BT457KG80 [ETC]

Video DAC with Color Palette (RAMDAC) ; 视频DAC与调色板( RAMDAC )\n
BT457KG80
型号: BT457KG80
厂家: ETC    ETC
描述:

Video DAC with Color Palette (RAMDAC)
视频DAC与调色板( RAMDAC )\n

转换器
文件: 总60页 (文件大小:611K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Bt457/Bt458  
125 MHz/135 MHz/165 MHz Monolithic CMOS 256 Color Palette  
RAMDAC  
The Bt457 and Bt458 are pin- and software-compatible RAMDACs designed specifically Distinguishing Features  
for high-performance, high-resolution color graphics. The architecture enables a display  
of 1280 x 1024 bit-mapped color graphics (up to 8 bits per pixel plus up to 2 bits of  
overlay information). This minimizes the use of costly ECL interfacing, because most of  
the high-speed (pixel clock) logic is contained on-chip. The multiple pixel ports and  
internal multiplexing enable TTL-compatible interface (up to 32 MHz) to the frame  
buffer, while maintaining the 165 MHz video data rates required for sophisticated color  
graphics.  
The Bt457 is a single-channel version of the Bt458 and has a 256 x 8 color lookup  
table with a single 8-bit video D/A converter. It includes a PLL output to enable subpixel  
synchronization of multiple Bt457s.  
165, 135, 125, 110, 80 MHz  
operation  
4:1 or 5:1 input mux  
256-word dual-port color palette  
Four dual-port overlay registers  
RS-343A-compatible outputs  
Bit plane read and blink masks  
Standard MPU interface  
84-pin PLCC or PGA package  
+5 V CMOS monolithic  
construction  
On-chip features include programmable blink rates, bit plane masking and blinking,  
color overlay capability, and a dual-port color palette RAM.  
Applications  
High-resolution color graphics  
CAE/CAD/CAM  
Image processing  
Video reconstruction  
Functional Block Diagram  
CLOCK* CLOCK  
VAA  
GND  
FSADJUST VREF  
COMP  
Load  
Control  
MUX  
Control  
Blink  
Control  
LD*  
4(8)  
256 X 12  
(24)  
IOR (N/C)  
40  
40  
40  
8
8
P[7:0]  
(A-E)  
Color  
Palette  
4(8)  
Read Blink  
Mask Mask  
IOG (IOUT)  
IOB (PLL)  
MUX  
Latch  
Latch  
4 x 12  
(24)  
Overlay  
OL[1,0]  
(A-E)  
10  
10  
10  
2
2
4(8)  
SYNC*  
BLANK*  
Bus Control  
ADDR Reg  
8
R
G
B
4(8)  
CLOCK  
CE* R/W CO C1  
D[7:0]  
Data Sheet  
L45801 Rev. N  
September 2, 1999  
Ordering Information  
Ambient  
Temperature  
Range  
Model Number  
RAM  
DACs  
Speed  
Package  
Bt458LG165  
Bt458KG135  
Bt458KG125  
Bt458KG110  
Bt458KG80  
256 x 24  
256 x 24  
256 x 24  
256 x 24  
256 x 24  
256 x 24  
256 x 24  
256 x 24  
256 x 24  
256 x 24  
256 x 8  
256 x 8  
256 x 8  
256 x 8  
256 x 8  
256 x 8  
256 x 8  
256 x 8  
Triple 8-bit  
Triple 8-bit  
Triple 8-bit  
Triple 8-bit  
Triple 8-bit  
Triple 8-bit  
Triple 8-bit  
Triple 8-bit  
Triple 8-bit  
Triple 8-bit  
Single 8-bit  
Single 8-bit  
Single 8-bit  
Single 8-bit  
Single 8-bit  
Single 8-bit  
Single 8-bit  
Single 8-bit  
165 MHz  
135 MHz  
125 MHz  
110 MHz  
80 MHz  
84-Pin Ceramic PGA  
84-Pin Ceramic PGA  
84-Pin Ceramic PGA  
84-Pin Ceramic PGA  
84-Pin Ceramic PGA  
84-Pin Plastic J-Lead  
84-Pin Plastic J-Lead  
84-Pin Plastic J-Lead  
84-Pin Plastic J-Lead  
84-Pin Plastic J-Lead  
84-Pin Ceramic PGA  
84-Pin Ceramic PGA  
84-Pin Ceramic PGA  
84-Pin Ceramic PGA  
84-Pin Plastic J-Lead  
84-Pin Plastic J-Lead  
84-Pin Plastic J-Lead  
84-Pin Plastic J-Lead  
0 to + 70 °C  
0 to + 70 °C  
0 to + 70 °C  
0 to + 70 °C  
0 to + 70 °C  
0 to + 70 °C  
0 to + 70 °C  
0 to + 70 °C  
0 to + 70 °C  
0 to + 70 °C  
0 to + 70 °C  
0 to + 70 °C  
0 to + 70 °C  
0 to + 70 °C  
0 to + 70 °C  
0 to + 70 °C  
0 to + 70 °C  
0 to + 70 °C  
Bt458LPJ165  
Bt458LPJ135  
Bt458LPJ125  
Bt458LPJ110  
Bt458LPJ80  
Bt457KG135  
Bt457KG125  
Bt457KG110  
Bt457KG80  
165 MHz  
135 MHz  
125 MHz  
110 MHz  
80 MHz  
135 MHz  
125 MHz  
110 MHz  
80 MHz  
Bt457KPJ135  
Bt457KPJ125  
Bt457KPJ110  
Bt457KPJ80  
135 MHz  
125 MHz  
110 MHz  
80 MHz  
Information provided by Conexant Systems, Inc. (Conexant) is believed to be accurate and reliable. However, no responsibility is  
assumed by Conexant for its use, nor any infringement of patents or other rights of third parties which may result from its use. No  
license is granted by implication or otherwise under any patent rights of Conexant other than for circuitry embodied in Conexant  
