A6150A1XDL8A [ETC]

High Efficiency Linear Power Supply with Power Surveillance and Software Monitoring; 高效率线性电源供应器与电源监控和监视软件
A6150A1XDL8A
型号: A6150A1XDL8A
厂家: ETC    ETC
描述:

High Efficiency Linear Power Supply with Power Surveillance and Software Monitoring
高效率线性电源供应器与电源监控和监视软件

监控
文件: 总14页 (文件大小:324K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EM MICROELECTRONIC-MARIN SA  
A6150  
High Efficiency Linear Power Supply with  
Power Surveillance and Software Monitoring  
software clears the watchdog too quickly (incorrect  
Features  
cycle time) or too slowly (incorrect execution) it will  
cause the system to be reset. The system enable  
output prevents critical control functions being  
activated until software has successfully cleared the  
watchdog three times. Such a security could be used  
to prevent motor controls being energized on  
repeated resets of a faulty system.  
„ Highly accurate 5 V, 100 mA guaranteed output  
„ Low dropout voltage, typically 380 mV at 100 mA  
„ Low quiescent current, typically 175 µA  
„ Standby mode, maximum current 340 µA (with  
100 µA load on OUTPUT)  
„ Unregulated DC input can withstand –20 V reverse  
battery and + 60 V power transients  
„ Fully operational for unregulated DC input voltage  
up to 26 V and regulated output voltage down to 3.0 V  
„ Reset output guaranteed for regulated output voltage  
down to 1.2 V  
„ No reverse output current  
„ Very low temperature coefficient for the regulated output  
„ Current limiting  
Applications  
„ Automotive systems  
„ Cellular telephones  
„ Security systems  
„ Battery powered products  
„ High efficiency linear power supplies  
„ Automotive electronics  
„ Comparator for voltage monitoring,voltage reference  
1.52 V  
„ Programmable reset voltage monitoring  
„ Programmable power on reset (POR ) delay  
„ Watchdog with programmable time windows guarant-  
ees a minimum time and a maximum time between  
software clearing of the watchdog  
„ Time base accuracy 10%  
„ System enable output offers added security  
„ TTL/CMOS compatible  
Version A0:  
Version A1:  
Unregu-  
lated  
voltage  
„ -40 to +85 °C temperature range  
„ On request extended temperature range,-40 to +125 °C  
„ DIP8 and SO8 packages  
5 V  
INPUT OUTPUT  
A6150  
R
VIN  
TCL  
RES  
EN  
Description  
The A6150 offers a high level of integration by combining  
voltage regulation, voltage monitoring and software  
monitoring in an 8 lead package. The voltage regulator  
has a low dropout voltage (typ. 380 mV at 100 mA) and a  
low quiescent current (175 µA). The quiescent current  
increases only slightly in dropout prolonging battery life.  
Built-in protection includes a positive transient absorber for  
up to 60 V (load dump) and the ability to survive an  
unregulated input voltage of –20 V (reverse battery). The  
input may be connected to ground or a reverse voltage  
without reverse current flow from the output to the input. A  
comparator monitors the voltage applied at the VIN input  
comparing it with an internal 1.52 V reference. The power-  
on reset function is initialized after VIN reaches 1.52 V and  
takes the reset output inactive after TPOR depending of  
external resistance. The reset output goes active low when  
the VIN voltage is less than 1.52 V. The RES and EN  
outputs are guaranteed to be in a correct state for a  
regulated output voltage as low as 1.2 V. The watchdog  
function monitors software cycle time and execution. If  
VSS  
GND  
Fig. 1  
Typical Operating Configuration  
