AAP6204 [ETC]

1.36-W Mono Fully Differential Audio Power Amp; 1.36 -W单声道全差分音频功率放大器
AAP6204
型号: AAP6204
厂家: ETC    ETC
描述:

1.36-W Mono Fully Differential Audio Power Amp
1.36 -W单声道全差分音频功率放大器

放大器 功率放大器
文件: 总11页 (文件大小:662K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
芯美 子  
AAP6204  
1.36-W Mono Fully Differential  
Audio Power Amplifier  
FEATURES  
DESCRIPTION  
z
z
z
z
Supply Voltage 2.5V to 5.5V  
The AAP6204 is a mono fully-differential audio  
amplifier, capable of delivering 1.36W of continuous  
average power to an 8BTL load with less than 1%  
distortion (THD+N) from a 5V power supply, and  
720mW to a 8load from a 3.6V power supply.  
The AAP6204 is ideal for PDA/smart phone application  
due to features such as -80-dB supply voltage rejection  
from 70Hz to 2kHz, improved RF rectification immunity,  
small 20mm2 PCB area, and a fast startup with minimal  
pop.  
1.36W into 8from a 5-V Supply at THD=1% (typ)  
Low Supply Current: 4mA typ at 5V  
Shutdown Current: 0.01µA typ  
Fast Startup with Minimal Pop  
Only Three External Components  
- Improved PSRR (-80dB) for Direct Battery Operation  
- Full Differential Design Reduces RF Rectification  
z
z
- -63dB CMRR Eliminates Two Input Coupling  
The AAP6204 is available in the space-saving 3mm ×  
3mm TDFN package.  
Capacitors  
z
RoHS Compliant and 100% Lead (Pb)-Free  
APPLICATIONS  
z
z
z
Wireless Handsets  
PDAs  
Portable Devices  
Typical Application Circuit  
Figure 1.  
DS6204 Ver0.1 July 2008  
1
系 :15999644579 83151715  
芯美 子  
AAP6204  
Block Diagram  
Figure 2.  
Pin Configurations  
Package  
Pin Configurations  
TDFN-8  
Pin Description  
SYMBOL  
PIN  
1
2
3
4
DESCRIPTION  
Shutdown terminal  
Shutdown  
Bypass  
IN+  
IN-  
VO+  
Mid-supply voltage, adding a bypass capacitor improves PSRR  
Positive differential input  
Negative differential input  
Positive BTL output  
5
VDD  
GND  
VO-  
6
7
8
Power supply  
High-current ground  
Negative BTL output  
DS6204 Ver0.1 July 2008  
2
:15999644579 83151715  
芯美 子  
Ordering Information  
AAP6204  
Order Number  
Package Type  
Marking  
Operating Temperature Range  
xxxxx  
6204  
AAP6204JIR1  
TDFN-8  
-40°C to 85°C  
AAP6204 □ □ □ □  
Lead Free Code  
1: Lead Free 0: Lead  
Packing  
R: Tape & Reel  
Operating temperature range  
I: Industry Standard  
Package Type  
J: TDFN  
DS6204 Ver0.1 July 2008  
3
:15999644579 83151715  
芯美 子  
Absolute Maximum Ratings  
AAP6204  
Supply voltage, VDD ----------------------------------------------------------------------------------- -0.3 V to 6V  
Input voltage, VI ---------------------------------------------------------------------------- -0.3 V to VDD +0.3V  
Storage temperature rang, Tstg ------------------------------------------------------------------- -65°C to 150°C  
ESD Susceptibility -------------------------------------------------------------------------------------------- 2kV  
Junction Temperature -------------------------------------------------------------------------------------- 150°C  
Thermal Resistance  
θJA (TDFN) ---------------------------------------------------------------------------------------------- 50°C/W  
Recommended Operating Conditions  
MIN NOM MAX UNIT  
Supply Voltage, VDD  
2.5  
5.5  
V
V
High-level input voltage, VIH  
Low-level input voltage, VIL  
Operating free-air temperature, TA  
1.55  
0.5  
85  
V
-40  
°C  
Electrical Characteristics, TA=25°C  
AAP6204  
Min Typ Max.  
Symbol  
Parameter  
Conditions  
Unit  
Output offset voltage  
VOS  
VI=0V differential, Gain=1V/V, VDD=5.5V  
-9  
0.8  
-87  
9
mV  
(measured differentially)  
PSRR Power supply rejection ratio  
VIC Common mode input range  
VDD=2.5V to 5.5V  
VDD=2.5V to 5.5V  
-60  
dB  
V
0.5  
VDD-0.8  
VDD=2.5V, VIC=0.5V to 1.7V  
VDD=5.5V, VIC=0.5V to 4.7V  
-63  
-63  
-40  
-40  
Common mode rejection  
CMRR  
range  
dB  
VDD=5.5V  
VDD=3.6V  
0.45  
0.37  
0.26  
4.95  
3.18  
2.13  
RL=8,  
Gain=1V/V  
Low-output swing  
VIN+=VDD  
,
V -=0V or  
V
IN  
VIN+=0V,  
V -=VDD  
IN  
VDD=2.5V  
0.4  
