AZ494P [ETC]

PULSE-WIDTH-MODULATION CONTROL CIRCUITS; 脉宽调制控制电路
AZ494P
型号: AZ494P
厂家: ETC    ETC
描述:

PULSE-WIDTH-MODULATION CONTROL CIRCUITS
脉宽调制控制电路

文件: 总12页 (文件大小:274K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet  
Advanced Analog Circuits  
PULSE-WIDTH-MODULATION CONTROL CIRCUITS  
AZ494  
General Description  
Features  
The AZ494 incorporates on a single chip all the func-  
tions required in the construction of a pulse-width-  
modulation (PWM) control circuit. Designed primarily  
for power supply control, this device offers the flexibil-  
ity to tailor the power supply control circuitry to a spe-  
cific application.  
·
·
Complete PWM power-control circuitry  
Uncommitted outputs for 200mA sink or source  
current  
·
·
·
·
·
Output control selects single-ended or push-pull  
operation  
Internal circuitry prohibits double pulse at either  
output  
The AZ494 contains two error amplifiers, an on-chip  
adjustable oscillator, a dead-time control (DTC) com-  
parator, a pulse-steering control flip-flop, a 5V regula-  
tor, and output control circuits. The error amplifiers  
exhibit a common-mode voltage range from -0.3V to  
Variable dead time provides control over total  
range  
Internal regulator provides a stable 5V reference  
supply with 5% tolerance  
Circuit architecture allows easy synchronization  
V
-2V. The dead-time control comparator has a fixed  
CC  
offset that provides approximately 5% dead time. The  
on-chip oscillator can be bypassed by terminating the  
RT pin to the reference output and providing a saw-  
tooth input to the CT pin, or it can drive the common  
circuits in synchronous multiple-rail power supplies.  
Applications  
·
·
SMPS  
Back Light Inverter  
The uncommitted output transistors can be configured  
in either common-emitter or emitter-follower output  
topology. The AZ494 provides for push-pull or single-  
ended output operation, which can be selected through  
the output control function. The architecture of this  
device prohibits the possibility of either output being  
pulsed twice during push-pull operation. The AZ494 is  
o
o
characterized for operation from -40 C to 85 C.  
DIP-16  
SOIC-16  
Figure 1. Package Types of AZ494  
March. 2003  
Rev.1.0  
1
Data Sheet  
Advanced Analog Circuits  
PULSE-WIDTH-MODULATION CONTROL CIRCUITS  
AZ494  
Pin Configuration  
M Package / P Package  
(SOIC-16 / DIP-16)  
1IN +  
1
16  
2IN +  
2IN -  
1IN -  
2
15  
FEEDBACK  
DTC  
3
4
5
6
7
8
14  
13  
12  
11  
10  
9
REF  
OUTPUT CTRL  
CT  
V
CC  
RT  
C2  
E2  
E1  
GND  
C1  
Top View  
Figure 2. Pin Configuration of AZ494  
Function Table  
Input To Output Control  
Output Function  
VI = GND  
VI = Vref  
Single-ended or parallel output  
Normal push-pull operation  
Functional Block Diagram  
Output CTRL  
see Function Table  
6
5
13  
8
RT  
CT  
C1  
Oscillator  
Pulse-Steering  
Flip-Flop  
Q1  
Dead-Time Control  
Comparator  
9
E1  
D
C2  
11  
4
DTC  
CK  
Q2  
0.12V  
Error Amplifier 1  
10  
E2  
PWM  
Comparator  
1
2
1IN +  
1IN -  
12  
VCC  
Error Amplifier 2  
16  
15  
Reference  
Regulator  
14  
2IN +  
2IN -  
REF  
0.7mA  
7
GND  
3
FEEDBACK  
