ASX340CS2C00SPEAD-E [ETC]

1/4-Inch Color NTSC/PAL Digital Image SOC with Overlay Processor;
ASX340CS2C00SPEAD-E
型号: ASX340CS2C00SPEAD-E
厂家: ETC    ETC
描述:

1/4-Inch Color NTSC/PAL Digital Image SOC with Overlay Processor

文件: 总78页 (文件大小:2762K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Aptina Confidential and Proprietary  
Preliminary‡  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Features  
1/4-Inch Color NTSC/PAL Digital Image SOC with  
Overlay Processor  
ASX340/MT9V139 Data Sheet  
For the latest data sheet, refer to Aptina’s Web site: www.aptina.com  
Features  
Table 1:  
Key Parameters  
Typical Value  
• Low-power image sensor with integrated image flow  
processor (IFP) and video encoder  
• 1/4-inch optical format, VGA resolution (640H x  
480V)  
Parameter  
Pixel size  
and type  
5.6μm x 5.6μm active pinned-photodiode  
with high-sensitivity mode for low-light  
conditions  
• 2x upscaling zoom and pan control  
40 additional columns and 36 additional rows to  
compensate for lens alignment tolerances  
Sensor format  
728H x 560V (includes 36 rows and 40  
columns for lens alignment)  
• Option to use single 2.8V power supply with off-chip  
bypass transistor  
• Overlay generator for dynamic bitmap overlay  
• Integrated video encoder for NTSC/PAL with overlay  
capability and 10-bit I-DAC  
• Integrated microcontroller for flexibility  
• On-chip image flow processor performs  
sophisticated processing, such as color recovery and  
correction, sharpening, gamma, lens shading  
correction, on-the-fly defect correction, auto white  
balancing, and auto exposure  
NTSC output  
PAL output  
720H x 480V  
720H x 576V  
Imaging area  
Optical format  
Frame rate  
Total array size: 3.584mm x 2.688mm  
¼-inch  
50/60 fields/sec  
Sensor scan mode  
Color filter array  
Shutter type  
Progressive scan  
RGB standard Bayer  
Electronic rolling shutter (ERS)  
Automatic Functions Exposure, white balance, black level  
offset correction, flicker detection and  
avoidance, color saturation control, on-  
the-fly defect correction, aperture  
correction  
• Auto black level calibration  
• 10-bit, on-chip analog-to-digital converter (ADC)  
• Internal master clock generated by on-chip phase-  
locked loop (PLL)  
Two-wire serial programming interface  
• Interface to low-cost EEPROM and Flash through SPI  
bus  
Programmable  
Controls  
Exposure, white balance, horizontal and  
vertical blanking, color, sharpness,  
gamma correction, lens shading  
correction, horizontal and vertical image  
flip, zoom, windowing, sampling rates,  
GPIO control  
• High-level host command interface  
• Stand-alone operation support  
• Comprehensive tool support for overlay generation  
and lens correction setup  
• Development system with DevWare  
Key parameters are continued on next page.  
Applications  
• Analog surveillance CCTV  
• Surveillance network IP camera  
See “Ordering Information” on page 3.  
See details of new features on page 3.  
PDF: 171981479/Source: 8304342517Source:8304342517  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
Aptina reserves the right to change products or specifications without notice.  
© 2010 Aptina Imaging Corporation All rights reserved.  
1
‡Products and specifications discussed herein are for evaluation and reference purposes only and are subject to change by Aptina without  
notice. Products are only warranted by Aptina to meet Aptina’s production data sheet specifications.  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Applications  
Table 2:  
Key Parameters (continued)  
Parameter  
Typical Value  
Overlay Support  
Utilizes SPI interface to load overlay data from external flash/EEPROM memory with the  
following features:  
•Available in Analog output and BT656 Digital output  
•Overlay Size 360 x 480 pixel rendered into 720 x 480 (NTSC) or 720 x 576 (PAL)  
•Up to four (4) overlays may be blended simultaneously  
•Selectable readout: Rotating order user selected  
•Dynamic scenes by loading pre-rendered frames from external memory  
•Palette of 32 colors out of 64,000  
•8 colors per bitmap  
•Blend factor dynamically programmable for smooth transitions  
•Fast Update rate of up to 30 fps  
•Every bitmap object has independent x/y position  
•Statistic Engine to calibrate optical alignment  
•Number Generator  
Windowing  
Programmable to any size  
Analog gain range  
ADC  
0.5–80x  
10-bit, on-chip  
Output interface  
Output data formats1  
Analog composite video out, single-ended or differential; 8-, 10-bit parallel digital output  
Digital: Raw Bayer 8-,10-bit, CCIR656, 565RGB, 555RGB, 444RGB  
Parallel: 27 MB/s  
NTSC: 60 fields/sec  
PAL: 50 fields/sec  
Data rate  
Control interface  
Two-wire I/F for register interface plus high-level command exchange. SPI port to interface  
to external memory to load overlay data, register settings, or firmware extensions.  
Input clock for PLL  
27 MHz  
SPI Clock Frequencies  
1.6875 – 18 MHz, programmable  
Analog: 2.8V 5%  
Supply voltage  
Core: 1.8V 5%  
IO: 2.8V 5%  
Power  
consumption  
Analog output only  
Digital output only  
Full resolution at 60 fps: 236 mW  
Full resolution at 60 fps: 234 mW  
Package  
63-cBGA, 7 mm x 7 mm 0.65mm pin pitch  
63- CSP, 6.198 x 6.178 mm, 0.65mm pin pitch  
Ambient temperature  
Operating: -30°C to 70°C  
Storage: –50°C to +150°C  
Dark Current  
< 200e/s at 60°C with a gain of 1  
Fixed pattern Column  
< 2%  
noise  
Row  
< 2%  
Responsivity  
16.5 V/lux-s at 550nm  
46 dB  
Signal to noise ratio (S/N)  
Pixel dynamic range  
74.8 dB  
PDF: 171981479/Source: 8304342517  
Aptina reserves the right to change products or specifications without notice.  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
2
© 2010 Aptina Imaging Corporation All rights reserved.  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Ordering Information  
Ordering Information  
Table 3:  
Available Part Numbers  
Part Number Description  
ASX340CS2C00SPEA0-E  
ASX340CS2C00SPEA0  
ASX340CS2C00SPEAH-E  
ASX340CS2C00SPEAD-E  
MT9V139I83STC ES  
63-ball cBGA, AS/ES  
63-ball cBGA, MP  
63-ball cBGA, Headboard  
63-ball cBGA, Demo  
CSP ES part number  
Demo kit  
MT9V139I83STCD ES  
MT9V139I83STCH ES  
Head Board  
New Features  
Automatic 50hz/60hz flicker detection  
2x upscaling zoom and pan/tilt control  
Independent control of colorburst parameters in the NTSC/PAL encoder  
Horizontal field of view adjustment between 700 and 720 pixels on the analog output  
Option to use single 2.8V power supply with off-chip bypass transistor  
SPI EEPROM support for lower cost system design.  
PDF: 171981479/Source: 8304342517  
Aptina reserves the right to change products or specifications without notice.  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
3
© 2010 Aptina Imaging Corporation All rights reserved.  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Table of Contents  
Table of Contents  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
New Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
Internal Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
System Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
Crystal Usage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Pin Descriptions and Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
SOC Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
Detailed Architecture Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
Sensor Core. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
Sensor Pixel Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
Image Flow Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
Test Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
NTSC/PAL Test Pattern Generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
CCIR-656 Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Black Level Subtraction and Digital Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
Positional Gain Adjustments (PGA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
The Correction Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
Color Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
Color Correction and Aperture Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
Gamma Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
RGB to YUV Conversion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
Color Kill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
YUV Color Filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
YUV-to-RGB/YUV Conversion and Output Formatting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Output Format and Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
YUV/RGB Data Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Uncompressed 10-Bit Bypass Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Readout Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Output Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
Output Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
Zoom Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
FOV Stretch Support. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
Usage Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Multicamera Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
External Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
Device Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
Power Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Supported SPI Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
Supported SPI Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
Host Command Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Host Command Process Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Command Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Issue the SYSMGR_SET_STATE Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Summary of Host Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Slave Two-Wire Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
PDF: 171981479/Source: 8304342517  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
Aptina reserves the right to change products or specifications without notice.  
© 2010 Aptina Imaging Corporation All rights reserved.  
4
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Table of Contents  
Start Condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
Data Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
Slave Address/Data Direction Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Message Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Acknowledge Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
No-Acknowledge Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Stop Condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Typical Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
Single READ from Random Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
Single READ from Current Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
Sequential READ, Start from Random Location. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
Sequential READ, Start from Current Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
Single Write to Random Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
Sequential WRITE, Start at Random Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
Overlay Capability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
Serial Memory Partition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
External Memory Speed Requirement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
Overlay Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47  
Overlay Character Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48  
Character Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
Character Generator Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50  
Full Character Set for Overlay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50  
Modes and Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
Composite Video Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
NTSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
PAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
Single-Ended and Differential Composite Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
Parallel Output (DOUT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52  
Reset and Clocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
Clocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
Floating Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
Output Data Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
I/O Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
I/O Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
Digital Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
Slew Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
Configuration Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
Electrical Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
Power Consumption, Operating Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69  
NTSC Signal Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70  
Two-Wire Serial Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74  
Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78  
PDF: 171981479/Source: 8304342517  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
Aptina reserves the right to change products or specifications without notice.  
© 2010 Aptina Imaging Corporation All rights reserved.  
5
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
List of Figures  
List of Figures  
Figure 1:  
Figure 2:  
Figure 3:  
Figure 4:  
Figure 5:  
Figure 6:  
Figure 7:  
Figure 8:  
Internal Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
System Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
Using a Crystal Instead of an External Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Sensor Core Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
Pixel Array Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
Image Capture Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
Pixel Color Pattern Detail (top right corner). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
Spatial Illustration of Image Readout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
Color Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
Color Bars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Gamma Correction Curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
Auto-Config Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Flash Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Usage Mode 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
Host Mode with Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
Host Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
Multicamera System Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
External Signal Processing Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
Power-Up Sequence – Configuration Options Flow Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Interface Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Single READ from Random Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
Single Read from Current Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
Sequential READ, Start from Random Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
Sequential READ, Start from Current Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
Single WRITE to Random Location. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
Sequential WRITE, Start at Random Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
Overlay Data Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
Memory Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
Overlay Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47  
Internal Block Diagram Overlay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48  
Example of Character Descriptor 0 Stored in ROM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
Full Character Set for Overlay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50  
Single-Ended Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
Differential Connection—Grounded Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52  
CCIR656 8-Bit Parallel Interface Format for 525/60 (625/50) Video Systems . . . . . . . . . . . . . . . . . . . .52  
Typical CCIR656 Vertical Blanking Intervals for 525/60 Video System. . . . . . . . . . . . . . . . . . . . . . . . . .53  
Typical CCIR656 Vertical Blanking Intervals for 625/50 Video System. . . . . . . . . . . . . . . . . . . . . . . . . .54  
Primary Clock Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
Typical I/O Equivalent Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
NTSC Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
Serial Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
Digital Output I/O Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
Slew Rate Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
Configuration Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
Power Up Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62  
Power Down Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
FRAME_SYNC to FRAME_VALID/LINE_VALID. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
Reset to SPI Access Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
Reset to Serial Access Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
Reset to AE/AWB Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
SPI Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
Video Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
Equivalent Pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72  
V Pulse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73  
Two-Wire Serial Bus Timing Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74  
63-Ball cBGA Package Outline Drawing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76  
Figure 9:  
Figure 10:  
Figure 11:  
Figure 12:  
Figure 13:  
Figure 14:  
Figure 15:  
Figure 16:  
Figure 17:  
Figure 18:  
Figure 19:  
Figure 20:  
Figure 21:  
Figure 22:  
Figure 23:  
Figure 24:  
Figure 25:  
Figure 26:  
Figure 27:  
Figure 28:  
Figure 29:  
Figure 30:  
Figure 31:  
Figure 32:  
Figure 33:  
Figure 34:  
Figure 35:  
Figure 36:  
Figure 37:  
Figure 38:  
Figure 39:  
Figure 40:  
Figure 41:  
Figure 42:  
Figure 43:  
Figure 44:  
Figure 45:  
Figure 46:  
Figure 47:  
Figure 48:  
Figure 49:  
Figure 50:  
Figure 51:  
Figure 52:  
Figure 53:  
Figure 54:  
Figure 55:  
Figure 56:  
PDF: 171981479/Source: 8304342517  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
Aptina reserves the right to change products or specifications without notice.  
© 2010 Aptina Imaging Corporation All rights reserved.  
6
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
List of Figures  
Figure 57:  
63-Ball CSP Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77  
PDF: 171981479/Source: 8304342517  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
Aptina reserves the right to change products or specifications without notice.  
