AB-180 [ETC]

AB-180 - ULTRA HIGH-SPEED ICs ; AB - 180 - 超高速集成电路\n
AB-180
型号: AB-180
厂家: ETC    ETC
描述:

AB-180 - ULTRA HIGH-SPEED ICs
AB - 180 - 超高速集成电路\n

文件: 总5页 (文件大小:92K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
AP P LICATION BULLETIN  
Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706  
Tel: (602) 746-1111 • Twx: 910-952-111 • Telex: 066-6491 • FAX (602) 889-1510 • Immediate Product Info: (800) 548-6132  
ULTRA HIGH-SPEED ICs  
By Klaus Lehmann, Burr-Brown International GmbH  
1
2
3
OPA660 Current  
Feedback Amplifier  
OPA622 Voltage  
Feedback Amplifier  
OPA660 Straight  
Foward Amplifier  
Out  
Out  
+In  
–In  
Out  
+In  
+In  
4
5
QUASI-IDEAL CURRENT SOURCE  
6
In addition to their actual operation parameter  
transconductance, active electronic key components such as  
vacuum tubes, field effect transistors, and bipolar transistors  
demonstrate diverse negative parameters. In applying the so-  
called Diamond structure, the user can obtain an improved  
current source with reduced disturbance parameters, as well  
as a programmable transconductance independent of tem-  
perature. Standard applications for the Diamond current  
source (DCS) can be found in buffers, operational amplifiers  
with voltage or current feedback, and transconductance  
amplifiers. The DCS simplifies the design of electronic  
circuits with bandwidths of up to 400MHz and slew rates of  
3000V/µs with a low supply current of several mA.  
COMPONENT  
PARAMETER  
TYPICAL VALUE  
Triode  
Grid Bias Voltage  
Anode Bias Voltage  
Grid Current  
Anode Bias Current  
G/K Resistance  
A/K Resistance  
0 to 10V  
20 to 1kV  
nA to µA  
µA to A  
kto MΩ  
kto MΩ  
1 to 20%  
Trans Grid Action  
N-J FET  
Gate Voltage  
D/S Voltage  
Gate Current  
0 to –10V  
0 to 100V  
fA to µA  
D Bias Current  
G/S Resistance  
D/S Resistance  
Inverse Amplification  
µA to A  
Mto GΩ  
kto MΩ  
1 to10%  
NPN Transistor  
Basis Voltage  
K/E Voltage  
Basis Current  
0.5 to 0.8V  
0.5 to 100V  
µA to mA  
µA to A  
kΩ  
VOLTAGE-CONTROLLED CURRENT SOURCES  
K Bias Current  
B/E Resistance  
K/E Resistance  
Inverse Amplification  
For analog signal processing, especially current or voltage  
gain, previous electronic circuit techniques primarily used  
vacuum tubes, while today they use field effect or bipolar  
transistors. The triode illustrated in Figure 1 is representa-  
tive of the various vacuum tubes, while the N-channel FET  
represents the FET variations (junctions, insulated gates,  
depletion, enhancements, P-channels, and N-channels), and  
a NPN transistor represents the range of bipolar transistors.  
Triodes, N-J FETs, and NPN transistors are compared with  
the Diamond current source (DCS). The common elements  
of all of these active elements are a relatively high-imped-  
ance input electrode 1 (grid, gate, basis), a low-impedance  
kΩ  
0.1 to 1%  
DCS  
VOFF1  
VOFF3  
IBIAS1  
IBIAS3  
R12  
–2 to +2mV  
0V  
nA to µA  
µA  
kto MΩ  
kΩ  
<0.1%  
R32  
VR31  
TABLE I. Typical Disturbance Parameters of the Voltage-  
Controlled Current Sources.  
©1993 Burr-Brown Corporation  
AB-180  
Printed in U.S.A. May, 1993  
input and output electrode 2 (cathode, source, emitter), and  
a high-impedance output electrode 3 (anode, drain collec-  
tor). Thus all of these elements can be treated as special  
