AM29200? [ETC]

Am29200? and Am29205? Controller Data Sheet ; Am29200 ?和Am29205 ?控制器数据表\n
AM29200?
型号: AM29200?
厂家: ETC    ETC
描述:

Am29200? and Am29205? Controller Data Sheet
Am29200 ?和Am29205 ?控制器数据表\n

控制器
文件: 总33页 (文件大小:326K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
Advanced  
Micro  
Am29200 and Am29205  
RISC Microcontrollers  
Devices  
DISTINCTIVE CHARACTERISTICS  
Am29200 Microcontroller  
Glueless system interfaces with on-chip wait  
state control  
Completely integrated system for embedded  
applications  
Four banks of ROM, each separately  
programmable for 8-, 16-, or 32-bit interface  
Full 32-bit architecture  
Four banks of DRAM, each separately  
programmable for 16- or 32-bit interface  
CMOS technology/TTL-compatible  
16- and 20-MHz operating frequencies  
Burst-mode and page-mode access support  
On-chip DRAM mapping  
8 million instructions per second (MIPS)  
sustained at 16 MHz  
Two-channel DMA controller with  
queuing on one channel  
304-Mbyte address space  
192 general-purpose registers  
Three-address instruction architecture  
Fully pipelined  
6-port peripheral interface adapter  
16-line programmable I/O port  
Am29200 MICROCONTROLLER BLOCK DIAGRAM  
Clock/  
Control  
Lines  
2 DREQ  
2 DACK  
GREQ/GACK/TDMA  
Parallel Port  
Control/Status  
Lines  
4
5
7
5
STAT  
MEMCLK  
6
JTAG  
4
4
6
16  
Parallel Port  
Controller  
2-Channel DMA  
Controller  
Serial  
Data  
I/O  
Programmable  
I/O Port  
Serial Port  
Printer/Scanner  
Video  
Interrupts, Traps  
Serializer/  
Deserializer  
Interrupt  
Controller  
Am29000 CPU  
ROM  
Chip Selects  
RAS/CAS  
4/4  
ROM  
Controller  
DRAM Controller  
Timer/Counter  
4
PIA  
Controller  
ROM  
Space  
6
24  
32  
Instruction/Data  
Bus  
DRAM  
Address  
Bus  
PIA  
Chip Selects  
Memory  
Peripherals  
Publication# 16361 Rev. C Amendment /0  
Issue Date: January 1994. WWW: 5/4/95.  
This document contains information on a product under development at Advanced Micro Devices, Inc. The information is intended  
to help you evaluate this product. AMD reserves the right to change or discontinue work on this proposed product without notice.  
 
P R E L I M I N A R Y  
Binary compatibility with all 29K Family  
AMD  
Bidirectional bit serializer/deserializer  
(video interface)  
microcontrollers and microprocessors  
Serial port (UART)  
Advanced debugging support  
Bidirectional parallel port controller  
Interrupt controller  
IEEE Std 1149.1-1990 (JTAG) compliant  
Standard Test Access Port and Boundary Scan  
Architecture  
On-chip timer  
DISTINCTIVE CHARACTERISTICS  
Am29205 Microcontroller  
The low-cost Am29205 microcontroller is similar to the  
Am29200 microcontroller, with a 16-bit instruction/data  
bus, fewer peripheral ports, and no JTAG interface. It in-  
cludes the following features:  
Fully functional 16-bit DRAM interface  
complete with address MUXing, Refresh, and  
RAS/CAS generation  
—Page-mode access support  
—On-chip DRAM mapping  
Completely integrated system for embedded  
applications  
Two-port peripheral interface adapter  
Eight-line programmable I/O port  
Full 16-bit external, 32-bit internal architecture  
Bidirectional bit serializer/deserializer  
(video interface)  
Upgradeable to the Am29200 32-bit RISC  
microcontroller  
Serial port (UART)  
12- and 16-MHz operating frequencies  
68-Mbyte address space  
Bidirectional parallel port controller  
Interrupt controller  
Two-channel DMA controller (one external)  
On-chip timer  
Three separately programmable ROM banks  
with 8- and 16-bit ROM interface  
Binary compatibility with all 29K Family  
microcontrollers and microprocessors  
Am29205 MICROCONTROLLER BLOCK DIAGRAM  
Clock/  
Control  
Lines  
Parallel Port  
Control/Status  
Lines  
3
2
DREQ  
DACK  
6
MEMCLK  
4
2
2
8
Parallel Port  
Controller  
DMA  
Controller  
Serial  
Data  
I/O  
Programmable  
I/O Port  
Serial Port  
Printer/Scanner  
Video  
Interrupts  
Serializer/  
Deserializer  
Interrupt  
Controller  
Am29000 CPU  
ROM  
Chip Selects  
RAS/CAS  
4/2  
ROM  
Controller  
DRAM Controller  
Timer/Counter  
3
PIA  
Controller  
ROM  
Space  
2
22  
16  
Instruction/Data  
Bus  
DRAM  
Address  
Bus  
PIA  
Chip Selects  
Memory  
Peripherals  
2
Am29200 and Am29205 RISC Microcontrollers  
 