Pin Assignment  
DIP8/ SO8  
EN  
VIN  
RES  
TCL  
VSS  
R
A6150  
OUTPUT  
INPUT  
Fig. 2  
1
A6150  
Absolute Maximum Ratings  
Operating Conditions  
Parameter  
Symbol  
Conditions  
Parameter  
Symbol Min. Typ. Max. Units  
Operating junction  
temperature 1)  
Continuous voltage at INPUT  
to VSS  
TJ  
VINPUT  
VOUTPUT  
-40  
2.3  
1.2  
1.2  
+125  
26  
°C  
V
V
V
mA  
VINPUT  
-0.3 to + 30 V  
INPUT voltage 2)  
OUTPUT voltage 2) 3)  
Transients on INPUT for  
t < 100 ms and duty cycle 1%  
Reverse supply voltage on INPUT  
Max. voltage at any signal pin  
Min. voltage at any signal pin  
Storage temperature  
Electrostatic discharge max. to  
MIL-STD-883C method 3015  
Max. soldering conditions  
VTRANS  
VREV  
VMAX  
VMIN  
up to + 60 V  
- 20 V  
OUTPUT + 0.3 V  
VSS – 0.3 V  
RES & EN guaranteed 4) VOUTPUT  
OUTPUT current 5)  
Comparator input  
voltage  
IOUTPUT  
VIN  
100  
VOUTPUT  
1000  
0
V
TSTO  
-65 to + 150 °C  
RC-oscillator  
programming  
Thermal resistance from  
junction to ambient 6)  
-DIP8  
R
10  
kΩ  
VSmax  
TSmax  
1000 V  
250 °C x 10 s  
Table 1  
Rth(j-a)  
Rth(j-a)  
105 °C/W  
160 °C/W  
-SO8  
Stresses above these listed maximum ratings may cause  
permanent damage to the device. Exposure be-  
yond specified operating conditions may affect device  
reliability or cause malfunction.  
Table 2  
1) The maximum operating temperature is confirmed by  
sampling at initial device qualification. In production, all  
devices are tested at +85 °C. On request devices tested at  
+125 °C can be supplied.  
Handling Procedures  
2) Full operation quaranteed. To achieve the load regulation  
specified in Table 3 a 22 µF capacitor or greater is  
required on the INPUT, see Fig. 18. The 22 µF must have  
an effective resistance 5 and a resonant frequency  
above 500 kHz.  
This device has built-in protection against high static  
voltages or electric fields; however, anti-static precau-  
tions must be taken as for any other CMOS component.  
Unless otherwise specified, proper operation can only  
occur when all terminal voltages are kept within the  
supply voltage range. At any time, all inputs must be tied  
to a defined logic voltage level.  
3) A 10 µF load capacitor and a 100 nF decoupling capacitor  
are required on the regulator OUTPUT for stability. The  
10 µF must have an effective series resistance of 5 and  
a resonant frequency above 500 kHz.  
4) RES and EN (EN only for version A0) must be pulled up  
externally to VOUTPUT even if they are unused. (Note: RES  
and EN are used as inputs by EM test).  
5) The OUTPUT current will not apply for all possible  
combinations of input voltage and output current.  
Combinations that would require the A6150 to work above  
the maximum junction temperature (+125 °C) must be  
avoided.  
6) The thermal resistance specified assumes the package is  
soldered to a PCB.  
2
A6150  
Electrical Characteristics  
VINPUT = 6.0 V, CL = 10 µF + 100 nF, CINPUT = 22 µF, TJ = -40 to +85 °C, unless otherwise specified  
Parameter  
Symbol Test Conditions  
Min. Typ. Max.  
Unit  
Supply current in standby mode ISS  
REXT = don’t care, TCL = VOUTPUT  
VIN = 0 V, IL = 100 µA  
REXT = 100 k, I/PS at VOUTPUT,  
O/PS 1 Mto VOUTPUT, IL = 100 µA  
REXT = 100 k, I/PS at VOUTPUT, VINPUT  
8.0 V, O/PS 1 Mto VOUTPUT, IL = 100 mA  
IL = 100 µA  
100 µA IL 100 mA,  
-40 °C TJ +125 °C  
,
340  
400  
µA  
µA  
Supply current 1)  
Supply current 1)  
ISS  
ISS  
175  
1.7  
=
4.2  
5.12  
mA  
V
Output voltage  
Output voltage  
