0.05  
0.05  
0.06  
0.06  
0.07  
0.08 ns/pF  
0.10 ns/pF  
dTHL  
Notes:  
1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating  
device performance. Post-route timing analysis or simulation is required to determine actual performance.  
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be  
obtained from the Timer utility.  
4. Set-up and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External setup/  
hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to  
the G input subtracts (adds) to the internal setup (hold) time.  
5. Delays based on 35 pF loading.  
v6.0  
1-55  
40MX and 42MX FPGA Families  
Table 34 A42MX16 Timing Characteristics (Nominal 5.0V Operation)  
(Worst-Case Commercial Conditions, VCCA = 4.75V, TJ = 70°C)  
‘–3’ Speed  
‘–2’ Speed  
‘–1’ Speed ‘Std’ Speed ‘–F’ Speed  
Parameter Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Logic Module Propagation Delays1  
tPD1  
tCO  
tGO  
tRS  
Single Module  
1.4  
1.4  
1.4  
1.6  
1.5  
1.6  
1.5  
1.7  
1.7  
1.8  
1.7  
2.0  
2.0  
2.1  
2.0  
2.3  
2.8  
3.0  
2.8  
3.3  
ns  
ns  
ns  
ns  
Sequential Clock-to-Q  
Latch G-to-Q  
Flip-Flop (Latch) Reset-to-Q  
Logic Module Predicted Routing Delays2  
tRD1  
tRD2  
tRD3  
tRD4  
tRD8  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
0.8  
1.0  
1.3  
1.6  
2.6  
0.9  
1.2  
1.4  
1.7  
2.9  
1.0  
1.3  
1.6  
2.0  
3.2  
1.2  
1.5  
1.9  
2.3  
3.8  
1.6  
2.1  
2.7  
3.2  
5.3  
ns  
ns  
ns  
ns  
ns  
Logic Module Sequential Timing3,4  
tSUD  
Flip-Flop (Latch) Data Input Set-Up 0.3  
0.4  
0.0  
0.8  
0.0  
3.8  
0.4  
0.0  
0.9  
0.0  
4.3  
0.5  
0.0  
1.0  
0.0  
5.0  
0.7  
0.0  
1.4  
0.0  
7.1  
ns  
ns  
ns  
ns  
ns  
tHD  
Flip-Flop (Latch) Data Input Hold  
Flip-Flop (Latch) Enable Set-Up  
Flip-Flop (Latch) Enable Hold  
0.0  
0.7  
0.0  
tSUENA  
tHENA  
tWCLKA  
Flip-Flop (Latch) Clock Active 3.4  
Pulse Width  
tWASYN  
Flip-Flop (Latch) Asynchronous 4.5  
Pulse Width  
5.0  
5.6  
6.6  
9.2  
ns  
tA  
Flip-Flop Clock Input Period  
Input Buffer Latch Hold  
6.8  
0.0  
0.5  
0.0  
0.5  
7.6  
0.0  
0.5  
0.0  
0.5  
8.6  
0.0  
0.6  
0.0  
0.6  
10.1  
0.0  
0.7  
0.0  
0.7  
14.1  
0.0  
1.0  
0.0  
1.0  
ns  
ns  
tINH  
tINSU  
tOUTH  
tOUTSU  
fMAX  
Notes:  
Input Buffer Latch Set-Up  
Output Buffer Latch Hold  
Output Buffer Latch Set-Up  
Flip-Flop (Latch) Clock Frequency  
ns  
ns  
ns  
215  
195  
179  
156  
94  
MHz  
1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, point and position whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating  
device performance. Post-route timing analysis or simulation is required to determine actual performance.  
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be  
obtained from the Timer utility.  
4. Set-up and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External setup/  
hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to  
the G input subtracts (adds) to the internal setup (hold) time.  
5. Delays based on 35 pF loading.  
1-56  
v6.0  
40MX and 42MX FPGA Families  
Table 34 A42MX16 Timing Characteristics (Nominal 5.0V Operation) (Continued)  
(Worst-Case Commercial Conditions, VCCA = 4.75V, TJ = 70°C)  
‘–3’ Speed  
‘–2’ Speed  
‘–1’ Speed ‘Std’ Speed ‘–F’ Speed  
Parameter Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Input Module Propagation Delays  
tINYH  
tINYL  
tINGH  
tINGL  
Pad-to-Y HIGH  
Pad-to-Y LOW  
G to Y HIGH  
G to Y LOW  
1.1  
0.8  
1.4  
1.4  
1.2  
0.9  
1.6  
1.6  
1.3  
1.0  
1.8  
1.8  
1.6  
1.2  
2.1  
2.1  
2.2  
1.7  
2.9  
2.9  
ns  
ns  
ns  
ns  
Input Module Predicted Routing Delays2  
tIRD1  
tIRD2  
tIRD3  
tIRD4  
tIRD8  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
1.8  
2.1  
2.3  
2.6  
3.6  
2.0  
2.3  
2.6  
3.0  
4.0  
2.3  
2.6  
3.0  
3.3  
4.6  
2.7  
3.1  
3.5  
3.9  
5.4  
4.0  
4.3  
4.9  
5.4  
7.5  
ns  
ns  
ns  
ns  
ns  
Global Clock Network  
tCKH Input LOW to HIGH FO = 32  
2.6  
2.9  
2.9  
3.2  
3.3  
3.6  
3.9  
4.3  
5.4  
6.0  
ns  
ns  
FO = 384  
tCKL  
tPWH  
tPWL  
Input HIGH to LOW FO = 32  
FO = 384  
3.8  
4.5  
4.2  
5.0  
4.8  
5.6  
5.6  
6.6  
7.8  
9.2  
ns  
ns  
Minimum  
Width HIGH  
Pulse FO = 32  
FO = 384  
3.2  
3.7  
3.5  
4.1  
4.0  
4.6  
4.7  
5.4  
6.6  
7.6  
ns  
ns  
Minimum  
Width LOW  
Pulse FO = 32  
FO = 384  
3.2  
3.7  
3.5  
4.1  
4.0  
4.6  
4.7  
5.4  
6.6  
7.6  
ns  
ns  
tCKSW  
tSUEXT  
tHEXT  
tP  
Maximum Skew  
FO = 32  
FO = 384  
0.3  
0.3  
0.4  
0.4  
0.4  
0.4  
0.5  
0.5  
0.7  
0.7  
ns  
ns  
Input Latch External FO = 32  
Set-Up FO = 384  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
ns  
ns  
Input Latch External FO = 32  
Hold  
2.8  
3.2  
3.1  
3.5  
5.5  
4.0  
4.1  
4.7  
5.7  
6.6  
ns  
ns  
FO = 384  
Minimum Period  
FO = 32  
FO = 384  
4.2  
4.6  
4.67  
5.1  
5.1  
5.6  
5.8  
6.4  
9.7  
10.7  
ns  
ns  
fMAX  
Notes:  
Maximum  
Frequency  
FO = 32  
FO = 384  
237  
215  
215  
195  
198  
179  
172  
156  
103  
94  
MHz  
MHz  
1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, point and position whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating  
device performance. Post-route timing analysis or simulation is required to determine actual performance.  
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be  
obtained from the Timer utility.  
4. Set-up and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External setup/  
hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to  
the G input subtracts (adds) to the internal setup (hold) time.  
5. Delays based on 35 pF loading.  
v6.0  
1-57  
40MX and 42MX FPGA Families  
Table 34 A42MX16 Timing Characteristics (Nominal 5.0V Operation) (Continued)  
(Worst-Case Commercial Conditions, VCCA = 4.75V, TJ = 70°C)  
‘–3’ Speed  
‘–2’ Speed  
‘–1’ Speed ‘Std’ Speed ‘–F’ Speed  
Parameter Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
TTL Output Module Timing5  
tDLH  
tDHL  
tENZH  
tENZL  
tENHZ  
tENLZ  
tGLH  
tGHL  
tLCO  
Data-to-Pad HIGH  
Data-to-Pad LOW  
Enable Pad Z to HIGH  
Enable Pad Z to LOW  
Enable Pad HIGH to Z  
Enable Pad LOW to Z  
G-to-Pad HIGH  
2.5  
3.0  
2.7  
3.0  
5.4  
5.0  
2.9  
2.9  
5.7  
2.8  
3.3  
3.0  
3.3  
6.0  
5.6  
3.2  
3.2  
6.3  
3.2  
3.7  
3.4  
3.8  
6.8  
6.3  
3.6  
3.6  
7.1  
3.7  
4.4  
4.0  
4.4  
8.0  
7.4  
4.3  
4.3  
8.4  
5.2  
6.1  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
5.6  
6.2  
11.2  
10.4  
6.0  
G-to-Pad LOW  
6.0  
I/O Latch Clock-to-Out (Pad-to-  
Pad), 64 Clock Loading  
11.9  
tACO  
Array Clock-to-Out (Pad-to-Pad),  
64 Clock Loading  
8.0  
8.9  
10.1  
11.9  
16.7  
ns  
dTLH  
dTHL  
Capacitive Loading, LOW to HIGH  
Capacitive Loading, HIGH to LOW  
0.03  
0.04  
0.03  
0.04  
0.03  
0.04  
0.04  
0.05  
0.06 ns/pF  
0.07 ns/pF  
CMOS Output Module Timing5  
tDLH  
tDHL  
tENZH  
tENZL  
tENHZ  
tENLZ  
tGLH  
tGHL  
tLCO  
Data-to-Pad HIGH  
Data-to-Pad LOW  
Enable Pad Z to HIGH  
Enable Pad Z to LOW  
Enable Pad HIGH to Z  
Enable Pad LOW to Z  
G-to-Pad HIGH  
3.2  
2.5  
2.7  
3.0  
5.4  
5.0  
5.1  
5.1  
5.7  
3.6  
2.7  
3.0  
3.3  
6.0  
5.6  
5.6  
5.6  
6.3  
4.0  
3.1  
3.4  
3.8  
6.8  
6.3  
6.4  
6.4  
7.1  
4.7  
3.6  
4.0  
4.4  
8.0  
7.4  
7.5  
7.5  
8.4  
6.6  
5.1  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
5.6  
6.2  
11.2  
10.4  
10.5  
10.5  
11.9  
G-to-Pad LOW  
I/O Latch Clock-to-Out (Pad-to-  
Pad), 64 Clock Loading  
tACO  
Array Clock-to-Out (Pad-to-Pad),  
64 Clock Loading  
8.0  
8.9  
10.1  
0.03  
11.9  
0.04  
16.7  
ns  
dTLH  
Capacitive Loading, LOW to HIGH  
0.03  
0.03  
0.06 ns/pF  
Notes:  
1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, point and position whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating  
device performance. Post-route timing analysis or simulation is required to determine actual performance.  
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be  
obtained from the Timer utility.  
4. Set-up and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External setup/  
hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to  
the G input subtracts (adds) to the internal setup (hold) time.  
5. Delays based on 35 pF loading.  
1-58  
v6.0  
40MX and 42MX FPGA Families  
Table 35 A42MX16 Timing Characteristics (Nominal 3.3V Operation)  
(Worst-Case Commercial Conditions, VCCA = 3.0V, TJ = 70°C)  
‘–3’ Speed  
‘–2’ Speed  
‘–1’ Speed ‘Std’ Speed ‘–F’ Speed  
Parameter Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Logic Module Propagation Delays1  
tPD1  
tCO  
tGO  
tRS  
Single Module  
1.9  
2.0  
1.9  
2.2  
2.1  
2.2  
2.1  
2.4  
2.4  
2.5  
2.4  
2.8  
2.8  
3.0  
2.8  
3.3  
4.0  
4.2  
4.0  
4.6  
ns  
ns  
ns  
ns  
Sequential Clock-to-Q  
Latch G-to-Q  
Flip-Flop (Latch) Reset-to-Q  
Logic Module Predicted Routing Delays2  
tRD1  
tRD2  
tRD3  
tRD4  
tRD8  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
1.1  
1.5  
1.8  
2.2  
3.6  
1.2  
1.6  
2.0  
2.4  
4.0  
1.4  
1.8  
2.3  
2.7  
4.5  
1.6  
2.1  
2.7  
3.2  
5.3  
2.3  
3.0  
3.8  
4.5  
7.5  
ns  
ns  
ns  
ns  
ns  
Logic Module Sequential Timing3, 4  
tSUD  
Flip-Flop (Latch) Data Input Set-Up 0.5  
0.5  
0.0  
1.1  
0.0  
5.3  
0.6  
0.0  
1.2  
0.0  
6.0  
0.7  
0.0  
1.4  
0.0  
7.1  
0.9  
0.0  
2.0  
0.0  
9.9  
ns  
ns  
ns  
ns  
ns  
tHD  
Flip-Flop (Latch) Data Input Hold  
Flip-Flop (Latch) Enable Set-Up  
Flip-Flop (Latch) Enable Hold  
0.0  
1.0  
0.0  
tSUENA  
tHENA  
tWCLKA  
Flip-Flop (Latch) Clock Active 4.8  
Pulse Width  
tWASYN  
Flip-Flop (Latch) Asynchronous 6.2  
Pulse Width  
6.9  
7.9  
9.2  
12.9  
ns  
tA  
Flip-Flop Clock Input Period  
Input Buffer Latch Hold  
9.5  
0.0  
0.7  
0.0  
0.7  
10.6  
0.0  
0.8  
0.0  
0.8  
12.0  
0.0  
14.1  
0.0  
19.8  
0.0  
1.4  
0.0  
1.4  
ns  
ns  
tINH  
tINSU  
tOUTH  
tOUTSU  
fMAX  
Notes:  
Input Buffer Latch Set-Up  
Output Buffer Latch Hold  
Output Buffer Latch Set-Up  
Flip-Flop (Latch) Clock Frequency  
0.9  
1.01  
0.0  
ns  
0.0  
ns  
0.89  
1.01  
ns  
129  
117  
108  
94  
56  
MHz  
1. For dual-module macros use tPD1 + tRD1 + taped, to + tRD1 + taped, or tPD1 + tRD1 + tusk, whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating  
device performance. Post-route timing analysis or simulation is required to determine actual performance.  
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be  
obtained from the Timer utility.  
4. Set-up and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External setup/  
hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to  
the G input subtracts (adds) to the internal setup (hold) time.  
5. Delays based on 35 pF loading.  
v6.0  
1-59  
40MX and 42MX FPGA Families  
Table 35 A42MX16 Timing Characteristics (Nominal 3.3V Operation) (Continued)  
(Worst-Case Commercial Conditions, VCCA = 3.0V, TJ = 70°C)  
‘–3’ Speed  
‘–2’ Speed  
‘–1’ Speed ‘Std’ Speed ‘–F’ Speed  
Parameter Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Input Module Propagation Delays  
tINYH  
tINYL  
tINGH  
tINGL  
Pad-to-Y HIGH  
Pad-to-Y LOW  
G to Y HIGH  
G to Y LOW  
1.5  
1.1  
2.0  
2.0  
1.6  
1.3  
2.2  
2.2  
1.9  
1.4  
2.5  
2.5  
2.2  
1.7  
2.9  
2.9  
3.1  
2.4  
4.1  
4.1  
ns  
ns  
ns  
ns  
Input Module Predicted Routing Delays2  
tIRD1  
tIRD2  
tIRD3  
tIRD4  
tIRD8  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
2.6  
2.9  
3.3  
3.6  
5.1  
2.9  
3.2  
3.6  
4.0  
5.6  
3.2  
3.7  
4.1  
4.6  
6.4  
3.8  
4.3  
4.9  
5.4  
7.5  
5.3  
6.1  
ns  
ns  
ns  
ns  
ns  
6.8  
7.6  
10.5  
Global Clock Network  
tCKH Input LOW to HIGH FO = 32  
4.4  
4.8  
4.8  
5.3  
5.5  
6.0  
6.5  
7.1  
9.0  
9.9  
ns  
ns  
FO = 384  
tCKL  
tPWH  
tPWL  
Input HIGH to LOW FO = 32  
FO = 384  
5.3  
6.2  
5.9  
6.9  
6.7  
7.9  
7.8  
9.2  
11.0  
12.9  
ns  
ns  
Minimum Pulse  
Width HIGH  
FO = 32  
FO = 384  
5.7  
6.6  
6.3  
7.4  
7.1  
8.3  
8.4  
9.8  
11.8  
13.7  
ns  
ns  
Minimum Pulse  
Width LOW  
FO = 32  
FO = 384  
5.3  
6.2  
5.9  
6.9  
6.7  
7.9  
7.8  
9.2  
11.0  
12.9  
ns  
ns  
tCKSW  
tSUEXT  
tHEXT  
tP  
Maximum Skew  
FO = 32  
FO = 384  
0.5  
2.2  
0.5  
2.4  
0.6  
2.7  
0.7  
3.2  
1.0  
4.5  
ns  
ns  
Input Latch External FO = 32  
Set-Up FO = 384  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
ns  
ns  
Input Latch External FO = 32  
Hold  
3.9  
4.5  
4.3  
4.9  
4.9  
5.6  
5.7  
6.6  
8.0  
9.2  
ns  
ns  
FO = 384  
Minimum Period  
FO = 32  
FO = 384  
7.0  
7.7  
7.8  
8.6  
8.4  
9.3  
9.7  
10.7  
16.2  
17.8  
ns  
ns  
fMAX  
Notes:  
Maximum Frequency FO = 32  
FO = 384  
142  
129  
129  
117  
119  