A D V A N C E I N F O R M A T I O N  
AMD  
TABLE OF CONTENTS  
DISTINCTIVE CHARACTERISTICS  
1
Am29200 MICROCONTROLLER  
Block Diagram  
1
1
Am29205 MICROCONTROLLER  
Block Diagram  
2
2
GENERAL DESCRIPTION  
5
RELATED AMD PRODUCTS  
5
7
7
29K FAMILY DEVELOPMENT SUPPORT PRODUCTS  
THIRD-PARTY DEVELOPMENT SUPPORT PRODUCTS  
KEY FEATURES AND BENEFITS  
Complete Set of Common SystemPeripherals  
Wide Range of Price/Performance Points  
Glueless System Interfaces  
7
7
8
8
Bus- and Binary-Compatibility  
Performance Overview  
8
9
Debugging And Testing  
10  
CONNECTION DIAGRAMS  
11  
Am29200 MICROCONTROLLER  
11  
11  
12  
13  
168-Lead Plastic Quad Flat Pack (PQR 168)  
PQFP Pin Designations by Pin Number  
PQFP Pin Designations by Pin Name  
Am29205 MICROCONTROLLER  
14  
14  
15  
16  
100-Lead Plastic Quad Flat Pack (PQB 100)  
PQFP Pin Designations by Pin Number  
PQFP Pin Designations by Pin Name  
LOGIC SYMBOLS  
17  
Am29200 MICROCONTROLLER  
Am29205 MICROCONTROLLER  
17  
18  
ORDERING INFORMATION  
19  
Am29200 MICROCONTROLLER  
Am29205 MICROCONTROLLER  
19  
20  
ABSOLUTE MAXIMUM RATINGS  
21  
21  
21  
OPERATING RANGES  
DC CHARACTERISTICS over COMMERCIAL and INDUSTRIAL Operating Ranges  
Am29200 MICROCONTROLLER  
Am29205 MICROCONTROLLER  
21  
23  
CAPACITANCE  
21  
Am29200 MICROCONTROLLER  
Am29205 MICROCONTROLLER  
21  
23  
3
Am29200 and Am29205 RISC Microcontrollers  
AMD  
A D V A N C E I N F O R M A T I O N  
SWITCHING CHARACTERISTICS over COMMERCIAL and INDUSTRIAL Operating Ranges  
Am29200 MICROCONTROLLER  
Am29205 MICROCONTROLLER  
22  
24  
SWITCHING WAVEFORMS  
SWITCHING TEST CIRCUIT  
THERMAL CHARACTERISTICS  
PHYSICAL DIMENSIONS  
25  
26  
26  
28  
Am29200 MICROCONTROLLER  
28  
28  
29  
30  
PQR 168—Plastic Quad Flat Pack; Molded Carrier Ring  
PQR 168—Plastic Quad Flat Pack; Trimmed and Formed  
Solder Land Recommendations  
Am29205 MICROCONTROLLER  
31  
31  
32  
33  
PQB 100—Plastic Quad Flat Pack; Molded Carrier Ring  
PQB 100—Plastic Quad Flat Pack; Trimmed And Formed  
Solder Land Recommendations  
4
Am29200 and Am29205 RISC Microcontrollers  
P R E L I M I N A R Y  
AMD  
GENERAL DESCRIPTION  
The Am29200 and Am29205 RISC microcontrollers are  
highly integrated, 32-bit embedded processors imple-  
mented in complementary metal-oxide semiconductor  
(CMOS) technology. Based on the 29K architecture, the  
Am29200 and Am29205 microcontrollers are part of a  
growing family of RISC microcontrollers, which also in-  
cludes the high-performance Am29240 , Am29245 ,  
and Am29243 RISC microcontrollers. A feature sum-  
mary of the Am29200 RISC microcontroller family is in-  
cluded in Table 1.  
tners, the Am29200 and Am29205 microcontrollers  
provide very quick time-to-market.  
Am29200 Microcontroller  
The Am29200 microcontroller meets the common re-  
quirements of embedded applications such as industrial  
control, graphics processing, imaging applications, la-  
ser printers, and general purpose applications requiring  
high performance in a compact design.  
The Am29200 microcontroller is available in a 168-lead  
PlasticQuadFlatPack(PQFP)package. ThePQFPhas  
140 signal pins and 28 power/ground pins.  
Through submicron technology, the Am29200 and  
Am29205 microcontrollers incorporate a complete set  
of system facilities commonly found in printing, imaging,  
graphics, and other embedded applications. The on-  
chip functions include: a ROM controller, a DRAM con-  
troller, a peripheral interface adapter, a DMA controller,  
aserializer/deserializer, a programmable I/O port, a par-  
allel port, a serial port, and an interrupt controller. For a  
complete description of the technical features, on-chip  
peripherals, programming interface, and instruction set,  
please refer to the Am29200 and Am29205 RISC Micro-  
controllers User’s Manual (order #16362).  
Am29205 Microcontroller  
The Am29205 RISC microcontroller is a highly inte-  
grated, low-cost derivative of the Am29200 32-bit RISC  
microcontroller. The Am29205 microcontroller is func-  
tionally very similar to an Am29200 microcontroller op-  
erating with 16-bit external memories.  
The Am29205 microcontroller is designed specifically  
for low-cost general purpose embedded applications,  
as well as graphics processors, mass storage control-  
lers, network interfaces, application program interface  
(API) accelerators, scanners, and laser printers.  
The Am29200 and Am29205 RISC microcontrollers are  
well suited for embedded applications since they provide  
better performance than the CISC processors typically  
used in these applications. Compared to the CISC pro-  
cessors, the Am29200 and Am29205 microcontrollers  
offer superior price/performance and design flexibility for  
the designer. Coupled with hardware and software devel-  
opment tools from AMD and the AMD Fusion29K Par-  
The Am29205 microcontroller is available in a 100-lead  
PQFP package. The PQFP has 84 signal pins and 16  
power/ground pins.  
RELATED AMD PRODUCTS  
29K Family Devices  
Part No.  
Description  
Am29000  
Am29005  
Am29030  
Am29035  
Am29050  
Am29240  
Am29245  
Am29243  
32-bit RISC microprocessor  
Low-cost 32-bit RISC microprocessor with no MMU and no branch target cache  
32-bit RISC microprocessor with 8-Kbyte instruction cache  
32-bit RISC microprocessor with 4-Kbyte instruction cache  
32-bit RISC microprocessor with on-chip floating point  
32-bit RISC microcontroller with 4-Kbyte instruction cache and 2-Kbyte data cache  
Low-cost 32-bit RISC microcontroller with 4-Kbyte instruction cache  
32-bit RISC data microcontroller with instruction and data caches and DRAM parity  
5
Am29200 and Am29205 RISC Microcontrollers  
P R E L I M I N A R Y  
AMD  
Table 1. Product Comparison—Am29200 Microcontroller Family  
FEATURE  
Am29205  
Am29200  
Am29245  
Am29240  
Am29243  
Microcontroller Microcontroller Microcontroller Microcontroller Microcontroller  
Instruction Cache  
Data Cache  
4 Kbytes  
4 Kbytes  
2 Kbytes  
32 x 32-bit  
4 Kbytes  
2 Kbytes  
32 x 32-bit  
Integer Multiplier  
Software  
Software  
Software  
Memory Management  
Unit (MMU)  
1 TLB  
16 Entry  
1 TLB  
16 Entry  
2 TLBs  
32 Entry  
Data Bus Width  
Internal  
External  
32 bits  
16 bits  
32 bits  
32 bits  
32 bits  
32 bits  
32 bits  
32 bits  
32 bits  
32 bits  
ROM Interface  
Banks  
Width  
ROM Size (Max/Bank)  
Boot-Up ROM Width  
Burst-Mode Access  
3
4
4
4
4
8, 16 bits  
4 Mbytes  
16 bits  
8, 16, 32 bits  
16 Mbytes  
8, 16, 32 bits  
Supported  
8, 16, 32 bits  
16 Mbytes  
8, 16, 32 bits  
Supported  
8, 16, 32 bits  
16 Mbytes  
8, 16, 32 bits  
Supported  
16, 32 bits  
16 Mbytes  
8, 16, 32 bits  
Supported  
Not Supported  
DRAM Interface  
Banks  
Width  
Size: 32-Bit Mode  
Size: 16-Bit Mode  
Video DRAM  
Access Cycles  
Initial/Burst  
4
4
4
4
4
16 bits only  
16, 32 bits  
16, 32 bits  
16, 32 bits  
8, 16, 32 bits  
16 Mbytes/bank  
8 Mbytes/bank  
Not Supported  
16 Mbytes/bank  
8 Mbytes/bank  
Supported  
16 Mbytes/bank  
8 Mbytes/bank  
Supported  
16 Mbytes/bank  
8 Mbytes/bank  
Supported  
8 Mbytes/bank  
Not Supported  
3/2  
No  
3/2  
No  
2/1  
No  
2/1  
No  
2/1  
Yes  
DRAM Parity  
On-Chip DMA  
Width (ext. peripherals)  
Externally Controlled  
External Master Access  
External Master Burst  
External Terminate Signal  
8, 16 bits  
1 Channel  
No  
8, 16, 32 bits  
2 Channels  
Yes  
8, 16, 32 bits  
2 Channels  
Yes  
8, 16, 32 bits  
4 Channels  
Yes  
8, 16, 32 bits  
4 Channels  
Yes  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Double-Frequency  
CPU Option  
No  
No  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
Low Voltage Operation  
Yes  
Peripheral Interface  
Adapter (PIA)  
PIA Ports  
Data Width  
Min. Cycles Access  
2
8, 16 bits  
3
6
6
6
6
8, 16, 32 bits  
3
8, 16, 32 bits  
2
8, 16, 32 bits  
2
8, 16, 32 bits  
2
Programmable I/O Port  
