AM29240 [ETC]

High-Performance RISC Microcontrollers(333.44 k) ; 高性能RISC微控制器( 333.44 K)\n
AM29240
型号: AM29240
厂家: ETC    ETC
描述:

High-Performance RISC Microcontrollers(333.44 k)
高性能RISC微控制器( 333.44 K)\n

微控制器
文件: 总31页 (文件大小:332K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADVANCE INFORMATION  
Advanced  
Micro  
Am29240 , Am29245 , and Am29243  
High-Performance RISC Microcontrollers  
Devices  
DISTINCTIVE CHARACTERISTICS  
Am29240 Microcontroller  
All three microcontrollers in the Am29240 microcon-  
troller series have the following characteristics:  
The Am29240 microcontroller has the following addi-  
tional features:  
Completely integrated system for embedded  
applications  
2-Kbyte, two-way set-associative data cache  
Single-cycle 32-bit multiplier for faster integer  
math; two-cycle Multiply Accumulate (MAC)  
function  
Full 32-bit architecture  
4-Kbyte, two-way set-associative instruction  
cache  
16-entry on-chip Memory Management Unit  
(MMU) with one Translation Look-Aside Buffer  
4-Gbyte virtual address space, 304-Mbyte  
physical space implemented  
4-channel double-buffered DMA controller with  
queued reload  
Glueless system interfaces with on-chip wait  
state control  
Two serial ports (UARTs)  
36 VAX million instructions per second (MIPS)  
sustained at 25 MHz  
Bidirectional bit serializer/deserializer  
20- and 25-MHz operating frequencies  
Four banks of ROM, each separately  
programmable for 8-, 16-, or 32-bit interface  
Scalable Clocking feature with full- and  
double-speed internal clock  
Four banks of DRAM, each separately  
programmable for 16- or 32-bit interface  
Am29245 Microcontroller  
Single-cycle ROM burst-mode and DRAM  
page-mode access  
The low-cost Am29245 microcontroller is similar to the  
Am29240 microcontroller, without the data cache and  
32-bit multiplier. It includes the following features:  
6-port peripheral interface adapter  
16-line programmable I/O port  
Bidirectional parallel port controller  
Interrupt controller  
16-entry on-chip MMU with one TLB  
Bidirectional bit serializer/deserializer  
Two-channel DMA controller  
One serial port (UART)  
Fully pipelined integer unit  
16-MHz operating frequency  
Three-address instruction architecture  
192 general purpose registers  
Am29243 Microcontroller  
Traceable Cache technology instruction and  
data cache tracing  
The Am29243 data microcontroller is similar to the  
Am29240 microcontroller, without the video interface. It  
includes the following features:  
IEEE Std 1149.1-1990 (JTAG) compliant  
Standard Test Access Port and  
Boundary Scan Architecture  
2-Kbyte, two-way set-associative data cache  
Single-cycle 32-bit multiplier for faster integer  
math; two-cycle MAC  
Binary compatibility with all 29K family  
microprocessors and microcontrollers  
32-entry on-chip MMU with dual TLBs  
Fully static system-clock capabilities  
CMOS technology/TTL compatible  
196-pin Plastic Quad Flat Pack (PQFP) package*  
5-V power supply*  
4-channel, double-buffered DMA controller with  
queued reload  
Two serial ports (UARTs)  
20- and 25-MHz operating frequencies  
Note: * The new Am29240EH, Am29245EH, and Am29243EH  
microcontrollers are packaged as 208-pin PQFPs and use a 3.3-V  
power supply with 5-V-tolerant I/O. Before beginning a new design,  
check with your field representative for schedule and availability of the  
Am29240EHmicrocontrollerseries, describedinAmendment1(order  
#17787/1).  
Scalable Clocking feature with full- and  
double-speed internal clock  
DRAM parity  
Publication #: 17787 Rev. C Amendment: /0  
Issue Date: August 1995. WWW: 11/7/94  
This document contains information on a product under development at Advanced Micro Devices, Inc. The information is intended  
to help you evaluate this product. AMD reserves the right to change or discontinue work on this proposed product without notice.  
 