108  
103  
94  
62  
56  
MHz  
MHz  
1. For dual-module macros use tPD1 + tRD1 + taped, to + tRD1 + taped, or tPD1 + tRD1 + tusk, whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating  
device performance. Post-route timing analysis or simulation is required to determine actual performance.  
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be  
obtained from the Timer utility.  
4. Set-up and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External setup/  
hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to  
the G input subtracts (adds) to the internal setup (hold) time.  
5. Delays based on 35 pF loading.  
1-60  
v6.0  
40MX and 42MX FPGA Families  
Table 35 A42MX16 Timing Characteristics (Nominal 3.3V Operation) (Continued)  
(Worst-Case Commercial Conditions, VCCA = 3.0V, TJ = 70°C)  
‘–3’ Speed  
‘–2’ Speed  
‘–1’ Speed ‘Std’ Speed ‘–F’ Speed  
Parameter Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
TTL Output Module Timing5  
tDLH  
tDHL  
tENZH  
tENZL  
tENHZ  
tENLZ  
tGLH  
tGHL  
tLCO  
Data-to-Pad HIGH  
Data-to-Pad LOW  
Enable Pad Z to HIGH  
Enable Pad Z to LOW  
Enable Pad HIGH to Z  
Enable Pad LOW to Z  
G-to-Pad HIGH  
3.5  
4.1  
3.8  
4.2  
7.6  
7.0  
4.8  
4.8  
8.0  
3.9  
4.6  
4.2  
4.6  
8.4  
7.8  
5.3  
5.3  
8.9  
4.4  
5.2  
4.8  
5.3  
9.5  
8.8  
6.0  
6.0  
10.1  
5.2  
6.1  
7.3  
8.6  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
5.6  
7.8  
6.2  
8.7  
11.2  
10.4  
7.2  
15.7  
14.5  
10.0  
10.0  
16.7  
G-to-Pad LOW  
7.2  
I/O Latch Clock-to-Out (Pad-to-  
Pad), 64 Clock Loading  
11.9  
tACO  
Array Clock-to-Out (Pad-to-Pad),  
64 Clock Loading  
11.3  
12.5  
14.2  
16.7  
23.3  
ns  
dTLH  
dTHL  
Capacitive Loading, LOW to HIGH  
Capacitive Loading, HIGH to LOW  
0.04  
0.05  
0.04  
0.05  
0.05  
0.06  
0.06  
0.07  
0.08 ns/pF  
0.10 ns/pF  
CMOS Output Module Timing5  
tDLH  
tDHL  
tENZH  
tENZL  
tENHZ  
tENLZ  
tGLH  
tGHL  
tLCO  
Data-to-Pad HIGH  
Data-to-Pad LOW  
Enable Pad Z to HIGH  
Enable Pad Z to LOW  
Enable Pad HIGH to Z  
Enable Pad LOW to Z  
G-to-Pad HIGH  
4.5  
3.4  
3.8  
4.2  
7.6  
7.0  
7.1  
7.1  
8.0  
5.0  
3.8  
4.2  
4.6  
8.4  
7.8  
7.9  
7.9  
8.9  
5.6  
4.3  
4.8  
5.3  
9.5  
8.8  
8.9  
8.9  
10.1  
6.6  
5.1  
9.3  
7.1  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
5.6  
7.8  
6.2  
8.7  
11.2  
10.4  
10.5  
10.5  
11.9  
15.7  
14.5  
14.7  
14.7  
16.7  
G-to-Pad LOW  
I/O Latch Clock-to-Out (Pad-to-  
Pad), 64 Clock Loading  
tACO  
Array Clock-to-Out (Pad-to-Pad),  
64 Clock Loading  
11.3  
12.5  
14.2  
16.7  
23.3  
ns  
dTLH  
Capacitive Loading, LOW to HIGH  
Capacitive Loading, HIGH to LOW  
0.04  
0.05  
0.04  
0.05  
0.05  
0.06  
0.06  
0.07  
0.08 ns/pF  
0.10 ns/pF  
dTHL  
Notes:  
1. For dual-module macros use tPD1 + tRD1 + taped, to + tRD1 + taped, or tPD1 + tRD1 + tusk, whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating  
device performance. Post-route timing analysis or simulation is required to determine actual performance.  
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be  
obtained from the Timer utility.  
4. Set-up and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External setup/  
hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to  
the G input subtracts (adds) to the internal setup (hold) time.  
5. Delays based on 35 pF loading.  
v6.0  
1-61  
40MX and 42MX FPGA Families  
Table 36 A42MX24 Timing Characteristics (Nominal 5.0V Operation)  
(Worst-Case Commercial Conditions, VCCA = 4.75V, TJ = 70°C)  
‘–3’ Speed  
‘–2’Speed  
‘–1’ Speed ‘Std’ Speed ‘–F’ Speed  
Parameter Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Logic Module Combinatorial Functions1  
tPD  
Internal Array Module Delay  
1.2  
1.4  
1.3  
1.6  
1.5  
1.8  
1.8  
2.1  
2.5  
3.0  
ns  
ns  
tPDD  
Internal Decode Module Delay  
Logic Module Predicted Routing Delays2  
tRD1  
tRD2  
tRD3  
tRD4  
tRD5  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
0.8  
1.0  
1.3  
1.5  
2.4  
0.9  
1.2  
1.4  
1.7  
2.7  
1.0  
1.3  
1.6  
1.9  
3.0  
1.2  
1.5  
1.9  
2.2  
3.6  
1.7  
2.1  
2.6  
3.1  
5.0  
ns  
ns  
ns  
ns  
ns  
Logic Module Sequential Timing3, 4  
tCO  
Flip-Flop Clock-to-Output  
Latch Gate-to-Output  
1.3  
1.2  
1.4  
1.3  
1.6  
1.5  
1.9  
1.8  
2.7  
2.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tGO  
tSUD  
tHD  
Flip-Flop (Latch) Set-Up Time  
Flip-Flop (Latch) Hold Time  
Flip-Flop (Latch) Reset-to-Output  
Flip-Flop (Latch) Enable Set-Up  
Flip-Flop (Latch) Enable Hold  
0.3  
0.0  
0.4  
0.0  
0.4  
0.0  
0.5  
0.0  
0.7  
0.0  
tRO  
1.4  
1.6  
1.8  
2.1  
2.9  
tSUENA  
tHENA  
tWCLKA  
0.4  
0.0  
0.5  
0.0  
3.7  
0.5  
0.0  
4.2  
0.6  
0.0  
4.9  
0.8  
0.0  
6.9  
Flip-Flop (Latch) Clock Active 3.3  
Pulse Width  
tWASYN  
Flip-Flop (Latch) Asynchronous 4.4  
Pulse Width  
4.8  
5.3  
6.5  
9.0  
ns  
Input Module Propagation Delays  
tINPY  
tINGO  
tINH  
Input Data Pad-to-Y  
Input Latch Gate-to-Output  
Input Latch Hold  
1.0  
1.3  
1.1  
1.4  
1.3  
1.6  
1.5  
1.9  
2.1  
2.6  
ns  
ns  
ns  
ns  
ns  
0.0  
0.5  
4.7  
0.0  
0.5  
5.2  
0.0  
0.6  
5.9  
0.0  
0.7  
6.9  
0.0  
1.0  
9.7  
tINSU  
tILA  
Input Latch Set-Up  
Latch Active Pulse Width  
Notes:  
1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating  
device performance. Post-route timing analysis or simulation is required to determine actual performance.  
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be  
obtained from the Timer utility.  
4. Set-up and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/  
hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to  
the G input subtracts (adds) to the internal setup (hold) time.  
5. Delays based on 35 pF loading.  
1-62  
v6.0  
40MX and 42MX FPGA Families  
Table 36 A42MX24 Timing Characteristics (Nominal 5.0V Operation) (Continued)  
(Worst-Case Commercial Conditions, VCCA = 4.75V, TJ = 70°C)  
‘–3’ Speed  
‘–2’Speed  
‘–1’ Speed ‘Std’ Speed ‘–F’ Speed  
Parameter Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Input Module Predicted Routing Delays2  
tIRD1  
tIRD2  
tIRD3  
tIRD4  
tIRD8  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
1.8  
2.1  
2.3  
2.5  
3.4  
2.0  
2.3  
2.5  
2.8  
3.8  
2.3  
2.6  
2.9  
3.2  
4.3  
2.7  
3.1  
3.4  
3.7  
5.1  
3.8  
4.3  
4.8  
5.2  
7.1  
ns  
ns  
ns  
ns  
ns  
Global Clock Network  
tCKH Input LOW to HIGH FO=32  
2.6  
2.9  
2.9  
3.2  
3.3  
3.6  
3.9  
4.3  
5.4  
5.9  
ns  
ns  
FO=486  
tCKL  
tPWH  
tPWL  
Input HIGH to LOW FO=32  
FO=486  
3.7  
4.3  
4.1  
4.7  
4.6  
5.4  
5.4  
6.3  
7.6  
8.8  
ns  
ns  
Minimum Pulse  
Width HIGH  
FO=32  
FO=486  
2.2  
2.4  
2.4  
2.6  
2.7  
3.0  
3.2  
3.5  
4.5  
4.9  
ns  
ns  
Minimum Pulse  
Width LOW  
FO=32  
FO=486  
2.2  
2.4  
2.4  
2.6  
2.7  
3.0  
3.2  
3.5  
4.5  
4.9  
ns  
ns  
tCKSW  
tSUEXT  
tHEXT  
tP  
Maximum Skew  
FO=32  
FO=486  
0.5  
0.5  
0.6  
0.6  
0.7  
0.7  
0.8  
0.8  
1.1  
1.1  
ns  
ns  
Input Latch External FO=32  
Set-Up FO=486  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
ns  
ns  
Input Latch External FO=32  
Hold  
2.8  
3.3  
3.1  
3.7  
3.5  
4.2  
4.1  
4.9  
5.7  
6.9  
ns  
ns  
FO=486  
Minimum Period  
FO=32  
FO=486  
4.7  
5.1  
5.2  
5.7  
5.7  
6.2  
6.5  
7.1  
10.9  
11.9  
ns  
ns  
(1/fMAX  
)
Notes:  
1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating  
device performance. Post-route timing analysis or simulation is required to determine actual performance.  
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be  
obtained from the Timer utility.  
4. Set-up and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/  
hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to  
the G input subtracts (adds) to the internal setup (hold) time.  
5. Delays based on 35 pF loading.  
v6.0  
1-63  
40MX and 42MX FPGA Families  
Table 36 A42MX24 Timing Characteristics (Nominal 5.0V Operation) (Continued)  
(Worst-Case Commercial Conditions, VCCA = 4.75V, TJ = 70°C)  
‘–3’ Speed  
‘–2’Speed  
‘–1’ Speed ‘Std’ Speed ‘–F’ Speed  
Parameter Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
TTL Output Module Timing5  
tDLH  
tDHL  
tENZH  
tENZL  
tENHZ  
tENLZ  
tGLH  
tGHL  
tLSU  
Data-to-Pad HIGH  
Data-to-Pad LOW  
2.4  
2.8  
2.5  
2.8  
5.2  
4.8  
2.9  
2.9  
2.7  
3.2  
2.8  
3.1  
5.7  
5.3  
3.2  
3.2  
3.1  
3.6  
3.2  
3.5  
6.5  
6.0  
3.6  
3.6  
3.6  
4.2  
3.8  
4.2  
7.6  
7.1  
4.3  
4.3  
5.1  
5.9  
5.3  
5.9  
10.7  
9.9  
6.0  
6.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Enable Pad Z to HIGH  
Enable Pad Z to LOW  
Enable Pad HIGH to Z  
Enable Pad LOW to Z  
G-to-Pad HIGH  
G-to-Pad LOW  
I/O Latch Output Set-Up  
I/O Latch Output Hold  
0.5  
0.0  
0.5  
0.0  
0.6  
0.0  
0.7  
0.0  
1.0  
0.0  
tLH  
tLCO  
I/O Latch Clock-to-Out  
(Pad-to-Pad) 32 I/O  
5.6  
6.1  
6.9  
8.1  
11.4  
22.0  
tACO  
Array Latch Clock-to-Out  
(Pad-to-Pad) 32 I/O  
10.6  
11.8  
13.4  
15.7  
ns  
dTLH  
Capacitive Loading, LOW to HIGH  
Capacitive Loading, HIGH to LOW  
0.04  
0.03  
0.04  
0.03  
0.04  
0.03  
0.05  
0.04  
0.07 ns/pF  
0.06 ns/pF  
dTHL  
Notes:  
1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating  
device performance. Post-route timing analysis or simulation is required to determine actual performance.  
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be  
obtained from the Timer utility.  
4. Set-up and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/  
hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to  
the G input subtracts (adds) to the internal setup (hold) time.  
5. Delays based on 35 pF loading.  
1-64  
v6.0  
40MX and 42MX FPGA Families  
Table 36 A42MX24 Timing Characteristics (Nominal 5.0V Operation) (Continued)  
(Worst-Case Commercial Conditions, VCCA = 4.75V, TJ = 70°C)  
‘–3’ Speed  
‘–2’Speed  
‘–1’ Speed ‘Std’ Speed ‘–F’ Speed  
Parameter Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
CMOS Output Module Timing5  
tDLH  
tDHL  
tENZH  
tENZL  
tENHZ  
tENLZ  
tGLH  
tGHL  
tLSU  
Data-to-Pad HIGH  
Data-to-Pad LOW  
Enable Pad Z to HIGH  
Enable Pad Z to LOW  
Enable Pad HIGH to Z  
Enable Pad LOW to Z  
G-to-Pad HIGH  
3.1  
2.4  
2.5  
2.8  
5.2  
4.8  
4.9  
4.9  
3.5  
2.6  
2.8  
3.1  
5.7  
5.3  
5.4  
5.4  
3.9  
3.0  
3.2  
3.5  
6.5  
6.0  
6.2  
6.2  
4.6  
3.5  
3.8  
4.2  
7.6  
7.1  
7.2  
7.2  
6.4  
4.9  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
5.3  
5.8  
10.7  
9.9  
10.1  
10.1  
G-to-Pad LOW  
I/O Latch Set-Up  
0.5  
0.0  
0.5  
0.0  
0.6  
0.0  
0.7  
0.0  
1.0  
0.0  
tLH  
I/O Latch Hold  
tLCO  
I/O Latch Clock-to-Out (Pad-to-  
Pad) 32 I/O  
5.5  
6.1  
6.9  
8.1  
11.3  
22.0  
tACO  
Array Latch Clock-to-Out (Pad-  
to-Pad) 32 I/O  
10.6  
11.8  
13.4  
15.7  
ns  
dTLH  
Capacitive Loading, LOW to HIGH  
Capacitive Loading, HIGH to LOW  
0.04  
0.03  
0.04  
0.03  
0.04  
0.03  
0.05  
0.04  
0.07 ns/pF  
0.06 ns/pF  
dTHL  
Notes:  
1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating  
device performance. Post-route timing analysis or simulation is required to determine actual performance.  
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be  
obtained from the Timer utility.  
4. Set-up and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/  
hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to  
the G input subtracts (adds) to the internal setup (hold) time.  
5. Delays based on 35 pF loading.  
v6.0  
1-65  
40MX and 42MX FPGA Families  
Table 37 A42MX24 Timing Characteristics (Nominal 3.3V Operation)  
(Worst-Case Commercial Conditions, VCCA = 3.0V, TJ = 70°C)  
‘–3’ Speed  
‘–2’Speed  
‘–1’ Speed ‘Std’ Speed ‘–F’ Speed  
Parameter Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Logic Module Combinatorial Functions1  
tPD  
Internal Array Module Delay  
2.0  
1.1  
1.8  
2.2  
2.1  
2.5  
2.5  
3.0  
3.4  
4.2  
ns  
ns  
tPDD  
Internal Decode Module Delay  
Logic Module Predicted Routing Delays2  
tRD1  
tRD2  
tRD3  
tRD4  
tRD5  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
1.7  
2.0  
1.1  
1.5  
1.8  
1.3  
1.6  
2.0  
2.3  
3.7  
1.4  
1.8  
2.2  
2.6  
4.2  
1.7  
2.1  
2.6  
3.1  
5.0  
2.3  
3.0  
3.7  
4.3  
7.0  
ns  
ns  
ns  
ns  
ns  
Logic Module Sequential Timing3, 4  
tCO  
Flip-Flop Clock-to-Output  
Latch Gate-to-Output  
2.1  
3.4  
2.0  
1.9  
2.3  
2.1  
2.7  
2.5  
3.7  
3.4  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tGO  
tSUD  
tHD  
Flip-Flop (Latch) Set-Up Time  
Flip-Flop (Latch) Hold Time  
Flip-Flop (Latch) Reset-to-Output  
Flip-Flop (Latch) Enable Set-Up  
Flip-Flop (Latch) Enable Hold  