(PIO)  
Signals  
Signals programmable  
for interrupt generation  
8
8
16  
8
16  
8
16  
8
16  
8
Serial Ports  
Ports  
DSR/DTR  
1 Port  
PIO signals  
1 Port  
Supported  
1 Port  
Supported  
2 Ports  
2 Ports  
1 Port Supported 1 Port Supported  
Interrupt Controller  
External Interrupt Pins  
External Trap and Warn  
Pins  
2
0
4
3
4
3
4
3
4
3
Parallel Port Controller  
32-Bit Transfer  
Yes  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
JTAG Debug Support  
Serializer/Deserializer  
Pin Count and Package  
Processor Clock Rate  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
100 PQFP  
12, 16 MHz  
168 PQFP  
16, 20 MHz  
196 PQFP  
16 MHz  
196 PQFP  
20, 25, 33 MHz  
196 PQFP  
20, 25, 33 MHz  
6
Am29200 and Am29205 RISC Microcontrollers  
P R E L I M I N A R Y  
AMD  
29K FAMILY DEVELOPMENT SUPPORT PRODUCTS  
Contact your local AMD representative for information  
on the complete set of development support tools. The  
following software and hardware development products  
are available on several hosts:  
Assembler and utility packages  
Source- and assembly-level software debuggers  
Target-resident development monitors  
Simulators  
Optimizing compilers for common high-level  
languages  
Execution boards  
THIRD-PARTY DEVELOPMENT SUPPORT PRODUCTS  
The Fusion29K Program of Partnerships for Application  
Solutions provides the user with a vast array of products  
designed to meet critical time-to-market needs. Prod-  
ucts and solutions available from the AMD Fusion29K  
Partners include  
Board level products  
Laser printer solutions  
Networking and communication solutions  
Multiuser, kernel, and real-time operating systems  
Graphics solutions  
Silicon products  
Manufacturing support  
Software generation and debug tools  
Hardware development tools  
Custom software consulting, support, and training  
KEY FEATURES AND BENEFITS  
DRAM Controller  
Complete Set of Common System  
Peripherals  
The DRAM controller supports four separate banks of  
dynamic memory. On the Am29200 microcontroller,  
each bank can be a different size: either 16 or 32 bits  
wide. DRAM banks on the Am29205 microcontroller are  
16 bits wide. The DRAM banks can appear as a contigu-  
ous memory area of up to 64 Mbytes in size on the  
Am29200 microcontroller and 32 Mbytes on the  
Am29205 microcontroller. To support system functions  
such as on-the-fly data compression and decompres-  
sion, four 64-Kbyte regions of the DRAM can be mapped  
into a 16-Mbyte virtual address space.  
The Am29200 and Am29205 microcontrollers minimize  
system cost by incorporating a complete set of system  
facilities commonly found in embedded applications,  
eliminating the cost of additional components.  
The on-chip functions include: a ROM controller, a  
DRAM controller, a peripheral interface adapter, a DMA  
controller, a programmable I/O port, a parallel port, a se-  
rialport, andaninterruptcontroller. Aserializer/deserial-  
izer (video interface) is also included for printer,  
scanner, and other imaging applications.  
DMA Controller  
By providing glueless interfacing to external memories  
and a complete set of common system peripherals on-  
chip, these microcontrollers let product designers ca-  
pitalize on the very low system cost made possible by  
the integration of processor and peripherals. Many sim-  
ple systems can be built using only the Am29200 or  
Am29205 microcontroller and external ROM and/or  
DRAM memory.  
The DMA controller in the Am29200 microcontroller pro-  
vides two channels for transfer of data between the  
DRAM and internal or external peripherals. One of the  
DMA channels is double buffered to relax the  
constraints on the reload time. On the Am29205 micro-  
controller, internal 32-bit transfers are supported on two  
DMA channels; external transfers are limited to 8- or  
16-bit data accesses on one DMA channel.  
ROM Controller  
Peripheral Interface Adapter (PIA)  
The ROM controller supports four individual banks of  
ROM or other static memory in the Am29200 microcon-  
troller and three banks in the Am29205 microcontroller.  
Each ROM bank has its own timing characteristics, and  
each bank may be of a different size: either 8, 16, or 32  
bits wide in the Am29200 microcontroller and 8 or 16 bits  
wide in the Am29205 microcontroller. The ROM banks  
can appear as a contiguous memory area of up to 64  
Mbytes in size on the Am29200 microcontroller. The  
ROM controller also supports writes to the ROM memory  
space for devices such as flash EPROMs and SRAMs.  
The peripheral interface adapter allows for additional  
system features implemented by external peripheral  
chips. The PIA permits glueless interfacing from the  
Am29200 microcontroller to as many as six external pe-  
ripheral regions and from the Am29205 microcontroller  
to two external peripherals.  
Interrupt Controller  
The interrupt controller generates and reports the status  
of interrupts caused by on-chip peripherals.  
7
Am29200 and Am29205 RISC Microcontrollers  
P R E L I M I N A R Y  
AMD  
I/O Port  
Glueless System Interfaces  
The Am29200 microcontroller’s I/O port permits direct  
access to 16 individually programmable external input/  
output signals. Eight signals are available on the  
Am29205 microcontroller. These eight signals can be  
configured to cause interrupts on either microcontroller.  
The Am29200 and Am29205 microcontrollers minimize  
system cost by providing a glueless attachment to exter-  
nal ROMs, DRAMs, and other peripheral components.  
Processor outputs have edge-rate control that allows  
them to drive a wide range of load capacitances with low  
noise and ringing. This eliminates the cost of external  
logic and buffering.  
Serializer/Deserializer  
The bidirectional bit serializer/deserializer (video inter-  
face) permits direct connection to a number of laser  
marking engines, video displays, or raster input devices  
such as scanners.  
Bus- and Binary-Compatibility  
Compatibility within a processor family is critical for  
achieving a rational, easy upgrade path. The Am29200  
and Am29205 microcontrollers are members of a bus-  
compatible family of RISC microcontrollers, which also  
includes the high-performance Am29240, Am29245,  
and Am29243 microcontrollers. Future members of this  
family will improve in price and performance and system  
capabilities without requiring that users redesign their  
systemhardwareorsoftware. Buscompatibilityensures  
a convenient upgrade path for future systems.  
Serial Port  
The serial port implements a full-duplex UART.  
Parallel Port  
The parallel port implements a bidirectional IBM PC-  
compatible parallel interface to a host processor.  
Wide Range of Price/Performance Points  
The Am29200 microcontroller is binary compatible with  
the Am29240, Am29245, and Am29243 microcontrollers,  
as well as the Am29000, Am29005, Am29030, Am29035,  
and Am29050 microprocessors. The Am29200 microcon-  
troller family provides a migration path to low-cost, highly  
integrated systems for products based on other 29K  
Family microprocessors, without requiring expensive re-  
writes of application software.  
To reduce design costs and time-to-market, one basic  
system design can be used as the foundation for an en-  
tire product line. From this design, numerous imple-  
mentations of the product at various levels of price and  
performance may be derived with minimum time, effort,  
and cost.  
The Am29200 and Am29205 microcontrollers provide  
this capability through programmable memory widths,  
burst-mode and page-mode access support, program-  
mable wait states, and hardware and 29K Family soft-  
ware compatibility. A system can be upgraded without  
hardware and software redesign using various memory  
architectures.  
Complete Development and  
Support Environment  