AMD  
A D V A N C E I N F O R M A T I O N  
TABLE OF CONTENTS  
DISTINCTIVE CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Am29240 MICROCONTROLLER BLOCK DIAGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Am29245 MICROCONTROLLER BLOCK DIAGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Am29243 MICROCONTROLLER BLOCK DIAGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
CUSTOMER SERVICE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
GENERAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Am29240 MICROCONTROLLER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Am29245 MICROCONTROLLER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Am29243 MICROCONTROLLER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
29K FAMILY DEVELOPMENT SUPPORT PRODUCTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
THIRD-PARTY DEVELOPMENT SUPPORT PRODUCTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
ORDERING INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
RELATED AMD PRODUCTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
KEY FEATURES AND BENEFITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
PERFORMANCE OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
PIN INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
PIN DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
CONNECTION DIAGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
LOGIC SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
OPERATING RANGES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
DC CHARACTERISTICS over COMMERCIAL Operating Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
CAPACITANCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
SWITCHING CHARACTERISTICS over COMMERCIAL Operating Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
SWITCHING WAVEFORMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
SWITCHING TEST CIRCUIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
THERMAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
PHYSICAL DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
PQB 196 PLASTIC QUAD FLAT PACK, TRIMMED AND FORMED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
SOLDER LAND RECOMMENDATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
2
Am29240 Microcontroller Series  
A D V A N C E I N F O R M A T I O N  
AMD  
Am29240 MICROCONTROLLER BLOCK DIAGRAM  
Clock/  
Control  
Lines  
4 DREQ  
4 DACK  
GREQ/GACK/TDMA  
Parallel Port  
Control/Status  
Lines  
4
5
8
11  
STAT  
MEMCLK  
6
JTAG  
4
6
6
16  
Parallel Port  
Controller  
4-Channel DMA  
Controller  
r
Am29000 CPU  
Serial  
Data  
I/O  
Dual  
Serial Ports  
Programmable  
I/O Port  
4K ICache  
Printer/Scanner  
Video  
Interrupts, Traps  
Serializer/  
Deserializer  
Interrupt  
Controller  
2K DCache  
ROM  
Chip Selects  
RAS/CAS  
4/4  
ROM  
Controller  
DRAM Controller  
Timer/Counter  
32x32 Multiply  
4
PIA  
Controller  
MMU  
ROM  
Space  
Memory  
6
24  
32  
DRAM  
Address  
Bus  
Instruction/Data  
Bus  
PIA  
Chip Selects  
Peripherals  
Am29245 MICROCONTROLLER BLOCK DIAGRAM  
Clock/  
Control  
Lines  
2 DREQ  
2 DACK  
GREQ/GACK/TDMA  
Parallel Port  
Control/Status  
Lines  
4
5
8
7
STAT  
MEMCLK  
6
JTAG  
4
4
6
16  
Parallel Port  
Controller  
2-Channel DMA  
Controller  
Am29000 CPU  
4K ICache  
Serial  
Data  
I/O  
Single  
Serial Port  
Programmable  
I/O Port  
Printer/Scanner  
Video  
Interrupts, Traps  
Serializer/  
Interrupt  
Deserializer  
Controller  
ROM  
Chip Selects  
RAS/CAS  
4/4  
ROM  
Controller  
DRAM Controller  
Timer/Counter  
4
PIA  
Controller  
MMU  
ROM  
Space  
Memory  
6
24  
32  
Instruction/Data  
Bus  
DRAM  
Address  
Bus  
PIA  
Chip Selects  
Peripherals  
3
Am29240 Microcontroller Series  
AMD  
A D V A N C E I N F O R M A T I O N  
Am29243 MICROCONTROLLER BLOCK DIAGRAM  
Clock/  
Control  
Lines  
4 DREQ  
Parallel Port  
Control/Status  
Lines  
4
8
11  
4 DACK  
STAT  
MEMCLK  
6
GREQ/GACK/TDMA  
5
6
6
16  
Parallel Port  
Controller  
4-Channel DMA  
Controller  
Am29000 CPU  
4K ICache  
Serial  
Data  
I/O  
Dual  
Serial Ports  
Programmable  
I/O Port  
Interrupts, Traps  
Interrupt  
2K DCache  
JTAG  
Controller  
ROM  
Chip Selects  
RAS/CAS  
4/4  
ROM  
Controller  
DRAM Controller  
Timer/Counter  
32x32 Multiply  
4
PIA  
Controller  
MMU  
32  
36  
ROM  
Space  
Memory  
6
24  
32  
DRAM  
Address  
Bus  
Instruction/Data  
Bus  
PIA  
Chip Selects  
Peripherals  
CUSTOMER SERVICE  
AMD’s customer service network includes U.S. offices,  
international offices, and a customer training center. Ex-  
pert technical assistance is available from AMD’s world-  
wide staff of field application engineers and factory  
support staff.  
(512) 602-5031  
fax  
epd.support@amd.com  
e-mail  
Bulletin Board  
(800) 292-9263, ext. 1  
(512) 602-7604  
toll-free for U.S.  
direct dial worldwide  
Hotline, E-mail, and Bulletin Board Support  
Product Information  
For answers to technical questions, AMDr provides a  
toll-free number for direct access to our engineering  
support staff. For overseas customers, the easiest way  
to reach the engineering support staff with your ques-  
tions is via fax with a short description of your question.  
AMD 29K family customers also receive technical sup-  
port through electronic mail. This worldwide service is  
available to 29K family product users via the international  
Internet e-mail service. Also available is the AMD bulletin  
board service, whichprovidesthelatest29Kfamilyprod-  
uct information, including technical information and data  
on upcoming product releases.  
A simple phone call gets you free printed publications,  
such as data books, user’s manuals, data sheets, ap-  
plication notes, the Fusion29K Partner Solutions Cata-  
log and Newsletter, and other literature. Internationally,  
contact your local AMD sales office for complete 29K  
family literature. For electronic copies of the most cur-  
rent product information and publications on the 29K  
family, visit AMD’s worldwide web site on the Internet.  
Literature Request  
(800) 292-9263, ext. 3  
(512) 602-5651  
toll-free for U.S.  
direct dial worldwide  
fax for U.S.  
Engineering Support Staff  
(512) 602-7639  
(800) 292-9263, ext. 2  
0031-11-1163  
toll-free for U.S.  
(800) 222-9323, option 2  
AMD Facts-On-Demand  
fax information service  
toll-free for U.S.  
toll-free for Japan  
(512) 602-4118  
direct dial worldwide  
U.K. and Europe hotline  
44-(0)256-811101  
http://www.amd.com  
worldwide web  
4
Am29240 Microcontroller Series  
A D V A N C E I N F O R M A T I O N  
AMD  
The Am29245 microcontroller also provides an easy up-  
grade path for Am29200, Am29202 , and Am29205  
microcontroller-based products.  
GENERAL DESCRIPTION  
The Am29240 microcontroller series is an enhanced  
bus-compatible extension of the Am29200 RISC mi-  
crocontroller family, with two to four times the perfor-  
mance. The Am29240 microcontroller series includes  
the Am29240 microcontroller, the low-cost Am29245  
microcontroller, and the Am29243 data microcontroller.  
The on-chip caches, MMU, faster integer math, and ex-  
tended DMA addressing capability of the Am29240 mi-  
crocontroller series allow the embedded systems  
designer to provide increasing levels of performance  
and software compatibility throughout a range of prod-  
ucts (see Table 1 on page 7).  
Am29243 Microcontroller  
With DRAM parity support and a full MMU, the  
Am29243 data microcontroller is recommended for  
communications applications that require high-speed  
data movement and fast protocol processing in a fault-  
tolerant environment.  
Both the Am29243 and Am29240 microcontrollers sup-  
port fly-by DMA at 100 Mbytes/s for LANs and switching  
applications, and a two-cycle Multiply Accumulate func-  
tion for DSP applications. The low power requirements  
make either microcontroller a good choice for field-  
deployed devices.  
Based on a static low-voltage design, these CMOS-  
technology devices offer a complete set of system pe-  
ripherals and interfaces commonly used in embedded  
applications. Compared to CISC processors, the  
Am29240 microcontroller series offers better perfor-  
mance, more efficient use of low-cost memories, lower  
system cost, and complete design flexibility for the de-  
signer. Coupled with hardware and software develop-  
ment tools from AMD and the AMD Fusion29Kr  
partners, the Am29240 microcontroller series provides  
the embedded product designer with the cost and per-  
formance edge required by today’s marketplace.  
29K Family  
Development Support Products  
Contact your local AMD representative for information  
on the complete set of development support tools. The  
following software and hardware development products  
are available on several hosts:  
Optimizing compilers for common high-level  
languages  
Am29240 Microcontroller  
Assembler and utility packages  
Source- and assembly-level software debuggers  
Target-resident development monitors  
Simulators  
For general-purpose embedded applications, such as  
mass-storage controllers, communications, digital sig-  
nal processing, networking, industrial control, pen-  
based systems, and multimedia, the Am29240  
microcontroller provides a high-performance solution  
with a low total-system cost. The memory interface of  
the Am29240 microcontroller provides even faster di-  
rect memory access than the Am29200 microcontroller.  
This performance improvement minimizes the effect of  
memory latency, allowing designers to use low-cost  
memory with simpler memory designs. On-chip instruc-  
tion and data caches provide even better performance  
for time-critical code.  
Execution boards  
Third-Party  
Development Support Products  
The Fusion29K Program of Partnerships for Application  
Solutions provides the user with a vast array of products  
designed to meet critical time-to-market needs. Prod-  
ucts/solutions available from the AMD Fusion29K part-  
ners include the following:  
Other on-chip functions include: a ROM controller,  
DRAM controller, peripheral interface adapter control-  
ler, DMA controller, programmable I/O port, parallel port  
controller, serial ports, and an interrupt controller. For a  
complete description of the technical features, on-chip  
peripherals, programming interface, and instruction set,  