0.4  
0.0  
0.5  
0.0  
0.6  
0.0  
0.7  
0.0  
0.9  
0.0  
tRO  
2.0  
2.2  
2.5  
2.9  
4.1  
tSUENA  
tHENA  
tWCLKA  
0.6  
0.0  
0.6  
0.0  
5.2  
0.7  
0.0  
5.8  
0.8  
0.0  
6.9  
1.2  
0.0  
9.6  
Flip-Flop (Latch) Clock Active 4.6  
Pulse Width  
tWASYN  
Flip-Flop (Latch) Asynchronous 6.1  
Pulse Width  
6.8  
7.7  
9.0  
12.6  
ns  
Input Module Propagation Delays  
tINPY  
Input Data Pad-to-Y  
1.4  
1.8  
1.6  
1.9  
1.8  
2.2  
2.2  
2.6  
3.0  
3.6  
ns  
ns  
tINGO  
Input Latch Gate-to-  
Output  
tINH  
Input Latch Hold  
0.0  
0.7  
6.5  
0.0  
0.7  
7.3  
0.0  
0.8  
8.2  
0.0  
1.0  
9.7  
0.0  
1.4  
ns  
ns  
ns  
tINSU  
tILA  
Input Latch Set-Up  
Latch Active Pulse Width  
13.5  
Notes:  
1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating  
device performance. Post-route timing analysis or simulation is required to determine actual performance.  
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be  
obtained from the Timer utility.  
4. Set-up and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/  
hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to  
the G input subtracts (adds) to the internal setup (hold) time.  
5. Delays based on 35 pF loading.  
1-66  
v6.0  
40MX and 42MX FPGA Families  
Table 37 A42MX24 Timing Characteristics (Nominal 3.3V Operation) (Continued)  
(Worst-Case Commercial Conditions, VCCA = 3.0V, TJ = 70°C)  
‘–3’ Speed  
‘–2’Speed  
‘–1’ Speed ‘Std’ Speed ‘–F’ Speed  
Parameter Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Input Module Predicted Routing Delays2  
tIRD1  
tIRD2  
tIRD3  
tIRD4  
tIRD8  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
2.6  
2.9  
3.2  
3.5  
4.8  
2.9  
3.2  
3.6  
3.9  
5.3  
3.2  
3.6  
4.0  
4.4  
6.1  
3.8  
4.3  
4.8  
5.2  
7.1  
5.3  
6.0  
ns  
ns  
ns  
ns  
ns  
6.6  
7.3  
10.0  
Global Clock Network  
tCKH  
Input LOW to HIGH FO=32  
4.4  
4.8  
4.8  
5.3  
5.5  
6.0  
6.5  
7.1  
9.1  
10.0  
ns  
ns  
FO=486  
tCKL  
Input HIGH to LOW FO=32  
FO=486  
5.1  
6.0  
5.7  
6.6  
6.4  
7.5  
7.6  
8.8  
10.6  
12.4  
ns  
ns  
tPWH  
tPWL  
tCKSW  
tSUEXT  
Minimum Pulse  
Width HIGH  
FO=32  
FO=486  
3.0  
3.3  
3.3  
3.7  
3.8  
4.2  
4.5  
4.9  
6.3  
6.9  
ns  
ns  
Minimum Pulse  
Width LOW  
FO=32  
FO=486  
3.0  
3.3  
3.4  
3.7  
3.8  
4.2  
4.5  
4.9  
6.3  
6.9  
ns  
ns  
Maximum Skew  
FO=32  
FO=486  
0.8  
0.8  
0.8  
0.8  
1.0  
1.0  
1.1  
1.1  
1.6  
1.6  
ns  
ns  
Input Latch External FO=32  
Set-Up FO=486  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
ns  
ns  
TTL Output Module Timing5  
tDLH  
Data-to-Pad HIGH  
Data-to-Pad LOW  
Enable Pad Z to HIGH  
Enable Pad Z to LOW  
Enable Pad HIGH to Z  
Enable Pad LOW to Z  
G-to-Pad HIGH  
3.4  
4.0  
3.6  
3.9  
7.2  
6.7  
4.8  
4.8  
3.8  
4.4  
4.0  
4.4  
8.0  
7.5  
5.3  
5.3  
4.3  
5.0  
4.5  
5.0  
9.1  
8.5  
6.0  
6.0  
5.0  
5.9  
5.3  
5.8  
10.7  
9.9  
7.2  
7.2  
7.1  
8.3  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDHL  
tENZH  
tENZL  
tENHZ  
tENLZ  
tGLH  
7.4  
8.2  
14.9  
13.9  
10.0  
10.0  
tGHL  
G-to-Pad LOW  
tLSU  
I/O Latch Output Set-Up  
0.7  
0.7  
0.8  
1.0  
1.4  
Notes:  
1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating  
device performance. Post-route timing analysis or simulation is required to determine actual performance.  
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be  
obtained from the Timer utility.  
4. Set-up and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/  
hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to  
the G input subtracts (adds) to the internal setup (hold) time.  
5. Delays based on 35 pF loading.  
v6.0  
1-67  
40MX and 42MX FPGA Families  
Table 37 A42MX24 Timing Characteristics (Nominal 3.3V Operation) (Continued)  
(Worst-Case Commercial Conditions, VCCA = 3.0V, TJ = 70°C)  
‘–3’ Speed  
‘–2’Speed  
‘–1’ Speed ‘Std’ Speed ‘–F’ Speed  
Parameter Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
TTL Output Module Timing5 (Continued)  
tLH  
I/O Latch Output Hold  
0.0  
0.0  
0.0  
0.0  
0.0  
ns  
ns  
tLCO  
I/O Latch Clock-to-Out  
(Pad-to-Pad) 32 I/O  
7.7  
8.5  
9.6  
11.3  
22.0  
15.9  
30.8  
tACO  
Array Latch Clock-to-Out  
(Pad-to-Pad) 32 I/O  
14.8  
16.5  
18.7  
ns  
dTLH  
dTHL  
Capacitive Loading, LOW to HIGH  
0.05  
0.04  
0.05  
0.04  
0.06  
0.05  
0.07  
0.06  
0.10 ns/pF  
0.08 ns/pF  
Capacitive Loading, HIGH to LOW  
CMOS Output Module Timing5  
tDLH  
tDHL  
tENZH  
tENZL  
tENHZ  
tENLZ  
tGLH  
tGHL  
tLSU  
Data-to-Pad HIGH  
Data-to-Pad LOW  
Enable Pad Z to HIGH  
Enable Pad Z to LOW  
Enable Pad HIGH to Z  
Enable Pad LOW to Z  
G-to-Pad HIGH  
4.8  
3.5  
3.6  
3.4  
7.2  
6.7  
6.8  
6.8  
5.3  
3.9  
4.0  
4.0  
8.0  
7.5  
7.6  
7.6  
5.5  
4.1  
4.5  
5.0  
9.0  
8.5  
8.6  
8.6  
6.4  
4.9  
9.0  
6.8  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
5.3  
7.4  
5.8  
8.2  
10.7  
9.9  
14.9  
13.9  
14.2  
14.2  
10.1  
10.1  
G-to-Pad LOW  
I/O Latch Set-Up  
0.7  
0.0  
0.7  
0.0  
0.8  
0.0  
1.0  
0.0  
1.4  
0.0  
tLH  
I/O Latch Hold  
tLCO  
I/O Latch Clock-to-Out  
(Pad-to-Pad) 32 I/O  
7.7  
8.5  
9.6  
11.3  
22.0  
15.9  
30.8  
tACO  
Array Latch Clock-to-Out  
(Pad-to-Pad) 32 I/O  
14.8  
16.5  
18.7  
ns  
dTLH  
dTHL  
tHEXT  
Capacitive Loading, LOW to HIGH  
Capacitive Loading, HIGH to LOW  
Input Latch External FO=32  
0.05  
0.04  
0.05  
0.04  
0.06  
0.05  
0.07  
0.06  
0.10 ns/pF  
0.08 ns/pF  
3.9  
4.6  
4.3  
5.2  
4.9  
5.8  
5.7  
6.9  
8.1  
9.6  
ns  
ns  
Hold  
FO=486  
tP  
Minimum Period  
FO=32  
FO=486  
7.8  
8.6  
8.7  
9.5  
9.5  
10.4  
10.8  
11.9  
18.2  
19.9  
ns  
ns  
(1/fMAX  
)
Notes:  
1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating  
device performance. Post-route timing analysis or simulation is required to determine actual performance.  
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be  
obtained from the Timer utility.  
4. Set-up and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/  
hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to  
the G input subtracts (adds) to the internal setup (hold) time.  
5. Delays based on 35 pF loading.  
1-68  
v6.0  
40MX and 42MX FPGA Families  
Table 38 A42MX36 Timing Characteristics (Nominal 5.0V Operation)  
(Worst-Case Commercial Conditions, VCCA = 4.75V, TJ = 70°C)  
‘–3’ Speed  
‘–2’ Speed  
‘–1’ Speed ‘Std’ Speed ‘–F’ Speed  
Parameter Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Logic Module Combinatorial Functions1  
tPD  
Internal Array Module Delay  
1.3  
1.6  
1.5  
1.8  
1.7  
2.0  
2.0  
2.4  
2.7  
3.3  
ns  
ns  
tPDD  
Internal Decode Module Delay  
Logic Module Predicted Routing Delays2  
tRD1  
tRD2  
tRD3  
tRD4  
tRD5  
tRDD  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
Decode-to-Output Routing Delay  
0.9  
1.3  
1.6  
2.0  
3.3  
0.3  
1.0  
1.4  
1.8  
2.2  
3.7  
0.4  
1.2  
1.6  
2.0  
2.5  
4.2  
0.4  
1.4  
1.9  
2.4  
2.9  
4.9  
0.5  
2.0  
2.7  
3.4  
4.1  
6.9  
0.7  
ns  
ns  
ns  
ns  
ns  
ns  
Logic Module Sequential Timing3, 4  
tCO  
Flip-Flop Clock-to-Output  
Latch Gate-to-Output  
1.3  
1.3  
1.4  
1.4  
1.6  
1.6  
1.9  
1.9  
2.7  
2.7  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tGO  
tSUD  
tHD  
Flip-Flop (Latch) Set-Up Time  
Flip-Flop (Latch) Hold Time  
Flip-Flop (Latch) Reset-to-Output  
Flip-Flop (Latch) Enable Set-Up  
Flip-Flop (Latch) Enable Hold  
0.3  
0.0  
0.3  
0.0  
0.4  
0.0  
0.5  
0.0  
0.7  
0.0  
tRO  
1.6  
1.7  
2.0  
2.3  
3.2  
tSUENA  
tHENA  
tWCLKA  
0.7  
0.0  
0.8  
0.0  
3.7  
0.9  
0.0  
4.2  
1.0  
0.0  
4.9  
1.4  
0.0  
6.9  
Flip-Flop (Latch) Clock Active 3.3  
Pulse Width  
tWASYN  
Flip-Flop (Latch) Asynchronous 4.4  
Pulse Width  
4.8  
5.5  
6.4  
9.0  
ns  
Synchronous SRAM Operations  
tRC  
Read Cycle Time  
6.8  
6.8  
3.4  
7.5  
7.5  
3.8  
8.5  
8.5  
4.3  
10.0  
10.0  
5.0  
14.0  
14.0  
7.0  
ns  
ns  
ns  
ns  
ns  
tWC  
Write Cycle Time  
tRCKHL  
tRCO  
Clock HIGH/LOW Time  
Data Valid After Clock HIGH/LOW  
Address/Data Set-Up Time  
3.4  
3.8  
4.3  
5.0  
7.0  
tADSU  
Notes:  
1.6  
1.8  
2.0  
2.4  
3.4  
1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating  
device performance. Post-route timing analysis or simulation is required to determine actual performance.  
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be  
obtained from the Timer utility.  
4. Set-up and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/  
hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to  
the G input subtracts (adds) to the internal setup (hold) time.  
5. Delays based on 35 pF loading.  
v6.0  
1-69  
40MX and 42MX FPGA Families  
Table 38 A42MX36 Timing Characteristics (Nominal 5.0V Operation)  
(Worst-Case Commercial Conditions, VCCA = 4.75V, TJ = 70°C)  
‘–3’ Speed  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Synchronous SRAM Operations (Continued)  
‘–2’ Speed  
‘–1’ Speed ‘Std’ Speed ‘–F’ Speed  
Parameter Description  
tADH  
Address/Data Hold Time  
Read Enable Set-Up  
Read Enable Hold  
0.0  
0.6  
3.4  
2.7  
0.0  
2.8  
0.0  
0.0  
0.7  
3.8  
3.0  
0.0  
3.1  
0.0  
0.0  
0.8  
4.3  
3.4  
0.0  
3.5  
0.0  
0.0  
0.9  
5.0  
4.0  
0.0  
4.1  
0.0  
0.0  
1.3  
7.0  
5.6  
0.0  
5.7  
0.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tRENSU  
tRENH  
tWENSU  
tWENH  
tBENS  
Write Enable Set-Up  
Write Enable Hold  
Block Enable Set-Up  
Block Enable Hold  
tBENH  
Asynchronous SRAM Operations  
tRPD  
Asynchronous Access Time  
Read Address Valid  
8.1  
9.0  
10.2  
12.0  
16.8  
ns  
ns  
ns  
ns  
ns  
tRDADV  
tADSU  
tADH  
8.8  
1.6  
0.0  
9.8  
1.8  
0.0  
0.7  
11.1  
2.0  
13.0  
2.4  
18.2  
3.4  
0.0  
Address/Data Set-Up Time  
Address/Data Hold Time  
0.0  
0.0  
tRENSUA  
Read Enable Set-Up to Address 0.6  
Valid  
0.8  
0.9  
1.3  
tRENHA  
tWENSU  
tWENH  
tDOH  
Read Enable Hold  
Write Enable Set-Up  
Write Enable Hold  
Data Out Hold Time  
3.4  
2.7  
0.0  
3.8  
3.0  
0.0  
4.3  
3.4  
0.0  
5.0  
4.0  
0.0  
7.0  
5.6  
0.0  
ns  
ns  
ns  
ns  
1.2  
1.3  
1.5  
1.8  
2.5  
Input Module Propagation Delays  
tINPY  
tINGO  
tINH  
Input Data Pad-to-Y  
Input Latch Gate-to-Output  
Input Latch Hold  
1.0  
1.4  
1.1  
1.6  
1.3  
1.8  
1.5  
2.1  
2.1  
2.9  
ns  
ns  
ns  
ns  
ns  
0.0  
0.5  
4.7  
0.0  
0.5  
5.2  
0.0  
0.6  
5.9  
0.0  
0.7  
6.9  
0.0  
1.0  
9.7  
tINSU  
tILA  
Input Latch Set-Up  
Latch Active Pulse Width  
Notes:  
1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating  
device performance. Post-route timing analysis or simulation is required to determine actual performance.  
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be  
obtained from the Timer utility.  
4. Set-up and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/  
hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to  
the G input subtracts (adds) to the internal setup (hold) time.  
5. Delays based on 35 pF loading.  
1-70  
v6.0  
40MX and 42MX FPGA Families  
Table 38 A42MX36 Timing Characteristics (Nominal 5.0V Operation)  
(Worst-Case Commercial Conditions, VCCA = 4.75V, TJ = 70°C)  
‘–3’ Speed  
‘–2’ Speed  
‘–1’ Speed ‘Std’ Speed ‘–F’ Speed  
Parameter Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Input Module Predicted Routing Delays2  
tIRD1  
tIRD2  
tIRD3  
tIRD4  
tIRD8  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
2.0  
2.3  
2.6  
3.0  
4.3  
2.2  
2.6  
2.9  
3.3  
4.8  
2.5  
2.9  
3.3  
3.8  
5.5  
2.9  
3.4  
3.9  
4.4  
6.4  
4.1  
4.8  
5.5  
6.2  
9.0  
ns  
ns  
ns  
ns  
ns  
Global Clock Network  
tCKH Input LOW to HIGH FO=32  
2.7  
3.0  
3.0  
3.3  
3.4  
3.8  
4.0  
4.4  
5.6  
6.2  
ns  
ns  
FO=635  
tCKL  
Input HIGH to LOW FO=32  
FO=635  
3.8  
4.9  
4.2  
5.4  
4.8  
6.1  
5.6  
7.2  
7.8  
10.1  
ns  
ns  
tPWH  
tPWL  
tCKSW  
tSUEXT  
tHEXT  
tP  
Minimum Pulse  
Width HIGH  
FO=32  
FO=635  
1.8  
2.0  
2.0  
2.2  
2.2  
2.5  
2.6  
2.9  
3.6  
4.1  
ns  
ns  
Minimum Pulse  
Width LOW  
FO=32  
FO=635  
1.8  
2.0  
2.0  
2.2  
2.2  
2.5  
2.6  
2.9  
3.6  
4.1  
ns  
ns  
Maximum Skew  
FO=32  
FO=635  
0.8  
0.8  
0.8  
0.8  
0.9  
0.9  
1.0  
1.0  
1.4  
1.4  
ns  
ns  
Input Latch External FO=32  
Set-Up FO=635  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
ns  
ns  
Input Latch External FO=32  
Hold  
2.8  
3.3  
3.2  
3.7  
3.6  
4.2  
4.2  
4.9  
5.9  
6.9  
ns  
ns  
FO=635  
Minimum Period  
FO=32  
FO=635  
5.5  
6.0  
6.1  
6.6  
6.6  
7.2  
7.6  
8.3  
12.7  
13.8  
ns  
ns  
(1/fMAX  
)
fMAX  
Maximum Datapath FO=32  
Frequency FO=635  
180  
166  
164  
151  
151  