A complete development and support environment is vi-  
tal for reducing a product’s time-to-market. Advanced  
Micro Devices has created a standard development en-  
vironment for the 29K Family of processors. In addition,  
theFusion29Kthird-partysupportorganizationprovides  
the most comprehensive customer/partner program in  
the embedded processor market.  
The ROM controller on the Am29205 microcontroller ac-  
commodates memories that are either 8 or 16 bits wide,  
while that of the Am29200 microcontroller supports either  
8-, 16-, or 32-bit memories. The DRAM controller on  
the Am29205 microcontroller accommodates dynamic  
memories that are 16 bits wide; the Am29200 micro-  
controller supports either 16- or 32-bit memories.  
Advanced Micro Devices offers a complete set of hard-  
ware and software tools for design, integration, debug-  
ging, and benchmarking. These tools, which are  
available now for the 29K Family, include the following:  
These unique features provide a flexible interface to  
low-cost memory as well as a convenient, flexible up-  
gradepath. Forexample, asystemcanstartwitha16-bit  
memory design and can subsequently improve perfor-  
mancebymigratingtoa32-bitmemorydesign. Onepar-  
ticular advantage is the ability to add memory in  
half-megabyte increments. This provides significant  
cost savings for applications that do not require larger  
memory upgrades.  
High CR 29K optimizing C compiler with assem-  
bler, linker, ANSI library functions, and 29K archi-  
tectural simulator  
XRAY29KTM source-level debugger  
MiniMON29KTM debug monitor  
A complete family of demonstration and develop-  
ment boards  
In addition, Advanced Micro Devices has developed a  
standard host interface (HIF) specification for operating  
system services, the Universal Debug Interface (UDI) for  
seamless connection of debuggers to ICEs and target  
The Am29200 microcontroller family allows users to ad-  
dress a wide range of cost performance points, with  
higher performance and lower cost than existing de-  
signs based on CISC microprocessors.  
8
Am29200 and Am29205 RISC Microcontrollers  
P R E L I M I N A R Y  
hardware, and extensions for the UNIX common object  
AMD  
Instruction Set Overview  
file format (COFF).  
The Am29200 and Am29205 microcontrollers employ a  
three-address instruction set architecture. The compiler  
or assembly-language programmer is given complete  
freedom to allocate register usage. There are 192 gen-  
eral-purpose registers, allowing the retention of inter-  
mediate calculations and avoiding needless data  
destruction. Instruction operands may be contained in  
any of the general-purpose registers, and the results  
may be stored into any of the general-purpose registers.  
This support is augmented by an engineering hotline, an  
on-line bulletin board, and field application engineers.  
PERFORMANCE OVERVIEW  
The Am29200 and Am29205 microcontrollers offer a  
significant margin of performance over CISC micropro-  
cessors in existing embedded designs, since the majority  
of processor features were defined for the maximum  
achievable performance at a very low cost. This sec-  
tion describes the features of the Am29200 and  
Am29205 microcontrollers from the point of view of  
system performance.  
The instruction set contains 117 instructions that are di-  
vided into nine classes. These classes are integer arith-  
metic, compare, logical, shift, data movement, constant,  
floating point, branch, and miscellaneous. The floating-  
point instructions are not executed directly, but are emu-  
lated by trap handlers.  
Instruction Timing  
The Am29200 and Am29205 microcontrollers use an  
arithmetic/logic unit, a field shift unit, and a prioritizer to  
execute most instructions. Each of these is organized to  
operate on 32-bit operands and provide a 32-bit result.  
All operations are performed in a single cycle.  
All directly implemented instructions are capable of  
executing in one processor cycle, with the exception of  
interrupt returns, loads, and stores.  
Data Formats  
The performance degradation of load and store opera-  
tions is minimized in the Am29200 and Am29205 micro-  
controllers by overlapping them with instruction  
execution, by taking advantage of pipelining, and by or-  
ganizing the flow of external data into the processor so  
that the impact of external accesses is minimized.  
The Am29200 and Am29205 microcontrollers define a  
word as 32 bits of data, a half-word as 16 bits, and a byte  
as8bits. Thehardwareprovidesdirectsupportforword-  
integer (signed and unsigned), word-logical, word-bool-  
ean, half-word integer (signed and unsigned), and  
character data (signed and unsigned).  
Word-boolean data is based on the value contained in  
the most significant bit of the word. The values TRUE  
and FALSE are represented by the MSB values 1 and 0,  
respectively.  
Pipelining  
Instruction operations are overlapped with instruction  
fetch, instruction decode and operand fetch, instruction  
execution, and result write-back to the register file.  
Pipeline forwarding logic detects pipelinedependencies  
and routes data as required, avoiding delays that might  
arise from these dependencies.  
Other data formats, such as character strings, are sup-  
ported by instruction sequences. Floating-point formats  
(single and double precision) are defined for the proces-  
sor; however, there is no direct hardware support for these  
formats in the Am29200 or Am29205 microcontroller.  
Pipeline interlocks are implemented by processor hard-  
ware. Except for a few special cases, it is not necessary  
to rearrange programs to avoid pipeline dependencies,  
although this is sometimes desirable for performance.  
Protection  
The Am29200 and Am29205 microcontrollers offer two  
mutually exclusive modes of execution, the user and  
supervisor modes, that restrict or permit accesses to  
certain processor registers and external storage locations.  
Burst-Mode and Page-Mode Memories  
The Am29200 microcontroller directly supports burst-  
mode memories in ROM address space. The burst-  
mode memory supplies instructions at the maximum  
bandwidth, without the complexity of an external cache  
or the performance degradation due to cache misses.  
The register file may be configured to restrict accesses  
to supervisor-mode programs on a bank-by-bank basis.  
DRAM Mapping  
Both the Am29200 and Am29205 microcontrollers can  
also use the page-mode capability of common DRAMs  
to improve the access time in cases where page-mode  
accesses can be used. This is particularly useful in very  
low-cost systems with 16-bit-wide DRAMs, where the  
DRAM must be accessed twice for each 32-bit operand.  
The Am29200 and Am29205 microcontrollers provide a  
16-Mbyteregionofvirtualmemorythatismappedtoone  
of four 64-Kbyte blocks in the physical DRAM memory.  
This supports system functions such as on-the-fly data  
compression and decompression, allowing a large data  
9
Am29200 and Am29205 RISC Microcontrollers  
P R E L I M I N A R Y  
AMD  
structure such as a frame buffer to be stored in a com-  
pressed format while the application software operates  
on a region of the structure that is decompressed. Using  
a mechanism that is analogous to demand paging, sys-  
tem software moves data between the compressed and  
decompressed formats in a way that is invisible to the  
applicationsoftware. Thisfeaturecangreatlyreducethe  
amount of memory required for printing, imaging, and  
graphics applications.  
processor performs a vector fetch every time an inter-  
rupt or trap is taken. The vector fetch requires at least  
three cycles, in addition to the number of cycles required  
for the basic memory access.  
DEBUGGING AND TESTING  
Software debugging on the Am29200 and Am29205 mi-  
crocontrollers is facilitated by the instruction trace facil-  