VOUTPUT  
VOUTPUT  
4.88  
4.85  
5.15  
V
Output voltage temperature  
coefficient 2)  
Vth(coeff)  
VLINE  
50  
180 ppm/°C  
Line regulation 3)  
6 V VINPUT 26 V, IL = 1 mA,  
TJ = +125 °C  
0.2  
0.2  
40  
0.5  
0.6  
170  
%
%
mV  
mV  
mV  
Load regulation 3)  
Dropout voltage 4)  
Dropout voltage 4)  
Dropout voltage 4)  
Dropout supply current  
VL  
100 µA IL 100 mA  
VDROPOUT IL = 100 µA  
VDROPOUT IL = 100 mA  
VDROPOUT IL = 100 mA, -40 °C TJ +125 °C  
ISS  
380  
650  
VINPUT = 4.5 V, IL = 100 µA,  
REXT = 100 k, O/PS 1 Mto  
VOUTPUT, I/PS at VOUTPUT  
TJ = +25 °C, IL = 50 mA,  
VINPUT = 26 V, T = 10 ms  
OUTPUT tied to VSS  
1.2  
1.6  
mA  
Thermal regulation 5)  
Current limit  
Vthr  
0.05 0.25  
450  
%/W  
mA  
ILmax  
OUTPUT noise, 10Hz to 100kHz VNOISE  
200  
µVrms  
RES & EN  
Output Low Voltage  
VOL  
VOL  
VOL  
VOL  
VOUTPUT = 4.5 V, IOL= 20 mA  
VOUTPUT = 4.5 V, IOL = 8 mA  
VOUTPUT = 2.0 V, IOL = 4 mA  
VOUTPUT = 1.2 V, IOL = 0.5 mA  
0.4  
0.2  
0.2  
V
V
V
V
0.4  
0.4  
0.2  
0.06  
EN (vers. A1)  
Output High Voltage  
VOH  
VOH  
VOH  
VOUTPUT = 4.5 V, IOH= -1 mA  
VOUTPUT = 2.0 V, IOH= -100 µA  
VOUTPUT = 1.2 V, IOH= -30 µA  
3.5  
1.8  
1.0  
4.1  
1.9  
1.1  
V
V
V
TCL and VIN  
TCL Input Low Level  
TCL Input High Level  
Leakage current  
VIN input resistance  
VIL  
VIH  
ILI  
RVIN  
VREF  
VREF  
VREF  
VHY  
VSS  
2.0  
0.8  
VOUTPUT  
1
V
V
µA  
MΩ  
V
V
V
VSS VTCL VOUTPUT  
TJ = +25 °C  
0.05  
100  
1.474 1.52 1.566  
1.436  
1.420  
Comparator reference 6)7)  
Comparator hysteresis 7)  
1.620  
1.620  
-40 °C TJ +125 °C  
2
mV  
Table 3  
1) If INPUT is connected to VSS, no reverse current will flow from the OUTPUT to the INPUT, however the supply current specified will  
be sank by the OUTPUT to supply the A6150.  
2) The OUTPUT voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range.  
3) Regulation is measured at constant junction temperature using pulse testing with a low duty cycle. Changes in OUTPUT voltage  
due to heating effects are covered in the specification for thermal regulation.  
4) The dropout voltage is defined as the INPUT to OUTPUT differential, measured with the input voltage equal to 5.0 V.  
5) Thermal regulation is defined as the change in OUTPUT voltage at a time T after a change in power dissipation is applied,  
excluding load or line regulation effects.  
6) The comparator and the voltage regulator have separate voltage references (see “ Block Diagram” Fig. 7).  
7) The comparator reference is the power-down reset threshold. The power-on reset threshold equals the comparator reference  
voltage plus the comparator hysteresis (see Fig. 4).  
3
A6150  
Timing Characteristics  
V INPUT = 6.0 V, IL = 100 µA, CL = 10 µF + 100 nF, CINPUT = 22 µF, TJ = -40 to + 85 °C, unless otherwise specified  
Parameter  
Symbol Test Conditions  
Min.  
Typ.  
Max.  
Units  
Propagation delays:  
TCL to Output Pins  
VIN sensitivity  
Logic Transition Times on all Output Pins TTR  
Power-on Reset delay  
Watchdog Time  
TDIDO  
TSEN  
250  
5
30  
100  
100  
500  
20  
100  
110  
110  
ns  
µs  
1
Load 10 k, 50 pF  
REXT = 123 k1%  
REXT = 123 k1%  
ns  
TPOR  
TWD  
90  
90  
ms  
ms  
Open Window Percentage  
Closed Window Time  
OWP  
TCW  
TCW  
TOW  
TOW  
TWDR  
TWDR  
TTCL  
0.2 TWD  
0.8 TWD  
80  
0.4 TWD  
40  
TWD/40  
2.5  
REXT = 123 k1%  
REXT = 123 k1%  
REXT = 123 k1%  
72  
36  
88  
44  
ms  
ms  
Open Window Time  
Watchdog Reset Pulse  
TCL Input Pulse Width  
ms  
ns  
150  
Table 4  
Timing Waveforms  