139  
131  
121  
79  
73  
MHz  
MHz  
TTL Output Module Timing5  
tDLH  
Data-to-Pad HIGH  
2.6  
3.0  
2.7  
3.0  
5.3  
2.8  
3.3  
3.0  
3.3  
5.8  
3.2  
3.7  
3.3  
3.7  
6.6  
3.8  
4.4  
3.9  
4.3  
7.8  
5.3  
6.2  
ns  
ns  
ns  
ns  
ns  
tDHL  
Data-to-Pad LOW  
tENZH  
tENZL  
tENHZ  
Notes:  
Enable Pad Z to HIGH  
Enable Pad Z to LOW  
Enable Pad HIGH to Z  
5.5  
6.1  
10.9  
1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating  
device performance. Post-route timing analysis or simulation is required to determine actual performance.  
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be  
obtained from the Timer utility.  
4. Set-up and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/  
hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to  
the G input subtracts (adds) to the internal setup (hold) time.  
5. Delays based on 35 pF loading.  
v6.0  
1-71  
40MX and 42MX FPGA Families  
Table 38 A42MX36 Timing Characteristics (Nominal 5.0V Operation)  
(Worst-Case Commercial Conditions, VCCA = 4.75V, TJ = 70°C)  
‘–3’ Speed  
‘–2’ Speed  
‘–1’ Speed ‘Std’ Speed ‘–F’ Speed  
Parameter Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
TTL Output Module Timing5 (Continued)  
tENLZ  
tGLH  
tGHL  
tLSU  
tLH  
Enable Pad LOW to Z  
G-to-Pad HIGH  
4.9  
2.9  
2.9  
5.5  
3.3  
3.3  
6.2  
3.7  
3.7  
7.3  
4.4  
4.4  
10.2  
6.1  
ns  
ns  
ns  
ns  
ns  
ns  
G-to-Pad LOW  
6.1  
I/O Latch Output Set-Up  
I/O Latch Output Hold  
0.5  
0.0  
0.5  
0.0  
0.6  
0.0  
0.7  
0.0  
1.0  
0.0  
tLCO  
I/O Latch Clock-to-Out (Pad-to-  
Pad) 32 I/O  
5.7  
7.8  
6.3  
8.6  
7.1  
9.8  
8.4  
11.8  
16.1  
tACO  
Array Latch Clock-to-Out (Pad-  
to-Pad) 32 I/O  
11.5  
ns  
dTLH  
dTHL  
Capacitive Loading, LOW to HIGH  
Capacitive Loading, HIGH to LOW  
0.07  
0.07  
0.08  
0.08  
0.09  
0.09  
0.10  
0.10  
0.14 ns/pF  
0.14 ns/pF  
CMOS Output Module Timing5  
tDLH  
tDHL  
tENZH  
tENZL  
tENHZ  
tENLZ  
tGLH  
tGHL  
tLSU  
Data-to-Pad HIGH  
Data-to-Pad LOW  
Enable Pad Z to HIGH  
Enable Pad Z to LOW  
Enable Pad HIGH to Z  
Enable Pad LOW to Z  
G-to-Pad HIGH  
3.5  
2.5  
2.7  
2.9  
5.3  
4.9  
5.0  
5.0  
3.9  
2.7  
3.0  
3.3  
5.8  
5.5  
5.6  
5.6  
4.5  
3.1  
3.3  
3.7  
6.6  
6.2  
6.3  
6.3  
5.2  
3.6  
3.9  
4.3  
7.8  
7.3  
7.5  
7.5  
7.3  
5.1  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
5.5  
6.1  
10.9  
10.2  
10.4  
10.4  
G-to-Pad LOW  
I/O Latch Set-Up  
0.5  
0.0  
0.5  
0.0  
0.6  
0.0  
0.7  
0.0  
1.0  
0.0  
tLH  
I/O Latch Hold  
tLCO  
I/O Latch Clock-to-Out (Pad-to-  
Pad) 32 I/O  
5.7  
7.8  
6.3  
8.6  
7.1  
9.8  
8.4  
11.8  
16.1  
tACO  
Array Latch Clock-to-Out (Pad-  
to-Pad) 32 I/O  
11.5  
ns  
dTLH  
Capacitive Loading, LOW to HIGH  
Capacitive Loading, HIGH to LOW  
0.07  
0.07  
0.08  
0.08  
0.09  
0.09  
0.10  
0.10  
0.14 ns/pF  
0.14 ns/pF  
dTHL  
Notes:  
1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating  
device performance. Post-route timing analysis or simulation is required to determine actual performance.  
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be  
obtained from the Timer utility.  
4. Set-up and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/  
hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to  
the G input subtracts (adds) to the internal setup (hold) time.  
5. Delays based on 35 pF loading.  
1-72  
v6.0  
40MX and 42MX FPGA Families  
Table 39 A42MX36 Timing Characteristics (Nominal 3.3V Operation)  
(Worst-Case Commercial Conditions, VCCA = 3.0V, TJ = 70°C)  
‘–3’ Speed  
‘–2’ Speed  
‘–1’ Speed ‘Std’ Speed ‘–F’ Speed  
Parameter Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Logic Module Combinatorial Functions1  
tPD  
Internal Array Module Delay  
1.9  
2.2  
2.1  
2.5  
2.3  
2.8  
2.7  
3.3  
3.8  
4.7  
ns  
ns  
tPDD  
Internal Decode Module Delay  
Logic Module Predicted Routing Delays2  
tRD1  
tRD2  
tRD3  
tRD4  
tRD5  
tRDD  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
Decode-to-Output Routing Delay  
1.3  
1.8  
2.3  
2.8  
4.6  
0.5  
1.5  
2.0  
2.5  
3.1  
5.2  
0.5  
1.7  
2.3  
2.8  
3.5  
5.8  
0.6  
2.0  
2.7  
3.4  
4.1  
6.9  
0.7  
2.7  
3.7  
4.7  
5.7  
9.6  
1.0  
ns  
ns  
ns  
ns  
ns  
ns  
Logic Module Sequential Timing3, 4  
tCO  
Flip-Flop Clock-to-Output  
Latch Gate-to-Output  
1.8  
1.8  
2.0  
2.0  
2.3  
2.3  
2.7  
2.7  
3.7  
3.7  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tGO  
tSUD  
tHD  
Flip-Flop (Latch) Set-Up Time  
Flip-Flop (Latch) Hold Time  
Flip-Flop (Latch) Reset-to-Output  
Flip-Flop (Latch) Enable Set-Up  
Flip-Flop (Latch) Enable Hold  
0.4  
0.0  
0.5  
0.0  
0.6  
0.0  
0.7  
0.0  
0.9  
0.0  
tRO  
2.2  
2.4  
2.7  
3.2  
4.5  
tSUENA  
tHENA  
tWCLKA  
1.0  
0.0  
1.1  
0.0  
5.2  
1.2  
0.0  
5.8  
1.4  
0.0  
6.9  
2.0  
0.0  
9.6  
Flip-Flop (Latch) Clock Active 4.6  
Pulse Width  
tWASYN  
Flip-Flop (Latch) Asynchronous 6.1  
Pulse Width  
6.8  
7.7  
9.0  
12.6  
ns  
Synchronous SRAM Operations  
tRC  
Read Cycle Time  
9.5  
9.5  
4.8  
10.5  
10.5  
5.3  
11.9  
11.9  
6.0  
14.0  
14.0  
7.0  
19.6  
19.6  
9.8  
ns  
ns  
ns  
ns  
ns  
tWC  
Write Cycle Time  
tRCKHL  
tRCO  
Clock HIGH/LOW Time  
Data Valid After Clock HIGH/LOW  
Address/Data Set-Up Time  
4.8  
5.3  
6.0  
7.0  
9.8  
tADSU  
Notes:  
2.3  
2.5  
2.8  
3.4  
4.8  
1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating  
device performance. Post-route timing analysis or simulation is required to determine actual performance.  
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be  
obtained from the Timer utility.  
4. Set-up and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/  
hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to  
the G input subtracts (adds) to the internal setup (hold) time.  
5. Delays based on 35 pF loading.  
v6.0  
1-73  
40MX and 42MX FPGA Families  
Table 39 A42MX36 Timing Characteristics (Nominal 3.3V Operation) (Continued)  
(Worst-Case Commercial Conditions, VCCA = 3.0V, TJ = 70°C)  
‘–3’ Speed  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Synchronous SRAM Operations (Continued)  
‘–2’ Speed  
‘–1’ Speed ‘Std’ Speed ‘–F’ Speed  
Parameter Description  
tADH  
Address/Data Hold Time  
Read Enable Set-Up  
Read Enable Hold  
0.0  
0.9  
4.8  
3.8  
0.0  
3.9  
0.0  
0.0  
1.0  
5.3  
4.2  
0.0  
4.3  
0.0  
0.0  
1.1  
6.0  
4.8  
0.0  
4.9  
0.0  
0.0  
1.3  
7.0  
5.6  
0.0  
5.7  
0.0  
0.0  
1.8  
9.8  
7.8  
0.0  
8.0  
0.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tRENSU  
tRENH  
tWENSU  
tWENH  
tBENS  
Write Enable Set-Up  
Write Enable Hold  
Block Enable Set-Up  
Block Enable Hold  
tBENH  
Asynchronous SRAM Operations  
tRPD  
Asynchronous Access Time  
Read Address Valid  
11.3  
12.6  
14.3  
16.8  
23.5  
ns  
ns  
ns  
ns  
ns  
tRDADV  
tADSU  
tADH  
12.3  
2.3  
13.7  
2.5  
15.5  
2.8  
18.2  
3.4  
25.5  
4.8  
0.0  
Address/Data Set-Up Time  
Address/Data Hold Time  
0.0  
0.0  
0.0  
0.0  
tRENSUA  
Read Enable Set-Up to Address 0.9  
Valid  
1.0  
1.1  
1.3  
1.8  
tRENHA  
tWENSU  
tWENH  
tDOH  
Read Enable Hold  
Write Enable Set-Up  
Write Enable Hold  
Data Out Hold Time  
4.8  
3.8  
0.0  
5.3  
4.2  
0.0  
6.0  
4.8  
0.0  
7.0  
5.6  
0.0  
9.8  
7.8  
0.0  
ns  
ns  
ns  
ns  
1.8  
2.0  
2.1  
2.5  
3.5  
Input Module Propagation Delays  
tINPY  
Input Data Pad-to-Y  
1.4  
2.0  
1.6  
2.2  
1.8  
2.5  
2.1  
2.9  
3.0  
4.1  
ns  
ns  
tINGO  
Input Latch Gate-to-  
Output  
tINH  
Input Latch Hold  
0.0  
0.7  
6.5  
0.0  
0.7  
7.3  
0.0  
0.8  
8.2  
0.0  
1.0  
9.7  
0.0  
1.4  
ns  
ns  
ns  
tINSU  
tILA  
Input Latch Set-Up  
Latch Active Pulse Width  
13.5  
Notes:  
1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating  
device performance. Post-route timing analysis or simulation is required to determine actual performance.  
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be  
obtained from the Timer utility.  
4. Set-up and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/  
hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to  
the G input subtracts (adds) to the internal setup (hold) time.  
5. Delays based on 35 pF loading.  
1-74  
v6.0  
40MX and 42MX FPGA Families  
Table 39 A42MX36 Timing Characteristics (Nominal 3.3V Operation) (Continued)  
(Worst-Case Commercial Conditions, VCCA = 3.0V, TJ = 70°C)  
‘–3’ Speed  
‘–2’ Speed  
‘–1’ Speed ‘Std’ Speed ‘–F’ Speed  
Parameter Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Input Module Predicted Routing Delays2  
tIRD1  
tIRD2  
tIRD3  
tIRD4  
tIRD8  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
2.8  
3.2  
3.7  
4.2  
6.1  
3.1  
3.5  
4.1  
4.6  
6.8  
3.5  
4.1  
4.7  
5.3  
7.7  
4.1  
4.8  
5.5  
6.2  
9.0  
5.7  
6.7  
ns  
ns  
ns  
ns  
ns  
7.7  
8.7  
12.6  
Global Clock Network  
tCKH Input LOW to HIGH FO=32  
4.6  
5.0  
5.1  
5.6  
5.7  
6.3  
6.7  
7.4  
9.3  
10.3  
ns  
ns  
FO=635  
tCKL  
Input HIGH to LOW FO=32  
FO=635  
5.3  
6.8  
5.9  
7.6  
6.7  
8.6  
7.8  
10.1  
11.0  
14.1  
ns  
ns  
tPWH  
tPWL  
tCKSW  
tSUEXT  
tHEXT  
tP  
Minimum Pulse  
Width HIGH  
FO=32  
FO=635  
2.5  
2.8  
2.7  
3.1  
3.1  
3.5  
3.6  
4.1  
5.1  
5.7  
ns  
ns  
Minimum Pulse  
Width LOW  
FO=32  
FO=635  
2.5  
2.8  
2.7  
3.1  
3.1  
3.5  
3.6  
4.1  
5.1  
5.7  
ns  
ns  
Maximum Skew  
FO=32  
FO=635  
1.0  
1.0  
1.2  
1.2  
1.3  
1.3  
1.5  
1.5  
2.2  
2.2  
ns  
ns  
Input Latch  
External Set-Up  
FO=32  
FO=635  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
ns  
ns  
Input Latch  
External Hold  
FO=32  
FO=635  
4.0  
4.6  
4.4  
5.2  
5.0  
5.9  
5.9  
6.9  
8.2  
9.6  
ns  
ns  
Minimum Period  
FO=32  
FO=635  
9.2  
9.9  
10.2  
11.0  
11.1  
12.0  
12.7  
13.8  
21.2  
23.0  
ns  
ns  
(1/fMAX  
)
fMAX  
Maximum Datapath FO=32  
Frequency FO=635  
108  
100  
98  
91  
90  
83  
79  
73  
47  
44  
MHz  
MHz  
TTL Output Module Timing5  
tDLH  
Data-to-Pad HIGH  
3.6  
4.2  
4.0  
4.6  
4.2  
4.6  
8.2  
4.5  
5.2  
4.7  
5.2  
9.3  
5.3  
6.2  
7.4  
8.6  
ns  
ns  
ns  
ns  
ns  
tDHL  
Data-to-Pad LOW  
tENZH  
tENZL  
tENHZ  
Notes:  
Enable Pad Z to HIGH  
Enable Pad Z to LOW  
Enable Pad HIGH to Z  
3.7  
5.5  
7.7  
4.1  
6.1  
8.5  
7.34  
10.9  
15.3  
1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating  
device performance. Post-route timing analysis or simulation is required to determine actual performance.  
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be  
obtained from the Timer utility.  
4. Set-up and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/  
hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to  
the G input subtracts (adds) to the internal setup (hold) time.  
5. Delays based on 35 pF loading.  
v6.0  
1-75  
40MX and 42MX FPGA Families  
Table 39 A42MX36 Timing Characteristics (Nominal 3.3V Operation) (Continued)  
(Worst-Case Commercial Conditions, VCCA = 3.0V, TJ = 70°C)  
‘–3’ Speed  
‘–2’ Speed  
‘–1’ Speed ‘Std’ Speed ‘–F’ Speed  
Parameter Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
TTL Output Module Timing5  
tENLZ  
tGLH  
tGHL  
tLSU  
tLH  
Enable Pad LOW to Z  
G-to-Pad HIGH  
6.9  
4.9  
4.9  
7.6  
5.5  
5.5  
8.7  
6.2  
6.2  
10.2  
7.3  
14.3  
10.2  
10.2  
ns  
ns  
ns  
ns  
ns  
ns  
G-to-Pad LOW  
7.3  
I/O Latch Output Set-Up  
I/O Latch Output Hold  
0.7  
0.0  
0.7  
0.0  
0.8  
0.0  
1.0  
0.0  
1.4  
0.0  
tLCO  
I/O Latch Clock-to-Out (Pad-to-  
Pad) 32 I/O  
7.9  
8.8  
10.0  
13.7  
11.8  
16.1  
16.5  
22.5  
tACO  
Array Latch Clock-to-Out (Pad-  
to-Pad) 32 I/O  
10.9  
12.1  
ns  
dTLH  
dTHL  
Capacitive Loading, LOW to HIGH  
Capacitive Loading, HIGH to LOW  
0.10  
0.10  
0.11  
0.11  
0.12  
0.12  
0.14  
0.14  
0.20 ns/pF  
0.20 ns/pF  
CMOS Output Module Timing5  
tDLH  
tDHL  
tENZH  
tENZL  
tENHZ  
tENLZ  
tGLH  
tGHL  
tLSU  
Data-to-Pad HIGH  
Data-to-Pad LOW  
Enable Pad Z to HIGH  
Enable Pad Z to LOW  
Enable Pad HIGH to Z  
Enable Pad LOW to Z  
G-to-Pad HIGH  
4.9  
3.4  
3.7  
4.1  
7.4  
6.9  
7.0  
7.0  
5.5  
3.8  
4.1  
4.6  
8.2  
7.6  
7.8  
7.8  
6.2  
4.3  
4.7  
5.2  
9.3  
8.7  
8.9  
8.9  
7.3  
5.1  
10.3  
7.1  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
5.5  
7.7  
6.1  
8.5  
10.9  
10.2  
10.4  
10.4  
15.3  
14.3  
14.6  
14.6  
G-to-Pad LOW  
I/O Latch Set-Up  
0.7  
0.0  
0.7  
0.0  
0.8  
0.0  
1.0  
0.0  
1.4  
0.0  
tLH  
I/O Latch Hold  
tLCO  
I/O Latch Clock-to-Out (Pad-to-  
Pad) 32 I/O  
7.9  
8.8  
10.0  
11.8  
16.5  
Notes:  
1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating  