products. Conexant reserves the right to change circuitry at any time without notice. This document is subject to change without  
notice.  
Conexant products are not designed or intended for use in life support appliances, devices, or systems where malfunction of a  
Conexant product can reasonably be expected to result in personal injury or death. Conexant customers using or selling Conexant  
products for use in such applications do so at their own risk and agree to fully indemnify Conexant for any damages resulting from  
such improper use or sale.  
The trademarks “Conexant” and the Conexant symbol are trademarks of Conexant Systems, Inc.  
Product names or services listed in this publication are for identification purposes only, and may be trademarks or registered  
trademarks of their respective companies. All other marks mentioned herein are the property of their respective holders.  
© 1999 Conexant Systems, Inc.  
Printed in U.S.A.  
All Rights Reserved  
Reader Response: Conexant strives to produce quality documentation, and welcomes your feedback. Please send  
comments and suggestions to conexant.tech.pubs@conexant.com. For technical questions, contact your local  
Conexant sales office or field applications engineer.  
L45801 Rev. N  
Conexant  
Table of Contents  
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v  
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii  
1.0  
Circuit Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1  
1.1 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1  
1.2 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3  
1.3 MPU Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6  
2.0  
Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1  
2.1 Internal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1  
2.1.1  
Command Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1  
2.2 Read Mask Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3  
2.3 Blink Mask Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3  
2.4 Bt458 Test Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3  
2.5 Bt457 Control/Test Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5  
3.0  
PC Board Layout Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1  
3.1 PC Board Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1  
3.2 Power and Ground Planes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2  
3.3 Device Decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3  
3.4 Power Supply Decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3  
3.5 COMP Decoupling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6  
3.6 Digital Signal Interconnect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6  
3.7 Analog Signal Interconnect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7  
3.8 Analog Output Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7  
4.0  
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1  
4.1 Clock Interfacing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1  
4.2 Using Multiple Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5  
4.3 Bt457 Nonvideo Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5  
L45801 Rev. N  
Conexant  
iii  
Table of Contents  
Bt457/Bt458  
125 MHz/135 MHz/165 MHz Monolithic CMOS 256 Color Palette RAMDAC  
4.4 Initializing the Bt458. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6  
4.5 Initializing the Bt457 (Monochrome) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8  
4.6 Initializing the Bt457 (Color) 24-bit MPU Data Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9  
4.7 Initializing the Bt457 (Color) 8-bit MPU Data Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9  
5.0  
Parametric Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1  
5.1 DC Electrical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1  
5.2 AC Electrical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5  
5.3 Timing Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11  
5.4 Package Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-13  
5.5 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-15  
iv  
Conexant  
L45801 Rev. N  
Bt457/Bt458  
List of Figures  
125 MHz/135 MHz/165 MHz Monolithic CMOS 256 Color Palette RAMDAC  
List of Figures  
Figure 1-1.  