Figure 3. Functional Block Diagram of AZ494  
March. 2003  
Rev.1.0  
2
Data Sheet  
Advanced Analog Circuits  
PULSE-WIDTH-MODULATION CONTROL CIRCUITS  
Ordering Information  
AZ494  
Package  
SOIC-16  
DIP-16  
Temperature Range  
Part Number  
AZ494M  
AZ494P  
Marking ID  
AZ494M  
AZ494P  
Packing Type  
-40oC~85oC  
Tube  
Tube  
Absolute Maximum Ratings (Note 1)  
Parameter  
Symbol  
Value  
Unit  
Supply Voltage (Note 2)  
VCC  
VI  
40  
V
V
Amplifier Input Voltage  
Collector Output Voltage  
Collector Output Current  
-0.3 to VCC + 0.3  
VO  
IO  
40  
V
250  
mA  
oC/W  
Package Thermal Impedance  
(Note 3)  
M Package  
P Package  
73  
67  
θ
JA  
oC  
Lead Temperature 1.6mm from case for 10 seconds  
Storage Temperature Range  
260  
-65 to 150  
200  
oC  
V
TSTG  
ESD rating (Machine Model)  
Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the  
device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond  
those indicated under "Recommended Operation Ratings" is not implied. Exposure to "Absolute Maximum Rat-  
ings"for extended periods may affect device reliability.  
Note 2: All voltage values are with respect to the network ground terminal.  
Note 3: Maximum power dissipation is a function of T (max), θ and T . The maximum allowable power dissipa-  
J
JA  
A
tion at any allowable ambient temperature is P = ( T (max) - T ) / θ . Operating at the absolute maximum T of  
D
J
A
JA  
J
o
150 C can affect reliability.  
March. 2003  
Rev.1.0  
3
Data Sheet  
Advanced Analog Circuits  
PULSE-WIDTH-MODULATION CONTROL CIRCUITS  
Recommended Operating Conditions  
AZ494  
Parameter  
Symbol  
Min  
Max  
Unit  
Supply Voltage  
VCC  
7
36  
V
Amplifier Input Voltage  
Collector Output Voltage  
VI  
-0.3  
VCC - 2  
36  
V
V
VO  
Collector Output Current  
(Each Transistor)  
200  
mA  
Current Into Feedback Terminal  
Oscillator Frequency  
0.3  
300  
mA  
KHz  
fosc  
CT  
RT  
TA  
Timing Capacitor  
0.47  
1.8  
10000  
500  
nF  
Timing Resistor  
KΩ  
oC  
Operating Free-Air Temperature  
-40  
85  
March. 2003  
Rev.1.0  
4
Data Sheet  
Advanced Analog Circuits  
PULSE-WIDTH-MODULATION CONTROL CIRCUITS  
Electrical Characteristics  
AZ494  
o
All typical values, except for parameter changes with temperature, are at T = 25 C.  
A
Vcc=15V, f=10KHz unless otherwise noted.  
Parameter  
Symbol  
Conditions (Note 4)  
Min Typ Max  
Unit  
Reference Section  
Output Voltage (REF)  
Vref  
IO=1mA  
4.75  
5
2
5.25  
25  
V
mV  
Line Regulation  
VCC = 7V to 36V  
IO=1mA to 10mA  
TA = MIN to MAX  
REF = 0V  
Load Regulation  
1
15  
mV  
Output Voltage Change with Temperature  
Short-Circuit Output Current (Note 5)  
2
10  
mV/V  
mA  
ISC  
25  
Oscillator Section, CT = 0.01µF, RT = 12K(See Figure 4)  
Frequency  
fosc  
10  
KHz  
Standard Deviation of Frequency  
(Note 6)  
All values of VCC, CT, RT and  
TA constant  
100  
Hz/KHz  
VCC=7V to 36V, TA = 25oC  
Frequency Change with Voltage  
1
Hz/KHz  
Hz/KHz  
Frequency Change with Temperature  
(Note 7)  
TA= MIN to MAX  
10  
Error-Amplifier Section (See Figure 5)  
Input Offset Voltage  
VOS  
IOS  
VO (FEEDBACK) = 2.5V  
VO (FEEDBACK) = 2.5V  
2
10  