device performance. Post-route timing analysis or simulation is required to determine actual performance.  
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be  
obtained from the Timer utility.  
4. Set-up and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/  
hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to  
the G input subtracts (adds) to the internal setup (hold) time.  
5. Delays based on 35 pF loading.  
1-76  
v6.0  
40MX and 42MX FPGA Families  
Pin Descriptions  
CLK/A/B, I/O  
Global Clock  
PRA, I/O  
PRB, I/O  
Probe A/B  
Clock inputs for clock distribution networks. CLK is for  
40MX while CLKA and CLKB are for 42MX devices. The  
clock input is buffered prior to clocking the logic  
modules. This pin can also be used as an I/O.  
The Probe pin is used to output data from any user-  
defined design node within the device. Each diagnostic  
pin can be used in conjunction with the other probe pin  
to allow real-time diagnostic output of any signal path  
within the device. The Probe pin can be used as a user-  
defined I/O when verification has been completed. The  
pin's probe capabilities can be permanently disabled to  
protect programmed design confidentiality. The Probe  
pin is accessible when the MODE pin is HIGH. This pin  
functions as an I/O when the MODE pin is LOW.  
DCLK, I/O  
Diagnostic Clock  
Clock input for diagnostic probe and device  
programming. DCLK is active when the MODE pin is  
HIGH. This pin functions as an I/O when the MODE pin is  
LOW.  
GND  
Ground  
Input LOW supply voltage.  
QCLKA/B/C/D, I/O Quadrant Clock  
I/O  
Input/Output  
Quadrant clock inputs for A42MX36 devices. When not  
used as a register control signal, these pins can function  
as user I/Os.  
Input, output, tristate or bi-directional buffer. Input and  
output levels are compatible with standard TTL and  
CMOS specifications. Unused I/Os pins are configured by  
the Designer software as shown in Table 40.  
SDI, I/O  
Serial Data Input  
Serial data input for diagnostic probe and device  
programming. SDI is active when the MODE pin is HIGH.  
This pin functions as an I/O when the MODE pin is LOW.  
Table 40 Configuration of Unused I/Os  
Device  
Configuration  
Pulled LOW  
Pulled LOW  
Tristated  
SDO, I/O  
Serial Data Output  
A40MX02, A40MX04  
A42MX09, A42MX16  
A42MX24, A42MX36  
Serial data output for diagnostic probe and device  
programming. SDO is active when the MODE pin is HIGH.  
This pin functions as an I/O when the MODE pin is LOW.  
SDO is available for 42MX devices only.  
In all cases, it is recommended to tie all unused MX I/O  
pins to LOW on the board. This applies to all dual-  
purpose pins when configured as I/Os as well.  
When Silicon Explorer II is being used, SDO will act as an  
output while the "checksum" command is run. It will  
return to user I/O when "checksum" is complete.  
LP  
Low Power Mode  
TCK, I/O  
Test Clock  
Controls the low power mode of all 42MX devices. The  
device is placed in the low power mode by connecting  
the LP pin to logic HIGH. In low power mode, all I/Os are  
tristated, all input buffers are turned OFF, and the core  
of the device is turned OFF. To exit the low power mode,  
the LP pin must be set LOW. The device enters the low  
power mode 800ns after the LP pin is driven to a logic  
HIGH. It will resume normal operation in 200µs after the  
LP pin is driven to a logic LOW.  
Clock signal to shift the Boundary Scan Test (BST) data  
into the device. This pin functions as an I/O when  
"Reserve JTAG" is not checked in the Designer Software.  
BST pins are only available in A42MX24 and A42MX36  
devices.  
TDI, I/O  
Test Data In  
Serial data input for BST instructions and data. Data is  
shifted in on the rising edge of TCK. This pin functions as  
an I/O when "Reserve JTAG" is not checked in the  
Designer Software. BST pins are only available in  
A42MX24 and A42MX36 devices.  
MODE  
Mode  
Controls the use of multifunction pins (DCLK, PRA, PRB,  
SDI, TDO). The MODE pin is held HIGH to provide  
verification capability. The MODE pin should be  
terminated to GND through a 10kresistor so that the  
MODE pin can be pulled HIGH when required.  
TDO, I/O  
Test Data Out  
Serial data output for BST instructions and test data. This  
pin functions as an I/O when "Reserve JTAG" is not  
checked in the Designer Software. BST pins are only  
available in A42MX24 and A42MX36 devices.  
NC  
No Connection  
This pin is not connected to circuitry within the device.  
These pins can be driven to any voltage or can be left  
floating with no effect on the operation of the device.  
v6.0  
1-77  
40MX and 42MX FPGA Families  
TMS, I/O  
Test Mode Select  
V
Supply Voltage  
CC  
The TMS pin controls the use of the IEEE 1149.1  
Boundary Scan pins (TCK, TDI, TDO). In flexible mode  
when the TMS pin is set LOW, the TCK, TDI and TDO pins  
are boundary scan pins. Once the boundary scan pins are  
in test mode, they will remain in that mode until the  
internal boundary scan state machine reaches the "logic  
reset" state. At this point, the boundary scan pins will be  
released and will function as regular I/O pins. The "logic  
reset" state is reached 5 TCK cycles after the TMS pin is  
set HIGH. In dedicated test mode, TMS functions as  
specified in the IEEE 1149.1 specifications. IEEE JTAG  
specification recommends a 10kpull-up resistor on the  
pin. BST pins are only available in A42MX24 and  
A42MX36 devices.  
Input supply voltage for 40MX devices  
V
Supply Voltage  
CCA  
Supply voltage for array in 42MX devices  
V
Supply Voltage  
CCI  
Supply voltage for I/Os in 42MX devices  
WD, I/O  
Wide Decode Output  
When a wide decode module is used in a 42MX device  
this pin can be used as a dedicated output from the wide  
decode module. This direct connection eliminates  
additional interconnect delays associated with regular  
logic modules. To implement the direct I/O connection,  
connect an output buffer of any type to the output of  
the wide decode macro and place this output on one of  
the reserved WD pins.  
1-78  
v6.0  
40MX and 42MX FPGA Families  
Package Pin Assignments  
44-Pin PLCC  
1
44  
44-Pin  
PLCC  
Figure 2-1 44-Pin PLCC  
44-pin PLCC  
44-pin PLCC  
Pin Number A40MX02 Function A40MX04 Function  
Pin Number A40MX02 Function A40MX04 Function  
1
2
I/O  
I/O  
I/O  
I/O  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
I/O  
I/O  
I/O  
I/O  
3
VCC  
I/O  
VCC  
I/O  
VCC  
VCC  
4
I/O  
I/O  
5
I/O  
I/O  
I/O  
I/O  
6
I/O  
I/O  
I/O  
I/O  
7
I/O  
I/O  
I/O  
I/O  
8
I/O  
I/O  
I/O  
I/O  
9
I/O  
I/O  
I/O  
I/O  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
GND  
I/O  
GND  
I/O  
GND  
CLK, I/O  
MODE  
VCC  
GND  
CLK, I/O  
MODE  
VCC  
I/O  
I/O  
I/O  
I/O  
VCC  
I/O  
VCC  
I/O  
SDI, I/O  
DCLK, I/O  
PRA, I/O  
PRB, I/O  
I/O  
SDI, I/O  
DCLK, I/O  
PRA, I/O  
PRB, I/O  
I/O  
VCC  
I/O  
VCC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
v6.0  
2-1  
40MX and 42MX FPGA Families  
68-Pin PLCC  
1 68  
68-Pin  
PLCC  
Figure 2-2 68-Pin PLCC  
44-pin PLCC  
44-pin PLCC  
44-pin PLCC  
Pin  
A40MX02 A40MX04  
Pin  
A40MX02 A40MX04  
Pin  
A40MX02 A40MX04  
Number  
Function  
Function  
Number  
Function  
Function  
Number  
Function  
Function  
1
2
I/O  
I/O  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
I/O  
I/O  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
I/O  
I/O  
I/O  
I/O  
VCC  
I/O  
VCC  
I/O  
I/O  
I/O  
3
I/O  
I/O  
GND  
I/O  
GND  
I/O  
4
VCC  
I/O  
VCC  
I/O  
I/O  
I/O  
5
I/O  
I/O  
I/O  
I/O  
6
I/O  
I/O  
I/O  
I/O  
CLK, I/O  
I/O  
CLK, I/O  
I/O  
7
I/O  
I/O  
I/O  
I/O  
8
I/O  
I/O  
I/O  
I/O  
MODE  
VCC  
MODE  
VCC  
9
I/O  
I/O  
GND  
I/O  
GND  
I/O  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
I/O  
I/O  
SDI, I/O  
DCLK, I/O  
PRA, I/O  
PRB, I/O  
I/O  
SDI, I/O  
DCLK, I/O  
PRA, I/O  
PRB, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
GND  
I/O  
GND  
GND  
I/O  
I/O  
I/O  
VCC  
I/O  
VCC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
VCC  
I/O  
VCC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
2-2  
v6.0  
40MX and 42MX FPGA Families  
84-Pin PLCC  
1 84  
84-Pin  
PLCC  
Figure 2-3 84-Pin PLCC  
v6.0  
2-3  
40MX and 42MX FPGA Families  
84-Pin PLCC  
84-Pin PLCC  
Pin  
A40MX04 A42MX09 A42MX16 A42MX24  
Pin  
A40MX04 A42MX09 A42MX16 A42MX24  
Number Function Function Function Function  
Number Function Function Function Function  
1
I/O  
I/O  
I/O  
VCC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
VCC  
VCC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCC  
I/O  
I/O  
I/O  
I/O  
I/O  
CLKB, I/O  
I/O  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
WD, I/O  
I/O  
2
CLKB, I/O CLKB, I/O  
3
I/O  
PRB, I/O  
I/O  
I/O  
PRB, I/O  
I/O  
I/O  
I/O  
I/O  
WD, I/O  
WD, I/O  
I/O  
4
PRB, I/O  
WD, I/O  
GND  
I/O  
I/O  
I/O  
I/O  
5
GND  
I/O  
I/O  
I/O  
6
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
7
I/O  
I/O  
I/O  
I/O  
8
I/O  
I/O  
WD, I/O  
WD, I/O  
DCLK, I/O  
I/O  
I/O  
VCCA  
I/O  
VCCA  
I/O  
VCCA  
9
I/O  
I/O  
I/O  
WD, I/O  
WD, I/O  
WD, I/O  
WD, I/O  
I/O  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
DCLK, I/O DCLK, I/O  
I/O  
I/O  
I/O  
I/O  
MODE  
I/O  
I/O  
MODE  
I/O  
VCC  
I/O  
I/O  
I/O  
MODE  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
WD, I/O  
WD, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
SDO, I/O  
I/O  
SDO, I/O SDO, TDO, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
VCCI  
I/O  
VCCI  
VCCA  
I/O  
VCCI  
VCCA  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TCK, I/O  
LP  
GND  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
LP  
LP  
CLK, I/O  
I/O  
VCCA  
VCCI  
I/O  
VCCA  
VCCI  
I/O  
VCCA  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
MODE  
VCC  
VCC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TMS, I/O  
TDI, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
GND  
GND  
2-4  
v6.0  
40MX and 42MX FPGA Families  
84-Pin PLCC  
84-Pin PLCC  
A40MX04 A42MX09 A42MX16 A42MX24  
Pin  
A40MX04 A42MX09 A42MX16 A42MX24  
Number Function Function Function Function  
Pin  
Number Function Function Function Function  
71  
72  
73  
74  
75  
76  
77  
I/O  
SDI, I/O  
DCLK, I/O  
PRA, I/O  
PRB, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
78  
79  
80  
81  
82  
83  
84  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
WD, I/O  
WD, I/O  
WD, I/O  
PRA, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
PRA, I/O  
I/O  
PRA, I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
SDI, I/O  
I/O  
SDI, I/O  
I/O  
SDI, I/O  
I/O  
CLKA, I/O CLKA, I/O  
VCCA VCCA  
CLKA, I/O  
VCCA  
I/O  
I/O  
v6.0  
2-5  
40MX and 42MX FPGA Families  
100-Pin PQFP Package  
100-Pin  
PQFP  
100  
1
Figure 2-4 100-Pin PQFP Package (Top View)  
2-6  
v6.0  
40MX and 42MX FPGA Families  
100-Pin PQFP  
100-Pin PQFP  
A40MX02 A40MX04 A42MX09 A42MX16  
Pin  
A40MX02 A40MX04 A42MX09 A42MX16  
Number Function Function Function Function  
Pin  
Number Function Function Function Function  
1
NC  
NC  
NC  
NC  
NC  
PRB, I/O  
I/O  
NC  
NC  
NC  
NC  
NC  
PRB, I/O  
I/O  
I/O  
I/O  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
GND  
GND  
I/O  
GND  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
2
DCLK, I/O DCLK, I/O  
3
I/O  
MODE  
I/O  
I/O  
MODE  
I/O  
I/O  
I/O  
4
I/O  
I/O  
I/O  
I/O  
5
I/O  
I/O  
VCCA  
I/O  
VCCA  
I/O  
6
I/O  
I/O  
I/O  
I/O  
7
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
8
I/O  
I/O  
I/O  
I/O  
VCC  
VCC  
I/O  
VCC  
VCC  
I/O  
I/O  
I/O  
9
I/O  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
VCC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
VCCI  
I/O  
VCCA  
VCCA  
I/O  
NC  
NC  
NC  
NC  
NC  
VCC  
I/O  
I/O  
I/O  
I/O  
I/O  
SDO, I/O  
I/O  
SDO, I/O  
I/O  
I/O  
I/O  
VCC  
I/O  
VCC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
I/O  
NC  
NC  
NC  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
LP  
LP  
I/O  
I/O  
I/O  
I/O  
VCCA  
VCCI  
VCCA  
I/O  
VCCA  
VCCI  
VCCA  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
VCC  
I/O  
VCC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
v6.0  
2-7  
40MX and 42MX FPGA Families  
100-Pin PQFP  
100-Pin PQFP  
Pin  
A40MX02 A40MX04 A42MX09 A42MX16  
Pin  
A40MX02 A40MX04 A42MX09 A42MX16  
Number Function Function Function Function  
Number Function Function Function Function  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
NC  
NC  
NC  
NC  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