© 2010 Aptina Imaging Corporation All rights reserved.  
7
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
List of Tables  
List of Tables  
Table 1:  
Table 2:  
Table 3:  
Table 4:  
Table 5:  
Table 6:  
Table 7:  
Table 8:  
Key Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
Key Parameters (continued). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2  
Available Part Numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
Reset/Default State of Interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
EIA Color Bars (NTSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
EBU Color Bars (PAL). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
NTSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
PAL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
YCbCr Output Data Ordering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
RGB Ordering in Default Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
2-Byte Bayer Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
SPI Flash Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
SPI Commands Supported . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
GPIO Bit Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
System Manager Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Overlay Host Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
GPIO Host Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Flash Manager Host Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Sequencer Host Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Patch Loader Host Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Miscellaneous Host Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Calibration Stats Host Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Two-Wire Interface ID Address Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
Transfer Time Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
Character Generator Details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50  
Field, Vertical Blanking, EAV, and SAV States 525/60 Video System . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
Field, Vertical Blanking, EAV, and SAV States for 625/50 Video System . . . . . . . . . . . . . . . . . . . . . . . . .54  
Output Data Ordering in DOUT RGB Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
Output Data Ordering in Sensor Stand-Alone Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
Parallel Digital Output I/O Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
Slew Rate for PIXCLK and DOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
Configuration Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
Power Up Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62  
Power Down Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
FRAME_SYNC to FRAME_VALID/LINE_VALID Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
RESET_BAR Delay Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
SPI Data Setup and Hold Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66  
Electrical Characteristics and Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66  
Video DAC Electrical Characteristics–Single-Ended Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67  
Video DAC Electrical Characteristics–Differential Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67  
Digital I/O Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
Power Consumption – Condition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69  
Power Consumption – Condition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69  
NTSC Signal Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70  
Video Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
Equivalent Pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72  
V Pulse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73  
Two-Wire Serial Bus Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74  
Table 9:  
Table 10:  
Table 11:  
Table 12:  
Table 13:  
Table 14:  
Table 15:  
Table 16:  
Table 17:  
Table 18:  
Table 19:  
Table 20:  
Table 21:  
Table 22:  
Table 23:  
Table 24:  
Table 25:  
Table 26:  
Table 27:  
Table 28:  
Table 29:  
Table 30:  
Table 31:  
Table 32:  
Table 33:  
Table 34:  
Table 35:  
Table 36:  
Table 37:  
Table 38:  
Table 39:  
Table 40:  
Table 41:  
Table 42:  
Table 43:  
Table 44:  
Table 45:  
Table 46:  
Table 47:  
Table 48:  
Table 49:  
Table 50:  
Table 51:  
PDF: 171981479/Source: 8304342517  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
Aptina reserves the right to change products or specifications without notice.  
© 2010 Aptina Imaging Corporation All rights reserved.  
8
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
General Description  
General Description  
The Aptina® ASX340/MT9V139 is a VGA-format, single-chip active-pixel digital image  
sensor for surveillance applications. It captures high-quality color images at VGA resolu-  
tion and outputs NTSC or PAL interlaced composite video.  
The VGA image sensor features Aptinas breakthrough low-noise imaging technology  
that achieves superior image quality (based on signal-to-noise ratio and low-light sensi-  
tivity) while maintaining the inherent size, cost, low power, and integration advantages  
of Aptina's advanced active pixel process technology.  
The ASX340/MT9V139 is a complete camera-on-a-chip. It incorporates sophisticated  
camera functions on-chip and is programmable through a simple two-wire serial inter-  
face or by an attached SPI EEPROM or Flash memory that contains setup information  
that may be loaded automatically at startup.  
The ASX340/MT9V139 performs sophisticated processing functions including color  
recovery, color correction, sharpening, programmable gamma correction, auto black  
reference clamping, auto exposure, 50Hz/60Hz flicker detection and avoidance, lens  
shading correction, auto white balance (AWB), and on-the-fly defect identification and  
correction.  
The ASX340/MT9V139 outputs interlaced-scan images at 60 or 50 Fields per Second,  
supporting both NTSC and PAL video formats. The image data can be output on one or  
two output ports:  
Composite analog video (single-ended and differential output support)  
Parallel 8-, 10-bit digital  
Architecture  
Internal Block Diagram  
Figure 1:  
Internal Block Diagram  
SPI  
2. 8V  
1 .8 V  
Two-Wire I/F  
2
4
Camera Control  
SPI & 2W I/F  
Interface  
AWB  
AE  
640 x 480 Active Array  
Image Flow Processor  
Overlay  
Graphics  
Generation  
8
10  
Color & Gamma Correction  
Color Space Conversion  
Edge Enhancement  
¼” VGA ROI  
BT -656  
@ 60 frames per sec.  
NTSC /  
PAL  
VideoEncoder  
DAC  
PDF: 171981479/Source: 8304342517  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
Aptina reserves the right to change products or specifications without notice.  
© 2010 Aptina Imaging Corporation All rights reserved.  
9
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Architecture  
System Block Diagram  
The system block diagram will depend on the application. The system block diagram in  
Figure 2 shows all components; optional peripheral components are highlighted. The  
optional microcontroller controls the ASX340/MT9V139 sensor using the two-wire serial  
bus. Optional components will vary by application. For further details, see the ASX340/  
MT9V139 Register and Variable Reference.  
Figure 2:  
System Block Diagram  
27 MHz  
EXTCLK  
XTAL  
RESET_BAR  
FRAME _SYNC  
Serial Data  
EEPROM/Flash  
1KB - 16MB  
System Bus  
SPI  
μC  
2WIRE I/F  
DAC_REF  
LP Filter  
Composite  
Video  
PAL /NTSC  
DAC _POS  
DAC _NEG  
4.7kΩ  
75Ω  
V
DD_DAC (2.8V)  
DD_PLL (2.8.V)  
DD_IO (2.8V)  
V
V
2.8V  
.
Optional  
V
AA _PIX (2.8V)  
V
AA (2.8V)  
V
DD (1.8V)  
V
REG_BASE  
]
D
OUT  
[7:0  
CCIR 656/  
GPO  
D
OUT_  
LSB0, 1  
PIXCLK  
FRAME_VALID  
LINE_VALID  
PDF: 171981479/Source: 8304342517  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
Aptina reserves the right to change products or specifications without notice.  
© 2010 Aptina Imaging Corporation All rights reserved.  
10  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Architecture  
Crystal Usage  
As an alternative to using an external oscillator, a fundamental 27 MHz crystal may be  
connected between EXTCLK and XTAL. Two small loading capacitors of 10–22 pF of NPO  
dielectric should be added as shown in Figure 3.  
Aptina does not recommend using the crystal option for applications above 85°C. A  
crystal oscillator with temperature compensation is recommended.  
Figure 3:  
Using a Crystal Instead of an External Oscillator  
Sensor  
18pF -NPO  
EXTCLK  
XTAL  
27.000 MHz  
18pF -NPO  
Note:  
Value of load cap is Xtal dependent. Xtal with small load cap is recommended.  
PDF: 171981479/Source: 8304342517  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
Aptina reserves the right to change products or specifications without notice.  
© 2010 Aptina Imaging Corporation All rights reserved.  
11  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Pin Descriptions and Assignments  
Pin Descriptions and Assignments  
Table 4:  
Pin Descriptions  
Pin Name  
Pin Number  
Type  
Description  
Clock and Reset  
A2  
EXTCLK  
Input  
Master input clock (27MHz): This can either be a square-wave generated from an  
oscillator (in which case the XTAL input must be left unconnected) or connected  
directly to a crystal.  
B1  
D2  
XTAL  
Output  
Input  
If EXTCLK is connected to one pin of a crystal, this signal is connected to the other pin;  
otherwise this signal must be left unconnected.  
RESET_BAR  
Asynchronous active-low reset: When asserted, the device will return all interfaces to  
their reset state. When released, the device will initiate the boot sequence. This signal  
has an internal pull-up resistor.  
E1  
FRAME_SYNC  
Input  
This input can be used to set the output timing of the ASX340/MT9V139 to a fixed  
point in the frame.  
The input buffer associated with this input is permanently enabled. This signal must  
be connected to GND if not used.  
Register Interface  
F1  
F2  
E2  
SCLK  
SDATA  
SADDR  
Input  
Input/Output  
Input  
These two signals implement serial communications protocol for access to the internal  
registers and variables.  
This signal controls the device ID that will respond to serial communication  
commands.  
Two-wire serial interface device ID selection:  
0: 0x90  
1: 0xBA  
SPI Interface  
D4  
SPI_SCLK  
Output  
Clock output for interfacing to an external SPI memory such as Flash/EEPROM. Tristate  
when RESET_BAR is asserted.  
E4  
H3  
H2  
SPI_SDI  
SPI_SDO  
SPI_CS_N  
Input  
Output  
Output  
Data in from SPI device. This signal has an internal pull-up resistor.  
Data out to SPI device. Tristate when RESET_BAR is asserted.  
Chip selects to SPI device. Tristate when RESET_BAR is asserted.  
(Parallel) Pixel Data Output  
F7  
G7  
E6  
FRAME_VALID  
LINE_VALID  
PIXCLK  
Input/Output Pixel data from the ASX340/MT9V139 can be routed out on this interface and  
processed externally.  
Input/Output  
Output  
To save power, these signals are driven to a constant logic level unless the parallel pixel  
data output or alternate (GPIO) function is enabled for these pins. For more  
information see Table 16 on page 33.  
F8, D6, D7,  
C6, C7, B6,  
B7, A6  
DOUT[7:0]  
Output  
This interface is disabled by default.  
The slew rate of these outputs is programmable.  
These signals can also be used as general purpose input/outputs.  
B3  
C2  
DOUT_LSB1  
DOUT_LSB0  
Input/Output When the sensor core is running in bypass mode, it will generate 10 bits of output data  
per pixel. These two pins make the two LSB of pixel data available externally. Leave  
DOUT_LSB1 unconnected if not used. To save power, these signals are driven to a  
constant logic level unless the sensor core is running in bypass mode or the alternate  
function is enabled for these pins. For more information see Table 16,  
Input/Output  
“GPIO Bit Descriptions,” on page 38. The slew rate of these outputs is programmable.  
PDF: 171981479/Source: 8304342517  
Aptina reserves the right to change products or specifications without notice.  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
12  
© 2010 Aptina Imaging Corporation All rights reserved.  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Pin Descriptions and Assignments  
Table 4:  
Pin Descriptions (continued)  
Pin Number  
Pin Name  
Type  
Description  
Composite Video Output  
F5  
DAC_POS  
Output  
Positive video DAC output in differential mode.  
Video DAC output in single-ended mode. This interface is enabled by default using  
NTSC/PAL signalling. For applications where composite video output is not required,  
the video DAC can be placed in a power-down state under software control.  
G5  
A4  
DAC_NEG  
DAC_REF  
Output  
Output  
Negative video DAC output in differential mode.  
External reference resistor for the video DAC.  
Manufacturing Test Interface  
D3  
G2  
F3  
TDI  
TDO  
Input  
Output  
Input  
Input  
Input  
Input  
Input  
JTAG Test pin (Reserved for Test Mode)  
JTAG Test pin (Reserved for Test Mode)  
JTAG Test pin (Reserved for Test Mode)  
JTAG Test pin (Reserved for Test Mode)  
Connect to GND.  
TMS  
C3  
C4  
G6  
F6  
TCK  
TRST_N  
ATEST1  
ATEST2  
Analog test input. Connect to GND in normal operation.  
Analog test input. Connect to GND in normal operation.  
GPIO  
C1  
A3  
GPIO12  
GPIO13  
Input/Output Dedicated general-purpose input/output pin.  
Input/Output Dedicated general-purpose input/output pin.  
Power  
G4  
VREG_BASE  
VDD  
Supply  
Supply  
Voltage regulator control. Leave floating if not used.  
A5, A7, D8,  
E7, G1, G3  
Supply for VDD core: 1.8V nominal. Can be connected to the output of the transistor of  
the off-chip bypass transistor or a external 1.8V power supply.  
B2, B8, C8,  
E3, E8, G8,  
H8  
VDD_IO  
Supply  
Supply for digital IOs: 2.8V nominal.  
H5  
A8  
VDD_DAC  
VDD_PLL  
VAA  
Supply  
Supply  
Supply  
Supply  
Supply for video DAC: 2.8V nominal.  
Supply for PLL: 2.8V nominal.  
B4, H6  
H7  
Analog power: 2.8V nominal.  
VAA_PIX  
Reserved  
DGND  
Analog pixel array power: 2.8V nominal. Must be at same voltage potential as VAA.  
H4  
B5, C5, D1,  
D5, H1  
Supply  
Supply  
Digital ground.  
Analog ground.  
E5, F4  
AGND  
PDF: 171981479/Source: 8304342517  
Aptina reserves the right to change products or specifications without notice.  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
13  
© 2010 Aptina Imaging Corporation All rights reserved.  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Pin Descriptions and Assignments  
Pin Assignments  
Pin 1 is not populated with a ball. That allows the device to be identified by an additional  
marking.  
Table 5:  
Pin Assignments  
1
2
3
4
5
6
7
8
A
B
C
D
EXTCLK  
VDD_IO  
DOUT_LSB0  
RESET_BAR  
SADDR  
GPIO13  
DOUT_LSB1  
TCK  
DAC_REF  
VAA  
VDD  
DOUT0  
DOUT2  
DOUT4  
DOUT6  
PIXCLK  
VDD  
VDD_PLL  
VDD_IO  
VDD_IO  
VDD  
XTAL  
GPIO12  
GND  
GND  
GND  
GND  
AGND  
DOUT1  
DOUT3  
DOUT5  
VDD  
TRST_N  
SPI_SCLK  
SPI_SDI  
AGND  
TDI  
E
F
FRAME_SYNC  
SCLK  
VDD_IO  
TMS  
VDD_IO  
DOUT7  
VDD_IO  
VDD_IO  
SDATA  
DAC_POS  
DAC_NEG  
VDD_DAC  
ATEST2  
ATEST1  
VAA  
FRAME_VALID  
LINE_VALID  
VAA_PIX  
G
H
VDD  
TDO  
VDD  
VREG_BASE  
Reserved  
GND  
SPI_CS_N  
SPI_SDO  
Table 6:  
Reset/Default State of Interfaces  
Reset State  
Name  
Default State  
Notes  
EXTCLK  
XTAL  
Clock running or stopped  
Clock running  
N/A  
Input  
Input  
Input  
N/A  
Asserted  
N/A  
RESET_BAR  
SCLK  
De-asserted  
N/A  
Input. Must always be driven to a valid logic  
level.  
SDATA  
SADDR  
High impedance  
N/A  
High impedance  
N/A  
Input/Output. A valid logic level should be  
established by pull-up resistor.  
Input. Must always be driven to a valid logic  
level. Must be permanently tied to VDD_IO or  
GND.  
SPI_SCLK  
SPI_SDI  
High impedance.  
Internal pull-up enabled.  
High impedance  
Driven, logic 0  
Internal pull-up enabled  
Driven, logic 0  
Output. Output enable is R0x0032[13].  
Input. Internal pull-up is permanently enabled.  
Output enable is R0x0032[13].  
SPI_SDO  
SPI_CS_N  
FRAME_VALID  
LINE_VALID  
High impedance  
Driven, logic 1  
Output enable is R0x0032[13].  
High impedance  
High impedance  
Input/Output. This interface disabled by default.  
Input buffers (used for GPIO function) powered  
down by default, so these pins can be left  
unconnected (floating). After reset, these pins  
are powered up, sampled, then powered down  
again as part of the auto-configuration  
mechanism. See Note 2.  
PIXCLK  
DOUT7  
DOUT6  
DOUT5  
DOUT4  
DOUT3  
DOUT2  
DOUT1  
DOUT0  
High impedance  
Driven, logic 0  
Output. This interface disabled by default.  
See Note 1.  
PDF: 171981479/Source: 8304342517  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
Aptina reserves the right to change products or specifications without notice.  
© 2010 Aptina Imaging Corporation All rights reserved.  
14  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Pin Descriptions and Assignments  
Table 6:  
Name  
Reset/Default State of Interfaces (continued)  
Reset State  
Default State  
Notes  
DOUT_LSB1  
DOUT_LSB0  
High impedance  
High impedance  
High impedance  
HIgh impedance  
Input/Output. This interface disabled by default.  
Input buffers (used for GPIO function) powered  
down by default, so these pins can be left  
unconnected (floating). After reset, these pins  
are powered-up, sampled, then powered down  
again as part of the auto-configuration  
mechanism.  
DAC_POS  
DAC_NEG  
DAC_REF  
TDI  
High impedance  
Driven  
Output. Interface disabled by hardware reset  
and enabled by default when the device starts  
streaming.  
Internal pull-up enabled  
High impedance  
Internal pull-up enabled  
High impedance  
Input. Internal pull-up means that this pin can  
be left unconnected (floating).  
TDO  
TMS  
Output. Driven only during appropriate parts of  
the JTAG shifter sequence.  
Internal pull-up enabled  
Internal pull-up enabled  
N/A  
Internal pull-up enabled  
Internal pull-up enabled  
N/A  
Input. Internal pull-up means that this pin can  
be left unconnected (floating).  
TCK  
Input. Internal pull-up means that this pin can  
be left unconnected (floating).  
TRST_N  
Input. Must always be driven to a valid logic  
level. Must be driven to GND for normal  
operation.  
FRAME_SYNC  
GPIO12  
N/A  
N/A  
Input. Must always be driven to a valid logic  
level. Must be driven to GND for normal  
operation.  
High impedance  
High impedance  
Input/Output. This interface disabled by default.  
Input buffers (used for GPIO function) powered  
down by default, so these pins can be left  
unconnected (floating). After reset, these pins  
are powered-up, sampled, then powered down  
again as part of the auto-configuration  
mechanism.  
GPIO13  
High impedance  