please refer to the Am29240, Am29245, and Am29243  
RISC Microcontrollers User’s Manual (order #17741).  
Silicon products  
Software generation and debug tools  
Hardware development tools  
Board-level products  
Laser-printer solutions  
Multiuser, kernel, and real-time operating systems  
Graphics solutions  
Am29245 Microcontroller  
Networking and communication solutions  
Manufacturing support  
The low-cost Am29245 microcontroller is designed for  
embedded applications in which cost and space  
constraints, along with increased performance require-  
ments, are primary considerations.  
Custom software consulting, support, and training  
5
Am29240 Microcontroller Series  
AMD  
A D V A N C E I N F O R M A T I O N  
ORDERING INFORMATION  
Standard Products  
AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is  
formed by a combination of the elements below.  
Am29240  
–25  
K
C
\W  
PROCESSING  
\W = Trimmed and Formed (PQB 196)  
TEMPERATURE RANGE  
C = Commercial (TC = 0°C to +85°C)  
PACKAGE TYPE  
K = 196-Lead Plastic Quad Flat Pack (PQB 196)  
SPEED OPTION  
–25 = 25 MHz  
–20 = 20 MHz  
–16 = 16 MHz  
DEVICE NUMBER/DESCRIPTION  
Am29240 RISC Microcontroller  
Am29245 RISC Microcontroller  
Am29243 RISC Data Microcontroller  
Valid Combinations  
Am29240–20  
KC\W  
Valid Combinations  
Am29240–25  
Valid Combinations lists configurations  
planned to be supported in volume. Consult  
the local AMD sales office to confirm  
availability of specific valid combinations, to  
check on newly released combinations, and  
to obtain additional data on AMD standard  
military grade products.  
Am29243–20  
Am29243–25  
KC\W  
KC\W  
Am29245–16  
RELATED AMD PRODUCTS  
29K Family Devices  
Product  
Description  
R
Am29000  
Am29005  
Am29030  
Am29035  
Am29040  
Am29050  
Am29200  
Am29202  
Am29205  
32-bit RISC microprocessor  
Low-cost 32-bit RISC microprocessor with no MMU and no branch target cache  
32-bit RISC microprocessor with 8-Kbyte instruction cache  
32-bit RISC microprocessor with 4-Kbyte instruction cache  
32-bit RISC microprocessor with 8-Kbyte instruction cache and 4-Kbyte data cache  
32-bit RISC microprocessor with on-chip floating point  
32-bit RISC microcontroller  
Low-cost 32-bit RISC microcontroller with IEEE-1284-compliant parallel interface  
Low-cost 32-bit RISC microcontroller  
6
Am29240 Microcontroller Series  
A D V A N C E I N F O R M A T I O N  
AMD  
Table 1. Product Comparison—Am29200 Microcontroller Family  
FEATURE  
Am29205  
Controller  
Am29202  
Controller  
Am29200  
Controller  
Am29245  
Controller  
Am29240  
Controller  
Am29243  
Controller  
Instruction Cache  
Data Cache  
4 Kbytes  
4 Kbytes  
2 Kbytes  
2-way  
4 Kbytes  
2 Kbytes  
2-way  
Cache Associativity  
Integer Multiplier  
2-way  
Software  
Software  
Software  
Software  
32 x 32-bit  
32 x 32-bit  
Memory Management  
Unit (MMU)  
1 TLB  
16 Entry  
1 TLB  
16 Entry  
2 TLBs  
32 Entry  
Data Bus Width  
Internal  
External  
32 bits  
16 bits  
32 bits  
32 bits  
32 bits  
32 bits  
32 bits  
32 bits  
32 bits  
32 bits  
32 bits  
32 bits  
ROM Interface  
Banks  
Width  
ROM Size (Max/Bank)  
Boot-Up ROM Width  
Burst-Mode Access  
3
4
4
4
4
4
8, 16 bits  
4 Mbytes  
16 bits  
8, 16, 32 bits  
4 Mbytes  
8, 16, 32 bits  
8, 16, 32 bits  
16 Mbytes  
8, 16, 32 bits  
Supported  
8, 16, 32 bits  
16 Mbytes  
8, 16, 32 bits  
Supported  
8, 16, 32 bits  
16 Mbytes  
8, 16, 32 bits  
Supported  
8, 16, 32 bits  
16 Mbytes  
8, 16, 32 bits  
Supported  
Not Supported  
Not Supported  
DRAM Interface  
Banks  
Width  
Size: 32-Bit Mode  
Size: 16-Bit Mode  
Video DRAM  
Access Cycles  
Initial/Burst  
4
4
4
4
4
4
16 bits only  
8 Mbytes/bank  
16, 32 bits  
16, 32 bits  
16, 32 bits  
16, 32 bits  
16, 32 bits  
16 Mbytes/bank 16 Mbytes/bank 16 Mbytes/bank 16 Mbytes/bank 16 Mbytes/bank  
8 Mbytes/bank  
Not Supported  
8 Mbytes/bank  
Supported  
8 Mbytes/bank  
Supported  
8 Mbytes/bank  
Supported  
8 Mbytes/bank  
Not Supported  
Not Supported  
3/2  
No  
3/2  
No  
3/2  
No  
3/1  
No  
3/1  
No  
3/1  
Yes  
DRAM Parity  
On-Chip DMA  
Width (ext. peripherals)  
Total Number of Channels  
Externally Controlled  
External Master Access  
External Master Burst  
External Terminate Signal  
8, 16 bits  
8, 16, 32 bits  
8, 16, 32 bits  
8, 16, 32 bits  
8, 16, 32 bits  
8, 16, 32 bits  
2
1
No  
No  
No  
2
1
No  
No  
No  
2
2
Yes  
No  
Yes  
2
2
Yes  
Yes  
Yes  
4
4
Yes  
Yes  
Yes  
4
4
Yes  
Yes  
Yes  
Scalable Clocking Double-  
Frequency CPU Option  
No  
No  
No  
No  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
Low-Voltage Operation  
Yes  
Peripheral Interface  
Adapter (PIA)  
PIA Ports  
Data Width  
Min. Cycles Access  
2
8, 16 bits  
3
2
6
6
6
6
8, 16, 32 bits  
3
8, 16, 32 bits  
3
8, 16, 32 bits  
1
8, 16, 32 bits  
1
8, 16, 32 bits  
1
Programmable I/O Port  
(PIO)  
Signals  
Signals programmable  
for interrupt generation  
8
8
12  
8
16  
8
16  
8
16  
8
16  
8
Serial Ports  
Ports  
DSR/DTR  
1 Port  
PIO signals  
1 Port  
PIO signals  
1 Port  
Supported  
1 Port  
Supported  
2 Ports  
2 Ports  
1 Port Supported 1 Port Supported  
Interrupt Controller  
External Interrupt Pins  
External Trap and Warn  
Pins  
2
0
2
0
4
3
4
3
4
3
4
3
Parallel Port Controller  
32-Bit Transfer  
IEEE-1284 Interface  
Yes  
No  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
Yes  
No  
Yes  
Yes  
No  
Yes  
Yes  
No  
JTAG Debug Support  
Serializer/Deserializer  
Pin Count and Package  
Operating Voltage  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
100 PQFP  
132 PQFP  
168 PQFP  
196 PQFP  
196 PQFP  
196 PQFP  
V
CC  
5 V  
5 V  
5 V  
5 V  
5 V  
5 V  
5 V  
5 V  
5 V  
5 V  
5 V  
5 V  
I/O Tolerance  
Processor Clock Rate  
12, 16 MHz  
12, 16, 20 MHz  
16, 20 MHz  
16 MHz  
20, 25 MHz  
20, 25 MHz  
7
Am29240 Microcontroller Series  
AMD  
A D V A N C E I N F O R M A T I O N  
KEY FEATURES AND BENEFITS  
Complete Set of Common Peripherals  
The Am29240 microcontroller series extends the line of  
RISC microcontrollers based on 29K family architec-  
ture, providing performance upgrades to the Am29205  
and Am29200 microcontrollers. The RISC microcontrol-  
ler product line allows users to benefit from the very high  
performance of the 29K family architecture, while also  
capitalizing on the very low system cost made possible  
by integrating processor and peripherals.  
The Am29240 microcontroller series minimizes system  
cost by incorporating a complete set of system facilities  
commonly found in embedded applications, eliminating  
the cost of additional components. The on-chip func-  
tionsinclude:aROMcontroller, aDRAMcontroller, ape-  
ripheral interface adapter, a DMA controller, a  
programmable I/O port, a parallel port, up to two serial  
ports, and an interrupt controller. A video interface is  
also included in the Am29240 and Am29245 microcon-  
trollers for printer, scanner, and other imaging applica-  
tions. These facilities allow many simple systems to be  
built using only the Am29240 microcontroller series, ex-  
ternal ROM, and/or DRAM memory.  
The Am29240 microcontroller series expands the price/  
performance range of systems that can be built with the  
29K family. The Am29240 microcontroller series is fully  
software compatible with the Am29000, Am29005,  
Am29030, Am29035, Am29040, and Am29050 micro-  
processors, as well as the Am29200 and Am29205 mi-  
crocontrollers. It can be used in existing 29K family  
microcontroller applications without software modifica-  
tions.  
ROM Controller  
The ROM controller supports four individual banks of  
ROM or other static memory, each with its own timing  
characteristics. Each ROM bank may be a different size  
and may be either 8, 16, or 32 bits wide. The ROM banks  
can appear as a contiguous memory area of up to 64  
Mbytes in size. The ROM controller also supports byte,  
half-word, and word writes to the ROM memory space  
for devices such as flash EPROMs and SRAMs.  
On-Chip Caches  
The Am29240 microcontroller series incorporates a  
4-Kbyte, two-way instruction cache that supplies most  
processor instructions without wait states at the proces-  
sor frequency. For best performance, the instruction  
cache supports critical-word-first reloading with fetch-  
through, so that the processor receives the required  
instruction and the pipeline restarts with minimum delay.  
The instruction cache has a valid bit per word to mini-  
mize the reload overhead. All cache array elements are  
visible to software for testing and preload.  
DRAM Controller  
The DRAM controller supports four separate banks of  
dynamicmemory. Eachbankmaybeadifferentsizeand  
may be either 16 or 32 bits wide. The DRAM banks can  
appear as a contiguous memory area of up to 64 Mbytes  
in size. The DRAM controller supports three-cycle ac-  
cesses, with single-cycle page-mode and burst-mode  
accesses.  
The Am29240 and Am29243 microcontrollers incorpo-  
ratea2-Kbyte, two-wayset-associativedatacache. The  
data cache appears in the execute stage of the proces-  
sor pipeline, so that loaded data is available immediate-  
ly to the next instruction. This provides the maximum  
performance for loads without requiring load schedul-  
ing. The data cache performs critical-word-first, wrap-  
around, and burst-mode refill with load-through. This  
minimizes the time the processor waits on external data  
as well as minimizing the reload time. The data cache  
uses a write-through policy with a two-entry write buffer.  
Byte, half-word, and word reads and writes are sup-  
ported. All cache array elements are visible to software  
for testing and preload.  
Peripheral Interface Adapter  
The Peripheral Interface Adapter (PIA) permits glueless  
interfacing to as many as six external peripheral chips.  
The PIA allows for additional system features imple-  
mented by external peripheral chips.  
DMA Controller  
The DMA controller provides up to four channels for  
transferring data between the DRAM and internal or ex-  
ternal peripherals. The DMA channels are double buff-  
ered to relax constraints on reload time.  
I/O Port  
Single-Cycle Multiplier  
The I/O port permits direct access to 16 individually pro-  
grammable external input/output signals. Eight of these  
signals can be configured to cause interrupts.  
The Am29240 and Am29243 microcontrollers incorpo-  