Watchdog Timeout Period  
TWD = TPOR  
Condition:  
REXT = 123 kΩ  
+ OWP  
+ 20%  
OWP  
20%  
TCW – closed window  
TOW – open window  
100  
Watchdog  
timer reset  
t [ms]  
Fig. 3  
80  
120  
Voltage Monitoring  
VHY  
Conditions:  
VOUTPUT 3 V  
No timeout  
VIN  
VREF  
TSEN  
TSEN  
TSEN  
TSEN  
TPOR  
TPOR  
RES  
Fig. 4  
4
A6150  
Timer Reaction  
Conditions: VIN > VREF after power-up sequence  
TOW  
TCW  
TCW  
TCW+TOW  
TCW  
TCW+TOW  
TCW+TOW  
TOW  
TCL  
RES  
TTCL  
TWDR  
EN  
1
2
3
3 correct TCL services  
EN goes active low  
Timeout  
- Watchdog timer reset  
Fig.5  
Combined Voltage and Timer Reaction  
Condition:  
VOUTPUT 3 V  
VIN  
VREF  
TPOR=TWD  
TOW  
TCW  
TCL  
TCW+TOW  
RES  
EN  
1
2
3
TCL  
too early  
3 correct TCL service  
EN goes active low  
- Watchdog timer reset  
Fig. 6  
Block Diagram  
Voltage  
OUTPUT  
EN  
Regulator  
INPUT  
Enable  
Logic  
Voltage  
Reference  
Vers. A0  
Vers. A1  
VREF  
Comparator  
Voltage  
Reference  
Reset  
Control  
RES  
VIN  
Open drain  
output RES  
Current  
Controlled  
Oscillator  
Timer  
R
Fig. 7  
TCL  
5
A6150  
Pin Description  
The maximum continuous power dissipation at a given  
temperature can be calculated using the formula:  
Pin Name  
Function  
1
EN  
Vers. A0:  
P
MAX = ( 125 °C – TA) / Rth(j-a)  
Open drain active low enable output.  
EN must be pulled to VOUTPUT  
even if unused  
where Rth(j-a) is the termal resistance from the junction to  
the ambient and is specified in Table 2. Note the Rth(j-a)  
given in Table 2 assumes that the package is soldered  
to a PCB. The above formula for maximum power dissi-  
pation assumes a constant load (ie.100 s). The  
transient thermal resistance for a single pulse is much  
lower than the continuous value. For example the A6150  
in DIP8 package will have an effective thermal resistance  
from the junction to the ambient of about 10 °C/W for a  
single 100 ms pulse.  
Vers. A1:  
Push-pull active low reset output  
Open drain active low reset output.  
RES must be pulled up to VOUTPUT  
even if unused  
Watchdog timer clear input signal  
GND terminal  
2
RES  
3
4
5
6
7
8
TCL  
VSS  
INPUT  
Voltage regulator input  
OUTPUT Voltage regulator output  
R
VIN  
VIN Monitoring  
REXT input for RC oscillator tuning  
Voltage comparator input  
The power-on reset and the power-down reset are  
generated as a response to the external voltage level  
applied on the VIN input. The VDD voltage at which reset is  
asserted or released is determined by the external  
voltage divider between VDD and VSS, as shown on Fig.  
18. A part of VDD is compared to the internal voltage  
reference. To determine the values of the divider, the  
leakage current at VIN must be taken into account as well  
as the current consumption of the divider itself. Low  
resistor values will need more current, but high resistor  
values will make the reset threshold less accurate at  
high temperature, due to a possible leakage current at  
the VIN input. The sum of the two resistors should stay  
below 300 k. The formula is: VRESET = VREF *(1 + R1/R2).  
Example: choosing R1 = 100 kand R2 = 51 kwill  
result in a VDD reset threshold of 4.5 V (typ.).  
Table 5  
Functional Description  
Voltage Regulator  
The A6150 has a 5 V  
2%, 100 mA, low dropout volt-  
age regulator. The low supply current (typ.155 µA) mak-  
es the A6150 particularly suited to automotive systems  
then remain energized 24 hours a day. The input voltage  
range is 2.3 V to 26 V for operation and the input protec-  