High impedance  
Input/Output. This interface disabled by default.  
Input buffers (used for GPIO function) powered  
down by default, so these pins can be left  
unconnected (floating). After reset, these pins  
are powered-up, sampled, then powered down  
again as part of the auto-configuration  
mechanism.  
ATEST1  
ATEST2  
N/A  
N/A  
N/A  
N/A  
Must be driven to GND for normal operation.  
Must be driven to GND for normal operation.  
Notes: 1. The reason for defining the default state as logic 0 rather than high impedance is this: when wired in a  
system (for example, on our demo boards), these outputs will be connected, and the inputs to which  
they are connected will want to see a valid logic level. No current drain should result from driving these  
to a valid logic level (unless there is a pull-up at the system level).  
2. These pads have their input circuitry powered down, but they are not output-enabled. Therefore, they  
can be left floating but they will not drive a valid logic level to an attached device.  
PDF: 171981479/Source: 8304342517  
Aptina reserves the right to change products or specifications without notice.  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
15  
© 2010 Aptina Imaging Corporation All rights reserved.  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
SOC Description  
SOC Description  
Detailed Architecture Overview  
Sensor Core  
The sensor consists of a pixel array, an analog readout chain, a 10-bit ADC with programmable  
gain and black offset, and timing and control as illustrated in Figure 4.  
Figure 4:  
Sensor Core Block Diagram  
Control Register  
Communication  
Bus  
Active Pixel  
to IFP  
Sensor (APS)  
Array  
Timing and Control  
Clock  
Sync  
Signals  
10-Bit Data  
to IFP  
Analog Processing  
ADC  
Pixel Array Structure  
The sensor core pixel array is configured as 792 columns by 560 rows, as shown in  
Figure 5.  
Figure 5:  
Pixel Array Description  
(64, 0)  
(104, 36)  
lens alignment rows  
demosaic rows  
Pixel logical address = (0, 0)  
Active pixel array  
640 x 480  
Pixel logical address = (791, 559)  
demosaic rows  
lens alignment rows  
(751, 523)  
(not to scale)  
Black rows used internally for automatic black level adjustment are not addressed by  
default, but can be read out in raw output mode via a register setting.  
There are 792 columns by 560 rows of optically-active pixels that include a pixel  
boundary around the VGA (640 x 480) image to avoid boundary effects during color  
interpolation and correction.  
PDF: 171981479/Source: 8304342517  
Aptina reserves the right to change products or specifications without notice.  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
16  
© 2010 Aptina Imaging Corporation All rights reserved.  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
SOC Description  
Figure 6 illustrates the process of capturing the image. The original scene is flipped and  
mirrored by the sensor optics. Sensor readout starts at the lower right corner. The image  
is presented in true orientation by the output display.  
Figure 6:  
Image Capture Example  
SCENE  
(Front view)  
OPTICS  
IMAGE SENSOR  
(Rear view)  
IMAGE CAPTURE  
Row by Row  
Start Rasterization  
Start Readout  
IMAGE RENDERING  
DISPLAY  
(Front view)  
PDF: 171981479/Source: 8304342517  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
Aptina reserves the right to change products or specifications without notice.  
© 2010 Aptina Imaging Corporation All rights reserved.  
17  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Sensor Pixel Array  
Sensor Pixel Array  
The active pixel array is 640 x 480 pixels. In addition, there are 72 rows and 80 columns  
for lens alignment and 8 rows and 8 columns for demosaic.  
Figure 7:  
Pixel Color Pattern Detail (top right corner)  
Column Readout Direction  
.
.
Black Pixels  
First Lens Alignment  
.
Pixel  
(64, 0)  
G
B
G
B
G
B
R
G
R
G
B
G
B
G
B
R
G
R
G
B
G
B
G
B
R
G
R
G
B
G
B
G
B
Row  
Readout  
Direction  
...  
G
R
G
R
G
R
G
G
G
Output Data Format  
The sensor core image data are read out in progressive scan order. Valid image data are  
surrounded by horizontal and vertical blanking, shown in Figure 8.  
For NTSC output, the horizontal size is stretched from 640 to 720 pixels. The vertical size  
is 243 pixels per field; 240 image pixels and 3 dark pixels that are located at the bottom of  
the image field.  
For PAL output, the horizontal size is also stretched from 640 to 720 pixels. The vertical  
size is 288 pixels per field.  
PDF: 171981479/Source: 8304342517  
Aptina reserves the right to change products or specifications without notice.  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
18  
© 2010 Aptina Imaging Corporation All rights reserved.  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Sensor Pixel Array  
Figure 8:  
Spatial Illustration of Image Readout  
P0,0 P0,1 P0,2.....................................P0,n-1 P0,n  
P2,0 P2,1 P2,2.....................................P2,n-1 P2,n  
00 00 00 .................. 00 00 00  
00 00 00 .................. 00 00 00  
Horizontal  
Blanking  
Valid Image Odd Field  
Pm-2,0 Pm-2,1.....................................Pm-2,n-1 Pm-2,n 00 00 00 .................. 00 00 00  
Pm,0 Pm,1.....................................Pm,n-1 Pm,n  
00 00 00 .................. 00 00 00  
00 00 00 ..................................... 00 00 00  
00 00 00 ..................................... 00 00 00  
00 00 00 .................. 00 00 00  
00 00 00 .................. 00 00 00  
Vertical/Horizontal  
Blanking  
Vertical Even Blanking  
00 00 00 .................. 00 00 00  
00 00 00 .................. 00 00 00  
00 00 00 ..................................... 00 00 00  
00 00 00 ..................................... 00 00 00  
P1,0 P1,1 P1,2.....................................P1,n-1 P1,n  
P3,0 P3,1 P3,2.....................................P3,n-1 P3,n  
00 00 00 .................. 00 00 00  
00 00 00 .................. 00 00 00  
Horizontal  
Blanking  
Valid Image Even Field  
Pm-1,0 Pm-1,1.....................................Pm-1,n-1 Pm-1,n 00 00 00 .................. 00 00 00  
Pm+1,0 Pm+1,1..................................Pm+1,n-1 Pm+1,n 00 00 00 .................. 00 00 00  
00 00 00 ..................................... 00 00 00  
00 00 00 ..................................... 00 00 00  
00 00 00 .................. 00 00 00  
00 00 00 .................. 00 00 00  
Vertical/Horizontal  
Blanking  
Vertical Odd Blanking  
00 00 00 .................. 00 00 00  
00 00 00 .................. 00 00 00  
00 00 00 ..................................... 00 00 00  
00 00 00 ..................................... 00 00 00  
PDF: 171981479/Source: 8304342517  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
Aptina reserves the right to change products or specifications without notice.  
© 2010 Aptina Imaging Corporation All rights reserved.  
19  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Sensor Pixel Array  
Image Flow Processor  
Image and color processing in the ASX340/MT9V139 are implemented as an image flow  
processor (IFP) coded in hardware logic. During normal operation, the embedded  
microcontroller will automatically adjust the operation parameters. The IFP is broken  
down into different sections, as outlined in Figure 9.  
Figure 9:  
Color Pipeline  
RAW 10  
Pixel Array  
ADC  
Raw Data  
IFP  
Test Pattern  
Generator  
MUX  
Black  
Level  
Digital Gain Control  
Lens Shading  
Subtraction  
Correction  
Defect Correction,  
Noise Reduction,  
Color Interpolation  
Statistics  
Engine  
8-bit  
RGB  
RGB to YUV  
10/12-Bit  
RGB  
8-bit  
YUV  
Color Correction  
Color Kill  
Aperture  
Correction  
Output  
Gamma  
Correction  
Formatting  
YUV to RGB  
(12-to-8 Lookup)  
Overlay Control  
Output  
Interface  
Parallel Output Mux  
Analog Output Mux  
Parallel  
Output  
NTSC/PAL  
PDF: 171981479/Source: 8304342517  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
Aptina reserves the right to change products or specifications without notice.  
© 2010 Aptina Imaging Corporation All rights reserved.  
20  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Sensor Pixel Array  
Test Patterns  
During normal operation of the ASX340/MT9V139, a stream of raw image data from the  
sensor core is continuously fed into the color pipeline. For test purposes, this stream can  
be replaced with a fixed image generated by a special test module in the pipeline. The  
module provides a selection of test patterns sufficient for basic testing of the pipeline.  
NTSC/PAL Test Pattern Generation  
There is a built-in standard EIA (NTSC) and EBU (PAL) color bars to support hue and  
color saturation characterization. Each pattern consists of seven color bars (white,  
yellow, cyan, green, magenta, red, and blue). The Y, Cb and Cr values for each bar are  
detailed in Tables 7 and 8.  
Figure 10:  
Color Bars  
Table 7:  
EIA Color Bars (NTSC)  
Nominal Range White  
Yellow  
Cyan  
Green  
Magenta  
Red  
Blue  
Y
16 to 235  
16 to 240  
16 to 240  
180  
128  
128  
162  
44  
131  
156  
44  
112  
72  
84  
65  
35  
Cb  
Cr  
184  
198  
100  
212  
212  
114  
142  
58  
Table 8:  
EBU Color Bars (PAL)  
Nominal Range  
White  
Yellow  
Cyan  
Green  
Magenta  
Red  
Blue  
Y
16 to 235  
16 to 240  
16 to 240  
235  
128  
128  
162  
44  
131  
156  
44  
112  
72  
84  
65  
35  
Cb  
Cr  
184  
198  
100  
212  
212  
114  
142  
58  
CCIR-656 Format  
The color bar data is encoded in 656 data streams. The duration of the blanking and  
active video periods of the generated 656 data are summarized in the following tables.  
Table 9:  
NTSC  
Line Numbers  
Field  
Description  
1-3  
4-19  
2
1
1
Blanking  
Blanking  
20-263  
Active video  
PDF: 171981479/Source: 8304342517  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
Aptina reserves the right to change products or specifications without notice.  
© 2010 Aptina Imaging Corporation All rights reserved.  
21  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Sensor Pixel Array  
Table 9:  
NTSC  
Line Numbers  
Field  
Description  
264-265  
266-282  
283-525  
1
2
2
Blanking  
Blanking  
Active Video  
Table 10:  
PAL  
Line Numbers  
Field  
Description  
1-22  
1
1
1
2
2
2
Blanking  
23-310  
Active video  
Blanking  
311-312  
313-335  
336-623  
624-625  
Blanking  
Active video  
Blanking  
Black Level Subtraction and Digital Gain  
Image stream processing starts with black level subtraction and multiplication of all  
pixel values by a programmable digital gain. Both operations can be independently set  
to separate values for each color channel (R, Gr., Gb, B). Independent color channel  
digital gain can be adjusted with registers. Independent color channel black level adjust-  
ments can also be made. If the black level subtraction produces a negative result for a  
particular pixel, the value of this pixel is set to 0.  
Positional Gain Adjustments (PGA)  
Lenses tend to produce images whose brightness is significantly attenuated near the  
edges. There are also other factors causing fixed pattern signal gradients in images  
captured by image sensors. The cumulative result of all these factors is known as image  
shading. The ASX340/MT9V139 has an embedded shading correction module that can  
be programmed to counter the shading effects on each individual R, Gb, Gr., and B color  
signal.  
The Correction Function  
The correction functions can then be applied to each pixel value to equalize the  
response across the image as follows:  
P
(row,col)=P  
(row,col)*f(row,col)  
(EQ 1)  
corrected  
sensor  
where P are the pixel values and f is the color dependent correction functions for each  
color channel.  
PDF: 171981479/Source: 8304342517  
Aptina reserves the right to change products or specifications without notice.  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
22  
© 2010 Aptina Imaging Corporation All rights reserved.  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Sensor Pixel Array  
Color Interpolation  
In the raw data stream fed by the sensor core to the IFP, each pixel is represented by a  
10-bit integer number, which can be considered proportional to the pixel's response to a  
one-color light stimulus, red, green, or blue, depending on the pixel's position under the  
color filter array. Initial data processing steps, up to and including the defect correction,  
preserve the one-color-per-pixel nature of the data stream, but after the defect correc-  
tion it must be converted to a three-colors-per-pixel stream appropriate for standard  
color processing. The conversion is done by an edge-sensitive color interpolation  
module. The module pads the incomplete color information available for each pixel  
with information extracted from an appropriate set of neighboring pixels. The algorithm  
used to select this set and extract the information seeks the best compromise between  
preserving edges and filtering out high frequency noise in flat field areas. The edge  
threshold can be set through register settings.  
Color Correction and Aperture Correction  
To achieve good color fidelity of the IFP output, interpolated RGB values of all pixels are  
subjected to color correction. The IFP multiplies each vector of three pixel colors by a  
3 x 3 color correction matrix. The three components of the resulting color vector are all  
sums of three 10-bit numbers. Since such sums can have up to 12 significant bits, the bit  
width of the image data stream is widened to 12 bits per color (36 bits per pixel). The  
color correction matrix can be either programmed by the user or automatically selected  
by the auto white balance (AWB) algorithm implemented in the IFP. Color correction  
should ideally produce output colors that are corrected for the spectral sensitivity and  
color crosstalk characteristics of the image sensor. The optimal values of the color  
correction matrix elements depend on those sensor characteristics and on the spectrum  
of light incident on the sensor. The color correction variables can be adjusted through  
register settings.  
To increase image sharpness, a programmable 2D aperture correction (sharpening filter)  
is applied to color-corrected image data. The gain and threshold for 2D correction can  
be defined through register settings.  
PDF: 171981479/Source: 8304342517  
Aptina reserves the right to change products or specifications without notice.  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
23  
© 2010 Aptina Imaging Corporation All rights reserved.  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Sensor Pixel Array  
Gamma Correction  
The ASX340/MT9V139 includes a block for gamma correction that can adjust its shape  
based on brightness to enhance the performance under certain lighting conditions. Two  
custom gamma correction tables may be uploaded corresponding to a brighter lighting  
condition and a darker lighting condition. At power-up, the IFP loads the two tables with  
default values. The final gamma correction table used depends on the brightness of the  
scene and takes the form of an interpolated version of the two tables.  
The gamma correction curve (as shown in Figure 11) is implemented as a piecewise  
linear function with 19 knee points, taking 12-bit arguments and mapping them to 8-bit  
output. The abscissas of the knee points are fixed at 0, 64, 128, 256, 512, 768, 1024, 1280,  
1536, 1792, 2048, 2304, 2560, 2816, 3072, 3328, 3584, 3840, and 4096. The 8-bit ordinates  
are programmable through registers.  
Figure 11:  
Gamma Correction Curve  
RGB to YUV Conversion  
Color Kill  
For further processing, the data is converted from RGB color space to YUV color space.  
To remove high-or low-light color artifacts, a color kill circuit is included. It affects only  
pixels whose luminance exceeds a certain preprogrammed threshold. The U and V  
values of those pixels are attenuated proportionally to the difference between their lumi-  
nance and the threshold.  
YUV Color Filter  
As an optional processing step, noise suppression by one-dimensional low-pass filtering  
of Y and/or UV signals is possible. A 3- or 5-tap filter can be selected for each signal.  
PDF: 171981479/Source: 8304342517  
Aptina reserves the right to change products or specifications without notice.  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
24  
© 2010 Aptina Imaging Corporation All rights reserved.  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Sensor Pixel Array  
YUV-to-RGB/YUV Conversion and Output Formatting  
The YUV data stream emerging from the colorpipe can either exit the color pipeline as-is  
or be converted before exit to an alternative YUV or RGB data format.  
Output Format and Timing  
YUV/RGB Data Ordering  
The ASX340/MT9V139 supports swapping YCbCr mode, as illustrated in Table 11.  
Table 11:  
YCbCr Output Data Ordering  
Mode  
Data Sequence  
Default (no swap)  
Swapped CbCr  
Swapped YC  
Cbi  
Cri  
Yi  
Yi  
Yi  
Cri  
Yi+1  
Yi+1  
Cri  
Cbi  
Yi+1  
Yi+1  
Cbi  
Cri  
Swapped CbCr, YC  
Yi  
Cbi  
The RGB output data ordering in default mode is shown in Table 12. The odd and even  
bytes are swapped when luma/chroma swap is enabled. R and B channels are bit-wise  
swapped when chroma swap is enabled.  
Table 12:  
RGB Ordering in Default Mode  
Mode (Swap Disabled)  
Byte  
D7D6D5D4D3D2D1D0  
565RGB  
555RGB  
444xRGB  
x444RGB  
Odd  
Even  
Odd  
Even  
Odd  
Even  
Odd  
Even  
R7R6R5R4R3G7G6G5  
G4G3G2B7B6B5B4B3  
0 R7R6R5R4R3G7G6  
G5G4G3B7B6B5B4B3  
R7R6R5R4G7G6G5G4  
B7B6B5B4 0 0 0 0  
0 0 0 0 R7R6R5R4  
G7G6G5G4B7B6B5B4  
Uncompressed 10-Bit Bypass Output  
Raw 10-bit Bayer data from the sensor core can be output in bypass mode in two ways:  
Using 8 data output signals (DOUT[7:0]) and GPIO[1:0]. The GPIO signals are the least  
significant 2 bits of data.  
Using only 8 signals (DOUT[7:0]) and a special 8 + 2 data format, shown in Table 13.  
Table 13:  
2-Byte Bayer Format  
Byte  
Bits Used  
Bit Sequence  
Odd bytes  
Even bytes  
8 data bits  
D9D8D7D6D5D4D3D2  
0 0 0 0 0 0 D1D0  
2 data bits + 6 unused bits  
Readout Formats  
Progressive format is used for raw Bayer output.  
PDF: 171981479/Source: 8304342517  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
Aptina reserves the right to change products or specifications without notice.  
© 2010 Aptina Imaging Corporation All rights reserved.  
25  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Sensor Pixel Array  
Output Formats  
ITU-R BT.656 and RGB Output  
TheASX340/MT9V139 can output processed video as a standard ITU-R BT.656  
(CCIR656) stream, an RGB stream, or as unprocessed Bayer data. The ITU-R BT.656  
stream contains YCbCr 4:2:2 data with embedded synchronization codes. This output is  
typically suitable for subsequent display by standard video equipment or JPEG/MPEG  
compression.  