rate a full combinatorial multiplier that accepts two  
32-bit input operands and produces a 32-bit result in a  
single cycle. The multiplier can produce a 64-bit result  
in two cycles. The multiplier permits maximum perfor-  
mance without requiring instruction scheduling, since  
the latency of the multiply is the same as the latency of  
other integer operations. High-performance multiplica-  
tion benefits imaging, signal processing, and state  
modeling applications.  
Parallel Port  
The parallel port implements a bidirectional IBM PC-  
compatible parallel interface to a host processor.  
Serial Port  
The serial port implements up to two full-duplex UARTs.  
8
Am29240 Microcontroller Series  
A D V A N C E I N F O R M A T I O N  
AMD  
Serializer/Deserializer  
Processor outputs have edge-rate control that allows  
them to drive a wide range of load capacitances with low  
noise and ringing. This eliminates the cost of external  
logic and buffering.  
The serializer/deserializer (video interface) on the  
Am29240 and Am29245 microcontrollers permits direct  
connection to a number of laser-marking engines, video  
displays, or raster input devices such as scanners.  
Bus and Software Compatibility  
Interrupt Controller  
Compatibility within a processor family is critical for  
achieving a rational, easy upgrade path. Processors in  
the Am29240 microcontroller series are all members of  
a bus-compatible family of RISC microcontrollers. All  
members of this family—the Am29205, Am29202,  
Am29200, Am29240, Am29245, and Am29243 micro-  
controllers—allow improvements in price, performance,  
and system capabilities without requiring that users re-  
design their system hardware or software. Bus compati-  
bility ensures a convenient upgrade path for future  
systems.  
The interrupt controller generates and reports the status  
of interrupts caused by on-chip peripherals.  
Wide Range of Price/Performance Points  
To reduce design costs and time-to-market, the product  
designer can use the Am29200 microcontroller family  
and one basic system design as the foundation for an  
entire product line. From this design, numerous imple-  
mentations of the product at various levels of price and  
performance may be derived with minimum time, effort,  
and cost.  
The Am29240 microcontroller series is available in a  
196-pin plastic quad flat-pack (PQFP) package. The  
Am29240 microcontroller series is signal-compatible  
with the Am29200 and the Am29205 microcontrollers.  
The Am29240 RISC microcontroller series supports this  
capability through various combinations of on-chip  
caches, programmable memory widths, programmable  
wait states, burst-mode and page-mode access sup-  
port, bus compatibility, and 29K family software compat-  
ibility. A system can be upgraded using various memory  
architectures without hardware and software redesign.  
Moreover, the Am29240 microcontroller series is  
binary compatible with existing RISC microcontrollers  
and other members of the 29K family (the Am29000,  
Am29005, Am29030, Am29035, Am29040, and  
Am29050 microprocessors, as well as the Am29200,  
Am29202, and Am29205 microcontrollers). The  
Am29240 microcontroller series provides a migration  
path to low-cost, high-performance, highly integrated  
systems from other 29K family members, without re-  
quiring expensive rewrites of application software.  
Within the Am29240 microcontroller series, the external  
interfaces and the processor operate at frequencies in  
the range of 16 to 25 MHz. Using the Scalable Clocking  
feature on the Am29240 and Am29243 microcon-  
trollers, the internal processor core can operate either at  
the interface frequency or twice this frequency. For ex-  
ample, the processor can operate at 25 MHz while the  
interface operates at 12.5 MHz.  
Complete Development and  
Support Environment  
The ROM controller accommodates memories that are  
either 8, 16, or 32 bits wide, and the DRAM controller ac-  
commodates dynamic memories that are either 16 or 32  
bits wide. This unique feature provides a flexible inter-  
face to low-cost memory, as well as a convenient, flex-  
ible upgrade path. For example, a system can start with  
a 16-bit memory design and can subsequently improve  
performance by migrating to a 32-bit memory design.  
One particular advantage is the ability to add memory in  
half-megabyte increments. This provides significant  
cost savings for applications that do not require larger  
memory upgrades.  
A complete development and support environment is vi-  
tal for reducing a product’s time-to-market. Advanced  
Micro Devices has created a standard development en-  
vironment for the 29K family of processors. In addition,  
theFusion29Kthird-partysupportorganizationprovides  
the most comprehensive customer/partner program in  
the embedded processor market.  
Advanced Micro Devices offers a complete set of hard-  
ware and software tools for design, integration, debug-  
ging, and benchmarking. These tools, which are  
available now for the 29K family, include the following:  
Software development kit that includes the  
High Cr 29K optimizing C compiler with assem-  
bler, linker, ANSI library functions, 29K family archi-  
tectural simulator, and MiniMON29Kr debug  
monitor  
The Am29200, Am29202, Am29205, Am29240,  
Am29245, and Am29243 microcontrollers allow users  
toaddressanextremelywiderangeofcostperformance  
points, with higher performance and lower cost than ex-  
isting designs based on CISC microprocessors.  
XRAY29K source-level debugger  
Glueless System Interfaces  
A complete family of demonstration and develop-  
ment boards  
The Am29240 microcontroller series also minimizes  
system cost by providing a glueless attachment to exter-  
nal ROMs, DRAMs, and other peripheral components.  
9
Am29240 Microcontroller Series  
AMD  
A D V A N C E I N F O R M A T I O N  
In addition, Advanced Micro Devices has developed a  
standard host interface (HIF) specification for operating  
system services, the Universal Debugger Interface  
(UDI) for seamless connection of debuggers to ICEs  
and target hardware, and extensions for the UNIX com-  
mon object file format (COFF).  
series by overlapping them with instruction execution,  
by taking advantage of pipelining, by an on-chip data  
cache, and by organizing the flow of external data into  
the processor so that the impact of external accesses is  
minimized.  
Pipelining  
This support is augmented by an engineering hotline, an  
on-line bulletin board, and field application engineers.  
Instruction operations are overlapped with instruction  
fetch, instruction decode and operand fetch, instruction  
execution, and result write-back to the Register File.  
Pipeline forwarding logic detects pipelinedependencies  
and routes data as required, avoiding delays that might  
arise from these dependencies. Pipeline interlocks are  
implemented by processor hardware. Except for a few  
special cases, it is not necessary to rearrange programs  
to avoid pipeline dependencies, although this is some-  
times desirable for performance.  
Debugging and Testing  
The Am29240 microcontroller series provides debug-  
ging and testing features at both the software and  
hardware levels.  
Software debugging is facilitated by the instruction  
trace facility and instruction breakpoints. Instruction  
tracing is accomplished by forcing the processor to trap  
after each instruction has been executed. Instruction  
breakpoints are implemented by the HALT instruction  
or by a software trap.  
On-Chip Instruction and Data Caches  
On-chip instruction and data caches satisfy most pro-  
cessor fetches without wait states, even when the pro-  
cessor operates at twice the system frequency. The  
caches are pipelined for best performance. The reload  
policies minimize the amount of time spent waiting for  
reload, while optimizing the benefit of locality of  
reference.  
The processor provides several additional features to  
assist system debugging and testing:  
The Test/Development Interface is composed of a  
group of pins that indicate the state of the processor  
and control the operation of the processor.  
A Traceable Cache feature permits a hardware-  
development system to track accesses to the on-  
chip caches, permitting a high level of visibility into  
processor operation.  
Burst-Mode and Page-Mode Memories  
The Am29240 microcontroller series directly supports  
burst-mode memories. The burst-mode memory sup-  
plies instructions at the maximum bandwidth, without  
the complexity of an external cache or the performance  
degradation due to cache misses.  
An IEEE Std 1149.1-1990 (JTAG) compliant Stan-  
dard Test Access Port and Boundary-Scan Architec-  
ture. The Test Access Port provides a scan interface  
for testing processor and system hardware in a pro-  
duction environment, and contains extensions that  
allow a hardware-development system to control  
and observe the processor without interposing hard-  
ware between the processor and system.  
The processor can also use the page-mode capability of  
common DRAMs to improve the access time in cases  
where page-mode accesses can be used. This is partic-  
ularly useful in very low-cost systems with 16-bit-wide  
DRAMs, where the DRAM must be accessed twice for  
each 32-bit operand.  
PERFORMANCE OVERVIEW  
Instruction Set Overview  
The Am29240 microcontroller series offers a significant  
margin of performance over CISC microprocessors in  
existing embedded designs, since the majority of pro-  
cessor features were defined for the maximum achiev-  
able performance at very low cost. This section  
describes the features of the Am29240 microcontroller  
series from the point of view of system performance.  
All29Kfamilymembersemployathree-addressinstruc-  
tion set architecture. The compiler or assembly-lan-  
guage programmer is given complete freedom to  
allocate register usage. There are 192 general-purpose  
registers, allowing the retention of intermediate calcula-  
tions and avoiding needless data destruction. Instruc-  
tion operands may be contained in any of the  
general-purpose registers, and the results may be  
stored into any of the general-purpose registers.  
Instruction Timing  
TheAm29240microcontrollerseriesusesanarithmetic/  