voltage-controlled current sources (VCCS = Voltage-Con-  
trolled Current Source). The limitation “special” refers to  
the low-impedance input and output electrode 2. The most  
important relation between the electrodes 1, 2, and 3 is the  
transconductance gm. For instance, the transconductance  
describes the change of the output signal (VOUT) dependent  
upon the input signal (VIN).  
VOUT = VIN x gm x ROUT (1)  
To operate each VCCS, it is necessary to adjust the DC  
quiescent current or voltage individually (see Figure 1).  
Triade  
N - J - FET  
NPN - Transistor  
DCS  
3
2
3
2
3
2
3
2
A
K
D
C
1
1
1
1
–gm  
–gm  
–gm  
–gm  
G
G
B
gm  
E
Vbc  
Vbe  
V
be /VT  
V
be /VT  
Vgk < Ø (Vgk + DVak) > Ø  
I
d = βVds (1 + λVds) [2 (Vgs – Vβ ) – Vgs  
]
Ic = Is (1 –  
) (e  
– e  
)
I3 = V12 x gm  
Ig  
VAF VAR  
Is  
3
/
2
2
Ia = K (Vgk + DVak  
)
I
d = β (1 + λVds) (Vgs – Vp  
)
dTc  
gm = 2K  
Vbe /VT  
e
VT  
gm =  
=
dVbe VT  
dIa  
3
2
dId  
K = 0.81; VT = 25.9mV  
gm =  
+
K
Vgk + DVak  
gm =  
= 2β (1 + λVgs) (Vgs – Vp )  
dVgk  
dVgs  
Is = 1.58E –16; VAF = 66; VAR = 3  
K = 0.001; D = 0.05  
β = 2.258E –3; λ = 21.31E–3; Vp = –2  
+I3  
(mA)  
(mA) Ic  
10  
(mA) Ia  
(mA) Id  
Vgk  
–1V  
–2V  
–3V  
–4V  
–5V  
30  
25  
20  
15  
10  
5
10  
+60mV  
+40mV  
+20mV  
+10  
Vbe  
Vgs  
V12  
0.828V  
0.822V  
0.815V  
0.804V  
±ØV  
8
8
6
4
2
+5  
–V32  
+V32  
–Ø.21V  
6
–Ø.45V  
4
–Ø.73V  
2
–3 –2 –1  
+1 +2 +3  
–20mV  
(V)  
(V)  
–5  
–40mV  
Vak  
Vds  
Vce  
5
0.786V  
3 4  
–1.1V  
–10  
–60mV  
(mA)  
(V)  
1
2
(V)  
(V)  
–I3  
50 100 150 200  
1
2
3
4
5
+I3  
(mA)  
(mA)  
Ic  
(mA)  
12  
10  
8
(mA)  
Ia  
Id  
Ig  
Vak  
+10  
+5  
10  
10  
8
Vds  
2.4mA  
Vce  
1.2mA  
0.6mA  
0.3mA  
8
6
4
2
60V  
1V...5V  
40V  
20V  
+5V  
–V12  
–60 –40 –20  
6
6
+V12  
80V  
100V  
+20 +40 +60  
(mV)  
(mV)  
4
4
–5  
+2.5V  
2
2
Vbe  
–Vgk  
–Vgs  
–10  
–I3  
(mA)  
(V)  
0.2 0.4 0.6 0.8  
1
(V)  
(V)  
–5 –4 –3 –2 –1  
–2 –1.5 –1 –0.5  
(gm)  
(mA/V)  
(mA/V)  
(mA/V)  
(mA/V)  
gm  
gm  
40V  
gm  
Ig  
160  
120  
80  
Vak  
5V  
3V  
1V  
Vds  
+5V  
400  
300  
200  
100  
4
3
2
1
10  
8
Vce  
2.4mA  
1.2mA  
60V  
6
+2.5V  
80V  
4
0.6mA  
0.3mA  
100V  
40  
2
Vbe  
(V)  
–Vgk  
–Vgs  
(V)  
–V12  
(mV)  
+V12  
(mV)  
20 40 60  
20V  
–5 –4 –3 –2 –1  
+
0.72  
0.76 0.80 0.84  
60 40 20  
(V)  
–2 –1.5 –1 –0.5  
FIGURE 1. Comparison Between Voltage-Controlled Current Source (VCCS) and Diamond Current Source (DCS).  
2
Real VCCS  
Ideal VCCS  
Input  
Signal  
Input  
Compensation  
Output  
Compensation  
Output  
Signal  
VOUT  
3
+
+ –  
3'  
VOFF1  
V'OFF1  
V'r31  
V'OFF3  
VOFF3  
1
1'  
+
+
+ –  
gm  
R'32  
RL  
2'  
I'BIAS3  
IBIAS3  
VIN  
R'12  
R'S  
1
/
IBIAS1  
I'BIAS1  
gm  
2
FIGURE 2. Internal and External Substitute Circuitry of a Voltage-Controlled Current Source.  
Figure 2 illustrates the inner and outer substitute circuitry of  
a voltage-controlled current source VCCS. According to the  
circuitry, the VCCS (1, 2, 3) consists of an inner ideal VCCS  
(1', 2', 3') with transconductance gm and a row of inner  
disturbance parameters (V', I' , R'), which determine, among  
other things, the adjustment of the DC point. Table I shows  
a rough overview of the disturbance parameters. Almost all  
disturbance parameters are subject to tolerances between  