Colorpipe data (pre-lens correction and overlay) can also be output in YCbCr 4:2:2 and a  
variety of RGB formats in 640 by 480 progressive format in conjunction with  
LINE_VALID and FRAME_VALID.  
The ASX340/MT9V139 can be configured to output 16-bit RGB (565RGB), 15-bit RGB  
(555RGB), and two types of 12-bit RGB (444RGB). Refer to Table 30 and Table 31 on  
page 56 for details.  
Bayer Output  
Unprocessed Bayer data are generated when bypassing the IFP completely—that is, by  
simply outputting the sensor Bayer stream as usual, using FRAME_VALID, LINE_VALID,  
and PIXCLK to time the data. This mode is called sensor bypass mode.  
Output Ports  
Composite Video Output  
The composite video output DAC is external-resistor-programmable and supports both  
single-ended and differential output. The DAC is driven by the on-chip video encoder  
output.  
Parallel Output  
Parallel output uses either 8-bit or 10-bit output. Eight-bit output is used for ITU-R  
BT.656 and RGB output. Ten-bit output is used for raw Bayer output.  
Zoom Support  
The ASX340/MT9V139 supports zoom x1 and x2 modes, in interlaced and progressive  
scan modes. The progressive support is limited to the VGA at either 60 fps or 50 fps.  
In the zoom x2 modes, the sensor is configured for QVGA (320 x 240), and the zoom x2  
window can be configured to pan around the VGA window.  
FOV Stretch Support  
The ASX340/MT9V139 supports the ability to control the active 'width' of the TV output  
line, between 720 and 700 pixels. The hardware supports two margins, each a maximum  
of 10 pixels width, and has to be an even number of pixels.  
PDF: 171981479/Source: 8304342517  
Aptina reserves the right to change products or specifications without notice.  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
26  
© 2010 Aptina Imaging Corporation All rights reserved.  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Usage Modes  
Usage Modes  
How a camera based on the ASX340/MT9V139 will be configured depends on what  
features are used. In the simplest case, an ASX340/MT9V139 operating in Auto-Config  
Mode with no customized settings might be sufficient. Flash sizes vary depending on  
the data for registers, firmware, and overlay data—somewhere between 1KB to 16MB.  
The two-wire bus is adequate since only high-level commands are used to invoke over-  
lays, load registers from memory, or set up lens correction parameters. Overlay data can  
alternatively be issued by the external µC if the rate of refreshing data is deemed  
adequate. If there are no commands in the EEPROM or Flash image the device can be in  
auto configuration mode by which the sensor is set up according to the status of pins  
FRAME_VALID, LINE_VALID, DOUT_LSB1, and DOUT_LSB0.  
In the simplest case no EEPROM or Flash memory or µC is required, as shown in  
Figure 12. This is truly a single chip operation.  
Figure 12:  
Auto-Config Mode  
ASX340/MT9V139  
Auto-Config Mode  
Analog Out  
Digital Out  
The ASX340/MT9V139 can be configured by a serial EEPROM or Flash through the SPI  
Interface.  
Figure 13:  
Flash Mode  
Serial  
EEPROM/Flash  
ASX340/MT9V139  
SPI  
Functions such as overlay or 2x zoom can also be assigned to general purpose inputs.  
That capability can be employed on all configurations with external EEPROM or Flash  
memory by mapping overlay images to an input. Alternatively, the µC may poll these  
inputs to create an action such as a new overlay as shown in Figure 14.  
PDF: 171981479/Source: 8304342517  
Aptina reserves the right to change products or specifications without notice.  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
27  
© 2010 Aptina Imaging Corporation All rights reserved.  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Usage Modes  
Figure 14:  
Usage Mode 3  
Serial  
EEPROM/Flash  
ASX340/MT9V139  
SPI  
GPI[7:0]  
External device  
In some applications, button or user interface keypad can trigger overlay images being  
called by the μC as shown in Figure 15.  
Figure 15:  
Host Mode with Flash  
Serial  
EEPROM/Flash  
ASX340/MT9V139  
SPI  
8/16bit μC  
Button or  
user interface  
keypad  
two-wire  
Overlay information may also be passed by the µC without a need for an EEPROM or  
Flash memory. However, because the data transfer rate is limited over the two-wire serial  
bus, the update rate may be slower. However, if overlay images are preloaded into the  
four on-chip buffers, they may be turned on and off or move location at the frame rate as  
shown in Figure 16.  
Figure 16:  
Host Mode  
8/16bit μC  
ASX340/MT9V139  
Button or  
user interface  
keypad  
two-wire  
PDF: 171981479/Source: 8304342517  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
Aptina reserves the right to change products or specifications without notice.  
© 2010 Aptina Imaging Corporation All rights reserved.  
28  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Multicamera Support  
Multicamera Support  
Two or more ASX340/MT9V139 sensors may be synchronized to a frame by asserting the  
FRAME_SYNC signal. At that point, the sensor and video encoder will reset without  
affecting any register settings. The ASX340/MT9V139 may be triggered to be synchro-  
nized with another ASX340/MT9V139 or an external event.  
Figure 17:  
Multicamera System Block Diagram  
Decoder/DSP  
Dual Camera  
ASX340/  
MT9V139  
CVBS  
CVBS  
Camera 1  
Camera 2  
OSC  
F_SYNC  
ASX340/  
MT9V139  
F_SYNC  
1
System Bus  
μC  
PDF: 171981479/Source: 8304342517  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
Aptina reserves the right to change products or specifications without notice.  
© 2010 Aptina Imaging Corporation All rights reserved.  
29  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
External Signal Processing  
External Signal Processing  
An external signal processor can take data from ITU656 or raw Bayer output format and  
post-process or compress the data in various formats.  
Figure 18:  
External Signal Processing Block Diagram  
27 MHz  
Serial  
EXTCLK  
SPI  
EEPROM/Flash  
1KB to 16MB  
VIDEO_P  
VIDEO_N  
CVBS  
PAL/NTSC  
Signal processor  
DOUT [7:0]  
PIXCLK  
PDF: 171981479/Source: 8304342517  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
Aptina reserves the right to change products or specifications without notice.  
© 2010 Aptina Imaging Corporation All rights reserved.  
30  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
External Signal Processing  
Device Configuration  
After power is applied and the device is out of reset by de-asserting the RESET_BAR pin,  
it will enter a boot sequence to configure its operating mode. There are essentially three  
configuration modes: Flash/EEPROM Config, Auto Config, and Host Config. Figure 19:  
“Power-Up Sequence – Configuration Options Flow Chart,” on page 32 contains more  
details on the configuration options.  
The SOC firmware supports a System Configuration phase at start-up. This consists of  
five modes of execution:  
1. Flash Detection  
2. Flash-Config  
3. Auto-Config  
4. Host-Config  
5. Change-Config (commences streaming - completes the System Configuration mode).  
The System Configuration phase is entered immediately after the firmware initializes  
following SOC power-up or reset. By default, the firmware first enters the Flash Detec-  
tion mode  
The Flash Detection mode attempts to detect the presence of an SPI Flash or EEPROM  
device:  
If no device is detected, the firmware then samples the SPI_SDI pin state to determine  
the next mode:  
– If SPI_SDI == 0 then it enters the Host-Config mode.  
– If SPI_SDI == 1 then it enters the Auto-Config mode.  
If a device is detected, the firmware switches to the Flash-Config mode.  
In the Flash-Config phase, the firmware interrogates the device to determine if it  
contains valid configuration records:  
If no records are detected, then the firmware enters the Auto-Config mode.  
If records are detected, the firmware processes them. By default, when all Flash  
records are processed the firmware switches to the Host-Config mode. However, the  
records encoded into the Flash can optionally be used to instruct the firmware to  
proceed to one of the other mode (auto-config/change-config).  
The Auto-Config mode uses the FRAME_VALID, LINE_VALUE, DOUT_LSB0 and  
DOUT_LSB1 pins to configure the operation of the device, such as video format and  
pedestal (see Table 16, “GPIO Bit Descriptions,” on page 33). After Auto-Config  
completes the firmware switches to the Change-Config mode.  
In the Host-Config mode, the firmware performs no configuration, and remains idle  
waiting for configuration and commands from the host. The System Configuration  
phase is effectively complete and the SOC will take no actions until the host issues  
commands.  
In the Change-Config mode, the firmware performs a 'Change-Config' operation. This  
applies the current configuration settings to the SOC, and commences streaming. This  
completes the System Configuration phase.  
PDF: 171981479/Source: 8304342517  
Aptina reserves the right to change products or specifications without notice.  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
31  
© 2010 Aptina Imaging Corporation All rights reserved.  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
External Signal Processing  
Power Sequence  
In power-up, the core voltage (1.8V) must trail the IO (2.8V) by a positive number. All  
2.8V rails can be turned on at the same time or follow the power-up sequence in Figure  
45: “Power Up Sequence,” on page 62.  
In power down, the sequence is reversed. The core voltage (1.8V) must be turned off  
before any 2.8V. Refer to Figure 46: “Power Down Sequence,” on page 63 for details.  
Figure 19:  
Power-Up Sequence – Configuration Options Flow Chart  
Power Up/ RESET  
EEPROM/Flash  
Exists?  
yes  
no  
EEPROM/Flash  
Header?  
no  
yes  
SPI _SDI = 0?  
no  
Parse  
EEPROM/Flash  
Content  
(optional)  
:
Auto-Config  
Change-Config  
Disable Auto-Config  
(default)  
Auto Configuration:  
Auto-Config  
_
FRAME VALID  
Wait for Host  
Command  
LINE_VALID  
DOUT_LSB 0  
DOUT_LSB 1  
Host Config  
Wait for Host  
Command  
Change-Config  
Change Config  
Wait for Host  
Command  
PDF: 171981479/Source: 8304342517  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
Aptina reserves the right to change products or specifications without notice.  
© 2010 Aptina Imaging Corporation All rights reserved.  
32  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
External Signal Processing  
Supported SPI Devices  
Table 14 lists supported EEPROM/Flash devices. Devices not compatible will require a  
firmware patch. Contact Aptina for additional support.  
Table 14:  
Type  
SPI Flash Devices  
Speed  
(MHz)  
Temp Range  
(°C)  
Density  
Manufacturer  
Device  
Standard  
Supported  
Flash  
Flash  
1 MB  
8 MB  
1MB  
8KB  
ST  
Atmel  
ST  
M25P10-AVMB3  
AT26DF081A  
M95M01-R  
50  
70  
5
–40 to +125  
–20 to +85  
–40 to +130  
–40 to +125  
Yes  
Yes  
Yes  
Yes  
JEDEC/Device ID  
EEPROM  
EEPROM  
Microchip  
25LC080  
2
Supported SPI Commands  
The SPI commands shown in Table 15 are supported by the ASX340/MT9V139.  
SPI Commands Supported  
Table 15:  
Command  
Value  
Read Array  
Block Erase  
Chip Erase  
Read Status  
0x03  
0xD8  
0xC7  
0x05  
0x01  
0x02  
0x06  
0x04  
0x9F  
0x0B  
Write status  
Byte Page Program  
Write Enable  
Write Disable  
Read Manufacturer and Device ID  
(Fast) Read Array  
Table 16:  
GPIO Bit Descriptions  
GPIO[11] (DOUT_LSB1)  
GPIO[10] (DOUT_LSB0)  
GPIO[9] (FRAME_VALID) GPI[8] (LINE_VALID)  
Low (“0”)  
High (“1”)  
Normal  
NTSC  
PAL  
Normal  
Horizontal mirror  
No pedestal  
Pedestal  
Vertical Flip  
PDF: 171981479/Source: 8304342517  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
Aptina reserves the right to change products or specifications without notice.  
© 2010 Aptina Imaging Corporation All rights reserved.  
33  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
External Signal Processing  
Host Command Interface  
Aptinas sensors and SOCs contain numerous registers that are accessed through a  
two-wire interface with speeds up to 400 kHz.  
The ASX340/MT9V139 in addition to writing or reading straight to/from registers or  
firmware variables, has a mechanism to write higher level commands, the Host  
Command Interface (HCI). Once a command has been written through the HCI, it will  
be executed by on chip firmware and the results are reported back. In general, registers  
shall not be accessed with the exception of registers that are marked for “User Access.”  
EEPROM or Flash memory is also available to store commands for later execution.  
Under DMA control, a command is written into the SOC and executed.  
For a complete spec on host commands, refer to the ASX340/MT9V139 Host Command  
Interface Specification.  
Figure 20:  
Interface Structure  
14  
bit  
15  
0
1
0
Host Command to FW  
Response from FW  
Addr 0x40  
command register  
door bell  
bit  
15  
0
Addr 0xFC00  
Parameter 0  
cmd_handler_params_pool_0  
cmd_handler_params_pool_1  
cmd_handler_params_pool_2  
Addr 0xFC02  
Addr 0xFC04  
Addr 0xFC06  
Addr 0xFC08  
Addr 0xFC0A  
Addr 0xFC0C  
cmd_handler_params_pool_3  
cmd_handler_params_pool_4  
cmd_handler_params_pool_5  
cmd_handler_params_pool_6  
cmd_handler_params_pool_7  
Addr 0xFC0E  
Parameter 7  
PDF: 171981479/Source: 8304342517  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
Aptina reserves the right to change products or specifications without notice.  
© 2010 Aptina Imaging Corporation All rights reserved.  
34  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
External Signal Processing  
Host Command Process Flow  
Issue  
Command  
Wait for a  
response?  
No  
Host could insert an  
optional delay here  
Yes  
Read Command  
register  
Host could insert an  
optional delay here  
Read Command  
register  
No  
No  
Doorbell  
bit clear ?  
Doorbell bit  
clear?  
Yes  
At this point  
Command Register  
Yes  
contains response code  
Command has  
parameters  
?
Command  
has response  
parameters ?  
No  
Yes  
Write parameters  
Yes  
No  
to  
Parameter Pool  
Read response  
parameters from  
Parameter Pool  
Write command  
to  
Command register  
Done  
PDF: 171981479/Source: 8304342517  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
Aptina reserves the right to change products or specifications without notice.  
© 2010 Aptina Imaging Corporation All rights reserved.  
35  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
External Signal Processing  
Command Flow  
The host issues a command by writing (through a two-wire interface bus) to the  
command register. All commands are encoded with bit 15 set, which automatically  
generates the host command (doorbell) interrupt to the microprocessor.  
Assuming initial conditions, the host first writes the command parameters (if any) to the  
parameters pool (in the command handler's logical page), then writes the command to  
command register. The SOC firmware interrupt handler then signals the Command  
Handler task to process the command.  
If the host wishes to determine the outcome of the command, it must poll the command  
register waiting for the doorbell bit to be cleared. This indicates that the firmware  
completed processing the command. When the doorbell bit is cleared, the contents of  
the command register indicate the command's result status. If the command generated  
response parameters, the host can now retrieve these from the parameters pool.  
Note:  
The host must not write to the parameters pool, nor issue another command, until  
the previous command completes. This is true even if the host does not care about the  
result of the previous command. Therefore, the host must always poll the command  
register to determine the state of the doorbell bit, and ensure the bit is cleared before  
issuing a command.  
For a complete command list and further information consult the Host Command Inter-  
face Specification.  
An example of how (using DevWare) a command may be initiated in the form of a  
“Preset” follows.  
Issue the SYSMGR_SET_STATE Command  
All DevWare presets supplied by Aptina poll and test the doorbell bit after issuing the  
command. Therefore there is no need to check if the doorbell bit is clear before issuing  
the next command.  
# Set the desired next state in the parameters  
pool(SYS_STATE_ENTER_CONFIG_CHANGE)  
REG= 0xFC00, 0x2800 // CMD_HANDLER_PARAMS_POOL_0  
# Issue the HC_SYSMGR_SET_STATE command  
REG= 0x0040, 0x8100 // COMMAND_REGISTER  
# Wait for the FW to complete the command (clear the Doorbell bit)  
POLL_FIELD= COMMAND_REGISTER, DOORBELL, !=0, DELAY=10, TIMEOUT=100  
# Check the command was successful  
ERROR_IF= COMMAND_REGISTER, HOST_COMMAND, !=0, "Set State command  
failed",  
PDF: 171981479/Source: 8304342517  
Aptina reserves the right to change products or specifications without notice.  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
36  
© 2010 Aptina Imaging Corporation All rights reserved.  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
External Signal Processing  
Summary of Host Commands  
Table 17 on page 37 through Table 24 on page 39 show summaries of the host  
commands. The commands are divided into the following sections:  
System Manager  
Overlay  
GPIO  
Flash Manager  
Sequencer  
Patch Loader  
Miscellaneous  
Calibration Stats  
Following is a summary of the Host Interface commands. The description gives a quick  
orientation. The “Type” column shows if it is an asynchronous or synchronous  
command. For a complete list of all commands including parameters, consult the Host  
Command Interface Specification document.  
Table 17:  
System Manager Commands  
System Manager  
Host Command  
Value  
Type  
Description  
Set State  
Get State  
0x8100  
0x8101  
Synchronous  
Synchronous  
Request the system enter a new state  
Get the current state of the system  
Table 18:  
Overlay Host Commands  
Overlay Host Command  
Value  
Type  
Description  
Enable Overlay  
Get Overlay State  
Set Calibration  
Set Bitmap Property  
Get Bitmap Property  
Set String Property  
Load Buffer  
0x8200  
0x8201  
0x8202  
0x8203  
0x8204  
0x8205  
0x8206  
0x8207  
0x8208  
0x8209  
0x820A  
0x820B  
0x820C  
0x820D  
0x820E  
Synchronous  
Synchronous  
Synchronous  
Synchronous  
Synchronous  
Synchronous  
Asynchronous  
Synchronous  
Synchronous  
Synchronous  
Synchronous  
Synchronous  
Synchronous  
Synchronous  
Asynchronous  
Enable or disable the overlay subsystem  
Retrieve the state of the overlay subsystem  
Set the calibration offset  
Set a property of a bitmap  
Get a property of a bitmap  
Set a property of a character string  
Load an overlay buffer with a bitmap (from Flash)  
Retrieve status of an active load buffer operation  
Write directly to an overlay buffer  
Read directly from an overlay buffer  