ity and instruction breakpoints. Instruction tracing is  
accomplishedby forcing the processor to trap after each  
instruction has been executed. Instruction breakpoints  
are implemented by the HALT instruction or by a soft-  
ware trap.  
Interrupts and Traps  
When the microcontroller takes an interrupt or trap, it  
does not automatically save its current state information  
in memory. This lightweight interrupt and trap facility  
greatly improves the performance of temporary inter-  
ruptions such as simple operating-system calls that re-  
quire no saving of state information.  
The Am29200 microcontroller provides two additional  
features to assist system debugging and testing:  
The test/development interface is composed of a  
group of pins that indicate the state of the proces-  
sor and control the operation of the processor.  
In cases where the processor state must be saved, the  
saving and restoring of state information is under the  
control of software. The methods and data structures  
used to handle interrupts—and the amount of state in-  
formation saved—may be tailored to the needs of a par-  
ticular system.  
An IEEE Std. 1149.1–1990 (JTAG) compliant Stan-  
dard Test Access Port and Boundary-Scan Archi-  
tecture provides a scan interface for testing system  
hardware in a production environment. It contains  
extensions that allow a hardware-development  
system to control and observe the processor with-  
out interposing hardware between the processor  
and system.  
Interrupts and traps are dispatched through a 256-entry  
vector table which directs the processor to a routine that  
handles a given interrupt or trap. The vector table may  
be relocated in memory by the modification of a proces-  
sor register. There may be multiple vector tables in the  
system, though only one is active at any given time.  
Hardware testing and debugging on the Am29205 micro-  
controller are supported by using an Am29200 microcon-  
troller to emulate an Am29205 microcontroller.  
The vector table is a table of pointers to the interrupt and  
trap handlers and requires only 1 Kbyte of memory. The  
10  
Am29200 and Am29205 RISC Microcontrollers  
P R E L I M I N A R Y  
AMD  
CONNECTION DIAGRAMS  
168-Lead Plastic Quad Flat Pack (PQR 168)—Am29200 Microcontroller  
Top View  
1
2
3
4
5
6
7
8
126  
125  
124  
123  
122  
121  
120  
119  
118  
117  
116  
115  
114  
113  
112  
111  
110  
109  
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
Note:  
Pin 1 is marked for orientation.  
11  
Am29200 and Am29205 RISC Microcontrollers  
P R E L I M I N A R Y  
AMD  
PQFP PIN DESIGNATIONS (Sorted by Pin Number)—Am29200 Microcontroller  
Pin No.  
1
Pin Name  
VCC  
Pin No.  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
Pin Name  
VCC  
Pin No.  
85  
Pin Name  
GND  
VCC  
Pin No.  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
Pin Name  
PIO12  
PIO11  
PIO10  
PIO9  
2
GND  
MEMCLK  
INCLK  
VCC  
GND  
86  
3
DTR  
87  
A23  
4
RXD  
88  
A22  
5
UCLK  
VCC  
89  
A21  
PIO8  
6
GND  
GND  
VCC  
90  
A20  
PIO7  
7
GND  
91  
A19  
VCC  
8
DSR  
92  
A18  
GND  
9
ID31  
ID30  
ID29  
ID28  
GND  
ID27  
ID26  
ID25  
ID24  
ID23  
ID22  
ID21  
ID20  
ID19  
VCC  
TXD  
93  
A17  
PIO6  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
ROMCS3  
ROMCS2  
ROMCS1  
ROMCS0  
BURST  
RSWE  
ROMOE  
RAS3  
94  
A16  
PIO5  
95  
A15  
PIO4  
96  
A14  
PIO3  
97  
A13  
PIO2  
98  
A12  
PIO1  
99  
A11  
PIO0  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
A10  
TDO  
A9  
STAT2  
STAT1  
STAT0  
VDAT  
PSYNC  
GND  
RAS2  
A8  
RAS1  
A7  
RAS0  
A6  
CAS3  
A5  
CAS2  
A4  
VCC  
A3  
VCC  
ID18  
ID17  
ID16  
ID15  
ID14  
ID13  
ID12  
ID11  
ID10  
ID9  
GND  
A2  
GREQ  
DREQ1  
DREQ0  
TDMA  
TRAP0  
TRAP1  
INTR0  
INTR1  
INTR2  
INTR3  
WARN  
GND  
CAS1  
A1  
CAS0  
A0  
TR/OE  
WE  
VCC  
GND  
BOOTW  
WAIT  
PAUTOFD  
PSTROBE  
VCC  
GACK  
PIACS5  
PIACS4  
PIACS3  
PIACS2  
PIACS1  
PIACS0  
PIAWE  
PIAOE  
R/W  
ID8  
GND  
PWE  
POE  
PACK  
PBUSY  
PIO15  
PIO14  
PIO13  
GND  
ID7  
ID6  
VCLK  
LSYNC  
TMS  
ID5  
ID4  
ID3  
DACK1  
DACK0  
GND  
TRST  
TCK  
ID2  
ID1  
TDI  
ID0  
VCC  
RESET  
12  
Am29200 and Am29205 RISC Microcontrollers  
P R E L I M I N A R Y  
AMD  
PQFP PIN DESIGNATIONS (Sorted by Pin Name)—Am29200 Microcontroller  
Pin Name  
A0  
Pin No.  
110  
109  
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
Pin Name  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GREQ  
ID0  
Pin No.  
49  
Pin Name  
ID31  
Pin No.  
9
Pin Name  
RAS2  
RAS3  
RESET  
ROMCS0  
ROMCS1  
ROMCS2  
ROMCS3  
ROMOE  
RSWE  
RXD  
Pin No.  
60  
A1  
66  
INCLK  
INTR0  
INTR1  
INTR2  
INTR3  
LSYNC  
MEMCLK  
PACK  
PAUTOFD  
PBUSY  
PIACS0  
PIACS1  
PIACS2  
PIACS3  
PIACS4  
PIACS5  
PIAOE  
PIAWE  
PIO0  
4
59  
A2  
83  
156  
157  
158  
159  
163  
3
168  
55  
A3  
85  
A4  
112  
118  
126  
134  
148  
161  
150  
42  
54  
A5  
53  
A6  
52  
A7  
58  
A8  
121  
115  
122  
77  
57  
A9  
46  
A10  
STAT0  
STAT1  
STAT2  
TCK  
145  
144  
143  
166  
167  
153  
142  
164  
69  
A11  
A12  
98  
ID1  
41  
76  
A13  
97  
ID2  
40  
75  
A14  
96  
ID3  
39  
74  
TDI  
A15  
95  
ID4  
38  
73  
TDMA  
TDO  
A16  
94  
ID5  
37  
72  
A17  
93  
ID6  
36  
79  
TMS  
A18  
92  
ID7  
35  
78  
TR/OE  
TRAP0  
TRAP1  
TRST  
TXD  
A19  
91  
ID8  
34  
141  
140  
139  
138  
137  
136  
135  
132  
131  
130  
129  
128  
127  
125  
124  
123  
120  
116  
147  
119  
80  
154  
155  
165  
51  
A20  
90  
ID9  
33  
PIO1  
A21  
89  
ID10  
ID11  
ID12  
ID13  
ID14  
ID15  
ID16  
ID17  
ID18  
ID19  
ID20  
ID21  
ID22  
ID23  
ID24  
ID25  
ID26  
ID27  
ID28  
ID29  
ID30  
32  
PIO2  
A22  
88  
31  
PIO3  
A23  
87  
30  
PIO4  
UCLK  
VCC  
47  
BOOTW  
BURST  
CAS0  
CAS1  
CAS2  
CAS3  
DACK0  
DACK1  
DREQ0  
DREQ1  
DSR  
DTR  
GACK  
GND  
GND  
GND  
GND  
GND  
113  
56  
29  
PIO5  
1
28  
PIO6  
VCC  
5
68  
27  
PIO7  
VCC  
8
67  
26  
PIO8  
VCC  
23  
64  
25  
PIO9  
VCC  
43  
63  
24  
PIO10  
PIO11  
PIO12  
PIO13  
PIO14  
PIO15  
POE  
VCC  
48  
82  
22  
VCC  
65  
81  
21  
VCC  
84  
152  
151  
50  
20  
VCC  
86  
19  
VCC  
111  
117  
133  
149  
162  
146  
114  
160  
70  
18  
VCC  
45  
17  
VCC  
71  
16  
PSTROBE  
PSYNC  
PWE  
VCC  
2
15  
VCLK  
VDAT  
WAIT  
WARN  
WE  
6
14  
7
12  
R/W  
13  
11  
RAS0  
62  
44  
10  
RAS1  
61  
13  
Am29200 and Am29205 RISC Microcontrollers  
P R E L I M I N A R Y  
AMD  
CONNECTION DIAGRAMS (continued)  
100-Lead Plastic Quad Flat Pack (PQB 100)—Am29205 Microcontroller  
Top View  
1
2
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
Note:  
Pin 1 is marked for orientation.  
14  
Am29200 and Am29205 RISC Microcontrollers  
P R E L I M I N A R Y  
AMD  
PQFP PIN DESIGNATIONS (Sorted by Pin Number)—Am29205 Microcontroller  
Pin No.  
1
Pin Name  
WAIT/TRIST  
RESET  
MEMCLK  
INCLK  
VCC  
Pin No.  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
Pin Name  
RXD  
Pin No.  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
Pin Name  
A21  
Pin No.  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
Pin Name  
PAUTOFD  
PSTROBE  
PWE  
2
UCLK  
TXD  
A20  
A19  
A18  
A17  
A16  
A15  
A14  
A13  
A12  
A11  
A10  
GND  
VCC  
GND  
A9  
3
4
VCC  
VCC  
5
GND  
GND  
6
GND  
ROMCS2  
ROMCS1  
ROMCS0  
RSWE  
ROMOE  
RAS3  
POE  
7
GND  
PACK  
8
ID31  
ID30♦  
ID29♦  
ID28♦  
ID27♦  
ID26♦  
VCC  
PBUSY  
PIO15♦  
PIO14♦  
PIO13♦  
PIO12♦  
PIO11♦  
PIO10♦  
PIO9♦  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
RAS2  
RAS1  
RAS0  
GND  
CAS3♦  
CAS2♦  
WE  
ID25♦  
ID24♦  
ID23♦  
ID22♦  
ID21♦  
ID20♦  
ID19♦  
ID18♦  
ID17♦  
ID16♦  
PIO8♦  
A8  
VDAT  
PIACS1  
PIACS0  
PIAWE  
PIAOE  
GND  
A7  
PSYNC  
VCC  
A6  
A5  
GND  
A4  
DREQ1♦  
INTR2♦  
INTR3♦  
VCLK  
A3  
VCC  
A2  
R/W  