units and show dependent temperature behavior.  
mond circuit, illustrated in Figure 4, opens up the possibility  
of implementing the quasi-ideal VCCS [2]. In the ideal case,  
in which NPN and PNP transistors are identical, the distur-  
bance parameters V0FF1', VOFF3', IBIAS1', and IBIAS3' disappear.  
But in real circuits, of course, this is not the case. The  
remaining parameter values are, however, much smaller in  
comparison with a conventional VCCS (compare VCCS  
with DCS in Figure 1 and Table I). In the modulation range  
being examined, from I3 = ±10mA, the transconductance  
varies from 120 to 160mA/V as opposed to 0 to 350mA/V.  
This means that the improved VCCS (designated DCS from  
now on) causes a reduction in signal distortion.  
Figure 2 also illustrates the correction parameters (VOFF1  
,
VOFF3, IBIAS1, and IBIAS3), which are required primarily to  
compensate the internal disturbance parameters. The correc-  
tion parameters, however, do not correct the effects of the  
internal disturbance parameters (R'12, R'32) and the output  
voltage feed-through V'r31. Roughly stated, at least 50% of  
the design time for electronic circuit techniques goes toward  
dealing with the problem of compensation. Thus in complex  
circuits, the connection between the function parameter gm  
and the various disturbance parameters requires more and  
more modifications in circuit variations. If a VCCS without  
disturbance parameters was available for users, the huge  
variety of electronic circuit techniques could be reduced.  
1
VIN  
3
OTA  
B
2
VOUT  
R2  
Rf  
FIGURE 3. Operational Amplifiers as Series Connection  
Between OTA and Buffer.  
THE “IDEAL” CURRENT SOURCE  
The macro element operational transconductance amplifier  
(OTA) and operational amplifier (OA) contain circuit parts  
for reducing the previously mentioned disturbance param-  
eters. The feedback operation necessary with these amplifi-  
ers— i.e. the application of a control loop with its unavoid-  
able delay time (phase delays)— causes significantly re-  
duced time and frequency domain performance compared to  
the VCCS. Straight-forward amplifiers are thus more wide-  
banded than feedback amplifiers. An operational amplifier  
OA, as shown in Figure 3, consists of the series connection  
of an OTA with a buffer B. The OTA is a voltage-controlled  
current source VCCS, in which the electrode 2 can be used  
“only” as a high-impedance input. Because of this distinc-  
tion, the OTA can only be used with an external feedback  
loop. In contrast to conventional operational amplifiers with  
voltage feedback as shown in Figure 3, the current-feedback  
OA contains an OTA with low-impedance input and output  
2—i.e. the previously represented “ideal” VCCS. The Dia-  
VCC  
I'Q  
3
3
IO  
1
2
3
1
1
/
/
6
6
IO  
3
3
I'Q  
VEE  
FIGURE 4. VCCS with Diamond Structure.  
3
PROGRAMMABLE TRANSCONDUCTANCE  
are available for the DCS (Figure 7): Buffer (B), Current-  
Feedback Transconductance Buffer (TB), Transconductance  
Amplifier (TA), Direct-Feedback Transconductance  
Amplifier (TD), Current-Feedback OA (TCC), and Voltage-  
Feedback OA (TCV).  
Conventional VCCSs allow the transconductance to be  
adjusted depending upon the quiescent current. In the DCS,  