Enable or disable an overlay layer  
Retrieve the status of an overlay layer  
Set the character string  
Load Status  
Write Buffer  
Read Buffer  
Enable Layer  
Get Layer Status  
Set String  
Get String  
Get the current character string  
Load String  
Load a character string (from Flash)  
PDF: 171981479/Source: 8304342517  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
Aptina reserves the right to change products or specifications without notice.  
© 2010 Aptina Imaging Corporation All rights reserved.  
37  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
External Signal Processing  
Table 19:  
GPIO Host Commands  
GPIO Host Command  
Value  
Type  
Description  
Set GPIO Property  
Get GPIO Property  
Set GPO State  
0x8400  
0x8401  
0x8402  
0x8403  
0x8404  
0x8405  
Synchronous Set a property of one or more GPIO pins  
Synchronous Retrieve a property of a GPIO pin  
Synchronous Set the state of a GPO pin or pins  
Get GPIO State  
Synchronous Get the state of a GPI pin or pins  
Set GPI Association  
Get GPI Association  
Synchronous Associate a GPI pin state with a Command Sequence stored in SPI Flash  
Synchronous Retrieve an GPIO pin association  
Table 20:  
Flash Manager Host Commands  
Flash Manager  
Host Command  
Value  
Type  
Description  
Get Lock  
0x8500  
0x8501  
0x8502  
0x8503  
0x8504  
0x8505  
0x8506  
0x8507  
0x8508  
0x8509  
0x850A  
Asynchronous Request the Flash Manager access lock  
Synchronous Retrieve the status of the access lock request  
Synchronous Release the Flash Manager access lock  
Synchronous Configure the Flash Manager and underlying SPI Flash subsystem  
Asynchronous Read data from the SPI Flash  
Lock Status  
Release Lock  
Config  
Read  
Write  
Asynchronous Write data to the SPI Flash  
Erase Block  
Erase Device  
Query Device  
Status  
Asynchronous Erase a block of data from the SPI Flash  
Asynchronous Erase the SPI Flash device  
Asynchronous Query device-specific information  
Synchronous Obtain status of current asynchronous operation  
Synchronous Configure the attached SPI NVM device  
Config Device  
Table 21:  
Sequencer Host Commands  
Value  
Sequencer Host  
Command  
Type  
Description  
Refresh  
0x8606  
0x8607  
Synchronous  
Synchronous  
Refresh the automatic image processing algorithm configuration  
Retrieve the status of the last Refresh operation  
Refresh Status  
Table 22:  
Patch Loader Host Commands  
Patch Loader Host  
Command  
Value  
Type  
Asynchronous  
Description  
Load Patch  
Status  
0x8700  
0x8701  
0x8702  
0x8706  
Load a patch from SPI Flash and automatically apply  
Get status of an active Load Patch or Apply Patch request  
Apply a patch (already located in Patch RAM)  
Reserve RAM to contain a patch  
Synchronous  
Asynchronous  
Synchronous  
Apply Patch  
Reserve RAM  
Table 23:  
Miscellaneous Host Commands  
Miscellaneous Host Command  
Value  
Type  
Synchronous  
Synchronous  
Synchronous  
Description  
Invoke Command Seq  
Config Command Seq Processor  
Wait For Event  
0x8900  
0x8901  
0x8902  
Invoke a sequence of commands stored in NVM  
Configures the Command Sequencer processor  
Wait for a system event to be signalled  
PDF: 171981479/Source: 8304342517  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
Aptina reserves the right to change products or specifications without notice.  
© 2010 Aptina Imaging Corporation All rights reserved.  
38  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
External Signal Processing  
Table 24:  
Calibration Stats Host Commands  
Calibration Stats Host  
Command  
Value  
Type  
Asynchronous  
Synchronous  
Description  
Control  
Read  
0x8B00  
0x8B01  
Start statistics gathering  
Read the results back  
PDF: 171981479/Source: 8304342517  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
Aptina reserves the right to change products or specifications without notice.  
© 2010 Aptina Imaging Corporation All rights reserved.  
39  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Slave Two-Wire Serial Interface  
Slave Two-Wire Serial Interface  
The two-wire serial interface bus enables read/write access to control and status regis-  
ters within the ASX340/MT9V139. This interface is designed to be compatible with the  
MIPI Alliance Standard for Camera Serial Interface 2 (CSI-2) 1.0, which uses the elec-  
trical characteristics and transfer protocols of the two-wire serial interface specification.  
The interface protocol uses a master/slave model in which a master controls one or  
more slave devices. The sensor acts as a slave device. The master generates a clock  
(SCLK) that is an input to the sensor and used to synchronize transfers.  
Data is transferred between the master and the slave on a bidirectional signal (SDATA).  
SDATA is pulled up to VDD_IO off-chip by a pull-up resistor in the range of 1.5 to 4.7kΩ  
resistor.  
Protocol  
Data transfers on the two-wire serial interface bus are performed by a sequence of low-  
level protocol elements, as follows:  
a start or restart condition  
a slave address/data direction byte  
a 16-bit register address  
an acknowledge or a no-acknowledge bit  
data bytes  
a stop condition  
The bus is idle when both SCLK and SDATA are HIGH. Control of the bus is initiated with  
a start condition, and the bus is released with a stop condition. Only the master can gen-  
erate the start and stop conditions.  
The SADDR pin is used to select between two different addresses in case of conflict with  
another device. If SADDR is LOW, the slave address is 0x90; if SADDR is HIGH, the slave  
address is 0xBA. See Table 25 below.  
Table 25:  
Two-Wire Interface ID Address Switching  
SADDR  
Two-Wire Interface Address ID  
0
1
0x90  
0xBA  
Start Condition  
Data Transfer  
A start condition is defined as a HIGH-to-LOW transition on SDATA while SCLK is HIGH.  
At the end of a transfer, the master can generate a start condition without previously  
generating a stop condition; this is known as a “repeated start” or “restart” condition.  
Data is transferred serially, 8 bits at a time, with the MSB transmitted first. Each byte of  
data is followed by an acknowledge bit or a no-acknowledge bit. This data transfer  
mechanism is used for the slave address/data direction byte and for message bytes.  
One data bit is transferred during each SCLK clock period. SDATA can change when SCLK  
is low and must be stable while SCLK is HIGH.  
PDF: 171981479/Source: 8304342517  
Aptina reserves the right to change products or specifications without notice.  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
40  
© 2010 Aptina Imaging Corporation All rights reserved.  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Slave Two-Wire Serial Interface  
Slave Address/Data Direction Byte  
Bits [7:1] of this byte represent the device slave address and bit [0] indicates the data  
transfer direction. A “0” in bit [0] indicates a write, and a “1” indicates a read. The default  
slave addresses used by the ASX340/MT9V139 are 0x90 (write address) and 0x91 (read  
address). Alternate slave addresses of 0xBA (write address) and 0xBB (read address) can  
be selected by asserting the SADDR input signal.  
Message Byte  
Message bytes are used for sending register addresses and register write data to the slave  
device and for retrieving register read data. The protocol used is outside the scope of the  
two-wire serial interface specification.  
Acknowledge Bit  
Each 8-bit data transfer is followed by an acknowledge bit or a no-acknowledge bit in the  
SCLK clock period following the data transfer. The transmitter (which is the master when  
writing, or the slave when reading) releases SDATA. The receiver indicates an acknowl-  
edge bit by driving SDATA LOW. As for data transfers, SDATA can change when SCLK is  
LOW and must be stable while SCLK is HIGH.  
No-Acknowledge Bit  
Stop Condition  
The no-acknowledge bit is generated when the receiver does not drive SDATA low during  
the SCLK clock period following a data transfer. A no-acknowledge bit is used to termi-  
nate a read sequence.  
A stop condition is defined as a LOW-to-HIGH transition on SDATA while SCLK is HIGH.  
PDF: 171981479/Source: 8304342517  
Aptina reserves the right to change products or specifications without notice.  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
41  
© 2010 Aptina Imaging Corporation All rights reserved.  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Slave Two-Wire Serial Interface  
Typical Operation  
A typical READ or WRITE sequence begins by the master generating a start condition on  
the bus. After the start condition, the master sends the 8-bit slave address/data direction  
byte. The last bit indicates whether the request is for a READ or a WRITE, where a “0”  
indicates a WRITE and a “1” indicates a READ. If the address matches the address of the  
slave device, the slave device acknowledges receipt of the address by generating an  
acknowledge bit on the bus.  
If the request was a WRITE, the master then transfers the 16-bit register address to which  
a WRITE will take place. This transfer takes place as two 8-bit sequences and the slave  
sends an acknowledge bit after each sequence to indicate that the byte has been  
received. The master will then transfer the 16-bit data, as two 8-bit sequences and the  
slave sends an acknowledge bit after each sequence to indicate that the byte has been  
received. The master stops writing by generating a (re)start or stop condition. If the  
request was a READ, the master sends the 8-bit write slave address/data direction byte  
and 16-bit register address, just as in the write request. The master then generates a  
(re)start condition and the 8-bit read slave address/data direction byte, and clocks out  
the register data, 8 bits at a time. The master generates an acknowledge bit after each 8-  
bit transfer. The data transfer is stopped when the master sends a no-acknowledge bit.  
Single READ from Random Location  
Figure 21 shows the typical READ cycle of the host to the ASX340/MT9V139. The first two  
bytes sent by the host are an internal 16-bit register address. The following 2-byte READ  
cycle sends the contents of the registers to host.  
Figure 21:  
Single READ from Random Location  
M+1  
P
Previous RegAddress, N  
Reg Address, M  
Read Data  
Read Data  
[7:0]  
S
Slave Address  
0
A
Reg Address[15:8]  
A
Reg Address[7:0]  
A
Sr Slave Address  
1
A
A
A
[15:8]  
S = start condition  
P = stop condition  
Sr =restart condition  
A = acknowledge  
slave to master  
master toslave  
A = no-acknowledge  
Single READ from Current Location  
Figure 22 shows the single READ cycle without writing the address. The internal address  
will use the previous address value written to the register.  
Figure 22:  
Single Read from Current Location  
Previous Reg Address, N  
Reg Address, N+1  
Slave Address  
N+2  
Read Data  
[7:0]  
Read Data  
[15:8]  
Read Data  
[15:8]  
Read Data  
[7:0]  
A
S
Slave Address  
1
A
A
P
S
1 A  
A
A P  
PDF: 171981479/Source: 8304342517  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
Aptina reserves the right to change products or specifications without notice.  
© 2010 Aptina Imaging Corporation All rights reserved.  
42  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Slave Two-Wire Serial Interface  
Sequential READ, Start from Random Location  
This sequence (Figure 23) starts in the same way as the single READ from random loca-  
tion (Figure 21 on page 42). Instead of generating a no-acknowledge bit after the first  
byte of data has been transferred, the master generates an acknowledge bit and  
continues to perform byte READs until “L” bytes have been read.  
Figure 23:  
Sequential READ, Start from Random Location  
Previous Reg Address, N  
Reg Address, M  
M+1  
A
Read Data  
A
S
Slave Address  
0
Reg Address[15:8]  
A
Reg Address[7:0]  
Sr  
A
Slave Address  
1
A
M+1  
M+2  
M+L-2  
M+L-1  
M+3  
M+L  
Read Data  
(15:8)  
Read Data  
(15:8)  
Read Data  
(7:0)  
Read Data  
(15:8)  
Read Data  
(7:0)  
Read Data  
(7:0)  
Read Data  
(15:8)  
Read Data  
(7:0)  
A
A
A
A
A
A
A
A
P
Sequential READ, Start from Current Location  
This sequence (Figure 24) starts in the same way as the single READ from current loca-  
tion (Figure 22). Instead of generating a no-acknowledge bit after the first byte of data  
has been transferred, the master generates an acknowledge bit and continues to  
perform byte reads until “L” bytes have been read.  
Figure 24:  
Sequential READ, Start from Current Location  
Previous Reg Address, N  
N+1  
A
N+2  
A
N+L-1  
N+L  
P
Read Data
Read Data  
Read Data  
Read Data  
(15:8)  
Read Data  
Read Data  
(15:8)  
Read Data  
Read Data  
A
A
A
A
A
S
Slave Address 1 A  
(7:0)  
(7:0)  
(7:0)  
A
(15:8)  
(15:8)  
(7:0)  
Single Write to Random Location  
Figure 25 shows the typical WRITE cycle from the host to the ASX340/MT9V139.The first  
2 bytes indicate a 16-bit address of the internal registers with most-significant byte first.  
The following 2 bytes indicate the 16-bit data.  
Figure 25:  
Single WRITE to Random Location  
Previous Reg Address, N  
Reg Address, M  
Write Data  
M+1  
P
A
A
S
Slave Address  
0
Reg Address[15:8]  
Reg Address[7:0]  
A
A
A
PDF: 171981479/Source: 8304342517  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
Aptina reserves the right to change products or specifications without notice.  
© 2010 Aptina Imaging Corporation All rights reserved.  
43  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Slave Two-Wire Serial Interface  
Sequential WRITE, Start at Random Location  
This sequence (Figure 26) starts in the same way as the single WRITE to random location  
(Figure 25). Instead of generating a no-acknowledge bit after the first byte of data has  
been transferred, the master generates an acknowledge bit and continues to perform  
byte writes until “L” bytes have been written. The WRITE is terminated by the master  
generating a stop condition.  
Figure 26:  
Sequential WRITE, Start at Random Location  
Previous Reg Address, N  
Reg Address, M  
Write Data  
M+1  
S
Slave Address  
0
Reg Address[15:8]  
A
Reg Address[7:0]  
A
A
A
A
M+1  
M+2  
M+L-2  
M+L-1  
M+3  
M+L  
P
Write Data  
Write Data  
Write Data  
(15:8)  
Write Data  
(7:0)  
Write Data  
Write Data  
Write Data  
Write Data  
A
A
A
A
A
(15:8) (7:0)  
A
A
(15:8) (7:0)  
A
A
(15:8) (7:0)  
PDF: 171981479/Source: 8304342517  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
Aptina reserves the right to change products or specifications without notice.  
© 2010 Aptina Imaging Corporation All rights reserved.  
44  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Overlay Capability  
Overlay Capability  
Figure 27 highlights the graphical overlay data flow of theASX340/MT9V139. The images  
are separated to fit into 2KB blocks of memory after compression.  
Up to four overlays may be blended simultaneously  
Overlay size 360 x 480 pixels rendered into a display area of 720 x 480 pixels (NTSC) or  
720 x 576 (PAL)  
Selectable readout: rotating order is user programmable  
Dynamic movement through predefined overlay images  
Palette of 32 colors out of 64,000 with eight colors per bitmap  
Blend factors may be changed dynamically to achieve smooth transitions  
The host commands allow a bitmap to be written piecemeal to a memory buffer through  
2
the I C, and also through DMA direct from SPI Flash memory. Multiple encoding passes  
may be required to fit an image into a 2KB block of memory; alternatively, the image can  
be divided into two or more blocks to make the image fit. Every graphic image may be  
positioned in an x/y direction and overlap with other graphic images.  
The host may load an image at any time. Under control of DMA assist, data are trans-  
ferred to the off-screen buffer in compressed form. This assures that no display data are  
corrupted during the replenishment of the four active overlay buffers.  
Figure 27:  
Overlay Data Flow  
Overlay buffers: 2KB each  
Flash  
Decompress  
Blend and Overlay  
Bitmaps - compressed  
Off-screen  
buffer  
Note:  
These images are not actually rendered, but show conceptual objects and object blending.  
PDF: 171981479/Source: 8304342517  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
Aptina reserves the right to change products or specifications without notice.  
© 2010 Aptina Imaging Corporation All rights reserved.  
45  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Serial Memory Partition  
Serial Memory Partition  
The contents of the Flash/EEPROM memory partition logically into three blocks (see  
Figure 28):  
Memory for overlay data and descriptors  
Memory for register settings, which may be loaded at boot-up  
Firmware extensions or software patches; in addition to the on-chip firmware, exten-  
sions reside in this block of memory  
These blocks are not necessarily contiguous.  
Figure 28:  
Memory Partitioning  
Fixed-size  
Fixed-size  
Overlays – RLE  
Flash  
Overlays – RLE  
Partitioning  
12-byte Header  
Overlay  
Data  
RLE Encoded  
Data  
2KB  
Lens Shading  
Correction  
Parameter  
Alternate  
RegisterSetting  
External Memory Speed Requirement  
For a 2KB block of overlay to be transferred within a frame time to achieve maximum  
update rate, the serial memory has to be a certain speed.  
Table 26:  
Transfer Time Estimate  
Frame Time  
SPI Clock  
Transfer Time to 2KB  
33.3ms  
4.5 MHz  
1ms  
PDF: 171981479/Source: 8304342517  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
Aptina reserves the right to change products or specifications without notice.  
© 2010 Aptina Imaging Corporation All rights reserved.  
46  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Overlay Adjustment  
Overlay Adjustment  
To ensure a correct position of the overlay to compensate for assembly deviation, the  
overlay can be adjusted with assistance from the overlay statistics engine:  
The overlay statistics engine supports a windowed 8-bin luma histogram, either row-  
wise (vertical) or column-wise (horizontal).  
The example calibration statistics can be used to perform an automatic successive-  
approximation search of a cross-hair target within the scene.  
On the first frame, the firmware performs a coarse horizontal search, followed by a  
coarse vertical search in the second frame.  
In subsequent frames, the firmware reduces the region-of-interest of the search to the  
histogram bins containing the greatest accumulator values, thereby refining the  
search.  
The resultant X, Y location of the cross-hair target can be used to assign a calibration  
value of offset selected overlay graphic image positions within the output image.  
The calibration statistics patch also supports a manual mode, which allows the host  
to access the raw accumulator values directly.  
Figure 29:  
Overlay Calibration  