logic unit, a field shift unit, and a prioritizer to execute  
most instructions. Each of these is organized to operate  
on 32-bit operands and provide a 32-bit result. All opera-  
tions are performed in a single cycle.  
TheAm29240microcontrollerseriesinstructionsetcon-  
tains 117 instructions that are divided into nine classes.  
These classes are integer arithmetic, compare, logical,  
shift, data movement, constant, floating point, branch,  
and miscellaneous. The floating-point instructions are  
not executed directly, but are emulated by trap handlers.  
The performance degradation of load and store opera-  
tions is minimized in the Am29240 microcontroller  
10  
Am29240 Microcontroller Series  
A D V A N C E I N F O R M A T I O N  
AMD  
All directly implemented instructions are capable of  
executing in one processor cycle, with the exception of  
interrupt returns, loads, and stores.  
Interrupts and traps are dispatched through a 256-entry  
vector table that directs the processor to a routine that  
handles a given interrupt or trap. The vector table may  
be relocated in memory by the modification of a proces-  
sor register. There may be multiple vector tables in the  
system, though only one is active at any given time.  
Data Formats  
The Am29240 microcontroller series defines a word as  
32 bits of data, a half-word as 16 bits, and a byte as 8  
bits. The hardware provides direct support for word-  
integer (signed and unsigned), word-logical, word-Bool-  
ean, half-word integer (signed and unsigned), and char-  
acter data (signed and unsigned).  
The vector table is a table of pointers to the interrupt and  
trap handlers, and requires only 1 Kbyte of memory. The  
processor performs a vector fetch every time an inter-  
rupt or trap is taken. The vector fetch requires at least  
three cycles, in addition to the number of cycles required  
for the basic memory access.  
Word-Boolean data is based on the value contained in  
the most significant bit of the word. The values TRUE  
and FALSE are represented by the most significant bit  
values 1 and 0, respectively.  
PIN DESCRIPTIONS  
A23–A0  
Address Bus (output, synchronous)  
Other data formats, such as character strings, are sup-  
ported by instruction sequences. Floating-point formats  
(single and double precision) are defined for the proces-  
sor; however, there is no direct hardware support for  
these formats in the Am29240 microcontroller series.  
The Address Bus supplies the byte address for all ac-  
cesses, except for DRAM accesses. For DRAM ac-  
cesses, multiplexed row and column addresses are  
provided on A14–A1. A2–A0 are also used to provide a  
clock to an optional burst-mode EPROM.  
Protection  
BOOTW  
The Am29240 microcontroller series offers two mutually  
exclusive modes of execution—the User and Supervi-  
sor modes—that restrict or permit accesses to certain  
processor registers and external storage locations.  
Boot ROM Width (input, asynchronous)  
This input configures the width of ROM Bank 0, so the  
ROM can be accessed before the ROM configuration  
has been set by the system initialization software. The  
BOOTW signal is sampled during and after a processor  
reset. If BOOTW is High before and after reset (tied  
High), the boot ROM is 32 bits wide. If BOOTW is Low  
before and after reset (tied Low), the boot ROM is 16 bits  
wide. If BOOTW is Low before reset and High after reset  
(tied to RESET), the boot ROM is 8 bits wide. This signal  
has special hardening against metastable states, allow-  
ingittobedrivenwithaslow-rise-timesignalandpermit-  
ting it to be tied to RESET.  
The register file may be configured to restrict accesses  
to Supervisor-mode programs on a bank-by-bank basis.  
Memory Management Unit  
The Am29240 microcontroller series provides a  
memory-management unit (MMU) for translating virtual  
addresses into physical addresses. The page size for  
translation ranges from 1 Kbyte to 16 Mbytes in powers  
of 4. The Am29245 and Am29240 microcontrollers each  
have a single, 16-entry TLB. The Am29243 microcon-  
troller has dual 16-entry TLBs, each capable of mapping  
pages of different size.  
BURST  
Burst-Mode Access (output, synchronous)  
Interrupts and Traps  
This signal is asserted to perform sequential accesses  
from a burst-mode device.  
When a member of the Am29240 microcontroller series  
takes an interrupt or trap, it does not automatically save  
its current state information in memory. This lightweight  
interrupt and trap facility greatly improves the perfor-  
mance of temporary interruptions such as simple  
operating-system calls that require no saving of state in-  
formation.  
CAS3–CAS0  
Column Address Strobes, Byte 3–0  
(output, synchronous)  
A High-to-Low transition on these signals causes the  
DRAM selected by RAS3–RAS0 to latch the column ad-  
dress and complete the access. To support byte and  
half-word writes, column address strobes are provided  
for individual DRAM bytes. CAS3 is the column address  
strobe for the DRAMs, in all banks, attached to  
ID31–ID24. CAS2 is for the DRAMs attached to  
ID23–ID16, and so on. These signals are also used in  
other special DRAM cycles.  
In cases where the processor state must be saved, the  
saving and restoring of state information is under the  
control of software. The methods and data structures  
used to handle interrupts—and the amount of state  
saved—may be tailored to the needs of a particular  
system.  
11  
Am29240 Microcontroller Series  
AMD  
A D V A N C E I N F O R M A T I O N  
CNTL1–CNTL0  
GACK  
CPU Control  
(input, asynchronous, internal pull-ups)  
External Memory Grant Acknowledge  
(output, synchronous)  
These inputs specify the processor mode: Load Test  
Instruction, Step, Halt, or Normal.  
This signal indicates to an external device that it has  
been granted an access to the processor’s ROM or  
DRAM, and that the device should provide an address.  
DACKD–DACKA  
The processor can be placed into a slave configuration  
that allows tracing of a master processor. In this configu-  
ration, GACK is used to indicate that the processor pipe-  
line was held during the previous processor cycle.  
DMA Acknowledge D through A  
(output, synchronous)  
These signals acknowledge an external transfer on a  
DMA channel. DMA acknowledgments are not dedi-  
cated to a particular DMA channel—each channel spec-  
ifies which acknowledge line, if any, it is using. Only one  
channel at a time can use either DACKD, DACKC,  
DACKB, or DACKA, and the same channel uses the re-  
spective DREQD–DREQA signal for transfer requests.  
DMA transfers can occur to and from internal peripher-  
als independent of these acknowledgments. The  
DACKD and DACKC signals are supported on the  
Am29240 and Am29243 microcontrollers only.  
GREQ  
External Memory Grant Request  
(input, synchronous, pull-up resistor)  
This signal is used by an external device to request an  
access to the processor’s ROM or DRAM. To perform  
this access, the external device supplies an address to  
the ROM controller or DRAM controller.  
To support a hardware-development system, GREQ  
should be either tied High or held at a high-impedance  
state during a processor reset.  
DREQD–DREQA  
DMA Request D through A  
ID31–ID0  
(input, asynchronous, pull-up resistors)  
These inputs request an external transfer on a DMA  
channel. DMA requests are not dedicated to a particular  
channel—each channel specifies which request line, if  
any, it is using. Only one channel at a time can use either  
DREQD, DREQC, DREQB, or DREQA. This channel ac-  
knowledges a transfer using the respective DACKD–  
DACKA signal. These requests are individually program-  
mable to be either level- or edge-sensitive for either po-  
larity of level or edge. DMA transfers can occur to and  
from internal peripherals independent of these requests.  
Instruction/Data Bus (bidirectional, synchronous)  
The Instruction/Data Bus (ID Bus) transfers instructions  
to, and data to and from the processor.  
IDP3–IDP0  
Instruction/Data Parity  
(bidirectional, synchronous)  
If parity checking is enabled by the PCE bit of the  
DRAM Control Register, IDP3–IDP0 are parity bits for  
the ID Bus during DRAM accesses. IDP3 is the parity  
bit for ID31–ID24, IDP2 is the parity bit for ID23–ID16,  
and so on. If parity is enabled, the processor drives  
IDP3–IDP0 with valid parity during DRAM writes, and  
expects IDP3–IDP0 to be driven with valid parity during  
DRAM reads. These signals are supported on the  
Am29243 microcontroller only.  
The DMA request/acknowledge pairs DREQA/DACKA  
and DREQB/DACKB correspond to the Am29200 micro-  
controller signals DREQ0/DACK0 and DREQ1/DACK1,  
respectively. The pin placement reflects this correspon-  
dence, and a processor reset dedicates these request/  
acknowledge pairs to DMA channels 0 and 1,  
respectively. This permits backward-compatible up-  
grade to an Am29200 microcontroller. The DREQD and  
DREQC signals are supported on the Am29240 and  
Am29243 microcontrollers only.  
INCLK  
Input Clock (input)  
This is an oscillator input at twice the system operating  
frequency. The processor operates either at the system  
operating frequency or at the INCLK frequency, as con-  
trolled by the TBO bit in the Configuration Register. The  
processor can operate at the INCLK frequency only if  
MEMCLK is an output.  
DSRA  
Data Set Ready, Port A (output, synchronous)  
This indicates to the host that the serial port is ready to  
transmit or receive data on Serial Port A.  
DTRA  
INTR3–INTR0  
Data Terminal Ready, Port A  
(input, asynchronous)  
Interrupt Requests 3–0  
(input, asynchronous, internal pull-up resistors)  
This indicates to the processor that the host is ready to  
transmit or receive data on Serial Port A.  
These inputs generate prioritized interrupt requests.  
The interrupt caused by INTR0 has the highest priority,  
12  
Am29240 Microcontroller Series  
A D V A N C E I N F O R M A T I O N  
AMD  
and the interrupt caused by INTR3 has the lowest prior-  
PIACS5–PIACS0  
ity. The interrupt requests are masked in prioritized or-  
der by the Interrupt Mask field in the Current Processor  
StatusRegisterandaredisabledbytheDAandDIbitsof  
the Current Processor Status Register. These signals  
have special hardening against metastable states, al-  