NC  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
GND  
I/O  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
GND  
GND  
I/O  
GND  
GND  
I/O  
I/O  
PRA, I/O  
I/O  
I/O  
PRA, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
CLKA, I/O CLKA, I/O  
I/O  
I/O  
CLK, I/O  
I/O  
CLK, I/O  
I/O  
VCCA  
I/O  
VCCA  
I/O  
I/O  
I/O  
I/O  
I/O  
MODE  
VCC  
MODE  
VCC  
CLKB, I/O  
I/O  
CLKB, I/O  
I/O  
I/O  
I/O  
SDI, I/O  
I/O  
SDI, I/O  
I/O  
VCC  
VCC  
PRB, I/O  
I/O  
PRB, I/O  
I/O  
NC  
I/O  
I/O  
I/O  
NC  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
SDI, I/O  
SDI, I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
DCLK, I/O DCLK, I/O  
PRA, I/O PRA, I/O  
I/O  
I/O  
I/O  
I/O  
2-8  
v6.0  
40MX and 42MX FPGA Families  
160-Pin PQFP Package  
160  
1
160-Pin  
PQFP  
Figure 2-5 160-Pin PQFP Package (Top View)  
v6.0  
2-9  
40MX and 42MX FPGA Families  
160-Pin PQFP  
160-Pin PQFP  
A42MX09  
Function  
A42MX16  
Function  
A42MX24  
Function  
A42MX09  
Function  
A42MX16  
Function  
A42MX24  
Function  
Pin Number  
Pin Number  
1
I/O  
DCLK, I/O  
NC  
I/O  
I/O  
DCLK, I/O  
I/O  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
I/O  
I/O  
I/O  
WD, I/O  
WD, I/O  
SDI, I/O  
I/O  
2
DCLK, I/O  
I/O  
I/O  
3
SDI, I/O  
I/O  
SDI, I/O  
I/O  
4
I/O  
I/O  
WD, I/O  
WD, I/O  
VCCI  
5
I/O  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
6
NC  
VCCI  
I/O  
7
I/O  
I/O  
I/O  
I/O  
I/O  
8
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
9
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
NC  
I/O  
I/O  
GND  
NC  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
WD, I/O  
WD, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
PRB, I/O  
I/O  
PRB, I/O  
I/O  
PRB, I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
CLKB, I/O  
I/O  
CLKB, I/O  
I/O  
CLKB, I/O  
I/O  
I/O  
I/O  
I/O  
NC  
VCCA  
I/O  
VCCA  
I/O  
VCCA  
CLKA, I/O  
I/O  
VCCA  
CLKA, I/O  
I/O  
VCCA  
CLKA, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
VCCI  
GND  
VCCA  
LP  
VCCA  
VCCI  
GND  
VCCA  
LP  
VCCA  
VCCI  
GND  
VCCA  
LP  
PRA, I/O  
NC  
PRA, I/O  
I/O  
PRA, I/O  
WD, I/O  
WD, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TCK, I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
WD, I/O  
GND  
WD, I/O  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
GND  
NC  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
NC  
GND  
I/O  
GND  
I/O  
NC  
VCCI  
VCCI  
2-10  
v6.0  
40MX and 42MX FPGA Families  
160-Pin PQFP  
160-Pin PQFP  
A42MX09  
Function  
A42MX16  
Function  
A42MX24  
Function  
A42MX09  
Function  
A42MX16  
Function  
A42MX24  
Function  
Pin Number  
71  
Pin Number  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
WD, I/O  
WD, I/O  
I/O  
72  
I/O  
I/O  
73  
I/O  
I/O  
I/O  
I/O  
I/O  
74  
I/O  
I/O  
I/O  
GND  
NC  
I/O  
GND  
I/O  
GND  
I/O  
75  
NC  
I/O  
I/O  
76  
I/O  
I/O  
I/O  
I/O  
WD, I/O  
WD, I/O  
I/O  
77  
NC  
I/O  
I/O  
I/O  
I/O  
78  
I/O  
I/O  
I/O  
I/O  
I/O  
79  
NC  
I/O  
I/O  
NC  
I/O  
VCCI  
I/O  
VCCI  
WD, I/O  
WD, I/O  
I/O  
80  
GND  
I/O  
GND  
I/O  
GND  
I/O  
81  
NC  
I/O  
I/O  
82  
SDO, I/O  
I/O  
SDO, I/O  
I/O  
SDO, TDO, I/O  
WD, I/O  
WD, I/O  
I/O  
I/O  
83  
I/O  
I/O  
TDI, I/O  
TMS, I/O  
GND  
I/O  
84  
I/O  
I/O  
I/O  
I/O  
85  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
86  
NC  
VCCI  
I/O  
VCCI  
I/O  
87  
I/O  
I/O  
I/O  
I/O  
88  
I/O  
I/O  
WD, I/O  
GND  
I/O  
I/O  
I/O  
I/O  
89  
GND  
NC  
GND  
I/O  
NC  
GND  
I/O  
I/O  
I/O  
90  
GND  
I/O  
GND  
I/O  
91  
I/O  
I/O  
I/O  
92  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
93  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
94  
I/O  
I/O  
I/O  
NC  
GND  
I/O  
I/O  
I/O  
95  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
96  
I/O  
I/O  
WD, I/O  
I/O  
97  
I/O  
I/O  
I/O  
I/O  
I/O  
98  
VCCA  
GND  
NC  
VCCA  
GND  
I/O  
VCCA  
GND  
I/O  
I/O  
I/O  
I/O  
99  
I/O  
I/O  
I/O  
100  
101  
102  
103  
104  
105  
NC  
I/O  
VCCA  
I/O  
VCCA  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
NC  
VCCI  
GND  
VCCA  
VCCI  
GND  
VCCA  
VCCI  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
v6.0  
2-11  
40MX and 42MX FPGA Families  
160-Pin PQFP  
160-Pin PQFP  
A42MX09  
Function  
A42MX16  
Function  
A42MX24  
Function  
A42MX09  
Function  
A42MX16  
Function  
A42MX24  
Function  
Pin Number  
141  
Pin Number  
151  
NC  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
142  
I/O  
152  
NC  
143  
I/O  
I/O  
I/O  
153  
NC  
I/O  
I/O  
144  
I/O  
I/O  
I/O  
154  
NC  
I/O  
I/O  
145  
GND  
NC  
I/O  
GND  
I/O  
GND  
I/O  
155  
GND  
I/O  
GND  
I/O  
GND  
I/O  
146  
156  
147  
I/O  
I/O  
157  
I/O  
I/O  
I/O  
148  
I/O  
I/O  
I/O  
158  
I/O  
I/O  
I/O  
149  
I/O  
I/O  
I/O  
159  
MODE  
GND  
MODE  
GND  
MODE  
GND  
150  
NC  
VCCA  
VCCA  
160  
2-12  
v6.0  
40MX and 42MX FPGA Families  
208-Pin PQFP Package  
208  
1
208-Pin PQFP  
Figure 2-6 208-Pin PQFP Package (Top View)  
v6.0  
2-13  
40MX and 42MX FPGA Families  
208-Pin PQFP  
208-Pin PQFP  
A42MX16  
Function  
A42MX24  
A42MX36  
Function  
A42MX16  
Function  
A42MX24  
Function  
A42MX36  
Function  
Pin Number  
Function  
GND  
VCCA  
MODE  
I/O  
Pin Number  
1
GND  
NC  
MODE  
I/O  
GND  
VCCA  
MODE  
I/O  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
I/O  
I/O  
I/O  
I/O  
I/O  
2
I/O  
3
I/O  
I/O  
I/O  
4
I/O  
I/O  
I/O  
5
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
6
I/O  
I/O  
I/O  
NC  
NC  
NC  
I/O  
I/O  
I/O  
7
I/O  
I/O  
I/O  
I/O  
I/O  
8
I/O  
I/O  
I/O  
I/O  
I/O  
9
NC  
NC  
I/O  
I/O  
I/O  
I/O  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
NC  
GND  
GND  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
VCCA  
I/O  
VCCA  
I/O  
VCCA  
I/O  
GND  
GND  
TMS, I/O  
TDI, I/O  
I/O  
GND  
GND  
TMS, I/O  
TDI, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
WD, I/O  
WD, I/O  
I/O  
WD, I/O  
WD, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
NC  
NC  
I/O  
VCCI  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
GND  
VCCI  
VCCA  
I/O  
GND  
VCCI  
VCCA  
I/O  
GND  
VCCI  
VCCA  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
QCLKA, I/O  
WD, I/O  
WD, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
WD, I/O  
WD, I/O  
I/O  
VCCA  
I/O  
VCCA  
I/O  
VCCA  
I/O  
NC  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
WD, I/O  
WD, I/O  
2-14  
v6.0  
40MX and 42MX FPGA Families  
208-Pin PQFP  
208-Pin PQFP  
A42MX16  
Function  
A42MX24  
Function  
A42MX36  
Function  
A42MX16  
A42MX24  
Function  
A42MX36  
Function  
Pin Number  
71  
Pin Number  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
Function  
NC  
I/O  
I/O  
WD, I/O  
I/O  
WD, I/O  
I/O  
VCCA  
I/O  
VCCA  
I/O  
72  
I/O  
73  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
74  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
75  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
76  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
77  
I/O  
I/O  
I/O  
NC  
NC  
NC  
NC  
I/O  
I/O  
I/O  
78  
GND  
VCCA  
NC  
GND  
VCCA  
VCCI  
I/O  
GND  
VCCA  
VCCI  
I/O  
I/O  
I/O  
79  
I/O  
I/O  
80  
I/O  
I/O  
81  
I/O  
I/O  
I/O  
82  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
83  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
84  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
85  
I/O  
WD, I/O  
WD, I/O  
I/O  
WD, I/O  
WD, I/O  
I/O  
I/O  
I/O  
I/O  
86  
I/O  
I/O  
I/O  
I/O  
87  
I/O  
I/O  
I/O  
I/O  
88  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
89  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
90  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
91  
I/O  
I/O  
QCLKB, I/O  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
92  
I/O  
I/O  
93  
I/O  
WD, I/O  
WD, I/O  
I/O  
WD, I/O  
WD, I/O  
I/O  
I/O  
TCK, I/O  
LP  
TCK, I/O  
LP  
94  
I/O  
LP  
95  
NC  
VCCA  
GND  
VCCI  
VCCA  
I/O  
VCCA  
GND  
VCCI  
VCCA  
I/O  
VCCA  
GND  
VCCI  
VCCA  
I/O  
96  
NC  
I/O  
I/O  
97  
NC  
I/O  
I/O  
98  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
99  
100  
101  
102  
103  
104  
105  
I/O  
WD, I/O  
WD, I/O  
I/O  
WD, I/O  
WD, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
I/O  
VCCA  
I/O  
VCCA  
I/O  
I/O  
SDO, I/O  
I/O  
SDO, TDO, I/O SDO, TDO, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
GND  
GND  
I/O  
I/O  
I/O  
v6.0  
2-15  
40MX and 42MX FPGA Families  
208-Pin PQFP  
208-Pin PQFP  
A42MX16  
Function  
A42MX24  
Function  
A42MX36  
Function  
A42MX16  
Function  
A42MX24  
Function  
A42MX36  
Function  
Pin Number  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
Pin Number  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
WD, I/O  
WD, I/O  
PRA, I/O  
I/O  
I/O  
WD, I/O  
WD, I/O  
PRA, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
PRA, I/O  
I/O  
I/O  
I/O  
I/O  
NC  
NC  
NC  
NC  
GND  
I/O  
I/O  
I/O  
CLKA, I/O  
NC  
CLKA, I/O  
I/O  
CLKA, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
VCCI  
VCCI  
I/O  
I/O  
VCCA  
GND  
I/O  
VCCA  
GND  
I/O  
VCCA  
GND  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
CLKB, I/O  
I/O  
CLKB, I/O  
I/O  
CLKB, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
PRB, I/O  
I/O  
PRB, I/O  
I/O  
PRB, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
WD, I/O  
WD, I/O  
I/O  
WD, I/O  
WD, I/O  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
SDI, I/O  
I/O  
SDI, I/O  
I/O  
SDI, I/O  
I/O  
NC  
I/O  
I/O  
NC  
WD, I/O  
WD, I/O  
I/O  
WD, I/O  
WD, I/O  
QCLKC, I/O  
I/O  
I/O  
WD, I/O  
WD, I/O  
I/O  
WD, I/O  
WD, I/O  
I/O  
NC  
I/O  
I/O  
I/O  
NC  
I/O  
VCCI  
NC  
NC  
I/O  
VCCI  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
WD, I/O  
WD, I/O  
I/O  
WD, I/O  
WD, I/O  
I/O  
VCCI  
I/O  
VCCI  
VCCI  
I/O  
WD, I/O  
WD, I/O  
I/O  
WD, I/O  
WD, I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
QCLKD, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
DCLK, I/O  
I/O  
DCLK, I/O  
I/O  
DCLK, I/O  
I/O  
I/O  
I/O  
I/O  
2-16  
v6.0  
40MX and 42MX FPGA Families  
240-Pin PQFP Package  
240  
1
240-Pin  
PQFP  
Figure 2-7 240-Pin PQFP Package (Top View)  
v6.0  
2-17  
40MX and 42MX FPGA Families  
240-Pin PQFP  
240-Pin PQFP  
240-Pin PQFP  
240-Pin PQFP  
Pin  
Number  
A42MX36  
Function  
Pin  
A42MX36  
Function  
Pin  
Number  
A42MX36  
Function  
Pin  
A42MX36  
Function  
Number  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
Number  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
1
I/O  
DCLK, I/O  
I/O  
I/O  
WD, I/O  
WD, I/O  
I/O  
71  
VCCI  
I/O  
I/O  
I/O  
2
72  
3
73  
I/O  
VCCI  
I/O  
4
I/O  
74  
I/O  
5
I/O  
I/O  
75  
I/O  
I/O  
6
WD, I/O  
WD, I/O  
VCCI  
I/O  
76  
I/O  
I/O  
7
I/O  
77  
I/O  
I/O  
8
I/O  
78  
I/O  
I/O  
9
I/O  
I/O  
79  
I/O  
I/O  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
I/O  
QCLKD, I/O  
I/O  
80  
I/O  
I/O  
I/O  
81  
I/O  
I/O  
I/O  
WD, I/O  
WD, I/O  
I/O  
82  
I/O  
I/O  
I/O  
83  
I/O  
VCCA  
GND  
GND  
GND  
I/O  
I/O  
84  
I/O  
QCLKC, I/O  
I/O  
I/O  
85  
VCCA  
I/O  
I/O  
86  
WD, I/O  
WD, I/O  
I/O  
VCCI  
I/O  
87  
I/O  
88  
VCCA  
VCCI  
VCCA  
LP  
SDO, TDO, I/O  
I/O  
WD, I/O  
WD, I/O  
I/O  
89  
I/O  
90  
WD, I/O  
WD, I/O  
I/O  
WD, I/O  
WD, I/O  
I/O  
91  
SDI, I/O  
I/O  
92  
TCK, I/O  
I/O  
93  
VCCI  
I/O  
PRB, I/O  
I/O  
VCCA  
GND  
GND  
I/O  
94  
GND  
I/O  
95  
I/O  
CLKB, I/O  
I/O  
96  
I/O  
I/O  
97  
I/O  
WD, I/O  
WD, I/O  
I/O  
GND  
VCCA  
VCCI  
I/O  
98  
I/O  
I/O  
99  
I/O  
I/O  
100  
101  
102  
103  
104  
105  
I/O  
QCLKB, I/O  
I/O  
I/O  
I/O  
I/O  
CLKA, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
PRA, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
2-18  
v6.0  
40MX and 42MX FPGA Families  
240-Pin PQFP  
240-Pin PQFP  
240-Pin PQFP  
Pin  
A42MX36  
Function  
Pin  
A42MX36  
Function  
Pin  
A42MX36  
Function  
Number  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
Number  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
Number  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
I/O  
WD, I/O  
WD, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TDI, I/O  
TMS, I/O  
GND  
VCCA  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
I/O  
VCCI  
VCCA  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
VCCI  
I/O  
I/O  
WD, I/O  