PDF: 171981479/Source: 8304342517  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
Aptina reserves the right to change products or specifications without notice.  
© 2010 Aptina Imaging Corporation All rights reserved.  
47  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Overlay Character Generator  
The position of the target will be used to determine the calibration value that shifts the  
X,Y position of adjustable overlay graphics.  
The overlay calibration is intended to be applied on a device by device basis “in system,”  
which means after the camera has been installed. Aptina provides basic programming  
scripts that may reside in the SPI Flash memory to assist in this effort.  
Overlay Character Generator  
In addition to the four overlay layers, a fifth layer exists for a character generator overlay  
string.  
There are a total of:  
16 alphanumeric characters available  
22 characters maximum per line  
16 x 32 pixels with 1-bit color depth  
Any update to the character generator string requires the string to be passed in its  
entirety with the Host Command. Character strings have their own control properties  
aside from the Overlay bitmap properties.  
Figure 30:  
Internal Block Diagram Overlay  
BT656  
Overlay  
Layer3  
Layer2  
Layer1  
Layer0  
Register Bus  
User Registers  
Data Bus  
DMA/CPU  
Timing control  
Number  
Generator  
ROM  
BT656  
PDF: 171981479/Source: 8304342517  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
Aptina reserves the right to change products or specifications without notice.  
© 2010 Aptina Imaging Corporation All rights reserved.  
48  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Overlay Character Generator  
Character Generator  
The character generator can be seen as the fifth top layer, but instead of getting the  
source from RLE data in the memory buffers, it has a predefined 16 characters stored in  
ROM.  
All the characters are 1-bit depth color and are sharing the same YCbCr look up table.  
Figure 31:  
Example of Character Descriptor 0 Stored in ROM  
ROM 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
0x00  
0x02  
0x04  
0x06  
0x08  
0x0a  
0x0c  
0x0e  
0x10  
0x12  
0x14  
0x16  
0x18  
0x1a  
0x1c  
0x1e  
0x20  
0x22  
0x24  
0x26  
0x28  
0x2a  
0x2c  
0x2e  
0x30  
0x32  
0x34  
0x36  
0x38  
0x3a  
0x3c  
0x3e  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
It can show a row of up to 22 characters of 16 x 32 pixels resolution (32 x 32 pixels when  
blended with the BT 656 data).  
PDF: 171981479/Source: 8304342517  
Aptina reserves the right to change products or specifications without notice.  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
49  
© 2010 Aptina Imaging Corporation All rights reserved.  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Overlay Character Generator  
Character Generator Details  
Table 27 shows the characters that can be generated.  
Table 27:  
Item  
Character Generator Details  
Quantity  
Description  
16-bit character  
1 bpp color  
22  
1
Coder for one of these characters: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, /, (space), :, –, (comma), (period)  
Depth of the bit map is 1 bpp  
It is the responsibility of the user to set up proper values in the character positioning to  
fit them in the same row (that is one of the reasons that 22 is the maximum number of  
characters).  
Note:  
No error is generated if the character row overruns the horizontal or vertical limits of  
the frame.  
Full Character Set for Overlay  
Figure 32 shows all of the characters that can be generated by theASX340/MT9V139.  
Figure 32:  
Full Character Set for Overlay  
0x0 0x4 0x8 0xC  
0x1 0x5 0x9 0xD  
0x2 0x6 0xA 0xE  
0x3 0x7 0xB 0xF  
PDF: 171981479/Source: 8304342517  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
Aptina reserves the right to change products or specifications without notice.  
© 2010 Aptina Imaging Corporation All rights reserved.  
50  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Modes and Timing  
Modes and Timing  
This section provides an overview of the typical usage modes and related timing infor-  
mation for theASX340/MT9V139.  
Composite Video Output  
The external pin DOUT_LSB0 can be used to configure the device for default NTSC or PAL  
operation (auto-config mode). This and other video configuration settings are available  
as register settings accessible through the serial interface.  
NTSC  
Both differential and single-ended connections of the full NTSC format are supported.  
The differential connection that uses two output lines is used for low noise or long  
distance applications. The single-ended connection is used for PCB tracks and screened  
cable where noise is not a concern. The NTSC format has three black lines at the bottom  
of each image for padding (which most LCDs do not display).  
PAL  
The PAL format is supported with 576 active image rows.  
Single-Ended and Differential Composite Output  
The composite output can be operated in a single-ended or differential mode by simply  
changing the external resistor configuration. For single-ended termination, see  
Figure 33 on page 51. The differential schematic is shown in Figure 34 on page 52.  
Figure 33: Single-Ended Termination  
V
DD  
75Ω Terminated Receiver  
Single-ended  
e.g. PCB Track  
e.g. 75Ω COAX  
Chip  
i = IMINUS  
i = IPLUS  
Boundary  
75Ω  
Single-Ended  
75Ω  
Single-ended  
L 0  
L2  
L1  
=
L
1uH  
= 1uH  
L
L = 2.2μH  
C 0  
C1  
pF  
pF  
C = 330  
C = 330  
Typical Values for LC  
PDF: 171981479/Source: 8304342517  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
Aptina reserves the right to change products or specifications without notice.  
© 2010 Aptina Imaging Corporation All rights reserved.  
51  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Modes and Timing  
Figure 34:  
Differential Connection—Grounded Termination  
Parallel Output (DOUT)  
The DOUT[7:0] port supports both progressive and Interlaced mode. Progressive mode  
(with FV and LV signal) include raw bayer(8 or 10 bit), YCbCr, RGB. Interlaced mode is  
CCIR656 compliant.  
Figure 35 shows the data that is output on the parallel port for CCIR656. Both NTSC and  
PAL formats are displayed. The blue values in Figure 35 represent NTSC (525/60). The  
red values represent PAL (625/50).  
Figure 35:  
CCIR656 8-Bit Parallel Interface Format for 525/60 (625/50) Video Systems  
Start of digital line  
Start of digital active line  
Next line  
EAV CODE  
BLANKING  
SAV CODE  
CO-SITED  
_
CO-SITED _  
Digital  
video  
stream  
F
F
0
0
0
0
X
Y
8
0
1
0
8
0
1
0
8
0
1
0
F
F
0
0
0
0
X
Y
C
B
C
R
C
B
C
R
C
R
F
F
Y
Y
Y
Y
Y
4
4
268  
280  
4
4
1440  
1440  
1716  
1728  
Figure 36 on page 53 shows detailed vertical blanking information for NTSC timing. See  
Table 28 on page 53 for data on field, vertical blanking, EAV, and SAV states.  
PDF: 171981479/Source: 8304342517  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
Aptina reserves the right to change products or specifications without notice.  
52  
© 2010 Aptina Imaging Corporation All rights reserved.  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Modes and Timing  
Figure 36:  
Typical CCIR656 Vertical Blanking Intervals for 525/60 Video System  
Line 4  
Line 1 (V = 1)  
Line 20 (V = 0)  
Line 264 (V = 1)  
Blanking  
Field 1 Active Video  
Blanking  
Field 1  
(F = 0)  
Odd  
266  
Field 2  
(F = 1)  
Even  
Line 283 (V = 0)  
Line 525 (V = 0)  
Field 2 Active Video  
H = 1  
EAV  
H = 0  
SAV  
Table 28:  
Field, Vertical Blanking, EAV, and SAV States 525/60 Video System  
H
(EAV)  
H
(SAV)  
Line Number  
F
V
1–3  
1
0
0
0
1
1
1
1
0
1
1
0
1
1
1
1
1
1
0
0
0
0
0
0
4–9  
20–263  
264–265  
266–282  
283–525  
Figure 37 shows detailed vertical blanking information for PAL timing. See Table 29 on  
page 54 for data on field, vertical blanking, EAV, and SAV states.  
PDF: 171981479/Source: 8304342517  
Aptina reserves the right to change products or specifications without notice.  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
53  
© 2010 Aptina Imaging Corporation All rights reserved.  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Modes and Timing  
Figure 37:  
Typical CCIR656 Vertical Blanking Intervals for 625/50 Video System  
Line 1 (V = 1)  
Line 23 (V = 0)  
Blanking  
Field 1 Active Video  
Blanking  
Field 1  
(F = 0)  
Odd  
Line 311 (V = 1)  
Line 336 (V = 0)  
Field 2  
(F = 1)  
Even  
Field 2 Active Video  
Blanking  
Line 624 (V = 1)  
Line 625 (V = 1)  
H =1  
EAV  
H = 0  
SAV  
Table 29:  
Field, Vertical Blanking, EAV, and SAV States for 625/50 Video System  
H
(EAV)  
H
(SAV)  
Line Number  
F
V
1–22  
0
0
0
1
1
1
1
0
1
1
0
1
1
1
1
1
1
1
0
0
0
0
0
0
23–310  
311–312  
313–335  
336–623  
624–625  
PDF: 171981479/Source: 8304342517  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
Aptina reserves the right to change products or specifications without notice.  
© 2010 Aptina Imaging Corporation All rights reserved.  
54  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Modes and Timing  
Reset and Clocks  
Reset  
Power-up reset is asserted or de-asserted with the RESET_BAR pin, which is active LOW.  
In the reset state, all control registers are set to default values. See “Device Configura-  
tion” on page 31 for more details on Auto, Host, and Flash configurations.  
Soft reset is asserted or de-asserted by the two-wire serial interface program. In soft-  
reset mode, the two-wire serial interface and the register bus are still running. All control  
registers are reset using default values.  
Clocks  
The ASX340/MT9V139 has two primary clocks:  
A master clock coming from the EXTCLK signal.  
In default mode, a pixel clock (PIXCLK) running at 2 * EXTCLK. In raw Bayer bypass  
mode, PIXCLK runs at the same frequency as EXTCLK.  
When the ASX340/MT9V139 operates in sensor stand-alone mode, the image flow pipe-  
line clocks can be shut off to conserve power.  
The sensor core is a master in the system. The sensor core frame rate defines the overall  
image flow pipeline frame rate. Horizontal blanking and vertical blanking are influenced  
by the sensor configuration, and are also a function of certain image flow pipeline func-  
tions. The relationship of the primary clocks is depicted in Figure 38.  
The image flow pipeline typically generates up to 16 bits per pixel—for example, YCbCr  
or 565RGB—but has only an 8-bit port through which to communicate this pixel data.  
To generate NTSC or PAL format images, the sensor core requires a 27 MHz clock.  
Figure 38:  
Primary Clock Relationships  
Sensor  
Master Clock  
EXTCLK  
Sensor Core  
Sensor  
Pixel Clock  
10 bits/pixel  
1 pixel/clock  
Colorpipe  
16 bits/pixel  
1 pixel/clock  
Output Interface  
16 bits/pixel (TYP)  
0.5 pixel/clock  
PDF: 171981479/Source: 8304342517  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
Aptina reserves the right to change products or specifications without notice.  
© 2010 Aptina Imaging Corporation All rights reserved.  
55  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Modes and Timing  
Floating Inputs  
The following ASX340/MT9V139 pins cannot be floated:  
SDATA–This pin is bidirectional and should not be floated  
FRAME_SYNC  
TRST_N  
SCLK  
SADDR  
ATEST1  
ATEST2  
Output Data Ordering  
Table 30:  
Output Data Ordering in DOUT RGB Mode  
Mode  
(Swap Disabled)  
Byte  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
565RGB  
First  
Second  
First  
R7  
G4  
0
R6  
G3  
R7  
G4  
R6  
B6  
0
R5  
G2  
R6  
G3  
R5  
B5  
0
R4  
B7  
R5  
B7  
R4  
B4  
0
R3  
B6  
R4  
B6  
G7  
0
G7  
B5  
R3  
B5  
G6  
0
G6  
B4  
G7  
B4  
G5  
0
G5  
B3  
G6  
B3  
G4  
0
555RGB  
444xRGB  
x444RGB  
Second  
First  
G5  
R7  
B7  
0
Second  
First  
R7  
B7  
R6  
B6  
R5  
B5  
R4  
B4  
Second  
G7  
G6  
G5  
G4  
Note:  
PIXCLK is 54 MHz when EXTCLK is 27 MHz.  
Table 31:  
Output Data Ordering in Sensor Stand-Alone Mode  
Mode  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
B2  
DOUT_LSB1  
DOUT_LSB0  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B1  
B0  
10-bit Output  
Note:  
PIXCLK is 27 MHz when EXTCLK is 27 MHz.  
PDF: 171981479/Source: 8304342517  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
Aptina reserves the right to change products or specifications without notice.  
© 2010 Aptina Imaging Corporation All rights reserved.  
56  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Modes and Timing  
I/O Circuitry  
Figure 39:  
Figure 39 illustrates typical circuitry used for each input, output, or I/O pad.  
Typical I/O Equivalent Circuits  
V
DD_IO  
Input Pad  
Pad  
Receiver  
GND  
DD_IO  
V
SPI_SDI and RESET_BAR  
Input Pad  
Pad  
Receiver  
GND  
VDD_IO  
Receiver  
I/O Pad  
Pad  
Slew  
Rate  
Control  
GND  
V
DD_IO  
SCLK and XTAL_IN  
Input Pad  
Pad  
Receiver  
GND  
XTAL  
Pad  
Output Pad  
VDD_IO  
GND  
Note:  
All I/O circuitry shown above is for reference only. The actual implementation may be different.  
PDF: 171981479/Source: 8304342517  
Aptina reserves the right to change products or specifications without notice.  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
57  
© 2010 Aptina Imaging Corporation All rights reserved.  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Modes and Timing  
Figure 40:  
NTSC Block  
NTSC Block  
VDD_DAC  
Pad  
DAC_REF  
Pad  
Pad  
DAC_POS  
DAC_NEG  
ESD  
ESD  
ESD  
Resistor  
4.7kΩ/2.35kΩ  
GND  
Note:  
All I/O circuitry shown above is for reference only. The actual implementation may be different.  
Figure 41:  
Serial Interface  
PDF: 171981479/Source: 8304342517  
Aptina reserves the right to change products or specifications without notice.  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
58  
© 2010 Aptina Imaging Corporation All rights reserved.  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Modes and Timing  
I/O Timing  
Digital Output  
By default, the ASX340/MT9V139 launches pixel data, FV, and LV synchronously with the  
falling edge of PIXCLK. The expectation is that the user captures data, FV, and LV using  
the rising edge of PIXCLK. The timing diagram is shown in Figure 42.  
As an option, the polarity of the PIXCLK can be inverted from the default by program-  
ming R0x0016[14].  
Figure 42:  
Digital Output I/O Timing  
t
extclk_period  
Input  
EXTC LK  
PIXC LK  
Output  
t
t
pixclkf_dout  
dout_ho  
Output  
Output  
D
OUT [7 :0]  
t
dout_su  
t
fvlv_ho  
t
pixclkf_fvlv  
FR AM E_VALID  
LIN E _VALID  
t
fvlv_su  
Table 32:  
Parallel Digital Output I/O Timing  
fEXTCLK = 27 MHz; VDD = 1.8V; VDD_IO = 2.8V; VAA = 2.8V; VAA_PIX = 2.8V;  
VDD_PLL = 2.8V; VDD_DAC = 2.8V; Default slew rate  
Signal  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
EXTCLK  
fextclk  
max ±100 ppm  
6
27  
37  
50  
27  
37.04  
50  
54  
166.67  
55  
MHz  
ns  
textclk_period  
Duty cycle  
fpixclk  
18.52  
45  
%
PIXCLK1  
DATA[7:0]  
FV/LV  
6
54  
MHz  
ns  
tpixclk_period  
Duty cycle  
tpixclkf_dout  
tdout_su  
18.52  
45  
166.67  
55  
%
0.97  
6.83  
2.74  
1.15  
6.72  
5.74  
2.42  
8.28  
6.32  
2.53  
8.1  
ns  
ns  
tdout_ho  
tpixclkf_fvlv  
tfvlv_su  
ns  
ns  
ns  
tfvlv_ho  
7.62  
ns  
Note:  
PIXCLK can be inverted from the default by programming R0x0016[14].  
PDF: 171981479/Source: 8304342517  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
Aptina reserves the right to change products or specifications without notice.  
© 2010 Aptina Imaging Corporation All rights reserved.  
59  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Modes and Timing  
Slew Rate  
Table 33:  
Slew Rate for PIXCLK and DOUT  
fEXTCLK = 27 MHz; VDD = 1.8V; VDD_IO = 2.8V; VAA = 2.8V; VΑΑ_PIX = 2.8V;  
VDD_PLL = 2.8V; VDD_DAC = 2.8V; T = 25°C; CLOAD = 40 pF  
PIXCLK  
DOUT[7:0]  
Typical  
Rise Time  
Typical  
Fall Time  
Typical  
Rise Time  
Typical  
Fall Time  
R0x30 [10:8]  
R0x30 [2:0]  
Unit  
000  
001  
010  
011  
100  
101  
110  
111  
6.5  
4.8  
3.9  
3.7  
3.6  
3.5  
3.4  
3.3  
6.3  
4.6  
3.8  
3.7  
3.6  
3.5  
3.4  
3.3  
000  
001  
010  
011  
100  
101  
110  
111  
6.5  
4.8  
3.9  
3.7  
3.6  
3.5  
3.4  
3.3  
6.3  
4.6  
3.8  
3.7  
3.6  
3.5  
3.4  
3.3  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Figure 43:  
Slew Rate Timing  
90%  
10%  
PIXCLK  
t
ris e  
tfa ll  
90%  
10%  
D
OUT  
tris e  
t
fa ll  
PDF: 171981479/Source: 8304342517  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
Aptina reserves the right to change products or specifications without notice.  
© 2010 Aptina Imaging Corporation All rights reserved.  
60  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Modes and Timing  
Configuration Timing  
During start-up, the Dout_LSB0, LV and FV are sampled. Setup and hold timing for the  
RESET_BAR signal with respect to DOUT_LSB0, LV, and FV are shown in Figure 44 and  
Table 34. These signals are sampled once by the on-chip firmware, which yields a long  
t
Hold time.  
Figure 44:  
Configuration Timing  
RESET_BAR  
t
t
SETUP  
HOLD  
DOUT_LSB0  
FRAME_VALID  
LINE_VALID  
Valid Data  
Table 34:  
Configuration Timing  
Signal  
Parameter  
Min  
Typ  
Max  
Unit  
t
DOUT_LSB0, FRAME_VALID, LINE_VALID  
SETUP  
0
μs  
μs  
t
HOLD  
50  
PDF: 171981479/Source: 8304342517  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
Aptina reserves the right to change products or specifications without notice.  
© 2010 Aptina Imaging Corporation All rights reserved.  
61  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Modes and Timing  
Figure 45:  
Power Up Sequence  
VDD_PLL  
VDD_DAC (2.8)  
t0  
VAA_PIX  
VAA (2.8)  
t1  
VDD_IO (2.8)  
t2  
VDD (1.8)  
tx  
EXTCLK  
RESET_BAR  
t4  
t5  
t3  
Internal  
(NTSC/PAL)  
Initialization  
Hard Reset  
Patch Config  
SPI or Host  
Streaming  
Notes: 1. RESET_BAR may not exceed VDD_IO + 0.3V.  
2. The 2.8V plane (VAA, VAA_PIX, VDD_PLL, VDD_DAC, VDD_IO) must remain at a higher voltage than the  
1.8V core voltage at all times.  
Table 35:  
Power Up Sequence  
Definition  
Symbol  
Minimum  
Typical  
Maximum  
Unit  
VDD_PLL to VAA/VAA_PIX  
VAA/VAA_PIX to VDD_IO  
VDD_IO to VDD  
t0  
t1  
t2  
tx  
t3  
t4  
t5  
0
0
μS  
μS  
μS  
0
301  
Xtal settle time  
mS  
Hard Reset  
102  
50  
Clock cycle  
mS  
Internal Initialization  
Patch Load (SPI or I2C)  
4003  
mS  
Notes: 1. Xtal settling time is component-dependent (Xtal, Oscillator, and so on) and usually takes about 10mS  
~100mS.  
2. Hard reset time is the minimum time required after power rails are settled. Ten clock cycles are required  
for the sensor itself, assuming all power rails are settled. In a circuit where Hard reset is performed by  
the RC circuit, then the RC time must include the all power rail settle time and Xtal  
3. This is required to load necessary patches using Flash mode (SPI) or Host mode (two-wire serial inter-  
face). Loading time varies depending on the number of patches and bus speed.  