lowing them to be driven with slow-transition-time  
signals.  
Peripheral Chip Selects, Regions 5–0  
(output, synchronous)  
These signals are used to select individual peripheral  
devices. DMA channels may be programmed to use  
dedicated chip selects during an external peripheral  
access.  
PIAOE  
LSYNC  
Peripheral Output Enable (output, synchronous)  
Line Synchronization (input, asynchronous)  
This signal enables the selected peripheral device to  
drive the ID bus.  
This signal indicates the start of a raster line. This signal  
is supported on the Am29240 and Am29245 microcon-  
trollers only.  
PIAWE  
MEMCLK  
Peripheral Write Enable (output, synchronous)  
Memory Clock (input/output)  
This signal causes data on the ID bus to be written into  
the selected peripheral.  
This is either a clock output or an input from an external  
clockgenerator, asdeterminedbytheMEMDRVinput. It  
operates at the system operating frequency, which is  
half of the INCLK frequency. Most processor inputs and  
outputs are synchronous to MEMCLK. MEMCLK must  
be driven with CMOS levels. MEMCLK must be an out-  
put if the processor operates at the INCLK frequency.  
PIO15–PIO0  
Programmable Input/Output  
(input/output, asynchronous)  
These signals are available for direct software control  
and inspection. PIO15–PIO8 may be individually pro-  
grammed to cause processor interrupts. These signals  
have special hardening against metastable states, al-  
lowing them to be driven with slow-transition-time  
signals.  
MEMDRV  
MEMCLK Drive Enable  
(input, internal pull-up resistor)  
This input determines whether MEMCLK is an output or  
an input. If this pin is High, the processor generates a  
clock on the MEMCLK output. If this pin is Low, the pro-  
cessor accepts a clock generated by the system on the  
MEMCLK input. This signal is tied High through an inter-  
nal pull-up resistor so the signal can be left unconnected  
to configure MEMCLK as an output.  
The PIO signals are sampled during a processor reset.  
After reset, the sampled value is held in the PIO Input  
Register. This sampled value is supplied the first time  
this register is read, unless the read is preceded by write  
to the PIO Input Register or by a read or write of any oth-  
er PIO register. This may be used to indicate system  
configuration information to the processor during a  
reset.  
PACK  
Parallel Port Acknowledge (output, synchronous)  
POE  
This signal is used by the processor to acknowledge a  
transfer from the host or to indicate to the host that data  
has been placed on the port.  
Parallel Port Output Enable (output, synchronous)  
This signal enables an external data buffer containing  
data from the host to drive the ID Bus.  
PAUTOFD  
PSTROBE  
Parallel Port Autofeed (input, asynchronous)  
Parallel Port Strobe (input, asynchronous)  
This signal is used by the host to indicate how line feeds  
should be performed or is used to indicate that the host  
is busy and cannot accept a data transfer.  
This signal is used by the host to indicate that data is on  
the Parallel Port or to acknowledge a transfer from the  
processor.  
PBUSY  
PSYNC  
Parallel Port Busy (output, synchronous)  
Page Synchronization  
(input/output, asynchronous)  
This indicates to the host that the Parallel Port is busy  
and cannot accept a data transfer.  
Thissignalindicatesthebeginningofarasterpage. This  
signal is supported on the Am29240 and Am29245 mi-  
crocontrollers only.  
13  
Am29240 Microcontroller Series  
AMD  
A D V A N C E I N F O R M A T I O N  
PWE  
RXDB  
Parallel Port Write Enable (output, synchronous)  
Receive Data, Port B (input, asynchronous)  
This signal writes a buffer with data on the ID Bus. Then,  
the buffer drives data to the host.  
This input is used to receive data to Serial Port B. This  
signal is supported on the Am29240 and Am29243 mi-  
crocontrollers only.  
R/W  
STAT2–STAT0  
Read/Write (output, synchronous)  
CPU Status (output, synchronous)  
During an external ROM, DRAM, DMA, or PIA access,  
this signal indicates the direction of transfer: High for a  
read and Low for a write.  
These outputs indicate information about the processor  
or the current access for the purposes of hardware  
debug.  
RAS3–RAS0  
TCK  
Row Address Strobe, Banks 3–0  
(output, synchronous)  
Test Clock Input  
(input, asynchronous, pull-up resistor)  
A High-to-Low transition on one of these signals causes  
a DRAM in the corresponding bank to latch the row ad-  
dress and begin an access. RAS3 starts an access in  
DRAMBank3, andsoon. Thesesignalsalsoareusedin  
other special DRAM cycles.  
This input is used to operate the Test Access Port. The  
state of the Test Access Port must be held if this clock is  
held either High or Low. This clock is internally synchro-  
nized to MEMCLK for certain operations of the Test Ac-  
cess Port controller, so signals internally driven and  
sampled by the Test Access Port are synchronous to  
processor internal clocks.  
RESET  
Reset (input, asynchronous)  
This input places the processor in the Reset mode. This  
signal has special hardening against metastable states,  
allowing it to be driven with a slow-rise-time signal.  
TDI  
Test Data Input  
(input, synchronous to TCK, pull-up resistor)  
ROMCS3–ROMCS0  
This input supplies data to the test logic from an external  
source. It is sampled on the rising edge of TCK. If it is not  
driven, it appears High internally.  
ROM Chip Selects, Banks 3–0  
(output, synchronous)  
A Low level on one of these signals selects the memory  
devices in the corresponding ROM bank. ROMCS3 se-  
lects devices in ROM Bank 3, and so on. The timing and  
access parameters of each bank are individually pro-  
grammable.  
TDMA  
Terminate DMA (input/output, synchronous)  
Thissignaliseitheraninputoranoutputascontrolledby  
the corresponding DMA Control Register. As an input,  
this signal can be asserted during an external DMA  
transfer (non-fly-by) to terminate the transfer after the  
current access. The TDMA input is ignored during fly-by  
transfers. As an output, this signal is asserted to indicate  
the final transfer of a sequence.  
ROMOE  
ROM Output Enable (output, synchronous)  
This signal enables the selected ROM Bank to drive the  
ID bus. It is used to prevent bus contention when switch-  
ing between different ROM banks or switching between  
a ROM bank and another device or DRAM bank.  
TDO  
Test Data Output  
(three-state output, synchronous to TCK)  
RSWE  
This output supplies data from the test logic to an exter-  
nal destination. It changes on the falling edge of TCK. It  
is in the high-impedance state except when scanning is  
in progress.  
ROM Space Write Enable (output, synchronous)  
This signal is used to write an alterable memory in a  
ROM bank (such as an SRAM or Flash EPROM).  
RXDA  
TMS  
Receive Data, Port A (input, asynchronous)  
This input is used to receive serial data to Serial Port A.  
Test Mode Select  
(input, synchronous to TCK, pull-up resistor)  
This input is used to control the Test Access Port. If it is  
not driven, it appears High internally.  
14  
Am29240 Microcontroller Series  
A D V A N C E I N F O R M A T I O N  
AMD  
TR/OE  
UCLK  
Video DRAM Transfer/Output Enable  
(output, synchronous)  
UART Clock (input)  
This is an oscillator input for generating the UART (Seri-  
al Port) clock. To generate the UART clock, the oscillator  
frequency may be divided by any amount up to 65,536.  
The UART clock operates at 16 times the Serial Port’s  
baud rate. As an option, UCLK may be driven with  
MEMCLK or INCLK. It can be driven with TTL levels.  
This signal is used with video DRAMs to transfer data to  
the video shift register. It is also used as an output en-  
able in normal video DRAM read cycles. This signal is  
supported on the Am29240 and Am29245 microcontrol-  
lers only.  
TRAP1–TRAP0  
VCLK  
Trap Requests 1–0  
Video Clock (input, asynchronous)  
(input, asynchronous, internal pull-ups)  
This clock is used to synchronize the transfer of video  
data. As an option, VCLK may be driven with MEMCLK  
or INCLK. It can be driven with TTL levels. This signal is  
supported on the Am29240 and Am29245 microcon-  
trollers only.  
These inputs generate prioritized trap requests. The  
trap caused by TRAP0 has the highest priority. These  
trap requests are disabled by the DA bit of the Current  
Processor Status Register. These signals have special  
hardening against metastable states, allowing them to  
be driven with slow-transition-time signals.  
VDAT  
Video Data (input/output, synchronous to VCLK)  
TRIST  
This is serial data to or from the video device. This signal  
is supported on the Am29240 and Am29245 microcon-  
trollers only.  
Three-State Control  
(input, asynchronous, pull-up resistor)  
This input is asserted to force all processor outputs into  
the high-impedance state. This signal is tied High  
through an internal pull-up resistor.  
WAIT  
Add Wait States  
(input, synchronous, internal pull-up)  
Note: TRIST does not control the MEMCLK pin. To  
three-state MEMCLK, the user must drive MEMDRV  
Low.  
External accesses are normally timed by the processor.  
However, the WAIT signal may be asserted during a  
PIA, ROM, or DMA access to extend the access  
indefinitely.  
TRST  
Test Reset Input  
(input, asynchronous, pull-up resistor)  
WARN  
Warn (input, asynchronous, edge-sensitive,  
internal pull-up)  
This input asynchronously resets the Test Access Port.  
If TRST is not driven, it appears High internally. TRST  
must be tied to RESET, even if the Test Access Port is  
not being used.  
A High-to-Low transition on this input causes a non-  
maskable WARN trap to occur. This trap bypasses the  
normaltrapvectorfetchsequence, andisusefulinsitua-  
tions where the vector fetch may not work (e.g., when  
data memory is faulty). This signal has special harden-  
ing against metastable states, allowing it to be driven  
with a slow-transition-time signal.  
TXDA  
Transmit Data, Port A (output, asynchronous)  
This output is used to transmit serial data from Serial  
Port A.  
WE  
TXDB  
Write Enable (output, synchronous)  
Transmit Data, Port B (output, asynchronous)  
This signal is used to write the selected DRAM bank.  
“Early write” cycles are used so the DRAM data inputs  