250  
1
mV  
nA  
µA  
V
Input Offset Current  
25  
0.2  
Input Bias Current  
IBIAS VO (FEEDBACK) = 2.5V  
VCC=7V to 36V  
Common-Mode Input Voltage Range  
-0.3 to  
VCC-2  
Large-Signal Open-Loop Voltage Gain  
AVO  
VO = 3V, RL =2K,  
VO =0.5V to 3.5V  
70  
95  
dB  
Large-Signal Unity-Gain Bandwidth  
Common-Mode Rejection Ratio  
GB  
VO =0.5V to 3.5V, RL =2KΩ  
VO = 36V, TA = 25oC  
800  
80  
KHz  
dB  
CMRR  
65  
Output Sink Current (FEEDBACK)  
ISINK  
VID = -15mV to -5V,  
V(FEEDBACK) = 0.7V  
0.3  
0.7  
mA  
Output Source Current (FEEDBACK)  
ISOURCE VID = 15mV to 5V, V(FEED-  
BACK) = 3.5V  
-2  
mA  
Output Section  
Collector Off-State Current  
IC, OFF VCE = 36V, VCC=36V  
IE, OFF VCC = VC = 36V, VE = 0  
VE = 0, IC =200mA  
2
100  
-100  
1.3  
µA  
µA  
V
Emitter Off-State Current  
Collector-Emitter  
Saturation Voltage  
Common  
Emitter  
Emitter Fol-  
lower  
1.1  
1.5  
VO (C1 or C2) = 15V,  
IE = -200mA  
2.5  
March. 2003  
Rev.1.0  
5
Data Sheet  
Advanced Analog Circuits  
PULSE-WIDTH-MODULATION CONTROL CIRCUITS  
Electrical Characteristics (Continued)  
AZ494  
Parameter  
Symbol Conditions  
Min  
Typ Max  
Unit  
Output Control Input Current  
VI = Vref  
3.5  
mA  
Dead-Time Control Section  
Input Bias Current  
VI = 0 to 5.25V  
-2  
-10  
µA  
Maximum Duty Cycle,  
Each Output  
VI (DEAD-TIME CTRL) = 0, CT  
=0.01µF, RT =12KΩ  
45  
%
Input Threshold Voltage  
Zero Duty Cycle  
Maximum Duty Cycle  
3
3.3  
4.5  
V
0
PWM Comparator Section (See Figure 4)  
Input Threshold Voltage (FEEDBACK)  
Input Sink Current (FEEDBACK)  
Total Device  
Zero duty cycle  
V(FEEDBACK) = 0.7V  
4
0.7  
V
mA  
0.3  
Standby Supply Current  
ISTDBY RT=Vref, All other VCC = 15V  
6
9
10  
15  
mA  
mA  
inputs and outputs  
open  
VCC = 36V  
Average Supply Current  
VI (DEAD-TIME-CTRL) =2V  
See Figure 4.  
7.5  
Switching Characteristics  
Rise Time  
tr  
tf  
tr  
tf  
Common-emitter Configuration  
See Figure 6  
100  
25  
200  
100  
200  
100  
ns  
ns  
ns  
ns  
Fall Time  
Rise Time  
Fall Time  
Emitter-follower Configuration  
See Figure 7  
100  
40  
Note 4: For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating  
conditions.  
Note 5: Duration of the short circuit should not exceed one second.  
Note 6: Standard deviation is a measure of the statistical distribution about the mean as derived from the formula:  
Note 7: Temperature coefficient of timing capacitor and timing resistor are not taken into account.  
March. 2003  
Rev.1.0  
6
Data Sheet  
Advanced Analog Circuits  
PULSE-WIDTH-MODULATION CONTROL CIRCUITS  
Parameter Measurement Information  
VCC = 15V  
AZ494  
12  
150Ω  
150Ω  
2W  
2W  
VCC  
4
3
8
9
DTC  
C1  
E1  
Output 1  
Test  
Inputs  
FEEDBACK  
12KΩ  
6
11  
10  
RT  
CT  
C2  
E2  
Output 2  
5
1
0.01uF  
1IN+  
1IN-  
2
16  
15  
13  
2IN+  
2IN-  
14  
OUTPUT  
CTRL  
REF  
GND  
50KΩ  
7
Test Circuit  
VCC  
0V  
Voltage  
at C1  
VCC  
0V  
Voltage  
at C2  
Voltage  
at CT  
Threshold Voltage  
DTC  
0V  
Threshold Voltage  
FEEDBACK  
0.7V  
0%  
MAX  
0%  
Duty Cycle  
Voltage Waveforms  
Figure 4. Operational Test Circuit and Waveforms  
March. 2003  