WD, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
WD, I/O  
WD, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
QCLKA, I/O  
I/O  
I/O  
I/O  
I/O  
GND  
MODE  
VCCA  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
I/O  
VCCI  
I/O  
I/O  
WD, I/O  
WD, I/O  
VCCA  
VCCI  
v6.0  
2-19  
40MX and 42MX FPGA Families  
80-Pin VQFP  
80  
1
80-Pin  
VQFP  
Figure 2-8 80-Pin VQFP  
2-20  
v6.0  
40MX and 42MX FPGA Families  
80-Pin VQFP  
80-Pin VQFP  
80-Pin VQFP  
Pin  
A40MX02 A40MX04  
Pin  
A40MX02 A40MX04  
Pin  
A40MX02 A40MX04  
Number  
Function  
Function  
Number  
Function  
Function  
Number  
Function  
Function  
1
I/O  
I/O  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
I/O  
I/O  
55  
NC  
I/O  
2
NC  
NC  
NC  
I/O  
I/O  
I/O  
I/O  
56  
NC  
I/O  
3
I/O  
I/O  
I/O  
57  
58  
SDI, I/O  
DCLK, I/O  
PRA, I/O  
NC  
SDI, I/O  
DCLK, I/O  
PRA, I/O  
NC  
4
I/O  
I/O  
I/O  
5
I/O  
I/O  
I/O  
59  
60  
6
I/O  
I/O  
VCC  
I/O  
VCC  
I/O  
7
GND  
I/O  
GND  
I/O  
61  
PRB, I/O  
I/O  
PRB, I/O  
I/O  
8
I/O  
I/O  
62  
9
I/O  
I/O  
I/O  
I/O  
63  
I/O  
I/O  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
I/O  
I/O  
I/O  
I/O  
64  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
65  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
66  
I/O  
I/O  
VCC  
I/O  
VCC  
I/O  
I/O  
I/O  
67  
I/O  
I/O  
NC  
I/O  
68  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
NC  
I/O  
69  
I/O  
I/O  
NC  
I/O  
70  
I/O  
I/O  
NC  
NC  
NC  
VCC  
I/O  
I/O  
I/O  
I/O  
71  
I/O  
I/O  
I/O  
I/O  
I/O  
72  
I/O  
I/O  
I/O  
I/O  
I/O  
73  
I/O  
I/O  
VCC  
I/O  
GND  
I/O  
GND  
I/O  
74  
VCC  
I/O  
VCC  
I/O  
75  
I/O  
I/O  
I/O  
I/O  
76  
I/O  
I/O  
I/O  
I/O  
CLK, I/O  
I/O  
CLK, I/O  
I/O  
77  
I/O  
I/O  
I/O  
I/O  
78  
I/O  
I/O  
I/O  
I/O  
MODE  
VCC  
NC  
MODE  
VCC  
I/O  
79  
I/O  
I/O  
I/O  
I/O  
80  
I/O  
I/O  
GND  
GND  
v6.0  
2-21  
40MX and 42MX FPGA Families  
100-Pin VQFP Package  
100  
1
100-Pin  
VQFP  
Figure 2-9 100-Pin VQFP Package (Top View)  
2-22  
v6.0  
40MX and 42MX FPGA Families  
100-Pin VQFP Package  
100-Pin VQFP Package  
Pin A42MX09 A42MX16  
100-Pin VQFP Package  
Pin A42MX09 A42MX16  
Pin  
A42MX09 A42MX16  
Number  
Function  
Function  
Number  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
Function  
Function  
Number  
Function  
Function  
1
I/O  
I/O  
I/O  
I/O  
71  
I/O  
I/O  
2
MODE  
I/O  
MODE  
I/O  
I/O  
I/O  
72  
I/O  
I/O  
3
VCCA  
I/O  
VCCA  
I/O  
73  
I/O  
I/O  
4
I/O  
I/O  
74  
I/O  
I/O  
5
I/O  
I/O  
I/O  
I/O  
75  
I/O  
I/O  
6
I/O  
I/O  
I/O  
I/O  
76  
I/O  
I/O  
7
GND  
I/O  
GND  
I/O  
I/O  
I/O  
77  
SDI, I/O  
I/O  
SDI, I/O  
I/O  
8
I/O  
I/O  
78  
9
I/O  
I/O  
GND  
I/O  
GND  
I/O  
79  
I/O  
I/O  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
I/O  
I/O  
80  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
81  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
82  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
83  
VCCA  
VCCI  
I/O  
NC  
VCCI  
I/O  
I/O  
I/O  
84  
I/O  
I/O  
SDO, I/O  
I/O  
SDO, I/O  
I/O  
85  
PRA, I/O  
I/O  
PRA, I/O  
I/O  
86  
I/O  
I/O  
I/O  
I/O  
87  
CLKA, I/O  
VCCA  
I/O  
CLKA, I/O  
VCCA  
I/O  
I/O  
I/O  
I/O  
I/O  
88  
I/O  
I/O  
I/O  
I/O  
89  
GND  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
90  
CLKB, I/O  
I/O  
CLKB, I/O  
I/O  
91  
I/O  
I/O  
I/O  
I/O  
92  
PRB, I/O  
I/O  
PRB, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
93  
I/O  
I/O  
I/O  
I/O  
94  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
95  
I/O  
I/O  
I/O  
I/O  
96  
I/O  
I/O  
I/O  
I/O  
LP  
LP  
97  
I/O  
I/O  
I/O  
I/O  
VCCA  
VCCI  
VCCA  
I/O  
VCCA  
VCCI  
VCCA  
I/O  
98  
I/O  
I/O  
I/O  
I/O  
99  
I/O  
I/O  
I/O  
I/O  
100  
DCLK, I/O  
DCLK, I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
GND  
v6.0  
2-23  
40MX and 42MX FPGA Families  
176-Pin TQFP Package  
176  
1
176-Pin  
TQFP  
Figure 2-10 176-Pin TQFP Package (Top View)  
2-24  
v6.0  
40MX and 42MX FPGA Families  
176-Pin TQFP  
176-Pin TQFP  
A42MX09  
A42MX16  
Function  
A42MX24  
Function  
A42MX09  
Function  
A42MX16  
Function  
A42MX24  
Function  
Pin Number  
Function  
GND  
MODE  
I/O  
Pin Number  
1
GND  
MODE  
I/O  
GND  
MODE  
I/O  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
VCCA  
I/O  
I/O  
I/O  
I/O  
2
NC  
NC  
I/O  
3
I/O  
4
I/O  
I/O  
I/O  
I/O  
5
I/O  
I/O  
I/O  
I/O  
I/O  
6
I/O  
I/O  
I/O  
I/O  
I/O  
7
I/O  
I/O  
I/O  
I/O  
I/O  
8
NC  
NC  
I/O  
I/O  
I/O  
I/O  
9
I/O  
I/O  
I/O  
I/O  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
NC  
I/O  
I/O  
GND  
I/O  
GND  
TMS, I/O  
TDI, I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
VCCA  
I/O  
VCCA  
I/O  
I/O  
I/O  
I/O  
WD, I/O  
WD, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
VCCI  
I/O  
GND  
NC  
GND  
I/O  
GND  
I/O  
NC  
NC  
I/O  
I/O  
NC  
I/O  
I/O  
WD, I/O  
WD, I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
NC  
I/O  
GND  
NC  
GND  
VCCI  
VCCA  
I/O  
GND  
VCCI  
VCCA  
I/O  
I/O  
I/O  
WD, I/O  
WD, I/O  
I/O  
VCCA  
NC  
I/O  
NC  
I/O  
NC  
I/O  
I/O  
I/O  
VCCI  
NC  
VCCA  
I/O  
VCCA  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
GND  
VCCA  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
VCCA  
WD, I/O  
WD, I/O  
NC  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
v6.0  
2-25  
40MX and 42MX FPGA Families  
176-Pin TQFP  
176-Pin TQFP  
A42MX09  
Function  
A42MX16  
Function  
A42MX24  
Function  
A42MX09  
A42MX16  
Function  
A42MX24  
Function  
Pin Number  
71  
Pin Number  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
Function  
GND  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
72  
I/O  
73  
I/O  
I/O  
I/O  
NC  
I/O  
TCK, I/O  
LP  
74  
NC  
I/O  
I/O  
I/O  
LP  
LP  
75  
I/O  
I/O  
VCCA  
GND  
VCCI  
VCCA  
NC  
VCCA  
GND  
VCCI  
VCCA  
I/O  
VCCA  
GND  
VCCI  
VCCA  
I/O  
76  
I/O  
I/O  
I/O  
77  
NC  
NC  
I/O  
NC  
I/O  
WD, I/O  
WD, I/O  
I/O  
78  
79  
I/O  
80  
NC  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
81  
I/O  
I/O  
NC  
VCCA  
I/O  
VCCA  
I/O  
82  
NC  
I/O  
VCCI  
I/O  
VCCI  
I/O  
I/O  
83  
I/O  
I/O  
I/O  
84  
I/O  
I/O  
WD, I/O  
WD, I/O  
I/O  
I/O  
I/O  
I/O  
85  
I/O  
I/O  
I/O  
I/O  
I/O  
86  
NC  
SDO, I/O  
I/O  
I/O  
NC  
NC  
I/O  
87  
SDO, I/O  
I/O  
SDO, TDO, I/O  
I/O  
I/O  
I/O  
I/O  
88  
I/O  
I/O  
I/O  
89  
GND  
I/O  
GND  
I/O  
GND  
I/O  
NC  
I/O  
I/O  
90  
NC  
I/O  
I/O  
91  
I/O  
I/O  
I/O  
NC  
NC  
I/O  
92  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
93  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
94  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
95  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
96  
NC  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
97  
I/O  
I/O  
I/O  
I/O  
I/O  
98  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
99  
I/O  
I/O  
I/O  
100  
101  
102  
103  
104  
105  
I/O  
I/O  
I/O  
SDI, I/O  
NC  
SDI, I/O  
I/O  
SDI, I/O  
I/O  
NC  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
WD, I/O  
WD, I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
VCCI  
VCCI  
2-26  
v6.0  
40MX and 42MX FPGA Families  
176-Pin TQFP  
176-Pin TQFP  
A42MX09  
Function  
A42MX16  
Function  
A42MX24  
Function  
A42MX09  
Function  
A42MX16  
Function  
A42MX24  
Function  
Pin Number  
141  
Pin Number  
159  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
PRB, I/O  
I/O  
I/O  
PRB, I/O  
WD, I/O  
WD, I/O  
I/O  
142  
I/O  
160  
PRB, I/O  
NC  
143  
NC  
I/O  
I/O  
161  
144  
NC  
I/O  
WD, I/O  
WD, I/O  
I/O  
162  
I/O  
I/O  
145  
NC  
NC  
163  
I/O  
I/O  
146  
I/O  
I/O  
164  
I/O  
I/O  
I/O  
147  
NC  
I/O  
I/O  
165  
NC  
NC  
WD, I/O  
WD, I/O  
I/O  
148  
I/O  
I/O  
I/O  
166  
NC  
I/O  
149  
I/O  
I/O  
I/O  
167  
I/O  
I/O  
150  
I/O  
I/O  
WD, I/O  
WD, I/O  
PRA, I/O  
I/O  
168  
NC  
I/O  
I/O  
151  
NC  
I/O  
169  
I/O  
I/O  
I/O  
152  
PRA, I/O  
I/O  
PRA, I/O  
I/O  
170  
NC  
VCCI  
I/O  
VCCI  
153  
171  
I/O  
WD, I/O  
WD, I/O  
I/O  
154  
CLKA, I/O  
VCCA  
GND  
I/O  
CLKA, I/O  
VCCA  
GND  
I/O  
CLKA, I/O  
VCCA  
GND  
172  
I/O  
I/O  
155  
173  
NC  
I/O  
156  
174  
I/O  
I/O  
I/O  
157  
I/O  
175  
DCLK, I/O  
I/O  
DCLK, I/O  
I/O  
DCLK, I/O  
I/O  
158  
CLKB, I/O  
CLKB, I/O  
CLKB, I/O  
176  
v6.0  
2-27  
40MX and 42MX FPGA Families  
208-Pin CQFP  
)
208207206205204203202201200  
164163162161160159158157  
Pin #1  
Index  
1
2
3
4
5
6
7
8
156  
155  
154  
153  
152  
151  
150  
149  
A42MX36  
208-Pin  
CQFP  
44  
45  
46  
47  
48  
49  
50  
51  
52  
113  
112  
111  
110  
109  
108  
107  
106  
105  
53 54 55 56 57 58 59 60 61  
97 98 99 100101102103104  
Figure 2-11 208-Pin CQFP (Top View)  
2-28  
v6.0  
40MX and 42MX FPGA Families  
208-Pin CQFP  
208-Pin CQFP  
208-Pin CQFP  
208-Pin CQFP  
Pin  
Number  
A42MX36  
Function  
Pin  
A42MX36  
Function  
Pin  
Number  
A42MX36  
Function  
Pin  
Number  
A42MX36  
Function  
Number  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
1
GND  
VCCA  
MODE  
I/O  
I/O  
I/O  
71  
WD, I/O  
I/O  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
VCCA  
I/O  
2
72  
3
I/O  
73  
I/O  
I/O  
4
I/O  
74  
I/O  
I/O  
5
I/O  
I/O  
75  
I/O  
I/O  
6
I/O  
I/O  
76  
I/O  
I/O  
7
I/O  
I/O  
77  
I/O  
I/O  
8
I/O  
I/O  
78  
GND  
VCCA  
VCCI  
I/O  
I/O  
9
I/O  
I/O  
79  
I/O  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
I/O  
I/O  
80  
I/O  
I/O  
I/O  
81  
I/O  
I/O  
I/O  
82  
I/O  
I/O  
I/O  
I/O  
83  
I/O  
I/O  
I/O  
I/O  
84  
I/O  
I/O  
I/O  
I/O  
85  
WD, I/O  
WD, I/O  
I/O  
I/O  
I/O  
I/O  
86  
I/O  
VCCA  
I/O  
GND  
GND  
TMS, I/O  
TDI, I/O  
I/O  
87  
I/O  
88  
I/O  
I/O  
I/O  
89  
I/O  
I/O  
I/O  
90  
I/O  
I/O  
I/O  
91  
QCLKB, I/O  
I/O  
GND  
I/O  
GND  
I/O  
WD, I/O  
WD, I/O  
I/O  
92  
93  
WD, I/O  
WD, I/O  
I/O  
TCK, I/O  
LP  
I/O  
94  
I/O  
VCCI  
I/O  
95  
VCCA  
GND  
VCCI  
VCCA  
I/O  
I/O  
96  
I/O  
GND  
VCCI  
VCCA  
I/O  
I/O  
97  
I/O  
I/O  
98  
VCCI  
I/O  
I/O  
99  
QCLKA, I/O  
WD, I/O  
WD, I/O  
I/O  
100  
101  
102  
103  
104  
105  
WD, I/O  
WD, I/O  
I/O  
I/O  
I/O  
VCCA  
I/O  
VCCA  
I/O  
TDO, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
WD, I/O  
GND  
I/O  
v6.0  
2-29  
40MX and 42MX FPGA Families  
208-Pin CQFP  
208-Pin CQFP  
208-Pin CQFP  
208-Pin CQFP  
Pin  
Number  
A42MX36  
Function  
Pin  
A42MX36  
Function  
Pin  
A42MX36  
Function  
Pin  
A42MX36  
Function  
Number  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
Number  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
Number  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
I/O  
I/O  
I/O  
SDI, I/O  
I/O  
I/O  
WD, I/O  
WD, I/O  
PRA, I/O  
I/O  
I/O  
I/O  
I/O  
WD, I/O  
WD, I/O  
QCLKC, I/O  
I/O  
I/O  
WD, I/O  
WD, I/O  
I/O  
I/O  
I/O  
CLKA, I/O  
I/O  
I/O  
VCCI  
I/O  
I/O  
I/O  
VCCI  
I/O  
I/O  
I/O  
VCCA  
I/O  
GND  
I/O  
I/O  
GND  
I/O  
WD, I/O  
WD, I/O  
I/O  
I/O  
VCCI  
I/O  
CLKB, I/O  
I/O  
WD, I/O  
WD, I/O  
I/O  
I/O  
I/O  
QCLKD, I/O  
I/O  
PRB, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
WD, I/O  
WD, I/O  
DCLK, I/O  
I/O  
GND  
I/O  
2-30  
v6.0  
40MX and 42MX FPGA Families  
256-Pin CQFP  
256255254253252251250249248  
200199198197196195194193  
Pin #1  
Index  
1
2
3
4
5
6
7
8
192  
191  
190  
189  
188  
187  
186  
185  
A42MX36  
256-Pin  
CQFP  
56  
57  
58  
59  
60  
61  
62  
63  
64  
137  
136  
135  
134  
133  
132  
131  
130  
129  
65 66 67 68 69 70 71 72 73  
121122123124125126127128  
Figure 2-12 256-Pin CQFP (Top View)  
v6.0  
2-31  
40MX and 42MX FPGA Families  
256-Pin CQFP  
256-Pin CQFP  
256-Pin CQFP  
256-Pin CQFP  
Pin  
Number  
A42MX36  
Function  
Pin  
A42MX36  
Function  
Pin  
Number  
A42MX36  
Function  
Pin  
A42MX36  
Function  
Number  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
Number  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
1
NC  
GND  
I/O  
GND  
I/O  
71  
I/O  
VCCI  
I/O  
WD, I/O  
I/O  
2
72  
3
I/O  
73  
I/O  
4
I/O  
I/O  
74  
I/O  
WD, I/O  
WD, I/O  
I/O  
5
I/O  
I/O  
75  
I/O  
6
I/O  
I/O  
76  
WD, I/O  
GND  
WD, I/O  
I/O  
7
I/O  
I/O  
77  
QCLKA, I/O  
I/O  
8
I/O  
I/O  
78  
9
I/O  
I/O  
79  
GND  
I/O  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
GND  
I/O  
I/O  
80  
QCLKB, I/O  
I/O  
I/O  
81  
I/O  
I/O  
I/O  