and outputs can be tied to the common ID Bus.  
This output is used to transmit data from Serial Port B.  
This signal is supported on the Am29240 and Am29243  
microcontrollers only.  
15  
Am29240 Microcontroller Series  
AMD  
A D V A N C E I N F O R M A T I O N  
CONNECTION DIAGRAM  
196-Pin PQFP  
Top Side View  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
Am29240 Microcontroller Series  
8
7
6
5
4
3
2
1
Note:  
Pin 1 marked for orientation.  
16  
Am29240 Microcontroller Series  
A D V A N C E I N F O R M A T I O N  
AMD  
PQFP PIN DESIGNATIONS (Pin Number)  
Pin No.  
1
Pin Name  
VCC  
Pin No.  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
Pin Name  
VCC  
Pin No.  
99  
Pin Name  
VCC  
Pin No.  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
Pin Name  
VCC  
2
MEMCLK  
MEMDRV  
INCLK  
ID31  
ID30  
ID29  
ID28  
ID27  
ID26  
ID25  
ID24  
GND  
VCC  
Reserved  
Reserved  
TXDB 3  
RXDB 3  
DTRA  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
Reserved  
Reserved  
A23  
Reserved  
PIO12  
PIO11  
PIO10  
PIO9  
3
4
5
A22  
6
A21  
7
RXDA  
A20  
PIO8  
8
UCLK  
A19  
PIO7  
9
DSRA  
A18  
PIO6  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
TXDA  
A17  
PIO5  
ROMCS3  
ROMCS2  
ROMCS1  
ROMCS0  
VCC  
A16  
PIO4  
GND  
VCC  
GND  
VCC  
A15  
PIO3  
ID23  
ID22  
ID21  
ID20  
ID19  
ID18  
ID17  
ID16  
GND  
VCC  
A14  
PIO2  
GND  
A13  
PIO1  
BURST  
RSWE  
ROMOE  
RAS3  
A12  
PIO0  
A11  
TDO  
A10  
STAT2  
STAT1  
STAT0  
VDAT 2  
PSYNC 2  
GND  
A9  
RAS2  
A8  
RAS1  
GND  
VCC  
RAS0  
CAS3  
A7  
ID15  
ID14  
ID13  
ID12  
ID11  
CAS2  
A6  
VCC  
VCC  
A5  
GREQ  
DREQB  
DREQA  
TDMA  
TRAP0  
TRAP1  
INTR0  
INTR1  
INTR2  
INTR3  
GND  
GND  
A4  
CAS1  
A3  
CAS0  
A2  
ID10  
ID9  
TR/OE  
WE  
A1  
A0  
ID8  
GACK  
PIACS5  
PIACS4  
PIACS3  
PIACS2  
VCC  
GND  
VCC  
GND  
VCC  
BOOTW  
WAIT  
PAUTOFD  
PSTROBE  
PWE  
POE  
PACK  
PBUSY  
GND  
VCC  
ID7  
ID6  
ID5  
VCC  
ID4  
GND  
WARN  
VCLK 2  
LSYNC 2  
TMS  
ID3  
PIACS1  
PIACS0  
PIAWE  
PIAOE  
R/W  
ID2  
ID1  
ID0  
TRST  
TCK  
GND  
VCC  
DACKB  
DACKA  
DACKD 3  
DACKC 3  
Reserved  
GND  
PIO15  
PIO14  
PIO13  
DREQD 3  
DREQC 3  
GND  
TDI  
IDP3 1, 3  
IDP2 1, 3  
IDP1 1, 3  
IDP0 1, 3  
GND  
RESET  
CNTL1  
CNTL0  
TRIST  
GND  
2. Defined as a no-connect on the Am29243 microcontroller.  
3. Defined as a no-connect on the Am29245 microcontroller.  
Notes: All values are typical and preliminary.  
1. Defined as a no-connect on the Am29240 microcontroller.  
17  
Am29240 Microcontroller Series  
AMD  
A D V A N C E I N F O R M A T I O N  
PQFP PIN DESIGNATIONS (Pin Name)  
Pin Name  
A0  
Pin No.  
129  
128  
127  
126  
125  
124  
123  
122  
119  
118  
117  
116  
115  
114  
113  
112  
109  
108  
107  
106  
105  
104  
103  
102  
132  
66  
Pin Name  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GREQ  
ID0  
Pin No.  
76  
87  
98  
110  
120  
130  
140  
147  
159  
171  
183  
196  
173  
42  
41  
40  
39  
38  
37  
36  
35  
32  
31  
30  
29  
28  
27  
26  
25  
22  
21  
20  
19  
18  
17  
16  
15  
12  
11  
Pin Name  
INCLK  
INTR0  
Pin No.  
4
Pin Name  
Reserved  
RESET  
ROMCS0  
ROMCS1  
ROMCS2  
ROMCS3  
ROMOE  
RSWE  
RXDA  
RXDB 3  
STAT0  
STAT1  
STAT2  
TCK  
Pin No.  
149  
192  
63  
A1  
179  
180  
181  
182  
187  
2
A2  
INTR1  
A3  
INTR2  
62  
A4  
INTR3  
61  
A5  
LSYNC 2  
MEMCLK  
MEMDRV  
PACK  
60  
A6  
68  
A7  
3
67  
A8  
138  
134  
139  
89  
56  
A9  
PAUTOFD  
PBUSY  
PIACS0  
PIACS1  
PIACS2  
PIACS3  
PIACS4  
PIACS5  
PIAOE  
PIAWE  
PIO0  
54  
A10  
168  
167  
166  
190  
191  
176  
165  
188  
79  
A11  
A12  
88  
A13  
85  
A14  
ID1  
84  
TDI  
A15  
ID2  
83  
TDMA  
TDO  
A16  
ID3  
82  
A17  
ID4  
91  
TMS  
A18  
ID5  
90  
TR/OE  
TRAP0  
TRAP1  
TRIST  
TRST  
TXDA  
TXDB 3  
UCLK  
VCC  
A19  
ID6  
164  
163  
162  
161  
158  
157  
156  
155  
154  
153  
152  
151  
150  
144  
143  
142  
137  
135  
170  
136  
92  
177  
178  
195  
189  
59  
A20  
ID7  
PIO1  
A21  
ID8  
PIO2  
A22  
ID9  
PIO3  
A23  
ID10  
ID11  
ID12  
ID13  
ID14  
ID15  
ID16  
ID17  
ID18  
ID19  
ID20  
ID21  
ID22  
ID23  
ID24  
ID25  
ID26  
ID27  
ID28  
ID29  
ID30  
ID31  
IDP0 1, 3  
IDP1 1, 3  
IDP2 1, 3  
IDP3 1, 3  
PIO4  
BOOTW  
BURST  
CAS0  
CAS1  
CAS2  
CAS3  
CNTL0  
CNTL1  
DACKA  
DACKB  
DACKC 3  
DACKD 3  
DREQA  
DREQB  
DREQC 3  
DREQD 3  
DSRA  
DTRA  
GACK  
GND  
GND  
GND  
GND  
GND  
GND  
PIO5  
53  
PIO6  
57  
78  
PIO7  
1
77  
PIO8  
VCC  
14  
74  
PIO9  
VCC  
24  
73  
PIO10  
VCC  
34  
194  
193  
94  
PIO11  
VCC  
44  
PIO12  
VCC  
50  
PIO13  
VCC  
64  
93  
PIO14  
VCC  
75  
96  
PIO15  
VCC  
86  
95  
POE  
VCC  
99  
175  
174  
146  
145  
58  
PSTROBE  
PSYNC 2  
PWE  
VCC  
111  
121  
131  
141  
148  
160  
172  
184  
186  
169  
133  
185  
80  
VCC  
VCC  
10  
9
R/W  
VCC  
RAS0  
72  
VCC  
55  
8
RAS1  
71  
VCC  
81  
7
RAS2  
70  
VCC  
13  
6
RAS3  
69  
VCC  
23  
5
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
51  
VCLK 2  
VDAT 2  
WAIT  
WARN  
WE  
33  
48  
47  
46  
45  
52  
43  
97  
49  
100  
101  
65  
2. Defined as a no-connect on the Am29243 microcontroller.  
3. Defined as a no-connect on the Am29245 microcontroller.  
Notes: All values are typical and preliminary.  
1. Defined as a no-connect on the Am29240 microcontroller.  
18  
Am29240 Microcontroller Series  
A D V A N C E I N F O R M A T I O N  
AMD  
Am29240 MICROCONTROLLER LOGIC SYMBOL  
INCLK  
MEMDRV  
3
STAT2–STAT0  
24  
A23–A0  
R/W  
TRIST  
CNTL1–CNTL0  
2
RESET  
WARN  
ROMCS3–ROMCS0  
4
4
INTR3–INTR0  
2
ROMOE  
RSWE  
BURST  
TRAP1–TRAP0  
WAIT  
RAS3–RAS0  
CAS3–CAS0  
4
4
BOOTW  
WE  
TR/OE  
PIACS5–PIACS0  
6
4
Am29240 Microcontroller  
PIAOE  
PIAWE  
DACKD–DACKA  
GACK  
4
DREQD–DREQA  
GREQ  
PBUSY  
PACK  
POE  
PSTROBE  
PAUTOFD  
PWE  
UCLK  
RXDB–RXDA  
DTRA  
2
2
TXDB–TXDA  
DSRA  
VCLK  
LSYNC  
TCK  
TDI  
TDO  
TMS  
TRST  
MEMCLK VDAT PSYNC TDMA PIO15–PIO0 ID31–ID0  
16  
32  
19  
Am29240 Microcontroller Series  
AMD  
A D V A N C E I N F O R M A T I O N  
Am29245 MICROCONTROLLER LOGIC SYMBOL  
INCLK  
MEMDRV  
3
STAT2–STAT0  
24  
A23–A0  
R/W  
TRIST  
CNTL1–CNTL0  
2
RESET  
WARN  
ROMCS3–ROMCS0  
4
4
2
INTR3–INTR0  
ROMOE  
RSWE  
BURST  
TRAP1–TRAP0  
WAIT  
RAS3–RAS0  
CAS3–CAS0  
4
4
BOOTW  
WE  
TR/OE  
PIACS5–PIACS0  
6
2
PIAOE  
PIAWE  
Am29245 Microcontroller  
DACKB–DACKA  
GACK  
2
DREQB–DREQA  
GREQ  
PBUSY  
PACK  
POE  
PSTROBE  
PAUTOFD  
PWE  
UCLK  
RXDA  
DTRA  
TXDA  
DSRA  
VCLK  
LSYNC  
TCK  
TDI  
TDO  
TMS  
TRST  
MEMCLK VDAT PSYNC TDMA PIO15–PIO0 ID31–ID0  
16  
32  
20  
Am29240 Microcontroller Series  
A D V A N C E I N F O R M A T I O N  
AMD  
Am29243 MICROCONTROLLER LOGIC SYMBOL  
INCLK  
MEMDRV  
3
STAT2–STAT0  
24  
A23–A0  
R/W  
TRIST  
CNTL1–CNTL0  
2
RESET  
WARN  
ROMCS3–ROMCS0  
4
4
INTR3–INTR0  
2
ROMOE  
RSWE  
BURST  
TRAP1–TRAP0  
WAIT  
RAS3–RAS0  
CAS3–CAS0  
4
4
BOOTW  
WE  
TR/OE  
PIACS5–PIACS0  
6
4
Am29243 Microcontroller  
PIAOE  
PIAWE  
DACKD–DACKA  
GACK  
4
DREQD–DREQA  
GREQ  
PBUSY  
PACK  
POE  
PSTROBE  
PAUTOFD  
PWE  
UCLK  
RXDB–RXDA  
DTRA  
2
2
TXDB–TXDA  
DSRA  
TCK  
TDI  
TDO  
TMS  
TRST  
MEMCLK  
TDMA PIO15–PIO0 ID31–ID0  
IDP3–IDP0  
4
16  
32  
21  
Am29240 Microcontroller Series  
AMD  
A D V A N C E I N F O R M A T I O N  
ABSOLUTE MAXIMUM RATINGS  
OPERATING RANGES  
Storage Temperature . . . . . . . . . . . . –65°C to +125°C  
Voltage on any Pin  
Commercial (C) Devices  
Case Temperature (TC) . . . . . . . . . . . . . . 0°C to +85°C  
Supply Voltage (VCC) . . . . . . . . . . . +4.75 V to +5.25 V  
with Respect to GND . . . . . . . –0.5 V to VCC +0.5 V  
Stresses abovethoselistedunderAbsoluteMaximumRatings  
may cause permanent device failure. Functionality at or above  
these limits is not implied. Exposure to absolute maximum rat-  
ings for extended periods may affect device reliability.  
Operating ranges define those limits between which the func-  
tionality of the device is guaranteed.  
DC CHARACTERISTICS over COMMERCIAL Operating Ranges  
Advance Information  
Symbol  
Parameter Description  
Test Conditions  
Min  
Max  
Unit  
VIL  
Input Low Voltage  
–0.5  
0.8  
V
VIH  
Input High Voltage  
2.0  
–0.5  
VCC +0.5  
0.8  
V
V
V
VILINCLK  
VIHINCLK  
VOL  
INCLK Input Low Voltage  
INCLK Input High Voltage  
Note 1  
Note 1  
VCC –0.8  
VCC +0.5  
Output Low Voltage for  
All Outputs except MEMCLK  
IOL = 3.2 mA  
0.45  
V
V
Output High Voltage for  
All Outputs except MEMCLK  
VOH  
IOH = –400 µA  
2.4  
0.45 V VIN VCC –0.45 V  
Note 2  
±10 or  
+10/–200  
ILI  
Input Leakage Current  
Output Leakage Current  
µA  
µA  
ILO  
0.45 V VOUT VCC –0.45 V  
±10  
14  
Operating Power-Supply Current with VCC = 5.25 V, Outputs Floating;  
ICCOP  
mA/MHz  
respect to MEMCLK  
Holding RESET active at 25 MHz  
VOLC  
MEMCLK Output Low Voltage  
MEMCLK Output High Voltage  
MEMCLK GND Short Circuit Current  
MEMCLK VCC Short Circuit Current  
IOLC = 20 mA  
0.6  
V
V
VOHC  
IOHC = –20 mA  
VCC –0.6  
100  
IOSGND  
VCC = 5.0 V  
mA  
mA  
IOSVCC  
Notes:  
VCC = 5.0 V  
100  
1. INCLK is driven with CMOS input levels.  
2. The Low input leakage current for the inputs CNTL1–CNTL0, INTR3–INTR0, TRAP1–TRAP0, DREQD–DREQA, TCK, TDI,  
TRST, TMS, GREQ, WARN, MEMDRV, WAIT, and TRIST is –200 µA. These pins have internal pull-up resistors.  
CAPACITANCE  
Advance Information  
Symbol  
Parameter Description  
Test Conditions  
Min  
Max  
Unit  
CIN  
Input Capacitance  
15  
pF  
CINCLK  
CMEMCLK  
COUT  
INCLK Input Capacitance  
MEMCLK Capacitance  
Output Capacitance  
15  
20  
20  
20  
pF  
pF  
pF  
pF  
fC = 10 MHz  
CI/O  
I/O Pin Capacitance  
Note: Limits guaranteed by characterization.  
22  
Am29240 Microcontroller Series  
A D V A N C E I N F O R M A T I O N  
AMD  
SWITCHING CHARACTERISTICS over COMMERCIAL Operating Ranges  
Advance Information  
16 MHz  
20 MHz  
25 MHz  
No.  
Parameter Description  
Test Conditions 1, 8  
Min  
Max  
Min  
Max  
Min  
Max Unit  
1
2
3
4
5
6
INCLK Period (=0.5T)  
INCLK High Time  
Notes 9, 10, 11  
Note 9  
30  
12  
12  
1
1
1
1
7
25  
10  
10  
1
1
1
1
7
20  
8
1
1
1
7
ns  
ns  
ns  
ns  
ns  
ns  
INCLK Low Time  
Note 9  
8
INCLK Rise Time  
Note 9  
1
INCLK Fall Time  
Note 9  
1
7
1
7
1
7
MEMCLK Delay from INCLK  
MEMCLK Output  
Notes 3, 8  