PDF: 171981479/Source: 8304342517  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
Aptina reserves the right to change products or specifications without notice.  
62  
© 2010 Aptina Imaging Corporation All rights reserved.  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Modes and Timing  
Figure 46:  
Power Down Sequence  
V
DD (1.8)  
t0  
V
DD_IO (2.8)  
t1  
VAA_PIX  
VAA (2.8)  
t2  
VDD_PLL  
V
DD_DAC (2.8)  
EXTCLK  
t3  
Power Down until next Power Up Cycle  
Table 36:  
Power Down Sequence  
Definition  
Symbol  
Minimum  
Typical  
Maximum  
Unit  
VDD to VDD_IO  
t0  
t1  
t2  
t3  
0
0
μS  
μS  
μS  
ms  
VDD_IO to VAA/VAA_PIX  
VAA/VAA_PIX to VDD_PLL/DAC  
0
1001  
Power Down until Next Power Up Time  
(1) t3 is required between power down and next power up time, all decoupling caps from  
regulators must completely discharged before next power up.  
Figure 47:  
FRAME_SYNC to FRAME_VALID/LINE_VALID  
tFRAME_SYNC  
FRAME_SYNC  
tFRMSYNH_FVH  
FRAME_VALID  
LINE_VALID  
Table 37:  
FRAME_SYNC to FRAME_VALID/LINE_VALID Parameters  
Parameter  
Name  
Conditions  
Min  
Typ  
Max  
Unit  
FRAME_SYNC to FV/LV  
tFRAME_SYNC  
tFRMSYNC_FVH  
tFRAMESYNC  
Auto Config mode  
4
ms  
ms  
30  
PDF: 171981479/Source: 8304342517  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
Aptina reserves the right to change products or specifications without notice.  
© 2010 Aptina Imaging Corporation All rights reserved.  
63  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Modes and Timing  
Figure 48:  
Reset to SPI Access Delay  
R ESET_BAR  
tRSTH_CSL  
SPI_CS_N  
Figure 49:  
Reset to Serial Access Delay  
RESET_BAR  
tRSTH_SDATAL  
SDATA  
Figure 50:  
Reset to AE/AWB Image  
RESET_BAR  
VIDEO  
First Frame  
Overlay from  
Flash  
AE/AWB settled  
tRSTH_FVL  
tRSTH_OVL  
tRSTH_AEAWB  
Table 38:  
RESET_BAR Delay Parameters  
Parameter  
Name  
Condition  
Min  
Typ  
Max  
Unit  
Power up delay 2.8V to 1.8V  
0.1  
18  
ms  
ms  
ms  
ms  
ms  
ms  
RESET_BAR HIGH to SPI_CS_N LOW  
RESET_BAR HIGH to SDATA LOW  
RESET_BAR HIGH to FRAME_VALID  
RESET_BAR HIGH to first Overlay  
RESET_BAR HIGH to AE/AWB settled  
tRSTH_CSL  
tRSTH_SDATAL  
tRSTH_FVL  
1.8  
235  
235  
tRSTH_OVL  
tRSTH_AEAWB  
400  
PDF: 171981479/Source: 8304342517  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
Aptina reserves the right to change products or specifications without notice.  
© 2010 Aptina Imaging Corporation All rights reserved.  
64  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Electrical Specifications  
Electrical Specifications  
Figure 51:  
SPI Output Timing  
tCS_SCLK  
SPI_CS_N  
SPI_SCLK  
SPI_SDI  
tSCLK_SDO  
ts u  
SPI_SDO  
Table 39:  
SPI Data Setup and Hold Timing  
Parameter  
Description  
Min  
Typ  
Max  
Units  
fSPI_SCLK  
tsu  
tSCLK_SDO  
tCS_SCLK  
SPI_SCLK Frequency  
1.6875  
4.5  
18  
110  
110  
MHz  
ns  
Setup time  
Hold time  
ns  
Delay from falling edge of SPI_CS_N to rising edge of SPI_SCLK  
230  
ns  
PDF: 171981479/Source: 8304342517  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
Aptina reserves the right to change products or specifications without notice.  
© 2010 Aptina Imaging Corporation All rights reserved.  
65  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Electrical Specifications  
Caution Stresses greater than those listed in Table 40 may cause permanent damage to the device. This is  
a stress rating only, and functional operation of the device at these or any other conditions  
above those indicated in the operational sections of this specification is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect reliability.  
Table 40:  
Absolute Maximum Ratings  
Rating  
Symbol  
Parameter  
Min  
Max  
Unit  
Digital power (1.8V)  
I/O power (2.8v)  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-50  
2.4  
V
V
V
V
V
V
V
V
°C  
VDD  
4
VDD_IO  
VAA  
VAA Analog power (2.8V)  
Pixel array power (2.8v)  
PLL power (2.8V)  
4
4
VAA_PIX  
VDD_PLL  
VDD_DAC  
VIN  
4
4
DAC power (2.8V)  
DC Input Voltage  
VDD_IO+0.3  
VDD_IO+0.3  
150  
DC Output Voltage  
Storage temperature  
VOUT  
TSTG  
Table 41:  
Electrical Characteristics and Operating Conditions  
Condition  
Parameter1  
Min  
Typ  
Max  
Unit  
Core digital voltage (VDD)  
IO digital voltage (VDD_IO)  
Video DAC voltage (VDD_DAC)  
PLL Voltage (VDD_PLL)  
1.7  
1.8  
2.8  
2.8  
2.8  
2.8  
2.8  
1.9  
2.94  
2.94  
2.94  
2.94  
2.94  
10  
V
V
2.66  
2.66  
2.66  
2.66  
2.66  
V
V
Analog voltage (VAA)  
V
Pixel supply voltage (VAA_PIX)  
Leakage current  
V
EXTCLK: HIGH or LOW  
μA  
°C  
°C  
Imager operating temperature  
Storage temperature  
–30  
–50  
+70  
+150  
Notes: 1. VAA and VAA_PIX must all be at the same potential to avoid excessive current draw. Care must be taken  
to avoid excessive noise injection in the analog supplies if all three supplies are tied together.  
PDF: 171981479/Source: 8304342517  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
Aptina reserves the right to change products or specifications without notice.  
66  
© 2010 Aptina Imaging Corporation All rights reserved.  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Electrical Specifications  
Table 42:  
Video DAC Electrical Characteristics–Single-Ended Mode  
fEXTCLK = 27 MHz; VDD = 1.8V; VDD_IO = 2.8V; VAA = 2.8V; VAA_PIX = 2.8V;  
VDD_PLL = 2.8V; VDD_DAC = 2.8V  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
Resolution  
DNL  
10  
0.2  
-
bits  
bits  
bits  
Ω
Ω
V
0.4  
INL  
0.7  
3.5  
Output local load  
Output pad (DAC_POS)  
Unused output (DAC_NEG)  
Single-ended mode, code 000h  
Single-ended mode, code 3FFh  
Single-ended mode, code 000h  
Single-ended mode, code 3FFh  
Estimate  
75  
-
0
-
Output voltage  
Output current  
.02  
-
1.30  
0.26  
17.33  
-
-
V
-
mA  
mA  
mA  
V
-
Supply current  
DAC_REF  
25.0  
DAC Reference  
1.15 +/-0.2  
4.7  
-
-
R DAC_REF  
DAC Reference  
KΩ  
Table 43:  
Video DAC Electrical Characteristics–Differential Mode  
fEXTCLK = 27 MHz; VDD = 1.8V; VDD_IO = 2.8V; VAA = 2.8V; VAA_PIX = 2.8V;  
VDD_PLL = 2.8V; VDD_DAC = 2.8V  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
DNL  
INL  
0.2  
0.8  
0.25  
2.5  
Bits  
Bits  
Ω
Output local load  
Differential mode per pad  
(DAC_POS and DAC_NEG)  
37.5  
Output voltage  
Differential mode, code 000h, pad dacp  
Differential mode, code 000h, pad dacn  
Differential mode, code 3FFh, pad dacp  
Differential mode, code 3FFH, pad dacn  
Differential mode, code 000h, pad dacp  
Differential mode, code 000h, pad dacn  
Differential mode, code 3FFh, pad dacp  
Differential mode, code 3FFH, pad dacn  
.02  
1.30  
1.30  
.02  
V
V
V
V
Output current  
.53  
mA  
mA  
mA  
mA  
V
34.7  
34.7  
.53  
Differential output,  
midlevel  
0.65  
Supply current  
DAC_REF  
Estimate  
50  
mA  
V
DAC Reference  
DAC Reference  
1.15 +/-0.2  
2.35  
R DAC_REF  
KΩ  
PDF: 171981479/Source: 8304342517  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
Aptina reserves the right to change products or specifications without notice.  
© 2010 Aptina Imaging Corporation All rights reserved.  
67  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Electrical Specifications  
Table 44:  
Signal  
Digital I/O Parameters  
TA = Ambient = 25°C; All supplies at 2.8V  
Parameter Definitions  
Condition  
Min  
Typ  
Max  
Unit  
All  
Outputs  
Load capacitance  
5
30  
pF  
V/ns  
V/ns  
V
Output signal slew  
2.8V, 30pF load  
2.8V, 5pF load  
VOH  
VOL  
IOH  
Output high voltage  
Output low voltage  
Output high current  
VDD_IO  
–0.3  
V
VDD = 2.8V, VOH  
= 2.4V  
8
mA  
IOL  
Output low current  
VDD = 2.8V, VOL =  
0.4V  
8
mA  
All Inputs  
VIH  
VIL  
IIN  
Input high voltage  
Input low voltage  
Input leakage current  
VDD = 2.8V  
VDD = 2.8V  
0.7 * VDD_IO  
VDD_IO + 0.3  
V
V
–0.3  
–2  
0.3 * VDD_IO  
2
μA  
pF  
Signal CAP Input signal  
capacitance  
3.5  
Notes: 1. All inputs are protected and may be active when All supplies (2.8V and 1.8V) are turned off.  
PDF: 171981479/Source: 8304342517  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
Aptina reserves the right to change products or specifications without notice.  
© 2010 Aptina Imaging Corporation All rights reserved.  
68  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Electrical Specifications  
Power Consumption, Operating Mode  
Table 45:  
Power Consumption – Condition 1  
fEXTCLK = 27 MHz; VDD = 1.8V; VDD _IO = 2.8V; VAA =2.8V;VAA_PIX=2.8V;  
VDD _PLL = 2.8V; VDD _DAC = 2.8V  
Power Plane  
Supply  
Condition 1  
Typ Power  
Max Power  
Unit  
VDD  
1.8  
2.8  
2.8  
2.8  
2.8  
2.8  
55  
5
65  
10  
mW  
mW  
mW  
mW  
mW  
mW  
mW  
VDD_IO  
VAA  
Parallel off  
95  
112  
5
VAA_PIX  
VDD_DAC  
VDD_PLL  
2.5  
65  
Single 75Ω  
70  
20  
25  
Total  
242.5  
287  
Analog output uses single-ended mode: DAC_Pos = 75Ω, DAC_Neg = open, parallel  
output is disabled.  
Table 46:  
Power Consumption – Condition 2  
fEXTCLK = 27 MHz; VDD = 1.8V; VDD _IO = 2.8V; VAA =2.8V;VAA_PIX=2.8V;  
VDD _PLL = 2.8V; VDD _DAC = 2.8V  
Power Plane  
Supply  
Condition 2  
Typ Power  
Max Power  
Unit  
VDD  
1.8  
2.8  
2.8  
2.8  
2.8  
2.8  
55  
30  
65  
50  
112  
5
mW  
mW  
mW  
mW  
mW  
mW  
mW  
VDD_IO  
VAA  
Parallel on  
95  
VAA_PIX  
VDD_DAC  
VDD_PLL  
2.5  
2
VDAC off  
Total  
5
20  
25  
262  
204.5  
Analog output is disabled; parallel output is enabled.  
PDF: 171981479/Source: 8304342517  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
Aptina reserves the right to change products or specifications without notice.  
© 2010 Aptina Imaging Corporation All rights reserved.  
69  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Electrical Specifications  
NTSC Signal Parameters  
Table 47:  
NTSC Signal Parameters  
fEXTCLK = 27 MHz; VDD = 1.8V; VDD_IO = 2.8V; VAA = 2.8V; VAA_PIX = 2.8V;  
VDD_PLL = 2.8V; VDD_DAC = 2.8V  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Notes  
Line Frequency  
Field Frequency  
Sync Rise Time  
Sync Fall Time  
Sync Width  
15734.25  
59.94  
148  
15734.27  
59.94  
148  
15734.28  
59.94  
148  
Hz  
Hz  
ns  
148  
148  
148  
ns  
4.74  
38  
4.74  
4.74  
42  
μs  
IRE  
IRE  
μs  
Sync Level  
39.9  
2, 4  
2, 4  
Burst Level  
38  
39.7  
42  
Sync to Setup  
9.44  
9.44  
9.44  
(with pedestal off)  
Sync to Burst Start  
Front Porch  
5.33  
1.33  
6.5  
5.33  
1.33  
7.5  
5.33  
1.33  
8.5  
μs  
μs  
IRE  
IRE  
Black Level  
1, 2, 4  
White Level  
90  
100  
110  
1, 2, 3, 4  
Notes: 1. Black and white levels are referenced to the blanking level.  
2. NTSC convention standardized by the IRE (1 IRE = 7.14mV).  
3. Encoder contrast setting R0x011 = R0x001 = 0.  
4. DAC ref = 2.8kΩ, load = 37.5Ω.  
PDF: 171981479/Source: 8304342517  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
Aptina reserves the right to change products or specifications without notice.  
© 2010 Aptina Imaging Corporation All rights reserved.  
70  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Electrical Specifications  
Figure 52:  
Video Timing  
A
D
E
C
B
J
F
K
H
G
H
Table 48:  
Video Timing  
NTSC  
27 MHz  
PAL  
27 MHz  
Signal  
Units  
A
B
C
D
E
H Period  
1716  
144  
63  
1728  
153  
66  
Clocks  
Clocks  
Clocks  
Clocks  
Clocks  
Clocks  
Clocks  
Clocks  
Clocks  
Clocks  
Hsync to burst  
burst  
Hsync to Signal  
Video Signal  
Front  
255  
1423  
36  
279  
1413  
39  
F
G
H
J
Hsync Period  
128  
4
128  
4
Sync rising/falling edge  
Back overscan (BOS)  
Front overscan (FOS)  
9
14  
K
8
13  
PDF: 171981479/Source: 8304342517  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
Aptina reserves the right to change products or specifications without notice.  
© 2010 Aptina Imaging Corporation All rights reserved.  
71  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Electrical Specifications  
Figure 53:  
Equivalent Pulse  
L
I
J
K
K
Table 49:  
Equivalent Pulse  
NTSC  
27 MHz  
PAL  
27 MHz  
Signal  
Units  
I
J
H/2 Period  
Pulse width  
858  
64  
4
864  
64  
4
Clocks  
Clocks  
Clocks  
Clocks  
K
L
Pulse rising/falling edge  
Signal to pulse  
38  
41  
PDF: 171981479/Source: 8304342517  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
Aptina reserves the right to change products or specifications without notice.  
© 2010 Aptina Imaging Corporation All rights reserved.  
72  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Electrical Specifications  
Figure 54:  
V Pulse  
M
O
N
P
P
Table 50:  
V Pulse  
NTSC  
27 MHz  
PAL  
27 MHz  
Signal  
Units  
M
N
O
P
H/2 Period  
Pulse width  
858  
730  
128  
4
864  
736  
128  
4
Clocks  
Clocks  
Clocks  
Clocks  
V pulse interval  
Pulse rising/falling edge  
PDF: 171981479/Source: 8304342517  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
Aptina reserves the right to change products or specifications without notice.  
© 2010 Aptina Imaging Corporation All rights reserved.  
73  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Electrical Specifications  
Two-Wire Serial Bus Timing  
Figure 55 and Table 51 describe the timing for the two-wire serial interface.  
Figure 55:  
Two-Wire Serial Bus Timing Parameters  
Write Sequence  
tSTPH  
tSDS  
tSRTH  
tAHSW  
tSHAW  
tSTPS  
tSCLK  
tSDH  
SCLK  
SDATA  
Write  
Address  
Bit 7  
Write  
Address  
Bit 0  
Register  
Value  
Bit 7  
Register  
Value  
Bit 0  
Stop  
Write Start  
Ack  
tSDSR  
Read Sequence  
SCLK  
tSDHR  
tSHAR  
tAHSR  
SDATA  
Read  
Address  
Bit 7  
Read  
Address  
Bit 0  
Register  
Value  
Bit 7  
Register  
Value  
Bit 0  
Ack  
Read Start  
Table 51:  
Parameter  
Two-Wire Serial Bus Characteristics  
fEXTCLK = 27 MHz; VDD = 1.8V; VDD_IO = 2.8V; VAA = 2.8V; VAA_PIX = 2.8V;  
VDD_PLL = 2.8V; VDD_DAC = 2.8V; TA = 25°C  
Standard-Mode  
Fast-Mode  
Symbol  
Min  
Max  
Min  
Max  
Unit  
SCLK Clock Frequency  
fSCL  
0
100  
0
400  
KHz  
Hold time (repeated) START condition.  
After this period, the first clock pulse is  
generated  
tHD;STA  
4.0  
-
0.6  
-
μS  
LOW period of the SCLK clock  
HIGH period of the SCLK clock  
tLOW  
tHIGH  
4.7  
4.0  
4.7  
-
-
-
1.3  
0.6  
0.6  
-
-
-
μS  
μS  
μS  
Set-up time for a repeated START  
condition  
tSU;STA  
Data hold time:  
tHD;DAT  
tSU;DAT  
tr  
04  
250  
-
3.455  
-
06  
1006  
20 + 0.1Cb7  
20 + 0.1Cb7  
0.6  
0.95  
-
μS  
nS  
nS  
nS  
μS  
Data set-up time  
Rise time of both SDATA and SCLK signals  
Fall time of both SDATA and SCLK signals  
Set-up time for STOP condition  
1000  
300  
-
300  
300  
-
tf  
-
tSU;STO  
4.0  
PDF: 171981479/Source: 8304342517  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
Aptina reserves the right to change products or specifications without notice.  
© 2010 Aptina Imaging Corporation All rights reserved.  
74  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Electrical Specifications  
Table 51:  
Parameter  
Two-Wire Serial Bus Characteristics  
fEXTCLK = 27 MHz; VDD = 1.8V; VDD_IO = 2.8V; VAA = 2.8V; VAA_PIX = 2.8V;  
VDD_PLL = 2.8V; VDD_DAC = 2.8V; TA = 25°C  
Standard-Mode  
Fast-Mode  
Symbol  
Min  
Max  
Min  
Max  
Unit  
Bus free time between a STOP and START  
condition  
tBUF  
4.7  
-
1.3  
-
μS  
Capacitive load for each bus line  
Serial interface input pin capacitance  
SDATA max load capacitance  
SDATA pull-up resistor  
Cb  
CIN_SI  
CLOAD_SD  
RSD  
-
-
400  
3.3  
30  
-
-
400  
3.3  
30  
pF  
pF  
-
-
pF  
1.5  
4.7  
1.5  
4.7  
KΩ  
Notes: 1. This table is based on I2C standard (v2.1 January 2000). Philips Semiconductor.  
2. Two-wire control is I2C-compatible.  
3. All values referred to VIHmin = 0.9 VDD and VILmax = 0.1VDD levels. Sensor EXCLK = 27 MHz.  
4. A device must internally provide a hold time of at least 300 ns for the SDATA signal to bridge the unde-  
fined region of the falling edge of SCLK.  
5. The maximum tHD;DAT has only to be met if the device does not stretch the LOW period (tLOW) of the  
SCLK signal.  
6. A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system, but the requirement  
tSU;DAT 250 ns must then be met. This will automatically be the case if the device does not stretch the  
LOW period of the SCLK signal. If such a device does stretch the LOW period of the SCLK signal, it must out-  
put the next data bit to the SDATA line tr max + tSU;DAT = 1000 + 250 = 1250 ns (according to the Stan-  
dard-mode I2C-bus specification) before the SCLK line is released.  
7. Cb = total capacitance of one bus line in pF.  
PDF: 171981479/Source: 8304342517  
Aptina reserves the right to change products or specifications without notice.  
ASX340/MT9V139_DS Rev. C Pub. 3/11 EN  
75  
© 2010 Aptina Imaging Corporation All rights reserved.  
Package and Die Dimensions  
Figure 56:  
63-Ball cBGA Package Outline Drawing  
Figure 57:  
63-Ball CSP Package Outline Drawing  
Aptina Confidential and Proprietary  
Preliminary  
ASX340/MT9V139: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Revision History  
Revision History  
Rev. C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3/14/11  
Changed Part number to ASX340  
Updated “Features” on page 1  
Updated Table 1, “Key Parameters,” on page 1  
Updated Table 3, Available Part Numbers,” on page 3  
Updated “New Features” on page 3  
Updated Table 4, “Pin Descriptions,” on page 12  
Updated Table 5, “Pin Assignments,” on page 14  
Updated “Device Configuration” on page 31  
Updated Figure 19: “Power-Up Sequence – Configuration Options Flow Chart,” on  
page 32  
Added Figure 56: “63-Ball cBGA Package Outline Drawing,” on page 76  
Rev. B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10/11/10  
Remove note from Table 2, “Key Parameters (continued),” on page 2  
Updated Table 4, “Pin Descriptions,” on page 12  
Updated Table 35, “Power Up Sequence,” on page 62 and Table 36, “Power Down  
Sequence,” on page 63  
Updated Table 45, “Power Consumption – Condition 1,” on page 69, Table 46, “Power  
Consumption – Condition 2,” on page 69 on, and Table 47, “NTSC Signal Parameters,”  
on page 70  
Changed 15–33 pF to 15-22 pF in“Crystal Usage” on page 11  
UpdatedTable 20, “Interface Structure,” on page 34  
UpdatedTable 38, “RESET_BAR Delay Parameters,” on page 64  
UpdatedTable 41, “Electrical Characteristics and Operating Conditions,” on page 66  
Rev. A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10/6/10  
Initial release  
10 Eunos Road 8 13-40, Singapore Post Center, Singapore 408600 prodmktg@aptina.com www.aptina.com  
Aptina, Aptina Imaging, and the Aptina logo are the property of Aptina Imaging Corporation  
All other trademarks are the property of their respective owners.  
Preliminary: This data sheet contains initial characterization limits that are subject to change upon full characterization of production devices.  
PDF: 171981479/Source: 8304342517Source:8304342517  
-ASX340/MT9V139_DS Rev. B Pub. 3/11 EN  
AAptina reserves the right to change products or specifications without notice.  
© 2010 Aptina Imaging Corporation All rights reserved.  
78  

