APPHINT30 [ETC]

MIC2527 Voltage Drop. Packaging. and PCB Layout ; MIC2527的电压降。包装。和PCB布局\n
APPHINT30
型号: APPHINT30
厂家: ETC    ETC
描述:

MIC2527 Voltage Drop. Packaging. and PCB Layout
MIC2527的电压降。包装。和PCB布局\n

PC
文件: 总2页 (文件大小:47K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Application Hint 30  
MIC2527 Voltage Drop, Packaging and PCB Layout  
by Kris Jones and Kevin Lynn  
The MIC2527 was designed to provide cost-effective indi-  
vidual port protection and switching for USB self-powered  
hub designs. Analysis of voltage drops under several design  
scenarios shows that the most economical approach to  
meetingUSBvoltagerequirementsistousea300mswitch  
and a 3% power supply “biased up” to 5.1V. Most USB  
controllers can also operate with this supply since they are  
expected to operate from 4.0V to 5.25V.  
Self-Powered Hub Design  
The output voltage requirement for USB self-powered hubs  
is 4.75V minimum to 5.25V maximum under no-load and  
maximum-load (500mA) conditions. The output voltage is a  
functionofpowersupplyvoltageandtolerance, PCBconnec-  
tor and trace resistances, and switch resistance:  
4.75V (min) =  
V
(Power Supply) – V  
(PCB) – V  
DROP DROP  
(Switch)  
MIN  
Nominal Supply  
Minimum Maximum Maximum  
Todeterminethesetofpowersupplyvoltagesandtolerances  
which fall within the USB requirement, minimum and maxi-  
mum output voltages were calculated for nominal supplies in  
the range of 4.85V to 5.15V and with 1% to 5% tolerances.  
Voltage Tolerance Voltage  
Voltage  
R
ON  
1%  
2%  
3%  
4%  
5%  
1%  
2%  
3%  
4%  
5%  
1%  
2%  
3%  
4%  
5%  
1%  
2%  
3%  
4%  
5%  
1%  
2%  
3%  
4%  
5%  
1%  
2%  
3%  
4%  
5%  
1%  
2%  
3%  
4%  
5%  
4.8V  
4.75V  
4.7V  
4.9V  
40m  
0mΩ  
4.95V  
5V  
4.85V  
4.90V  
4.95V  
5.00V  
5.05V  
5.10V  
5.15V  
See Table 1. Power supplies which have V  
< 4.75V or  
MIN  
4.66V  
4.61V  
4.85V  
4.8V  
5.04V  
5.09V  
4.95V  
5V  
V
> 5.25V cannot be used for USB applications. Note  
MAX  
that, even for a supply centered at 5V, the supply tolerance  
must be better than 5% to allow for any losses due to PCB  
connector and trace resistance.  
140mΩ  
40mΩ  
0mΩ  
4.75V  
4.7V  
5.05V  
5.1V  
30mV is generally sufficient to account for voltage drops due  
to PCB connector and trace resistance. For recommenda-  
tions to minimize PCB connector and trace losses through  
proper board layout and design, please refer to Application  
Note 17 “Universal Serial Bus Power Management.”  
4.66V  
4.9V  
5.15V  
5V  
240mΩ  
140mΩ  
40mΩ  
0mΩ  
4.85V  
4.8V  
5.05V  
5.1V  
Using minimum power supply output voltages and a 30mV  
drop for the PCB, we can calculate the maximum on-resis-  
tance required for the switch as follows:  
4.75V  
4.7V  
5.15V  
5.2V  
4.95V  
4.9V  
5.05V  
5.1V  
340mΩ  
240mΩ  
140mΩ  
40mΩ  
0mΩ  
440mΩ  
340mΩ  
240mΩ  
140mΩ  
V
4.75V 0.03V  
MIN  
R
switch (max) =  
ON  
0.5A  
4.85V  
4.8V  
5.15V  
5.2V  
Calculated values for maximum switch resistance are shown  
in Table 1 for all usable power supply ranges. Power supply  
4.75V  
5V  
5.25V  
5.1V  
ranges requiring R to be 0are also not usable for USB  
ON  
since some voltage drop must be reserved for the switch.  
These calculations show that as the nominal power supply is  
increased, higher values of switch resistance, and therefore  
lower cost switches, can be used.  
4.95V  
4.9V  
5.15V  
5.2V  
4.85V  
4.8V  
5.25V  
5.3V  
A 3% power supply tolerance generally provides a good  
compromise between accuracy and cost. For the usable  
power supply ranges in Table 1, the most economical switch  
(340mmaximum) can be used with a 5.1V, ±3% supply.  
The MIC2527, with 300mmaximum on-resistance, was  