tion includes both reverse battery (20 V below ground)  
and load dump (positive transients up to 60 V). There is  
no reverse current flow from the OUTPUT to the INPUT  
when the INPUT equals VSS. This feature is important for  
systems which need to implement (with capacitance) a  
minimum power supply hold-up time in the event of  
power failure. To achieve good load regulation a 22 µF  
capacitor (or greater ) is needed on the INPUT (see  
Fig. 18). Tantalum or aluminium electrolytics are adequate  
for the 22 µF capacitor; film types will work but are relati-  
vely expensive. Many aluminium electrolytics have  
electrolytes that freeze at about –30 °C, so tantalums are  
recommended for operation below –25 °C. The impor-  
tant parameters of the 22 µF capacitor are an effective series  
At power-up the reset output (RES) is held low (see  
Fig. 4). After INPUT reaches 3.36 V (and so OUTPUT  
reaches at least 3 V) and VIN becomes greater than VREF  
,
the RES output is held low for an additional power-on-  
reset (POR) delay which is equal to the watchdog time  
TWD (typically 100 ms with an external resistor of 123 kΩ  
connected at R pin). The POR delay prevents repeated  
toggling of RES even if VIN and the INPUT voltage drops  
out and recovers. The POR delay allows the micropro-  
cessor’s crystal oscillator time to start and stabilize and  
ensures correct recognition of the reset signal to the  
microprocessor.  
The RES output goes active low generating the power-  
down reset whenever VIN falls below VREF. The sensiti-  
vity or reaction time of the internal comparator to the vol-  
tage level on VIN is typically 5 µs.  
resistance of 5 and a resonant frequency  
500 kHz.  
A 10 µF capacitor (or greater) and a 100 nF capacitor are  
required on the OUTPUT to prevent oscillations due to  
instability. The specification of the 10 µF capacitor is as  
per the 22 µF capacitor on the INPUT (see previous  
paragraph).  
above  
Timer Programming  
The A6150 will remain stable and in regulation with no  
external load and the dropout voltage is typically con-  
stant as the input voltage fall to below its minimum level  
(see Table 2). These features are especially important in  
CMOS RAM keep-alive applications.  
Care must be taken not to exceed the maximum junction  
temperature (+ 125 °C). The power dissipation within  
the A 6150 is given by the formula:  
The on-chip oscillator with an external resistor REXT con-  
nected between the R pin and VSS (see Fig. 18) allows  
the user to adjust the power-on reset (POR) delay,  
watchdog time TWD and with this also the closed and  
open time windows as well as the watchdog reset pulse  
width (TWD/40).  
With REXT = 123 ktypical values are:  
-Power-on reset delay: TPOR is 100 ms  
-Watchdog time:  
TWD is 100 ms  
PTOTAL = (VINPUT – VOUTPUT) * IOUTPUT + (VINPUT) * ISS  
6
A6150  
-Closed window:  
-Open window:  
-Watchdog reset:  
Note the current consumption increases as the fre-  
quency increases.  
TCW is 80 ms  
TOW is 40 ms  
4.  
26 ms at +25 °C  
T
WDR is 2.5 ms  
a) (26 10% = 23.4 ms) (26 + 10% = 28.6 ms) a)  
Watchdog Timeout Period Description  
b) (23.4 5% = 22.2 ms)  
(28.6 + 5% = 30.0 ms) b)  
The watchdog timeout period is divided into two parts, a  
“closed” window and an “open” window (see Fig. 3) and  
is defined by two parameters, TWD and the Open Window  
Percentage (OWP).  
min.: (30.0 20% = 24.0 ms) max.: (22.2 + 20% = 26.7 ms)  
The closed window starts just after the watchdog timer  