VDD=5.5V  
VDD=3.6V  
VDD=2.5V  
RL=8,  
Gain=1V/V  
VIN-=0V or  
, VIN+=0V  
High-output swing  
VIN+=VDD  
,
V
VIN-=VDD  
2
High-level input current,  
Shutdown  
Low-level input current,  
Shutdown  
|IIH|  
VDD=5.5V, VI=5.8V  
DD=5.5V, VI= -0.3V  
58  
100  
100  
µA  
|IIL|  
V
3
4
µA  
mA  
µA  
IQ  
Quiescent current  
VDD=2.5V to 5.5V, with load  
V( Shutdown )0.5V, VDD=2.5V to 5.5V,  
RL= 8Ω  
I(SD) Supply current  
0.01  
1
38k40k42kΩ  
Gain  
RL= 8Ω  
V/V  
RI  
RI  
RI  
Resistance from shutdown to  
100  
kΩ  
GND  
DS6204 Ver0.1 July 2008  
4
:15999644579 83151715  
芯美 子  
Operating Characteristics, TA=25°C, Gain=1V/V  
AAP6204  
AAP6204  
Symbol  
Parameter  
Conditions  
Unit  
Min Typ Max.  
VDD=5V  
1.36  
0.72  
0.33  
1.7  
0.85  
0.4  
0.04  
0.04  
0.05  
THD+N=1%, f=1kHz,RL=8Ω  
W
VDD=3.6V  
VDD=2.5V  
VDD=5V  
VDD=3.6V  
VDD=2.5V  
PO  
Output power  
THD+N=10%, f=1kHz,RL=8Ω  
W
%
VDD=5V, PO=1W, RL=8, f=1kHz  
VDD=3.6V, PO=0.5W, RL=8, f=1kHz  
DD=2.5V, PO=200mW, RL=8, f=1kHz  
Total harmonic distortion  
plus noise  
THD+N  
KSVR  
V
VDD=3.6V,  
f = 217Hz  
-86  
Supply ripple rejection  
ratio  
Inputs ac-grounded  
with Ci=2µF,  
dB  
dB  
f=70Hz  
to 2kHz  
-80  
V(Ripple)=200mVpp  
SNR Signal-to-noise ratio  
VDD=5V, PO=1W, RL=8Ω  
105  
No  
V
DD=3.6V, f=20Hz to 20kHz,  
11.7  
weighting  
A
Vn  
Output voltage noise  
Inputs ac-grounded with  
Ci=2µF  
µVRMS  
8.7  
-60  
weighting  
Common mode rejection VDD=3.6V  
CMRR  
RF  
f=217Hz  
dB  
ratio  
VIC=1Vpp  
Feedback resistance  
38  
40  
23  
44  
kΩ  
Start-up time from  
shutdown  
VDD=3.6V, CBYPASS=0.1µF  
ms  
DS6204 Ver0.1 July 2008  
5
:15999644579 83151715  
芯美 子  
Typical Operating Characteristics  
AAP6204  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
DS6204 Ver0.1 July 2008  
6
系 :15999644579 83151715  
芯美 子  
Typical Operating Characteristics (continued)  
AAP6204  
Figure 9.  
Figure 10.  
Figure 11.  
Figure 12.  
Figure 13.  
Figure 14.  
DS6204 Ver0.1 July 2008  
7
:15999644579 83151715  
芯美 子  
Typical Operating Characteristics (continued)  
AAP6204  
Figure 15.  
DS6204 Ver0.1 July 2008  
8
:15999644579 83151715  
芯美 子  
Application Information  
Application Schematics  
Figure16 through Figure17 show application schematics  
for differential and single-ended inputs. Typical values  
are shown in Table1.  
AAP6204  
Power Dissipation  
Power dissipation is a major concern when designing a  
successful amplifier, whether the amplifier is bridged or  
single-ended. A direct consequence of the increased  
power delivered to the load by a bridge amplifier is an  
increase in internal power dissipation. Since the AAP6204  
has two operational amplifiers in one package, the  
maximum internal power dissipation is 4 times that of a  
single-ended amplifier. The maximum power dissipation  
for a given application can be derived from the power  
dissipation graphs of from equation1.  
Table1. Typical Component Value  
Component  
Value  
40kΩ  
0.22µF  
1µF  
RI  
C(BYPASS)  
CS  
P
= 4*(V )2 /(2π2R )  
------------(1)  
DD L  
DMAX  
CI  
0.22µF  
It is critical that the maximum junction temperature TJMAX  
of 150°C is not exceeded. TJMAX can be determine from  
the power derating curves by using PDMAX and the PC  
board foil area. By adding additional copper foil, the  
thermal resistance of the application can be reduced,  
resulting in higher PDMAX. Additional copper foil can be  
added to any of the leads connected to the AAP6204. If  
TJMAX still exceeds 150°C, then additional changes must  
be made. These changes can include reduced supply  
voltage, higher load impedance, or reduced ambient  
temperature. Internal power dissipation is a function of  
output power.  
Proper Selection of External Components  
Gain-Setting Resistor Selection  
The input resistor (RI) can be selected to set the gain of  
the amplifier according to equation2.  
Gain=RF/RI  
(2)  
The internal feedback resistors (RF) are trimmed to 40k.  
Resistor matching is very important in fully differential  