designed to meet this requirement.  
5.05V  
5V  
5.15V  
5.2V  
540mΩ  
440mΩ  
340mΩ  
4.95V  
4.9V  
5.25V  
5.3V  
4.85V  
5.1V  
5.36V  
5.2V  
The 5.1V 3% supply can be generated using a Micrel  
MIC29311-5.1BT voltage regulator. If a 5V, ±3% supply must  
be used, the MIC2524 with 140mon-resistance is ideally  
suited.  
640mΩ  
540mΩ  
5.05V  
5V  
5.25V  
5.3V  
4.94V  
4.89V  
5.36V  
5.41V  
Table 1. Maximum Allowed On-Resistance  
with 30mV PCB Voltage Drop  
Shading represents USB-compliant conditions.  
September 1999  
1
Application Hint 30  
Application Hint 30  
Micrel  
MIC29311-5.1  
LDO Regulator  
5.7V  
Ferrite  
Bead  
5.1V ±3%  
4.75V min.  
at 500mA  
IN  
OUT  
ERR  
GND  
EN  
VBUS  
D+  
10k  
47k  
Downstream  
33µF*  
USB  
Port 1  
3.3V USB Controller  
V+  
OVERCURRENT  
MIC2527  
0.01µF  
D–  
MIC5207-3.3  
LDO Regulator  
IN  
ON/OFF  
ENA  
500mA max.  
GND  
FLGA  
ENB  
IN  
IN  
OUT  
0.1  
µF  
OUTA  
4.7  
µF  
1µF  
VBUS  
D+  
FLGB  
ENC  
OUTB  
OUTC  
GND  
Downstream  
USB  
33µF*  
33µF*  
33µF*  
0.01µF  
0.01µF  
0.01µF  
D+  
D–  
D–  
Port 2  
FLGC OUTD  
500mA max.  
GND  
GND  
END  
GND  
GND  
FLGD  
VBUS  
D+  
Bold lines indicate  
0.1" wide, 1-oz. copper  
high-current traces.  
Downstream  
USB  
D–  
Port 3  
500mA max.  
GND  
* 33µF, 16V tantalum or 100µF, 10V electrolytic per port  
VBUS  
D+  
Downstream  
USB  
D–  
Port 4  
500mA max.  
GND  
Figure 1. MIC2527 Application  
Heat Sink Requirements  
To determine regulator heat sink requirements, calculate the  
regulator power dissipation at the applicable input voltage:  
0.050  
DIMENSIONS:  
INCHES  
P = I  
(1.02 × V – V  
)
OUT  
D
OUT  
IN  
0.200  
0.250  
where:  
V
< 7.0V  
IN  
At V = 7V:  
0.375  
IN  
P
= 2.1A (1.02 × 7V – 5.1V)  
D(max)  
0.020 MIN.  
BETWEEN  
PADS  
0.450  
P
= 4.3W  
D(max)  
Using the same formula for V = 5.4V, the minimum input  
IN  
voltage, P  
is 0.86W. For further information, see the  
D(max)  
MIC29311 data sheet.  
0.030 MAX.  
PAD WIDTH  
IftheaverageV isgreaterthan7V,a3Astepdownswitching  
IN  
regulator, such as the MIC4576, may replace the linear  
regulator, with reduced heat sink requirements.  
Packaging and Board Layout  
0.025 MIN.  
TRACE WIDTH  
The MIC2527 is offered in the 16-pin plastic DIP package for  
through-hole mounting and in the 16-pin 0.300-inch wide  
SOIC package for surface mounting. Micrel plans to add a  
third package option with the 16-pin 0.150-inch narrow SOIC  
package.  
0.050 (BASIC)  
PAD CENTERS  
Narrow SO-16 (M)  
Wide SO-16 (WM)  
For customers who would like to migrate from the 0.300-inch  
to the 0.150-inch SOIC package, it is possible to layout the  
PCB to take either package by using longer traces to the  
package leads.  
Figure 2. Dual-Package PCB Layout  
Figure 2 shows the nominal trace dimensions needed for a  
dual 0.150-inch/0.300-inch SOIC layout.  
Application Hint 30  
2
September 1999  

相关型号:

APPLICATIONHINT31

Ceramic Resonators for the MICRF001
ETC

APPLICATIONHINT32

Receiver Crystal Selection
ETC

APPLICATIONHINT34

MICRF002/RF011/RF022 Ceramic Resonators
ETC

APPLICATIONHINT35

MICRF002/RF022/RF011 Crystal Selection
ETC

APPLICATIONHINT36

Infrared to RF Data Link
ETC

APPLICATIONHINT38

MICRF001 Crystal Selection
ETC

APPLICATIONHINT42

QwikRadio?- Calculating the CTH Capacitor
ETC

APPLICATIONNOTE

Application Note - Builders Guide for 2P Capable Servers and Workstations
ETC

APPLICATIONNOTE2

MIC4807 80V 8-Channel Addressable Low-Side Driver
ETC

APPLICATIONNOTE22

MICRF001 Theory of Operation
ETC

APPLICATIONNOTE23

MICRF001 Antenna Design Tutorial
ETC

APPLICATIONNOTE28

Data Squelch Using the MICRF002
ETC