resets and is defined by TCW = TWD – OWP(TWD).  
The open window starts after the closed time window  
finishes and lasts till TWD + OWP(TWD).The open window  
Typical TCL period of  
(24.0 + 26.7) / 2 = 25.4 ms  
The ratio between TWD = 26 ms and the (TCL period)  
= 25.4 ms is 0.975.  
time is defined by TOW = 2 x OWP (TWD  
)
Then the relation over the production and the full  
temperature range is, TCL period = 0.975 x TWDor  
0.975 x REXT  
For example if TWD = 100 ms (actual value) and OWP =  
20% this means the closed window lasts during first  
the 80 ms (TCW = 80 ms = 100ms – 0.2 (100 ms)) and  
the open window the next 40 ms (TOW = 2 x 0.2 (100 ms)  
= 40 ms). The watchdog can be serviced between  
80 ms and 120 ms after the timer reset. However as the  
TCL period =  
, as typical value.  
1.155  
a) While PRODUCTION value unknown for the custo-  
mer when REXT 123 k.  
b) While operating TEMPERATURE range  
-40 °C TJ +85 °C.  
time base is  
10% accurate, software must use the  
5. If you fixed a TCL period = 26 ms  
following calculation as the limits for servicing signal TCL  
during the open window:  
Related to curves (Fig. 10 to Fig. 20), especially Fig. 19  
and Fig. 20, the relation between TWD and REXT could  
easily be defined. Let us take an example describing the  
variations due to production and temperature:  
1.Choice, TWD = 26 ms.  
26 x 1.155  
REXT  
=
= 30.8 k.  
0.975  
If during your production the TWD time can be mea-  
sured at TJ = + 25 °C and the µC can adjust the TCL  
period, then the TCL period range will be much larger  
for the full operating temperature.  
2.Related to Fig. 20, the coefficient (TWD to REXT  
1.155 where REXT is in kand TWD in ms.  
3.REXT (typ.) = 26 x 1.155 = 30.0 k.  
)
is  
TWD versus VOUTPUT at TJ = +25 °C  
TWD versus R at TJ = +25 °C  
R = 10 M
Ω  
10’000  
10’000  
R = 1 MΩ  
1000  
1000  
100  
R = 100 kΩ  
100  
R = 10 k
Ω  
10  
3 V  
4.8 V  
10  
5 V  
5.2 V  
6 V  
R = 1 kΩ  
1
1
100  
1000  
10’000  
Fig. 9  
10  
0.1  
1
6
3
4
5
VOUTPUT [V]  
R[k]  
Fig. 8  
7
A6150  
TWD versus R at TJ = +25 °C  
10’000  
1000  
100  
3 V  
10  
4.8 V  
5 V  
5.2 V  
6 V  
1
100  
1000  
10’000  
10  
0.1  
1
R[k]  
Fig. 10  
8
A6150  
TWD versus VOUTPUT at TJ = +85 °C  
R = 10 MΩ  
TWD versus R at TJ = +85 °C  
10’000  
10’000  
1000  
100  
R = 1 MΩ  
1000  
100  
R = 100 kΩ  
R = 10 kΩ  
R = 1 kΩ  
5
10  
1
10  
1
3 V  
4.8 V  
5 V  
5.2 V  
6 V  
0.1  
1
10’000  
1000  
10  
100  
6
3
4
R[k]  
Fig. 12  
VOUTPUT [V]  
Fig. 11  
TWD versus VOUTPUT at TJ = -40 °C  
TWD versus R at TJ = -40 °C  
R = 10 MΩ  
10’000  
R = 1 MΩ  
1000  
100  
1000  
R = 100 kΩ  
100  
10  
1
10  
R = 10 kΩ  
R = 1 kΩ  
5
1
3 V  
4.8 V  
5 V  
5.2 V  
6 V  
0.1  
6
3
4
1
10  
100  
1000 10’000  
Fig. 14  
0.1  
R[k]  
VOUTPUT [V]  
Fig. 13  
9
A6150  
TWD versus temperature at 5 V  
T WD versus R at 5 V  
R = 10 MΩ  
R = 1 MΩ  
10’000  
10’000  
1000  
100  
1000  
100  
R = 100 kΩ  
R = 10 kΩ  
R = 1 kΩ  
-40 °C  
-20 °C  
+25 °C  
+70 °C  
+85 °C  
10  
1
10  
1
1000 10’000  
Fig. 16  
100  
R[k]  
0.1  
1
10  
+80  
+60  
-20  
+20 +40  
-40  
0
TJ [°C]  
Fig. 15  
OUTPUT Current versus INPUT Voltage  
SO8 package  
soldered to PC board  
100  
80  
T
Jmax = + 125 °C  
60  
TA=+50 °C  
TA=+25 °C  
40  
TA=+85 °C  
20  
0
0
5
10  
15  
20  
25  
30  
INPUT voltage [V]  
Fig.17  
10  
A6150  
TPOR, a pull-up to VDD is required on that pin. After the  
POR delay has elapsed, RES goes inactive and the  
watchdog timer starts acting. If no TCL pulse occurs,  