the transconductance is adjusted primarily with the current  
sources I'Q (see Figure 4). For this adjustment, one effective  
method is to create a current source control (Figure 5).  
OUTLOOK  
Using the resistor RQ, the quiescent current I'Q or IQ and thus  
the transconductance gm can be fixed. The temperature  
function of gm (due to VT = f(T)) is compensated for by  
corresponding variations of IQ. For RQ → ∞, IQ 0 and gm  
0, and VCCS is switched off. In contrast to the conven-  
tional VCCS, the DCS functions in two quadrants at the  
input and in four at the output. In the VCCS, the  
transconductance is fixed by the choice of DC points within  
the usable modulation range, while the transconductance in  
the DCS is largely independent of the modulation and can be  
adjusted with the external resistor RQ.  
To characterize typical dynamic coefficient values (Table  
II), a developed DCS including a SOI package was simu-  
lated in the circuit shown in Figure 8. Burr-Brown brought  
this DCS onto the market as OPA660.  
LITERATURE  
[1] Ross, D.G. et al; IEEE Journal of solid-state circuits  
86, vol. 2, p. 331.  
[2] Lehmann, K; Elektronik Industrie 89, vol. 5, p. 99.  
Strom-oder Spannungs-Gegenkopplung?  
(Current or Voltage Feedback? That’s the question  
here.)  
gm = dI3/dV12 is negative for all VCCSs. In contrast, the  
transconductance gm = dI3/dV12 of the DCS is positive. As  
previously mentioned, the following standard applications  
VCC  
3
VT  
1
1
1
1
1
VIN  
I'Ø  
=
In (1Ø)  
+gm  
+gm  
RØ  
2
2
I'O  
2KIØ 2K X 18I'Ø  
=
RIN  
ROUT2  
gm =  
gm =  
I'O  
I'O  
VOUT  
VT  
VT  
I'O  
2K X 18 X In (10)  
RØ  
10  
FIGURE 8. Circuit for Recording the Dynamic Charac-  
teristic of a TCC with DCS.  
1
1
RQ  
VEE  
0.1Vp-p  
f–3dB  
6Vp-p  
f–3dB  
4Vp-p  
SR  
1.4Vp-o  
DG  
5MHz  
DP  
FIGURE 5. Current Source Control with Adjustable Bias  
Current.  
IQ  
(mA)  
(MHz)  
(MHz)  
(V/µs)  
(%)  
(Degrees)  
2.4  
1.2  
0.6  
0.3  
400  
240  
140  
80  
330  
200  
100  
55  
2850  
1750  
800  
–0.07  
–0.06  
–0.05  
–0.03  
–0.05  
–0.06  
–0.10  
–0.19  
+V  
4
420  
3
TABLE II. Typical Dynamic Values of a TCC with DCS  
Corresponding to the Circuit in Figure 8.  
1
+gm  
(mA/V)  
2
1000  
100  
5
6
RQ  
–V  
(gm)  
10  
1
RQ  
0.1  
1
10  
()  
FIGURE 6. The Relations gm = f(RQ) and Block Diagram of  
the DCS.  
4
B
TB  
3
VB = 1/[1 + 1/(gm x RIN)] = 1  
Ri2 = 1/gm  
3
1
1
1
1
VIN  
VIN  
+gm  
+gm  
+gm  
+gm  
+gm  
ROUT  
VTB = 1/[1 + 1/(2gm x RIN)] = 1  
2
2
RIN  
RIN  
Ri2 = 1/2gm  
V'OUT  
VOUT  
TA  
3
TA  
3
V'OUT  
VOUT  
+VTA = ROUT/(RIN + 1/gm) = ROUT/RIN  
+Ri3 = ROUT  
1
ROUT  
ROUT  
VIN  
–VTA = +VTA  
2
2
RIN  
RIN  
–Ri3 = ROUT  
VIN  
ROUT/2 + RIN  
RIN + 1/(2gm)  
ROUT  
2RIN  
TC  
TC  
3
+VTC  
=
=
= 1 +  
VOUT  
VOUT  
3
1
ROUT/2 – 1/(2gm)  
RIN + 1/(2gm)  
ROUT  
VIN  
+gm  
ROUT  
–VTC  
= –  
2RIN  
2
2
RIN  
RIN  
ROUT  
2
RIN (ROUT/2 – 1/(2gm)  
VIN  
Ri3 = ROUT  
=
RIN + 1/(2gm)  
TCC  
3
TCC  
3
ROUT  
RIN  
+VTCC = 1 +  
1
1
1
1
VIN  
+gm  
+gm  
+gm  
+gm  
ROUT  
2
2
2
2
–VTCC = –  
RIN  
ROUT  
RIN  
ROUT  
RIN  
VOUT  
VIN  
VOUT  
TCV  
TCV  
1
1
+gm  
+gm  
3
2
3
+gm  
ROG  
2
+gm  
3
ROUT  
ROUT  
RIN  
1
1
1
1
+VTCV = 1 +  
VIN  
VOUT  
2
2
2
RIN  
ROG  
ROUT  
–VTCV = –  
RIN  
RIN  
ROUT  
VOUT  
VIN  
FIGURE 7. Standard Applications with the DCS.  
5