A1  
DACK1♦  
A0  
LSYNC  
Note:  
The nomenclature of these pins is consistent with the functionally equivalent pins on the Am29200 microcontroller. This is done to  
simplify the ease of system design and to guarantee software compatibility between the Am29205 and Am29200 microcontrollers.  
ID31 is the most significant data bit and ID16 is the least significant.  
15  
Am29200 and Am29205 RISC Microcontrollers  
P R E L I M I N A R Y  
AMD  
PQFP PIN DESIGNATIONS (Sorted by Pin Name)—Am29205 Microcontroller  
Pin Name  
A0  
Pin No.  
Pin Name  
Pin No.  
Pin Name  
Pin No.  
Pin Name  
RSWE  
Pin No.  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
41  
40  
50  
DREQ1♦  
ID16♦  
96  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
13  
12  
11  
10  
9
PIACS0  
PIACS1  
PIAOE  
PIAWE  
PIO8♦  
44  
43  
46  
45  
91  
90  
89  
88  
87  
86  
85  
84  
81  
77  
93  
78  
39  
38  
37  
36  
2
34  
26  
49  
28  
27  
5
A1  
RXD  
R/W  
TXD  
A2  
ID17♦  
A3  
ID18♦  
A4  
ID19♦  
UCLK  
VCC  
A5  
ID20♦  
PIO9♦  
A6  
ID21♦  
PIO10♦  
PIO11♦  
PIO12♦  
PIO13♦  
PIO14♦  
PIO15♦  
POE  
VCC  
29  
48  
79  
94  
64  
14  
99  
92  
7
A7  
ID22♦  
VCC  
A8  
ID23♦  
VCC  
A9  
ID24♦  
VCC  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
CAS2♦  
CAS3♦  
DACK1♦  
ID25♦  
VCC  
ID26♦  
VCC  
ID27♦  
VCLK  
VDAT  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
WAIT/TRIST  
WE  
ID28♦  
PSTROBE  
PSYNC  
PWE  
ID29♦  
ID30♦  
30  
47  
63  
80  
95  
65  
15  
6
ID31♦  
8
RAS0  
INCLK  
INTR2♦  
INTR3♦  
LSYNC  
MEMCLK  
PACK  
PAUTOFD  
PBUSY  
4
RAS1  
97  
98  
100  
3
RAS2  
RAS3  
RESET  
ROMCS0  
ROMCS1  
ROMCS2  
ROMOE  
33  
32  
31  
35  
82  
76  
83  
1
42  
Note:  
The nomenclature of these pins is consistent with the functionally equivalent pins on the Am29200 microcontroller. This is done to  
simplify the ease of system design and to guarantee software compatibility between the Am29205 and Am29200 microcontrollers.  
ID31 is the most significant data bit and ID16 is the least significant.  
16  
Am29200 and Am29205 RISC Microcontrollers  
P R E L I M I N A R Y  
AMD  
Am29200 MICROCONTROLLER LOGIC SYMBOL  
INCLK  
MEMCLK  
RESET  
WARN  
3
STAT2–STAT0  
INTR3–INTR0  
4
24  
A23–A0  
R/W  
2
TRAP1–TRAP0  
WAIT  
ROMCS3–ROMCS0  
4
ROMOE  
RSWE  
BOOTW  
BURST  
RAS3–RAS0  
CAS3–CAS0  
4
4
WE  
TR/OE  
Am29200 Microcontroller  
PIACS5–PIACS0  
6
PIAOE  
PIAWE  
2
2
DACK1–DACK0  
GACK  
DREQ1–DREQ0  
TDMA  
GREQ  
PBUSY  
PACK  
POE  
PSTROBE  
PAUTOFD  
PWE  
UCLK  
RXD  
DTR  
TXD  
DSR  
VCLK  
LSYNC  
TCK  
TDI  
TDO  
TMS  
TRST  
VDAT PSYNC  
ID31–ID0  
32  
PIO15–PIO0  
16  
17  
Am29200 and Am29205 RISC Microcontrollers  
P R E L I M I N A R Y  
AMD  
Am29205 MICROCONTROLLER LOGIC SYMBOL  
INCLK  
MEMCLK  
A21–A0  
R/W  
RESET  
22  
INTR3–INTR2  
WAIT/TRIST  
2
3
ROMCS2–ROMCS0  
ROMOE  
RSWE  
4
2
RAS3–RAS0  
CAS3–CAS2  
WE  
Am29205 Microcontroller  
PIACS1–PIACS0  
2
PIAOE  
PIAWE  
DREQ1  
DACK1  
PSTROBE  
PAUTOFD  
PBUSY  
PACK  
POE  
PWE  
UCLK  
RXD  
TXD  
VCLK  
LSYNC  
VDAT PSYNC PIO15–PIO8 ID31–ID16  
8
16  
18  
Am29200 and Am29205 RISC Microcontrollers  
P R E L I M I N A R Y  
AMD  
ORDERING INFORMATION  
Standard Products—Am29200 Microcontroller  
AMD standard products are available in several packages and operating ranges. Valid order numbers are formed by a  
combination of the elements below.  
AM29200  
–16  
K
C
/W  
SHIPPING OPTION  
/W = Trimmed and Formed  
Blank = with Molded Carrier Ring  
TEMPERATURE RANGE  
C = Commercial (TC = 0°C to +85°C)  
I = Industrial (TC = –40°C to +85°C)  
PACKAGE TYPE  
K = 168-Lead Plastic Quad Flat Pack (PQR 168)  
SPEED OPTION  
–16 = 16.67 MHz  
–20 = 20 MHz  
DEVICE NUMBER/DESCRIPTION  
Am29200 RISC Microcontroller  
Valid Combinations  
Valid Combinations  
Valid Combinations list configurations planned to  
be supported in volume. Consult the local AMD  
sales office to confirm availability of specific valid  
combinations, and check on newly released  
combinations.  
AM29200–16  
AM29200–20  
KC, KI  
KC/W, KI/W  
19  
Am29200 and Am29205 RISC Microcontrollers  
P R E L I M I N A R Y  
AMD  
ORDERING INFORMATION  
Standard Products—Am29205 Microcontroller  
AMD standard products are available in several packages and operating ranges. Valid order numbers are formed by a  
combination of the elements below.  
AM29205  
–16  
K
C
\W  
SHIPPING OPTION  
\W =Trimmed and Formed  
Blank = with Molded Carrier Ring  
TEMPERATURE RANGE  
C = Commercial (TC = 0°C to +85°C)  
I = Industrial (TC = –40°C to +85°C)  
PACKAGE TYPE  
K = 100-Lead Plastic Quad Flat Pack (PQB 100)  
SPEED OPTION  
–12 = 12.5 MHz  
–16 = 16.67 MHz  
DEVICE NUMBER/DESCRIPTION  
Am29205 RISC Microcontroller  
Valid Combinations  
Valid Combinations  
Valid Combinations list configurations planned to  
be supported in volume. Consult the local AMD  
sales office to confirm availability of specific valid  
combinations, and check on newly released  
combinations.  
AM29205–12  
AM29205–16  
KC, KI,  
KC\W, KI\W  
20  
Am29200 and Am29205 RISC Microcontrollers  
P R E L I M I N A R Y  
AMD  
ABSOLUTE MAXIMUM RATINGS  
OPERATING RANGES  
Am29200 and Am29205 Microcontrollers  
Am29200 and Am29205 Microcontrollers  
Storage Temperature . . . . . . . . . . . . –65°C to +125°C  
Voltage on any Pin  
Commercial (C) and Industrial (I) Devices  
Case Temperature (T ) . . . . . . . . . . 0°C to +85°C (C)  
C
with Respect to GND . . . . . . . . . . –0.5 to V +0.5 V  
CC  
Case Temperature (T ) . . . . . . . . . –40°C to +85°C (I)  
C
Maximum V  
. . . . . . . . . . . . . . . . . . . . . . . . . 6.0 V DC  
CC  
Supply Voltage (V ) . . . . . . . . . . . . . +4.75 to +5.25 V  
CC  
Stresses outside the stated ABSOLUTE MAXIMUM RATINGS  
may cause permanent device failure. Functionality at or above  
these limits is not implied. Exposure to absolute maximum rat-  
ings for extended periods may affect device functionality.  
Operating ranges define those limits betweenwhich thefunc-  
tionality of the device is guaranteed.  
DC CHARACTERISTICS over COMMERCIAL and INDUSTRIAL Operating Ranges  
Am29200 Microcontroller  
Preliminary  
Symbol Parameter Description  
Test Conditions  
Notes  
Min  
–0.5  
2.0  
Max  
0.8  
Unit  
V
VIL  
Input Low Voltage  
1
1
VIH  
Input High Voltage  
VCC +0.5  
0.8  
V
VILINCLK  
VIHINCLK  
INCLK Input Low Voltage  
INCLK Input High Voltage  
–0.5  
2.4  
V
VCC +0.5  
V
Output Low Voltage for  
All Outputs except MEMCLK  
VOL  
VOH  
ILI  
IOL = 3.2 mA  
0.45  
V
V
Output High Voltage for  
All Outputs except MEMCLK  
IOH = –400 µA  
2.4  
±10 or  
+10/–200  
Input Leakage Current  
Output Leakage Current  
0.45 V VIN VCC –0.45 V  
0.45 V VOUT VCC –0.45 V  
2
µA  
µA  
ILO  
±10  
ICCOP  
Operating Power  
Supply Current  
VCC = 5.25 V, Outputs Floating;  
Holding RESET active  
3
4
234  
280  
mA  
mA  
VOLC  
MEMCLK Output Low Voltage  
MEMCLK Output High Voltage  
IOLC = 20 mA  
0.6  
V
V
VOHC  
IOHC = –20 mA  
VCC –0.6  
Notes:  
1. All inputs except INCLK.  
2. The Low input leakage current is –200 µA for the following inputs: TCK, TDI, TMS, TRST, DREQ1–DREQ0, WAIT, WARN,  
INTR3–INTR0, TRAP1–TRAP0, and GREQ. These pins have weak internal pull-up transistors.  
3. ICC measured at 16.7 MHz, Vcc=5.25 V, Reset Condition.  
4. ICC measured at 20.0 MHz, Vcc=5.25 V, Reset Condition.  
CAPACITANCE—Am29200 Microcontroller  
Preliminary  
Symbol Parameter Description  
Test Conditions  
Min  
Max  
15  
Unit  
pF  
CIN  
Input Capacitance  
CINCLK  
INCLK Input Capacitance  
15  
pF  
CMEMCLK MEMCLK Capacitance  
fC = 10 MHz  
20  
pF  
COUT  
CI/O  
Output Capacitance  
I/O Pin Capacitance  
20  
pF  
20  
pF  
Note:  
Limits guaranteed by characterization.  
21  
Am29200 and Am29205 RISC Microcontrollers  
P R E L I M I N A R Y  
AMD  
SWITCHING CHARACTERISTICS over COMMERCIAL and INDUSTRIAL Operating Ranges  