RES goes active low for a short time TWDR after each  
closed and open window period. A TCL pulse coming  
during the open window clears the watchdog timer.  
When the TCL pulse occurs too early (during the closed  
window), RES goes active and a new timeout sequence  
starts. A voltage drop below the VREF level for longer than  
typically 5µs overrides the timer and immediately forces  
RES active and EN inactive. Any further TCL pulse  
has no effect until the next power-up sequence has  
completed.  
Timer Clearing and RES Action  
The watchdog circuit monitore the activity of the proces-  
sor. If the user’s software does not send a pulse to the  
TCL input within the programmed open window timeout  
period a short watchdog RES pulse is generated which  
is equal to TWD /40 = 2.5 ms typically (see Fig. 5).  
With the open window constraint new security is added  
to conventional watchdogs by monitoring both software  
cycle time and execution. Should software clear the  
watchdog too quickly (incorrect cycle time) or too slowly  
(incorrect execution) it will cause the system to be reset.  
If software is stuck in a loop which includes the routine  
to clear the watchdog then a conventional watchdog  
would not make a system reset even though software is  
malfunctioning; the A6150 would make a system reset  
because the watchdog would be cleared too quickly.  
If no TCL signal is applied before the closed and open  
windows expire, RES will start to generate square waves  
of period (TCW + TOW + TWDR). The watchdog will remain  
in this state until the next TCL falling edge appears  
during an open window, or until a fresh power-up se-  
quence. The system enable output, EN , can be used to  
prevent critical control functions being activated in the  
event of the system going into this failure mode (see  
section “Enable-EN Output”).  
Enable - EN Output  
The system enable output, EN ,is inactive always when  
RES is active and remains inactive after a RES pulse  
until the watchdog is serviced correctly 3 consecutive  
times (ie. the TCL pulse must come in the open win-  
dow). After three consecutive services of the watchdog  
with TCL during the open window, the EN goes active  
low.  
A malfunctioning system would be repeatedly reset by  
the watchdog. In a conventional system critical motor  
controls could be energized each time reset goes inac-  
tive (time allowed for the system to restart) and in this  
way the electrical motors driven by the system could  
function out of control. The A6150 prevents the above  
failure mode by using the EN output to disable the motor  
controls until software has successfully cleared the  
watchdog three times (ie. the system has correctly re-  
started after a reset condition).  
The RES output must be pulled up to VOUTPUT even if the  
output is not used by the system (see Fig 18).  
Combined Voltage and Timer Action  
The combination of voltage and timer actions is illustrat-  
ed by the sequence of events shown in Fig. 6. On pow-  
er-up, when the voltage at VIN reaches VREF, the power-  
on-reset, POR, delay is initialized and holds RES active  
for the time of the POR delay. A TCL pulse will have no  
effect until this power-on-reset delay is completed. When  
the risk exists that TCL temporarily floats, e.g. during  
For the version A0 the EN output must be pulled up to  
V
OUTPUT even if the output is not used by the system (see  
Fig. 18.  
Typical Application  
Version A0:  
Version A1:  
Regulated voltage  
Unregulated voltage  
INPUT  