amplifiers. The balance of the output on the reference  
voltage depends on matched ratios of the resistors. CMRR,  
PSRR, and the cancellation of the second harmonic  
distortion diminishes if resistor mismatch occurs.  
Therefore, it is recommended to use 1% tolerance  
resistors or better to keep the performance optimized.  
Bypass Capacitor (CBYPASS) and Start-up Time  
The internal voltage divider at the Bypass pin of this  
device sets a mid-supply voltage for internal references  
and sets the output common mode voltage to VDD/2.  
Adding a capacitor to this pin filters any noise into this  
pin and increases kSVR. C(BYPASS) also determines the rise  
time of VO+ and VO- when the device is taken out of  
shutdown. The larger the capacitor, the slower the rise  
time. Show the relationship of C(BYPASS) to start-up time as  
Figure10.  
DS6204 Ver0.1 July 2008  
9
:15999644579 83151715  
芯美 子  
AAP6204  
Input Capacitor (CI)  
In this example, CI is 0.16µF, so one would likely  
The AAP6204 does not require input coupling capacitors  
if using a differential input source that is biased from  
0.5V to VDD -0.8V. Use 1% tolerance or better  
gain-setting resistors if not using input coupling  
capacitors.  
choose a value in the range of 0.22µF to 0.47µF.  
Ceramic capacitors should be used when possible, as  
they are the best choice in preventing leakage current.  
When polarized capacitors are used, the positive side of  
the capacitor should face the amplifier input in most  
applications, as the dc level there is held at VDD/2, which  
is likely higher than the source dc level. It is important to  
confirm the capacitor polarity in the application.  
In the single-ended input application an input capacitor,  
CI, is required to allow the amplifier to bias the input  
signal to the proper dc level. In this case, CI and RI form  
a high-pass filter with the corner frequency determined  
in equation3.  
1
Decoupling Capacitor (CS)  
f
=
(3)  
The AAP6204 is a high-performance CMOS audio  
amplifier that requires adequate power supply  
decoupling to ensure the output total harmonic distortion  
(THD) is as low as possible. Power supply decoupling  
also prevents oscillations for long lead lengths between  
the amplifier and the speaker. For higher frequency  
transients, spikes, or digital hash on the line, a good low  
equivalent-series-resistance (ESR) ceramic capacitor,  
typically 0.1µF to 1 µF, placed as close as possible to the  
device VDD lead works best. For filtering lower  
frequency noise signals, a 10-µF or greater capacitor  
placed near the audio power amplifier also helps, but is  
not required in most applications because of the high  
PSRR of this device.  
C
2π R C  
I I  
The value of CI is important to consider as it directly  
affects the bass (low frequency) performance of the  
circuit.  
Consider the example where RI is 10kand the  
specification calls for a flat bass response down to  
100Hz. Equation 3 is reconfigured as equation4.  
1
C =  
(4)  
I
2π R f  
I C  
DS6204 Ver0.1 July 2008  
10  
:15999644579 83151715  
芯美 子  
Package Information  
AAP6204  
TDFN-8  
DETAIL A  
MILLIMETERS  
INCHES  
0.090  
SYMBOLS  
MIN.  
0.70  
0.00  
0.20  
2.90  
MAX.  
MIN.  
0.028  
0.000  
0.008  
0.114  
MAX.  
A
A1  
b
D
D1  
0.80  
0.05  
0.40  
3.10  
0.031  
0.002  
0.016  
0.122  
2.30  
E
E1  
e
2.90  
0.25  
3.10  
0.45  
0.114  
0.010  
0.122  
0.018  
1.50  
0.65  
0.059  
0.026  
L
DS6204 Ver0.1 July 2008  
11  
:15999644579 83151715  

相关型号:

AAPG1211F

1211F Series, Bi-Color Right Angle SMT LED
STANLEY

AAPY1201P

Optoelectronic
ETC

AAPY1202P

Optoelectronic
ETC

AAPY1204P

Optoelectronic
ETC

AAQ1000RE

Epoxy Molded Precision Wirewound Axial Terminals
OHMITE

AAR101-B

Each color has anode common
STANLEY

AAR101-C

Each color has anode common
STANLEY

AAR101B

Each color has anode common
STANLEY

AAR25L

AVALANCHE AUTOMOTIVE DIODE
MIC

AAR25M

AVALANCHE AUTOMOTIVE DIODE
MIC

AAR25Z

AVALANCHE AUTOMOTIVE DIODE
MIC

AAR35L

AVALANCHE AUTOMOTIVE DIODE
MIC