1
7
1
7
1
7
0.5T–3  
0.5T–3  
0.5T–3  
0.5T–3  
0.5T–3  
0.5T–3  
8
9
MEMCLK High Time  
MEMCLK Low Time  
MEMCLK Output  
Notes 3, 8  
1
1
1
1
1
1
ns  
ns  
MEMCLK Output  
Notes 3, 8  
10  
11  
MEMCLK Rise Time  
MEMCLK Fall Time  
Notes 3, 8  
Notes 3, 8  
1
1
4
4
1
1
4
4
1
1
4
4
ns  
ns  
Synchronous Output Valid Delay from MEMCLK Rising Edge  
12a  
PIO15–PIO0, STAT2–STAT0,  
and PIACS5–PIACS0  
MEMCLK Output  
Note 1A  
1
1
1
13  
17/11  
12  
1
1
1
12  
15/9  
11  
1
1
1
11  
13/7  
10  
ns  
ns  
ns  
CAS3–CAS0 Rising Edge/  
CAS3–CAS0 Falling Edge  
MEMCLK Output  
Notes 1B, 4B  
All others  
MEMCLK Output  
Note 1B  
Synchronous Output Valid from MEMCLK Falling Edge  
12b  
PIO15–PIO0, STAT2–STAT0,  
and PIACS5–PIACS0  
MEMCLK Output  
Note 1A  
1
1
1
1
12  
11  
11  
12  
1
1
1
1
11  
9
1
1
1
1
10  
7
ns  
ns  
ns  
ns  
MEMCLK Output  
Notes 1B, 4B  
CAS3–CAS0 Falling Edge  
All others  
MEMCLK Output  
Note 1B  
10  
11  
9
13  
14  
Synchronous Output Disable  
Delay from MEMCLK Rising  
Edge  
MEMCLK Output  
10  
Synchronous Input Setup Time to MEMCLK Rising Edge  
ID31–ID0 and IDP3–IDP0 for  
DRAM access  
Parity Enabled  
Note 4A  
18  
10  
10  
16  
8
15  
7
ns  
ID31–ID0 for DRAM access  
Parity Disabled  
Note 4A  
ns  
ns  
ns  
All others  
8
7
15  
Available CAS Access Time  
Notes 4A, 4B  
Note 4A  
24  
23  
18  
(TCAS–TSetup  
)
16a  
16b  
Synchronous Input Hold Time to  
MEMCLK Rising Edge  
0
3
0
3
0
3
ns  
ns  
Synchronous Input Hold Time to  
CAS Rising Edge  
Note 4B  
23  
Am29240 Microcontroller Series  
AMD  
A D V A N C E I N F O R M A T I O N  
SWITCHING CHARACTERISTICS over COMMERCIAL Operating Ranges (continued)  
Advance Information  
16 MHz  
20 MHz  
25 MHz  
No.  
Parameter Description  
Test Conditions 1, 8  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
Asynchronous Input Pulse Width  
LSYNC and PSYNC  
All others  
17  
Note 5  
4T  
30  
25  
10  
8
Note 5  
Note 5  
4T  
25  
20  
8
4T  
20  
15  
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
UCLK Period  
Note 2  
Note 2  
Note 2  
Note 2  
Note 2  
Note 2  
Note 2  
Note 2  
Note 2  
Note 2  
Note 6  
18  
19  
20  
21  
22  
VCLK Period  
UCLK High Time  
VCLK High Time  
UCLK Low Time  
VCLK Low Time  
UCLK Rise time  
VCLK Rise time  
UCLK Fall Time  
VCLK Fall Time  
6
4
10  
8
8
6
6
4
0
3
3
0
3
3
0
3
3
0
0
0
0
3
0
3
0
3
0
3
0
3
0
3
23  
24  
Synchronous Output Valid Delay  
from VCLK Rise and Fall  
1
16  
1
14  
1
14  
Input Setup Time to VCLK Rise  
and Fall  
Notes 6, 7  
Notes 6, 7  
10  
0
9
0
9
0
ns  
ns  
25  
Input Hold Time to VCLK Rise  
and Fall  
Notes:  
1. All outputs driving 80 pF, measured at VOL = 1.5 V and VOH = 1.5 V. For higher capacitance:  
A. Add 1-ns output delay per 15 pF loading up to 150-pF total. The minimum delay from PIAOE to PIACSx is 0 ns if the  
capacitance loading on PIACSx is equal to or higher than the capacitance loading on PIAOE.  
B. Add 1-ns output delay per 25 pF loading up to 300-pF total.  
2. VCLK and UCLK can be driven with TTL inputs. UCLK must be tied High if it is unused.  
3. MEMCLK can drive an external load of 100 pF.  
4. ID31–ID0 and IDP3–IDP0 are sampled on the rising edge of MEMCLK for all non-DRAM accesses, simple DRAM accesses,  
and the first access of a DRAM page-mode access. ID31–ID0 and IDP3–IDP0 are sampled on the rising edge of CASx for all  
DRAM page-mode accesses, except the first access of a DRAM page-mode access. (See Figures 1–4 on pages 26–27.)  
A. Applies to ID31–ID0 and IDP3–IDP0 for simple DRAM accesses and the first access of a DRAM page-mode access.  
B. Applies to ID31–ID0 and IDP3–IDP0 for DRAM page-mode accesses, except the first access of a DRAM page-mode access.  
When ID31–ID0 and IDP3–IDP0 are sampled on CASx, there is no additional setup time required for ID31–ID0 and  
IDP3–IDP0 when the parity is enabled.  
5. LSYNC and PSYNC minimum width is two bit-times. A bit-time is one period of the internal video clock, which is determined by  
the CLKDIV field in the Video Control Register and VCLK.  
6. Active VCLK edge depends on the CLKI bit in the Video Control Register.  
7. LSYNC and PSYNC can be treated as synchronous signals by meeting the setup and hold times, though the synchronization  
delay still applies.  
8. The MEMCLK as an input option (i.e., MEMDRV pin is connected to GND) is not supported.  
9. INCLK is driven with CMOS input levels.  
10. When the user sets the TBO bit, the INCLK period must not be greater than the operating frequency of the part.  
11. For the 25 MHz part, INCLK = 20 ns minimum (50 MHz maximum) when turbo mode is disabled. When turbo mode is enabled,  
INCLK = 30 ns minimum (33 MHz maximum).  
24  
Am29240 Microcontroller Series  
A D V A N C E I N F O R M A T I O N  
AMD  
SWITCHING WAVEFORMS  
1
3
5
2
4
V
CC – 0.5 V  
INCLK  
2.5 V  
0.5 V  
6
8
9
10  
11  
VCC –1.0 V  
MEMCLK  
1.5 V  
0.8 V  
12a  
12b  
13  
SYNCHRONOUS  
OUTPUTS  
1.5 V  
14  
16a  
SYNCHRONOUS  
INPUTS  
1.5 V  
1.5 V  
Note: Applies to ID31–ID0 and  
IDP3–IDP0 for DRAM page-mode  
accesses, except the first access  
of a DRAM page-mode access.  
See Note 4 on page 24.  
15  
16b  
CASx  
17  
ASYNCHRONOUS  
INPUTS  
1.5 V  
1.5 V  
18  
19  
20  
22  
21  
2.0 V  
1.5 V  
0.8 V  
UCLK, VCLK  
23  
VCLK-RELATIVE  
OUTPUTS  
Note: Video Timing may be  
relative to VCLK falling edge  
if CLK = 1.  
25  
24  
VCLK-RELATIVE  
INPUTS  
1.5 V  
1.5 V  
Note:  
During AC testing, all inputs are driven at V = 0.4 V, V = 2.4 V.  
IL  
IH  
25  
Am29240 Microcontroller Series  
AMD  
A D V A N C E I N F O R M A T I O N  
SWITCHING WAVEFORMS (continued)  
1.5 V  
MEMCLK  
A14–A1  
R/W  
Row Address  
Column Address  
RAS3–RAS0  
CAS3–CAS0  
WE  
TR/OE  
16a  
14  
1.5 V  
ID31–ID0  
IDP3–IDP0  
1.5 V  
Note: The RAS3–RAS0 signals are asserted and deasserted on the falling edge of MEMCLK.  
Figure 1. Simple 3/1 DRAM Read Cycle, Am29240 Microcontroller Series  
MEMCLK  
A14–A1  
Row Address  
Column Address  
R/W  
RAS3–RAS0  
CAS3–CAS0  
WE  
TR/OE  
ID31–ID0  
IDP3–IDP0  
Data  
Figure 2. Simple 3/1 DRAM Write Cycle, Am29240 Microcontroller Series  
Am29240 Microcontroller Series  
26  
A D V A N C E I N F O R M A T I O N  
AMD  
SWITCHING WAVEFORMS (continued)  
1.5 V  
MEMCLK  
A14–A1  
+2/4  
+4/8  
+6/12  
Row Address  
Column Address  
R/W  
RAS3–RAS0  
CAS3–CAS0  
1.5 V  
1.5 V  
1.5 V  
WE  
TR/OE  
14  
16a  
15  
16b  
15  
16b  
15  
16b  
ID31–ID0  
IDP3–IDP0  
1.5 V  
1.5 V  
1.5 V  
1.5 V  
1.5 V  
Note: The RAS3–RAS0 signals are asserted and deasserted on the falling edge of MEMCLK.  
Figure 3. 3/1 DRAM Page-Mode Read, Am29240 Microcontroller Series  
MEMCLK  
+2/4  
+4/8  
+6/12  
Row Address  
Column Address  
A14–A1  
R/W  
RAS3–RAS0  
CAS3–CAS0  
WE  
TR/OE  
ID31–ID0  
IDP3–IDP0  
Data  
Data  
Data  
Data  
Figure 4. 3/1 DRAM Page-Mode Write, Am29240 Microcontroller Series  
Am29240 Microcontroller Series  
27  
AMD  
A D V A N C E I N F O R M A T I O N  
SWITCHING TEST CIRCUIT  
VL  
IOL = 3.2 mA  
Am29240 Microcontroller  
Pin Under Test  
CL  
V
VREF = 1.5 V  
IOH = 400 µA  
VH  
THERMAL CHARACTERISTICS  
The Am29240 microcontroller series is specified for op-  
eration with case temperature ranges for a commercial  
temperature device. Case temperature is measured at  
the top center of the PQFP package as shown in Figure 5.  
The various temperatures and thermal resistances can  
be determined using the equations shown in Figure 6  
along with information given in Table 2. (The variable P  
is power in watts.)  
θJA = θJC + θCA  
θJA  
θCA  
P = ICCOP freq VCC  
TJ = TC + P θJC  
TJ = TA + P θJA  
TC = TJ – P θJC  
TC = TA + P θCA  
TA = TJ – P θJA  
TA = TC – P θCA  
TC  
θJC  
θJA = θJC + θCA  
Figure 5. Thermal Resistance — °C/Watt  
Figure 6. Thermal Characteristics Equations  
Table 2. Thermal Characteristics (°C/Watt) Surface Mounted  
Parameter  
°C/Watt  
38  
8
θJA  
θJC  
θCA  
Junction-to-Ambient  
Junction-to-Case  
Case-to-Ambient  
30  
28  
Am29240 Microcontroller Series  
A D V A N C E I N F O R M A T I O N  
AMD  
PHYSICAL DIMENSIONS  
PQB 196, Trimmed and Formed  
Plastic Quad Flat Pack (measured in inches)  
1.495  
1.505  
1.475  
1.485  
1.345  
1.355  
Pin 196  
Pin 1  
Pin  
147  
Pin 1 ID  
1.345  
1.355  
1.475  
1.485  
–A–  
–B–  
1.495  
1.505  
Pin 49  
–D–  
Pin 98  
0.008  
0.012  
Top View  
See Detail  
X
0.025 Basic  
0.160  
0.180  
0.130  
0.150  
S
Seating  
Plane  
–C–  
S
1.20 Ref.  
0.020  
0.040  
Side View  
Note:  
Not to scale. For reference only.  
29  
Am29240 Microcontroller Series  
AMD  
A D V A N C E I N F O R M A T I O N  
PHYSICAL DIMENSIONS (continued)  
PQB 196, Trimmed and Formed  
Plastic Quad Flat Pack (measured in inches)  
0.008  
0.012  
0.006  
0.008  
Section S–S  
7° Typ.  
0.010 Min  
Flat Shoulder  
0.045 x 45° Chamfer  
0° Min  
0.015  
Pin 147  
0.008  
Gage Plane  
0.036  
0.010  
7° Typ.  
0.046  
0°≤08°  
0.065 Ref.  
Detail X  
Note:  
Not to scale. For reference only.  
30  
Am29240 Microcontroller Series  
A D V A N C E I N F O R M A T I O N  
AMD  
PHYSICAL DIMENSIONS (continued)  
Solder Land Recommendations—196-Lead PQFP  
1.500  
1.500  
0.075  
0.025  
0.012  
Note:  
Not to scale. For reference only.  
Trademarks  
Copyright 1995 Advanced Micro Devices, Inc. All rights reserved.  
AMD, the AMD logo, Am29000, MiniMON29K, and Fusion29K are registered trademarks; 29K, AMD Facts-On-Demand, Am29005, Am29030,  
Am29035, Am29040, Am29050, Am29200, Am29202, Am29205, Am29240, Am29243, Am29245, Traceable Cache, Scalable Clocking, and  
XRAY29K are trademarks of Advanced Micro Devices, Inc.  
High C is a registered trademark of MetaWare, Inc.  
Product names used in this publication are for identification purposes only and may be trademarks of their respective companies.  
31  
Am29240 Microcontroller Series  

相关型号:

AM29240-20KC

32-Bit Microprocessor
ETC

AM29240-20KC/W

32-Bit Microprocessor
ETC

AM29240-25KC

32-Bit Microprocessor
ETC

AM29240-25KC/W

32-Bit Microprocessor
ETC

AM29240-33KC

32-Bit Microprocessor
ETC

AM29240EH

Enhanced High-Performance RISC Microcontrollers
AMD

AM29243

High-Performance RISC Microcontrollers(333.44 k)
ETC

AM29243-20KC

32-Bit Microprocessor
ETC

AM29243-20KC/W

32-Bit Microprocessor
ETC

AM29243-25KC

32-Bit Microprocessor
ETC

AM29243-25KC/W

32-Bit Microprocessor
ETC

AM29243-33KC

32-Bit Microprocessor
ETC