Am29200 Microcontroller  
Preliminary  
20 MHz  
16 MHz  
Max  
Test Conditions  
(Note 1)  
No. Parameter Description  
Min  
25  
9
Max  
Min  
30  
9
Unit  
ns  
1
2
3
4
5
6
7
INCLK Period (=0.5T)  
INCLK High Time  
Note 2, 9  
Note 2  
Note 2  
Note 2  
Note 2  
62.5  
53.5  
53.5  
4
62.5  
53.5  
53.5  
4
ns  
INCLK Low Time  
9
9
ns  
INCLK Rise Time  
ns  
INCLK Fall Time  
4
4
ns  
MEMCLK Delay from INCLK  
0
1
10  
0
1
10  
ns  
Synchronous Output Valid Delay  
from MEMCLK Rising Edge  
Note 3a  
Note 3a  
Note 3b  
11  
11  
ns  
7a Synchronous Output Valid Delay  
from MEMCLK Rising Edge  
1
1
1
12  
10  
10  
1
1
1
12  
10  
10  
ns  
ns  
ns  
7b Synchronous Output Valid Delay  
from MEMCLK Falling Edge  
8
Synchronous Output Disable Delay from Note 8  
MEMCLK Rising Edge  
9
Synchronous Input Setup Time  
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
10 Synchronous Input Hold Time  
11 Asynchronous Pulse Width  
11a Asynchronous Pulse Width  
12 MEMCLK High Time  
0
0
Note 4a, 9  
Note 4b  
Note 5  
4T  
4T  
Note 4b  
Note 4b  
0.5T–3  
0.5T+3  
0.5T–3  
0.5T+3  
13 MEMCLK Low Time  
Note 5  
0.5T–3  
0.5T+3  
0.5T–3  
0.5T+3  
14 MEMCLK Rise Time  
Note 5  
0
0
4
4
0
0
4
4
15 MEMCLK Fall Time  
Note 5  
16 UCLK, VCLK Period  
Note 2  
25  
9
30  
9
17 UCLK, VCLK High Time  
18 UCLK, VCLK Low Time  
19 UCLK, VCLK Rise Time  
20 UCLK, VCLK Fall Time  
Note 2, 8  
Note 2, 8  
Note 2  
9
9
4
4
4
4
Note 2  
21 Synchronous Output Valid Delay from  
VCLK Edge  
Note 6  
1
15  
1
15  
22 Input Setup Time to VCLK Edge  
23 Input Hold Time to VCLK Edge  
Note 6, 7  
Note 6, 7  
10  
0
10  
0
ns  
ns  
24 TCK Frequency  
2
2
MHz  
Notes:  
1. All outputs driving 80 pF, measured at VOL=1.5 V and VOH=1.5 V.  
2. INCLK, VCLK, and UCLK can be driven with TTL inputs. If not used, UCLK must be tied High.  
3. a. Parameter 7a applies only to the outputs PIO15–PIO0, STAT2–STAT0, and DACK1DACK0. Parameter 7 applies to the  
remaining outputs.  
b. Parameter 7b applies only to the outputs RASx, CASx, A2–A0, RSWE, TR/OE, and ROMOE. Some of these signals can  
also be asserted during the rising edge of MEMCLK, depending on the type of access being performed.  
4. a. Parameter 11 applies to all asynchronous inputs except LSYNC and PSYNC.  
b. The LSYNC and PSYNC minimum width time is two bit-times. One bit-time corresponds to one internal video clock period.  
The internal video clock period is a function of the VCLK period and the programmed VCLK divisor.  
5. MEMCLK can drive an external load of 100 pF.  
22  
Am29200 and Am29205 RISC Microcontrollers  
P R E L I M I N A R Y  
AMD  
Notes: (continued)  
6. Active VCLK edge depends on the CLKI bit in the Video Control Register.  
7. LSYNC and PSYNC may be treated as synchronous signals by meeting setup and hold times. The synchrononization delay  
still applies.  
8. Not production tested but guaranteed by design or characterization.  
9. T=1 MEMCLK period, as defined by the actual frequency on the MEMCLK pin.  
DC CHARACTERISTICS over COMMERCIAL and INDUSTRIAL Operating Ranges  
Am29205 Microcontroller  
Preliminary  
Symbol Parameter Description  
Test Conditions  
Notes  
Min  
–0.5  
2.0  
Max  
0.8  
Unit  
V
VIL  
Input Low Voltage  
1
1
VIH  
Input High Voltage  
VCC +0.5  
0.8  
V
VILINCLK  
VIHINCLK  
INCLK Input Low Voltage  
INCLK Input High Voltage  
–0.5  
2.4  
V
VCC +0.5  
V
Output Low Voltage for  
All Outputs except MEMCLK  
VOL  
VOH  
ILI  
IOL = 3.2 mA  
0.45  
V
V
Output High Voltage for  
All Outputs except MEMCLK  
IOH = –400 µA  
2.4  
±10 or  
+10/–200  
Input Leakage Current  
Output Leakage Current  
0.45 V VIN VCC –0.45 V  
0.45 V VOUT VCC –0.45 V  
2
µA  
µA  
ILO  
±10  
ICCOP  
Operating Power  
Supply Current with respect to  
MEMCLK  
VCC = 5.25 V, Outputs Floating;  
Holding RESET active  
3
4
234  
175  
mA  
mA  
VOLC  
VOHC  
MEMCLK Output Low Voltage  
MEMCLK Output High Voltage  
IOLC = 20 mA  
0.6  
V
V
IOHC = –20 mA  
VCC –0.6  
Notes:  
1. All inputs except INCLK.  
2. The Low input leakage current is –200 µA for the following inputs: INTR3, INTR2, DREQ1, and WAIT/TRIST. These pins have  
weak internal pull-up transistors.  
3. ICC measured at 16.7 MHz, Vcc=5.25 V, Reset Condition.  
4. ICC measured at 12.5 MHz, Vcc=5.25 V, Reset Condition.  
CAPACITANCE—Am29205 Microcontroller  
Preliminary  
Symbol Parameter Description  
Test Conditions  
Min  
Max  
15  
Unit  
pF  
CIN  
Input Capacitance  
CINCLK  
INCLK Input Capacitance  
15  
pF  
CMEMCLK MEMCLK Capacitance  
fC = 10 MHz  
20  
pF  
COUT  
CI/O  
Output Capacitance  
I/O Pin Capacitance  
20  
pF  
20  
pF  
Note:  
Limits guaranteed by characterization.  
23  
Am29200 and Am29205 RISC Microcontrollers  
P R E L I M I N A R Y  
AMD  
SWITCHING CHARACTERISTICS over COMMERCIAL and INDUSTRIAL Operating Ranges  
Am29205 Microcontroller  
Preliminary  
16 MHz  
Max  
12 MHz  
Max  
1
No. Parameter Description  
Test Conditions  
Min  
30  
9
Min  
40  
Unit  
ns  
1
2
3
4
5
6
7
INCLK Period (= 0.5T)  
INCLK High Time  
Note 2, 9  
Note 2  
Note 2  
Note 2  
Note 2  
62.5  
53.5  
53.5  
4
62.5  
53.5  
53.5  
4
12  
ns  
INCLK Low Time  
9
12  
ns  
INCLK Rise Time  
ns  
INCLK Fall Time  
4
4
ns  
MEMCLK Delay from INCLK  
0
1
10  
0
1
10  
ns  
Synchronous Output Valid Delay  
from MEMCLK Rising Edge  
Note 3a  
Note 3b  
Note 3c  
Note 3d  
Note 8  
11  
15  
ns  
ns  
ns  
ns  
ns  
7a Synchronous Output Valid Delay  
from MEMCLK Rising Edge  
1
1
1
1
12  
12  
10  
10  
1
1
1
1
15  
15  
15  
15  
7a′  
Synchronous Output Valid Delay  
from MEMCLK Rising Edge  
7b Synchronous Output Valid Delay  
from MEMCLK Falling Edge  
8
Synchronous Output Disable Delay  
from MEMCLK Rising Edge  
9
Synchronous Input Setup Time  
8
12  
ns  
ns  
ns  
10 Synchronous Input Hold Time  
11 Asynchronous Pulse Width  
11a Asynchronous Pulse Width  
12 MEMCLK High Time  
0
0
4T  
Note 4a, 9  
Note 4b  
Note 5  
4T  
Note 4b  
Note 4b  
0.5T –3  
0.5T –3  
0
0.5T –3  
0.5T +3  
0.5T +3  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
13 MEMCLK Low Time  
Note 5  
0.5T –3  
0.5T +3  
0.5T +3  
14 MEMCLK Rise Time  
Note 5  
0
0
4
4
5
5
15 MEMCLK Fall Time  
Note 5  
0
16 UCLK, VCLK Period  
Note 2, 8  
Note 2, 8  
Note 2  
30  
9
40  
17 UCLK, VCLK High Time  
18 UCLK, VCLK Low Time  
19 UCLK, VCLK Rise time  
20 UCLK, VCLK Fall Time  
12  
9
12  
Note 2  
4
4
4
4
Note 2  
21 Synchronous Output Valid Delay from  
VCLK Edge  
Note 6  
1
15  
1
20  
22 Input Setup Time to VCLK Edge  
23 Input Hold Time to VCLK Edge  
Notes:  
Notes 6, 7  
Notes 6, 7  
10  
0
15  
0
ns  
ns  
1. All outputs driving 80 pF, measured at VOL = 1.5 V and VOH = 1.5 V.  
2. INCLK, VCLK, and UCLK can be driven with TTL inputs. If not used, UCLK must be tied High.  
3. a. Parameter 7 applies to all outputs except PIO15–PIO8, PIACS1PIACS0, DACK1, and A21–A0.  
b. Parameter 7a applies to PIO15–PIO8, PIACS1PIACS0, and DACK1.  
c. Parameter 7aapplies to A21–A0.  
d. Parameter 7b applies only to the outputs RASx, CASx, A2–A0, RSWE, and ROMOE. Some of these signals can  
also be asserted during the rising edge of MEMCLK, depending on the type of access being performed.  
4. a. Parameter 11 applies to all asynchronous inputs except LSYNC and PSYNC.  
b. LSYNC and PSYNC minimum width is two bit-times. A bit-time corresponds to one internal video clock period. The internal  
video clock period is a function of the VCLK period and the programmed VCLK divisor.  
5. MEMCLK can drive an external load of 100 pF.  
6. Active VCLK edge depends on CLKI bit in Video Control Register.  
7. LSYNC and PSYNC may be treated as synchronous signals by meeting setup and hold times. The synchronization delay still applies.  
8. Not production tested but guaranteed by design or characterization.  
9. T=1 MEMCLK period, as defined by the actual frequency on the MEMCLK pin.  
24  
Am29200 and Am29205 RISC Microcontrollers  