相关型号:

ASX340CS2C00SPEAD-GEVK

1/4-Inch Color CMOS NTSC/PAL Digital Image SOc
ONSEMI

ASX340CS2C00SPEAD3-GEVK

1/4-Inch Color CMOS NTSC/PAL Digital Image SOc
ONSEMI

ASX340CS2C00SPEAH-E

1/4-Inch Color NTSC/PAL Digital Image SOC with Overlay Processor
ETC

ASX340CS2C00SPEAH-GEVB

1/4-Inch Color CMOS NTSC/PAL Digital Image SOc
ONSEMI

ASX340CS2C00SPEAH3-GEVB

1/4-Inch Color CMOS NTSC/PAL Digital Image SOc
ONSEMI

ASX340CS2C00SPED0-DPBR

1/4-Inch Color CMOS NTSC/PAL Digital Image SOc
ONSEMI

ASX340CS2C00SPED0-DPBR1

CMOS 图像传感器片上系统,VGA,1/4"
ONSEMI

ASX340CS2C00SPED0-DRBR

1/4-Inch Color CMOS NTSC/PAL Digital Image SOc
ONSEMI

ASX340CS2C00SPED0-DRBR1

CMOS 图像传感器片上系统,VGA,1/4"
ONSEMI

ASX340CS2C00SPED0-TPBR

1/4-Inch Color CMOS NTSC/PAL Digital Image SOc
ONSEMI

ASX340CS2C00SPED0-TRBR

1/4-Inch Color CMOS NTSC/PAL Digital Image SOc
ONSEMI

ASX340CS2C00SPED0-WT-DRBR

CMOS 图像传感器片上系统,VGA,1/4"
ONSEMI