82  
I/O  
I/O  
I/O  
GND  
I/O  
83  
I/O  
I/O  
I/O  
84  
I/O  
VCCI  
I/O  
I/O  
I/O  
85  
I/O  
I/O  
I/O  
86  
I/O  
WD, I/O  
WD, I/O  
I/O  
I/O  
I/O  
87  
WD, I/O  
WD, I/O  
I/O  
I/O  
I/O  
88  
I/O  
I/O  
89  
I/O  
I/O  
I/O  
90  
I/O  
I/O  
I/O  
I/O  
91  
I/O  
I/O  
I/O  
I/O  
92  
I/O  
GND  
NC  
I/O  
I/O  
93  
I/O  
I/O  
I/O  
94  
I/O  
NC  
I/O  
VCCA  
GND  
GND  
NC  
95  
VCCI  
VCCA  
GND  
GND  
I/O  
NC  
VCCA  
I/O  
96  
GND  
I/O  
97  
I/O  
98  
I/O  
VCCA  
VCCI  
GND  
VCCA  
LP  
NC  
99  
I/O  
NC  
100  
101  
102  
103  
104  
105  
I/O  
I/O  
I/O  
I/O  
I/O  
SDO, TDO, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TCK, I/O  
I/O  
WD, I/O  
WD, I/O  
I/O  
GND  
I/O  
WD, I/O  
2-32  
v6.0  
40MX and 42MX FPGA Families  
256-Pin CQFP  
256-Pin CQFP  
256-Pin CQFP  
256-Pin CQFP  
Pin  
A42MX36  
Function  
Pin  
A42MX36  
Function  
Pin  
A42MX36  
Function  
Pin  
Number  
A42MX36  
Function  
Number  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
Number  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
Number  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
I/O  
I/O  
I/O  
I/O  
WD, I/O  
WD, I/O  
I/O  
246  
247  
248  
249  
250  
251  
252  
253  
254  
255  
256  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
WD, I/O  
WD, I/O  
I/O  
WD, I/O  
WD, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
PRB, I/O  
I/O  
SDI, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
CLKB, I/O  
I/O  
GND  
NC  
I/O  
I/O  
I/O  
I/O  
GND  
GND  
VCCA  
VCCI  
I/O  
MODE  
VCCA  
GND  
NC  
I/O  
VCCA  
I/O  
I/O  
I/O  
NC  
CLKA, I/O  
I/O  
VCCA  
VCCI  
GND  
I/O  
NC  
I/O  
PRA, I/O  
I/O  
DCLK, I/O  
I/O  
I/O  
I/O  
I/O  
WD, I/O  
WD, I/O  
I/O  
I/O  
I/O  
I/O  
WD, I/O  
WD, I/O  
VCCI  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
I/O  
I/O  
QCLKD, I/O  
I/O  
GND  
I/O  
I/O  
WD, I/O  
GND  
WD, I/O  
I/O  
I/O  
I/O  
I/O  
QCLKC, I/O  
I/O  
I/O  
v6.0  
2-33  
40MX and 42MX FPGA Families  
272-Pin BGA Package  
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20  
A
B
C
D
E
F
G
H
J
272-Pin PBGA  
K
L
M
N
P
R
T
U
V
W
Y
Figure 2-13 272-Pin BGA Package (Top View)  
2-34  
v6.0  
40MX and 42MX FPGA Families  
272-Pin PBGA  
272-Pin PBGA  
272-Pin PBGA  
272-Pin PBGA  
Pin  
Number  
A42MX36  
Function  
Pin  
A42MX36  
Function  
Pin  
A42MX36  
Function  
Pin  
Number  
A42MX36  
Function  
Number  
B16  
B17  
B18  
B19  
B20  
C1  
Number  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
E1  
A1  
GND  
GND  
I/O  
I/O  
WD, I/O  
I/O  
I/O  
VCCI  
I/O  
H2  
H3  
I/O  
I/O  
A2  
A3  
H4  
VCCA  
I/O  
A4  
WD, I/O  
I/O  
GND  
GND  
I/O  
VCCI  
I/O  
H17  
H18  
H19  
H20  
J1  
A5  
I/O  
A6  
I/O  
VCCA  
GND  
I/O  
I/O  
A7  
WD, I/O  
WD, I/O  
I/O  
C2  
MODE  
GND  
I/O  
I/O  
A8  
C3  
I/O  
A9  
C4  
I/O  
J2  
I/O  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
B1  
I/O  
C5  
WD, I/O  
I/O  
I/O  
J3  
I/O  
CLKA  
I/O  
C6  
I/O  
J4  
VCCI  
GND  
GND  
GND  
GND  
VCCA  
I/O  
C7  
QCLKC, I/O  
I/O  
E2  
I/O  
J9  
I/O  
C8  
E3  
I/O  
J10  
J11  
J12  
J17  
J18  
J19  
J20  
K1  
I/O  
C9  
I/O  
E4  
VCCA  
VCCI  
I/O  
I/O  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
D1  
CLKB  
PRA, I/O  
WD, I/O  
I/O  
E17  
E18  
E19  
E20  
F1  
WD, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
GND  
GND  
GND  
DCLK, I/O  
I/O  
QCLKD, I/O  
I/O  
I/O  
I/O  
F2  
I/O  
I/O  
WD, I/O  
SDI, I/O  
I/O  
F3  
I/O  
K2  
I/O  
B2  
F4  
VCCI  
I/O  
K3  
I/O  
B3  
F17  
F18  
F19  
F20  
G1  
K4  
VCCI  
GND  
GND  
GND  
GND  
I/O  
B4  
I/O  
I/O  
K9  
B5  
I/O  
I/O  
I/O  
K10  
K11  
K12  
K17  
K18  
K19  
K20  
L1  
B6  
I/O  
I/O  
I/O  
B7  
WD, I/O  
I/O  
D2  
I/O  
I/O  
B8  
D3  
I/O  
G2  
I/O  
B9  
PRB, I/O  
I/O  
D4  
I/O  
G3  
I/O  
VCCA  
VCCA  
LP  
B10  
B11  
B12  
B13  
B14  
B15  
D5  
VCCI  
G4  
VCCI  
VCCI  
I/O  
I/O  
D6  
I/O  
G17  
G18  
G19  
G20  
H1  
WD, I/O  
I/O  
D7  
I/O  
I/O  
D8  
VCCA  
WD, I/O  
VCCI  
I/O  
L2  
I/O  
I/O  
D9  
I/O  
L3  
VCCA  
VCCA  
WD, I/O  
D10  
I/O  
L4  
v6.0  
2-35  
40MX and 42MX FPGA Families  
272-Pin PBGA  
272-Pin PBGA  
272-Pin PBGA  
272-Pin PBGA  
Pin  
Number  
A42MX36  
Function  
Pin  
A42MX36  
Function  
Pin  
A42MX36  
Function  
Pin  
A42MX36  
Function  
Number  
P20  
R1  
Number  
U19  
U20  
V1  
Number  
W13  
W14  
W15  
W16  
W17  
W18  
W19  
W20  
Y1  
L9  
L10  
L11  
L12  
L17  
L18  
L19  
L20  
M1  
M2  
M3  
M4  
M9  
M10  
M11  
M12  
M17  
M18  
M19  
M20  
N1  
GND  
GND  
GND  
GND  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
WD, I/O  
I/O  
R2  
I/O  
I/O  
I/O  
R3  
I/O  
V2  
I/O  
WD, I/O  
I/O  
R4  
VCCI  
VCCI  
I/O  
V3  
GND  
GND  
I/O  
R17  
R18  
R19  
R20  
T1  
V4  
WD, I/O  
GND  
GND  
GND  
GND  
I/O  
I/O  
V5  
TCK, I/O  
I/O  
I/O  
V6  
I/O  
I/O  
V7  
I/O  
I/O  
I/O  
V8  
WD, I/O  
I/O  
Y2  
I/O  
T2  
I/O  
V9  
Y3  
VCCI  
GND  
GND  
GND  
GND  
I/O  
T3  
I/O  
V10  
V11  
V12  
V13  
V14  
V15  
V16  
V17  
V18  
I/O  
Y4  
TDI, I/O  
WD, I/O  
I/O  
T4  
I/O  
I/O  
Y5  
T17  
T18  
T19  
T20  
U1  
VCCA  
I/O  
I/O  
Y6  
WD, I/O  
I/O  
Y7  
QCLKA, I/O  
I/O  
I/O  
Y8  
I/O  
WD, I/O  
I/O  
Y9  
I/O  
I/O  
I/O  
Y10  
Y11  
Y12  
Y13  
Y14  
Y15  
Y16  
Y17  
Y18  
Y19  
Y20  
I/O  
I/O  
U2  
I/O  
I/O  
I/O  
I/O  
U3  
I/O  
SDO, TDO,  
I/O  
I/O  
I/O  
U4  
I/O  
I/O  
V19  
V20  
W1  
I/O  
I/O  
N2  
I/O  
U5  
VCCI  
WD, I/O  
I/O  
I/O  
N3  
I/O  
U6  
I/O  
GND  
GND  
I/O  
N4  
VCCI  
VCCI  
I/O  
U7  
I/O  
W2  
N17  
N18  
N19  
N20  
P1  
U8  
I/O  
I/O  
W3  
U9  
WD, I/O  
VCCA  
VCCI  
I/O  
WD, I/O  
GND  
GND  
W4  
TMS, I/O  
I/O  
I/O  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
U17  
U18  
W5  
I/O  
W6  
I/O  
I/O  
W7  
I/O  
P2  
I/O  
I/O  
W8  
WD, I/O  
WD, I/O  
I/O  
P3  
I/O  
QCLKB, I/O  
I/O  
W9  
P4  
VCCA  
I/O  
W10  
W11  
W12  
P17  
P18  
P19  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
2-36  
v6.0  
FPGA Families 40MX and 42MX  
Datasheet Information  
List of Changes  
The following table lists critical changes that were made in the current version of the document.  
Previous version Changes in current version (v6.0)  
Page  
1-i  
v5.1  
The "Ease of Integration" section was updated.  
The "Temperature Grade Offerings" section is new.  
The "Speed Grade Offerings" section is new.  
1-iii  
1-iii  
1-1  
The "General Description" section was updated.  
The "MultiPlex I/O Modules" section was updated.  
The "User Security" section was updated.  
1-6  
1-6  
Table 1 • Voltage Support of MX Devices was updated.  
The "Power Dissipation" section was updated.  
1-7  
1-8  
The "Static Power Component" section was updated.  
The "Equivalent Capacitance" section was updated.  
Figure 1-13 • Silicon Explorer II Setup with 42MX was updated.  
Table 4 • Supported BST Public Instructions was updated.  
Figure 1-14 • 42MX IEEE 1149.1 Boundary Scan Circuitry was updated.  
Table 5 • Boundary Scan Pin Configuration and Functionality was updated.  
The "Development Tool Support" section was updated.  
1-8  
1-8  
1-10  
1-11  
1-11  
1-12  
1-13  
The Table 7 • Absolute Maximum Ratings for 42MX Devices* and the Table 6 • Absolute 1-14  
Maximum Ratings for 40MX Devices* were updated.  
The Table 9 • 5V TTL Electrical Specifications was updated.  
The Table 13 • 3.3V LVTTL Electrical Specifications was updated.  
1-15  
1-17  
In the "Mixed 5.0V/3.3V Electrical Specifications" section, Table 14 • Absolute Maximum 1-18  
Ratings*, Table 15 • Recommended Operating Conditions, and Table 16 • Mixed 5.0V/3.3V  
Electrical Specificationswere updated.  
The Table 17 • DC Specification (5.0V PCI Signaling)1 was updated.  
The Table 19 • DC Specification (3.3V PCI Signaling)1 was updated.  
1-19  
1-20  
The <zBlue>Junction Temperature (TJ) section, "Package Thermal Characteristics" section, and the 1-22  
tables were updated.  
Figure 1-17 • 40MX Timing Model* was updated.  
1-23  
1-24  
1-24  
1-27  
1-31  
1-32  
1-77  
2-7  
Figure 1-19 • 42MX Timing Model (Logic Functions Using Quadrant Clocks)  
The Figure 1-20 • 42MX Timing Model (SRAM Functions) was updated.  
The Figure 1-27 • Output Buffer Latches was updated.  
The Table 22 • 42MX Temperature and Voltage Derating Factors is new.  
The Table 23 • 40MX Temperature and Voltage Derating Factors is new.  
The "Pin Descriptions" section was updated.  
In the 100-Pin PQFP table, the following pins changed:  
Pin 64 (42MX09 and 42MX16) has changed to LP  
v6.0  
3-1  
FPGA Families 40MX and 42MX  
Previous version Changes in current version (v6.0)  
Page  
5.1  
In the 160-Pin PQFP table, the following pins changed:  
2-10  
Pin 61 (42MX09, 42MX16, and 42MX64) has changed to LP  
In the 208-Pin PQFP table, the following pins changed:  
Pin 129 (42MX09, 42MX16, and 42MX64) has changed to LP  
Pin 198 (42MX09) has changed to I/O  
2-14  
The n the 240-Pin PQFP table, the following pins changed:  
Pin 91 (42MX36) has changed to LP  
2-18  
2-23  
2-25  
2-35  
In the 100-Pin VQFP Package table, the following pins changed:  
Pin 62 (42MX09 and 42MX16) has changed to LP  
In the 176-Pin TQFP table, the following pins changed:  
Pin 109 (42MX09 and 42MX16) has changed to LP  
In the 272-Pin PBGA table, the following pins changed:  
Pin K20 (42MX36) has changed to LP  
v5.0  
The "Low Power Mode" section was updated.  
1-7  
Footnote 8 in the Table 9 • 5V TTL Electrical Specifications was updated.  
Footnote 8 in the Table 13 • 3.3V LVTTL Electrical Specifications was updated.  
1-15  
1-17  
v4.0.1  
Because the changes in this data sheet are extensive and technical in nature, this should be viewed ALL  
as a new document. Please read it as you would a data sheet that is published for the first time.  
Note that the “Package Characteristics and Mechanical Drawings” section has been eliminated  
from the data sheet. The mechanical drawings are now contained in a separate document,  
“Package Characteristics and Mechanical Drawings,” available on the Actel web site.  
Datasheet Categories  
In order to provide the latest information to designers, some datasheets are published before data has been fully  
characterized. Datasheets are designated as "Product Brief," "Advanced," "Production," and "Datasheet  
Supplement." The definitions of these categories are as follows:  
Product Brief  
The product brief is a summarized version of a datasheet (advanced or production) containing general product  
information. This brief gives an overview of specific device and family information.  
Advanced  
This datasheet version contains initial estimated information based on simulation, other products, devices, or speed  
grades. This information can be used as estimates, but not for production.  
Unmarked (production)  
This datasheet version contains information that is considered to be final.  
Datasheet Supplement  
The datasheet supplement gives specific device information for a derivative family that differs from the general family  
datasheet. The supplement is to be used in conjunction with the datasheet to obtain more detailed information and  
for specifications that do not differ between the two families.  
3-2  
v6.0  
Actel and the Actel logo are registered trademarks of Actel Corporation.  
All other trademarks are the property of their owners.  
http://www.actel.com  
Actel Corporation  
Actel Europe Ltd.  
Actel Japan  
Actel Hong Kong  
2061 Stierlin Court  
Mountain View, CA  
94043-4655 USA  
Dunlop House, Riverside Way  
Camberley, Surrey GU15 3YL  
United Kingdom  
EXOS Ebisu Bldg. 4F  
1-24-14 Ebisu Shibuya-ku  
Tokyo 150 Japan  
39th Floor, One Pacific Place  
88 Queensway, Admiralty  
Hong Kong  
Phone 650.318.4200  
Fax 650.318.4600  
Phone +44 (0)1276.401450  
Fax +44 (0)1276.401490  
Phone +81.03.3445.7671  
Fax +81.03.3445.7668  
Phone +852.227.35712  
Fax +852.227.35999  
5172136-8/01.04  

相关型号:

A42MX04-FPQ100

40MX and 42MX FPGA Families
ETC

A42MX04-FPQ100A

40MX and 42MX FPGA Families
ETC

A42MX04-FPQ100B

40MX and 42MX FPGA Families
ETC

A42MX04-FPQ100ES

40MX and 42MX FPGA Families
ETC

A42MX04-FPQ100I

40MX and 42MX FPGA Families
ETC

A42MX04-FPQ100M

40MX and 42MX FPGA Families
ETC

A42MX04-FTQ100

40MX and 42MX FPGA Families
ETC

A42MX04-FTQ100A

40MX and 42MX FPGA Families
ETC

A42MX04-FTQ100B

40MX and 42MX FPGA Families
ETC

A42MX04-FTQ100ES

40MX and 42MX FPGA Families
ETC

A42MX04-FTQ100I

40MX and 42MX FPGA Families
ETC

A42MX04-FTQ100M

40MX and 42MX FPGA Families
ETC