P R E L I M I N A R Y  
AMD  
SWITCHING WAVEFORMS—Am29200 and Am29205 Microcontrollers  
1
2
3
5
4
2.4 V  
1.5 V  
0.8 V  
INCLK  
6
12  
13  
14  
15  
V
CC – 0.6 V  
MEMCLK  
1.5 V  
0.6 V  
7b  
8
Synchronous  
Outputs  
1.5 V  
1.5 V  
7
7a  
7a′  
9
10  
Synchronous  
Inputs  
1.5 V  
1.5 V  
11 11a  
Asynchronous  
Inputs  
1.5 V  
1.5 V  
16  
17  
18  
20  
19  
2.0 V  
1.5 V  
0.8 V  
UCLK, VCLK  
21  
Note: Video Timing may be relative  
to VCLK falling edge if CLKI = 1.  
VCLK-Relative  
Outputs  
1.5 V  
22  
23  
VCLK-Relative  
Inputs  
1.5 V  
1.5 V  
25  
Am29200 and Am29205 RISC Microcontrollers  
P R E L I M I N A R Y  
AMD  
SWITCHING TEST CIRCUIT—Am29200 and Am29205 Microcontrollers  
VL  
Model of Dynamic Test Load  
IOL max = 3.2 mA  
Am29200 or Am29205  
Microcontroller  
CL  
Pin Under Test  
V
VREF = 1.5 V  
IOH max = 400 µA  
VH  
Note:  
CL is guaranteed to be a minimum 80-pF parasitic load. It represents the distributed load parasitic  
attributed to the test hardware and instrumentation present during production testing.  
THERMAL CHARACTERISTICS—Am29200 and Am29205 Microcontrollers  
PQFP Package  
The Am29200 and Am29205 microcontrollers are spe-  
cified for operation with case temperature ranges for a  
commercial or industrial temperature device. Case tem-  
perature is measured at the top center of the package as  
shown in the figure below.  
The various temperatures and thermal resistances can  
be determined using the following equations along with  
information given in Table 2.  
θ
= θ + θ  
CA  
JA  
JC  
CCOP  
P = I  
V
CC  
θ
θ
CA  
JA  
T = T + P  
θ
θ
J
C
JC  
T
T = T + P  
C
J
A
JA  
θ
JC  
T = T – P  
θ
JC  
C
J
T = T + P  
θ
C
A
CA  
T = T – P  
θ
A
J
JA  
T = T – P  
θ
A
C
CA  
θ
= θ + θ  
JC CA  
JA  
Allowable ambient temperature curves for various air-  
flows are given in Figures 1–3. These graphs assume a  
Thermal Resistance — °C/Watt  
maximum V  
and a maximum power supply current  
. All calculations made using the above  
CC  
equal to I  
CCOP  
information should guarantee that the operating case  
temperature does not exceed the maximum case tem-  
perature. Since P is a function of operating frequency,  
calculations can also be made to determine the ambient  
temperature at various operating speeds.  
26  
Am29200 and Am29205 RISC Microcontrollers  
P R E L I M I N A R Y  
AMD  
Table 2. PQFP Thermal Characteristics (°C/Watt) Surface Mounted  
Airflow—ft./min. (m/sec)  
Am29200 Microcontroller  
0 (0)  
200 (1.01) 400 (2.03) 600 (3.04) 800 (4.06)  
36  
32  
8
29  
8
27  
8
θJA  
θJC  
θCA  
Junction-to-Ambient  
Junction-to-Case  
Case-to-Ambient  
8
28  
24  
21  
19  
Am29205 Microcontroller  
41  
8
35  
8
30  
8
27  
8
25  
8
θJA  
θJC  
θCA  
Junction-to-Ambient  
Junction-to-Case  
Case-to-Ambient  
33  
27  
22  
19  
17  
20 MHz  
16.67 MHz  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Maximum  
Ambient  
(°C)  
T
C
at 85°C  
T
C
at 85°C  
0
200  
400  
600  
800  
0
200  
400  
600  
800  
800  
800  
Air Flow (ft./min.)  
Air Flow (ft./min.)  
Figure 1. Am29200 Microcontroller—Maximum Allowable Ambient Temperature  
(Data Sheet Limit, ICCOPmax, VCC=+5.25 V, Average Thermal Impedance)  
16.67 MHz  
12.5 MHz  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Maximum  
Ambient  
(°C)  
T
C
at 85°C  
T
C
at 85°C  
0
200  
400  
600  
800  
0
200  
400  
600  
Air Flow (ft./min.)  
Air Flow (ft./min.)  
Figure 2. Am29205 Microcontroller—Maximum Allowable Ambient Temperature  
(Data Sheet Limit, ICCOPmax, VCC=+5.25 V, Average Thermal Impedance)  
Am29200 Microcontroller  
Am29205 Microcontroller  
45  
40  
35  
30  
25  
20  
15  
10  
5
45  
40  
35  
30  
25  
20  
15  
10  
5
Thermal  
Resistance  
[θJA (°C/W)]  
0
0
0
200  
400  
600  
800  
0
200  
400  
600  
Air Flow (ft./min.)  
Air Flow (ft./min.)  
Figure 3. Thermal Impedance  
Am29200 and Am29205 RISC Microcontrollers  
27  
P R E L I M I N A R Y  
AMD  
PHYSICAL DIMENSIONS  
PQR 168—Am29200 Microcontroller  
Plastic Quad Flat Pack; Molded Carrier Ring  
(Inner device measured in inches; outer ring measured in millimeters)  
45.87  
46.13  
45.50  
45.90  
41.37  
41.63  
37.87  
38.13  
35.15  
35.25  
32.15  
32.25  
27.80  
28.10  
Pin 42  
Pin 84  
45.50 37.87 32.15  
45.90 38.13 32.25  
41.37 35.15 27.80  
41.63 35.25 28.10  
Pin 126  
45.87  
Pin 1 I.D.  
46.13  
Top View  
Pin 168  
0.45 Typ.  
0.650 Typ.  
2.00 4.80  
0.65 Pitch  
20019A  
CJ87  
1.80  
Side View  
08/12/93 MH  
Note:  
Not to scale. For reference only.  
28  
Am29200 and Am29205 RISC Microcontrollers  
P R E L I M I N A R Y  
AMD  
PQR 168—Am29200 Microcontroller  
Plastic Quad Flat Pack; Trimmed and Formed  
(All measurements are in millimeters)  
31.00  
31.40  
27.90  
28.10  
Pin 42  
Pin 84  
26.65  
REF  
0.22  
0.38  
26.65  
REF  
27.90  
28.10  
31.00  
31.40  
Pin 1 I.D.  
Pin 126  
Pin 168  
Pin 1  
Top View  
3.20  
3.60  
0.65  
Basic  
3.95  
MAX  
0.25  
MIN  
Side View  
20028A  
CL90  
10/27/93 PM  
Note:  
Not to scale. For reference only.  
29  
Am29200 and Am29205 RISC Microcontrollers  
P R E L I M I N A R Y  
AMD  
Solder Land Recommendations  
168-Lead PQFP—Am29200 Microcontroller  
Top View  
32.22 mm  
0.65 mm  
32.22 mm  
0.40 mm  
1.98 mm  
0.25 mm  
08/13/93 MH  
Note:  
Not to scale. For reference only.  
30  
Am29200 and Am29205 RISC Microcontrollers  
P R E L I M I N A R Y  
AMD  
PQB 100—Am29205 Microcontroller  
English Plastic Quad Flat Pack; Molded Carrier Ring  
(Outer ring measured in millimeters)  
45.87  
46.13  
41.37  
41.63  
35.15  
35.25  
45.50  
45.90  
37.87  
38.13  
32.15  
32.25  
0.897  
Pin 50  
0.903  
0.744  
0.752  
Pin 25  
45.50 37.87 32.15 0.744  
45.90 38.13 32.25 0.752  
45.87  
46.13  
41.37 35.15 0.897  
41.63 35.25 0.903  
Pin 1  
256  
Pin 100  
Pin 75  
Top View  
2.00 4.80  
1.80  
20009A  
CJ83  
12/13/93 PLM  
Side View  
Note:  
Not to scale. For reference only.  
31  
Am29200 and Am29205 RISC Microcontrollers  
P R E L I M I N A R Y  
AMD  
PQB 100—Am29205 Microcontroller  
English Plastic Quad Flat Pack; Trimmed and Formed  
(All measurements are in inches)  
0.897  
0.903  
0.875  
0.885  
0.747  
0.753  
Pin 50  
Pin 25  
0.747  
0.753  
0.008  
0.012  
0.875  
0.885  
0.897  
0.903  
Pin 1 ID  
0.008  
0.016  
Pin 2  
Pin 75  
Pin 100  
Top View  
0.130  
0.150  
0.025 Basic  
0.160  
0.180  
0.60  
REF  
0.020  
0.040  
Side View  
20010A  
CL85  
10/27/93 PM  
Note:  
Not to scale. For reference only.  
32  
Am29200 and Am29205 RISC Microcontrollers  
P R E L I M I N A R Y  
AMD  
Solder Land Recommendations  
100-Lead PQFP—Am29205 Microcontroller  
(All measurements are in inches)  
0.920  
0.016  
0.025  
0.895  
0.078  
Top View  
10/27/93 PM  
Note:  
Not to scale. For reference only.  
AMD and Am29000 are registered trademarks; Fusion29K is a service mark; and 29K, Am29005, Am29030, Am29035, Am29050, Am29200,  
Am29205, Am29240, Am29243, Am29245, XRAY29K, and MiniMON29K are trademarks of Advanced Micro Devices, Inc.  
High C is a registered trademark of MetaWare, Inc.  
Product names used in this publication are for identification purposes only and may be trademarks of their respective companies.  
1994 Advanced Micro Devices, Inc.  
33  
Am29200 and Am29205 RISC Microcontrollers  

相关型号:

AM29202?

Am29202? Controller Data Sheet
ETC

AM29203/BXC

Microprocessor Slice
ETC

AM29203/BYC

Microprocessor Slice
ETC

AM29203/LMC

Microprocessor Slice
ETC

AM29203DC

Microprocessor Slice
ETC

AM29203DCB

Microprocessor Slice
ETC

AM29203DMB

Microprocessor Slice
ETC

AM29205-12KC

32-Bit Microprocessor
ETC

AM29205-12KI

32-Bit Microprocessor
ETC

AM29205-16KC

32-Bit Microprocessor
ETC

AM29205-16KC/W

32-BIT, 16.67 MHz, RISC MICROCONTROLLER, PQFP100, PLASTIC, QFP-100
ROCHESTER

AM29205-16KCW

RISC Microcontroller, 32-Bit, MROM, 16.67MHz, CMOS, PQFP100, PLASTIC, QFP-100
ROCHESTER