OUTPUT  
100 nF  
+
R1  
Address  
decoder  
10 µF  
A6150  
VIN  
R
22 µF  
+
100 kΩ  
TCL  
RES  
EN  
Microprocessor  
RES  
VSS  
Motor  
EN  
controls  
R2  
GND  
Fig.18  
11  
A6150  
TWD Coefficient versus REXT at TJ = + 25 °C  
0.96  
0.94  
0.92  
0.90  
0.88  
0.86  
0.84  
0.82  
0.80  
0.78  
0.76  
10  
100  
1000  
REXT [k]  
Fig. 19  
REXT Coefficient versus TWD at TJ = + 25 °C  
1.30  
1.28  
1.26  
1.24  
1.22  
1.20  
1.18  
1.16  
1.14  
1.12  
1.10  
1.08  
1.06  
1.04  
10  
1000  
100  
TWD [ms]  
Fig. 20  
12  
A6150  
Package Information  
Dimensions of 8-Pin SOIC Package  
E
D
C
0 - 8°  
A
A1  
B
L
e
H
Dimensions in mm  
Min Nom Max  
1.35 1.63 1.75  
A
A1 0.10 0.15 0.25  
4
5
3
2
7
B
C
D
E
e
0.33 0.41 0.51  
0.19 0.20 0.25  
4.80 4.93 5.00  
3.80 3.94 4.00  
1.27  
6
8
H
5.80 5.99 6.20  
L
0.40 0.64 1.27  
Fig. 21  
Dimensions of 8-Pin Plastic DIP Package  
A1 A2  
A
C
L
eA  
eB  
b3  
e
b2  
b
Dimensions in mm  
Min. Nom. Max.  
5.33  
Min. Nom. Max.  
A
D
E
9.01 9.27 10.16  
7.62 7.87 8.25  
A1 0.38  
A2 2.92 3.30 4.95  
0.35 0.45 0.56  
b2 1.14 1.52 1.78  
b3 0.76 0.99 1.14  
E1 6.09 6.35 7.11  
4
3
2
1
b
e
2.54  
7.62  
eA  
eB  
L
E1  
E
10.92  
C
0.20 0.25 0.35  
2.92 3.30 3.81  
5
6
7
8
Fig.22  
13  
A6150  
Ordering Information  
When ordering, please specify complete Part Number  
Part Number  
Output EN Temperature Range  
Package  
Delivery Form Package Marking  
(first line)  
A6150A1SO8A  
A6150A1SO8B  
A6150A1DL8A*  
A6150A0SO8A*  
A6150A0SO8B* Open drain  
A6150A0DL8A*  
A6150A1XSO8A*  
A6150A1XSO8B* Push-pull  
A6150A1XDL8A*  
8-pin SOIC  
8-pin SOIC  
8-pin plastic DIP Stick  
8-pin SOIC  
8-pin SOIC  
8-pin plastic DIP Stick  
Stick  
Tape & Reel  
6150A1  
6150A1  
A6150A1  
6150A0  
6150A0  
A6150A0  
6150A1X  
6150A1X  
A61501X  
6150A0X  
6150A0X  
A61500X  
Push-pull  
-40 °C to +85 °C  
Stick  
Tape & Reel  
8-pin SOIC  
8-pin SOIC  
-40 °C to +125 °C 8-pin plastic DIP Stick  
Stick  
Tape & Reel  
A6150A0XSO8A*  
A6150A0XSO8B* Open drain  
A6150A0XDL8A*  
8-pin SOIC  
8-pin SOIC  
8-pin plastic DIP Stick  
Stick  
Tape & Reel  
* = non stock item. Might be available on request and upon minimum order quantity (please contact EM Microelectronic).  
EM Microelectronic-Marin SA cannot assume any responsibility for use of any circuitry described other than entirely  
embodied in an EM Microelectronic-Marin SA product. EM Microelectronic-Marin SA reserves the right to change the  
circuitry and specifications without notice at any time. You are strongly urged to ensure that the information given  
has not been superseded by a more up-to-date version.  
© 2002 EM Microelectronic-Marin SA, 03/02, Rev. N/344  
14  
EM Microelectronic-Marin SA, CH - 2074 Marin, Switzerland, Tel. +41 – (0)32 75 55 111, Fax +41 – (0)32 75 55 403  

相关型号:

A6150A1XSO8A

High Efficiency Linear Power Supply with Power Surveillance and Software Monitoring
ETC

A6150A1XSO8B

High Efficiency Linear Power Supply with Power Surveillance and Software Monitoring
ETC

A6150C5R-25

LOW DROPOUT VOLTAGE REGULATOR
AITSEMI

A6150C5R-33

LOW DROPOUT VOLTAGE REGULATOR
AITSEMI

A6150C5VR-25

LOW DROPOUT VOLTAGE REGULATOR
AITSEMI

A6150C5VR-33

LOW DROPOUT VOLTAGE REGULATOR
AITSEMI

A6150E5R-25A

LOW DROPOUT VOLTAGE REGULATOR
AITSEMI

A6150E5R-33A

LOW DROPOUT VOLTAGE REGULATOR
AITSEMI

A6150E5VR-25A

LOW DROPOUT VOLTAGE REGULATOR
AITSEMI

A6150E5VR-33A

LOW DROPOUT VOLTAGE REGULATOR
AITSEMI

A6151

LOW DROPOUT VOLTAGE REGULATOR
AITSEMI

A6151A

LOW DROPOUT VOLTAGE REGULATOR
AITSEMI