相关型号:

AB-181

AB-181 - DIAMOND TRANSISTOR OPA660
ETC

AB-183

AB-183 - NEW ULTRA HIGH-SPEED CIRCUIT TECHNIQUES WITH ANALOG ICs
ETC

AB-184

AB-184 - DRIVING VIDEO OUTPUT STAGES WITH MONOLITHIC INTEGRATED AMPLIFIERS
ETC

AB-185

AB-185 - AUTOMATIC GAIN CONTROL (AGC) USING THE DIAMOND TRANSISTOR OPA660
ETC

AB-1851

MOUNTING BOSS KIT, ADAPTER BRACKET
BUD

AB-1851B0-14VD-B1G-0

MULTI LAMPS LED BULB
A-BRIGHT

AB-1851B0-14VD-B2G-0

MULTI LAMPS LED BULB
A-BRIGHT

AB-1851B0-14VD-B3G-0

MULTI LAMPS LED BULB
A-BRIGHT

AB-1851B0-28VD-B1G-0

MULTI LAMPS LED BULB
A-BRIGHT

AB-1851B0-28VD-B2G-0

MULTI LAMPS LED BULB
A-BRIGHT

AB-1851B0-28VD-B3G-0

MULTI LAMPS LED BULB
A-BRIGHT

AB-1851G0-14VD-B1G-0

MULTI LAMPS LED BULB
A-BRIGHT