Rev.1.0  
7
Data Sheet  
Advanced Analog Circuits  
PULSE-WIDTH-MODULATION CONTROL CIRCUITS  
Parameter Measurement Information  
AZ494  
Amplifier Under Test  
VI  
FEEDBACK  
Vref  
Other Amplifier  
Figure 5. Error Amplifier Characteristics  
15V  
68Ω  
2W  
tf  
tr  
90%  
Each Output  
Circuit  
Output  
90%  
CL = 15pF  
(See Note A)  
10%  
10%  
Note A: CL includes probe and jig capacitance.  
Figure 6. Common-Emitter Configuration  
15V  
Each Output  
Circuit  
90%  
90%  
Output  
10%  
10%  
tf  
68Ω  
2W  
CL = 15pF  
tr  
(See Note A)  
Note A: CL includes probe and jig capacitance.  
Figure 7. Emitter-Follower Configuration  
March. 2003  
Rev.1.0  
8
Data Sheet  
Advanced Analog Circuits  
PULSE-WIDTH-MODULATION CONTROL CIRCUITS  
Typical Characteristics  
AZ494  
100k  
Vcc=15V  
TA=25oC  
0.001uF  
10k  
1k  
0.01uF  
0.1uF  
CT=1uF  
100  
10  
1k  
10k  
100k  
1M  
Timing Resistance-Ω  
Figure 8. Oscillator Frequency vs. Timing Resistance  
100  
Vcc=15V  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Vo=3V  
TA=25oC  
1
10  
100  
1k  
10k  
100k  
1M  
Frequency-Hz  
Figure 9. Error Amplifier Small-Signal Voltage Gain vs. Frequency  
March. 2003  
Rev.1.0  
9
Data Sheet  
Advanced Analog Circuits  
PULSE-WIDTH-MODULATION CONTROL CIRCUITS  
Mechanical Dimensions  
AZ494  
SOIC-16  
1.65  
1.30  
0.70  
0.406  
A
20:1  
B
0.55±0.05  
°
±2°  
3
1.27  
φ2.0  
Depth 0.06~  
0.10  
R0.20  
R0.20  
0.25(0.20min)  
0.20±0.05  
6.04  
C-C  
50:1  
3.94  
B
20:1  
8°  
C
C
0.20  
Sφ1.00×0.20  
5
°±2°  
8°  
0.40×45°  
8°  
A
March. 2003  
Rev.1.0  
10  
Data Sheet  
Advanced Analog Circuits  
PULSE-WIDTH-MODULATION CONTROL CIRCUITS  
Mechanical Dimensions (Continued)  
AZ494  
DIP-16  
7.62±0.25  
5°  
19.0±0.10  
6°  
6°  
1.524  
4°  
4°  
φ3×0.10±0.05  
0.254  
8.4~9.0  
0.254  
0.457  
2.54  
R0.75  
March. 2003  
Rev.1.0  
11  
Advanced Analog Circuits  
http://www.aacmicro.com  
1510 Montague Expressway, San Jose, CA 95131, USA  
Tel: 408-433 9888 Fax: 408-432 9888  
USA:  
8th Floor,Zone B, 900 Yi Shan Road Shanghai 200233, China  
Tel: 86-21-6495 9539, Fax: 86-21-6485 9673  
China:  
Room 2210, 22nd Fl, 333, Keelung Road, Secretary 1, Taipei, Taiwan Tel: 886-2-2564 3699, Fax: 886-2-2564 3770  
Taiwan:  
IMPORTANT NOTICE  
Advanced Analog Circuits Corporation reserves the right to make changes to its products or specifications at any time, without  
notice, to improve design or performance and to supply the best possible product. Advanced Analog Circuits does not assume any  
responsibility for use of any circuitry described other than the circuitry embodied in Advanced Analog Circuits' products. The  
company makes no representation that circuitry described herein is free from patent infringement or other rights of Advanced Ana-  
log Circuits Corporation.  

相关型号:

AZ5

SUBMINIATURE PC BOARD RELAY
AZETTLER

AZ5-CE

Cable Ends
ETC

AZ5-CE005

Cable Ends
ETC

AZ5-CE005D

Cable Ends
ETC

AZ5-CE007

Cable Ends
ETC

AZ5-CE007D

Cable Ends
ETC

AZ5-CE010

Cable Ends
ETC

AZ5-CE010D

Cable Ends
ETC

AZ5-CE015

Cable Ends
ETC

AZ5-CE015D

Cable Ends
ETC

AZ5-CE025

Cable Ends
ETC

AZ5-CE025D

Cable Ends
ETC