Figure 1-2.  
Figure 1-3.  
Figure 1-4.  
Figure 3-1.  
Figure 3-2.  
Figure 4-1.  
Figure 4-2.  
Figure 4-3.  
Figure 5-1.  
Figure 5-2.  
Figure 5-3.  
Figure 5-4.  
Bt457/Bt458 84-Pin J-Lead Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1  
Bt457/Bt458 84-Pin PGA Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2  
Video Input/Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8  
Composite Video Output Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10  
Sample Layout Showing Power and Ground Plane Isolation Gaps . . . . . . . . . . . . . . . . . . . 3-2  
Typical Connection Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4  
Generating the Bt458 Clock Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1  
Generating the Bt457 Signals (Monochrome Application). . . . . . . . . . . . . . . . . . . . . . . . . . 4-2  
Generating the Bt457 Clock Signals (Color Application) . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4  
Video Input/Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11  
MPU Read/Write Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12  
84-Pin Plastic J-Lead (PLCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-13  
84-Pin Ceramic PGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-14  
L45801 Rev. N  
Conexant  
v
List of Figures  
Bt457/Bt458  
125 MHz/135 MHz/165 MHz Monolithic CMOS 256 Color Palette RAMDAC  
vi  
Conexant  
L45801 Rev. N  
Bt457/Bt458  
List of Tables  
125 MHz/135 MHz/165 MHz Monolithic CMOS 256 Color Palette RAMDAC  
List of Tables  
Table 1-1.  
Table 1-2.  
Table 1-3.  
Table 1-4.  
Table 1-5.  
Table 2-1.  
Table 2-2.  
Table 2-3.  
Table 3-1.  
Table 5-1.  
Table 5-2.  
Table 5-3.  
Table 5-4.  
Table 5-5.  
Table 5-6.  
Table 5-7.  
Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3  
Pin Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5  
Address Register (ADDR) Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6  
Palette and Overlay Select Truth Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-9  
Video Output Truth Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10  
Command Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1  
Bt458 Test Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3  
Bt457 Control Test Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5  
Typical Parts List. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5  
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2  
DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3  
AC Characteristics for 165 MHz and 135 MHz Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5  
AC Characteristics for 125 MHz and 110 MHz Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7  
AC Characteristics for 80 MHz Device. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-15  
L45801 Rev. N  
Conexant  
vii  
List of Tables  
Bt457/Bt458  
125 MHz/135 MHz/165 MHz Monolithic CMOS 256 Color Palette RAMDAC  
viii  
Conexant  
L45801 Rev. N  
1
1.0 Circuit Description  
1.1 Pin Descriptions  
The Bt457/Bt458 is available in both 84-pin Plastic Leaded Chip Carrier (PLCC)  
and Ceramic PGA packages, as illustrated in Figures 1-1 and 1-2. Table 1-1  
provides pin descriptions. Table 1-2 gives pin labels for the PGA package.  
Figure 1-1. Bt457/Bt458 84-Pin J-Lead Package  
P4E  
P5A  
53  
52  
P2A  
P1E  
P1D  
P1C  
P1B  
P1A  
P0E  
P0D  
P0C  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
51  
50  
49  
P5B  
P5C  
P5D  
P5E  
48  
47  
46  
P6A  
P6B  
45  
44  
43  
P6C  
P6D  
P6E  
P0B  
P0A  
OL1E  
OL1D  
OL1C  
OL1B  
OL1A  
OL0E  
OL0D  
1
2
42  
41  
40  
39  
P7A  
3
4
P7B  
P7C  
P7D  
P7E  
5
6
7
8
9
10  
11  
38  
37  
36  
35  
34  
33  
VAA  
GND  
VAA  
GND  
VREF  
OL0C  
OL0B  
OL0A  
Pin Bt458 Bt457  
28 IOR  
29 IOG IOUT  
30 IOB PLL  
N/C  
457-8_002  
L45801 Rev. N  
Conexant  
1-1  
1.0 Circuit Description  
Bt457/Bt458  
1.1 Pin Descriptions  
125 MHz/135 MHz/165 MHz Monolithic CMOS 256 Color Palette RAMDAC  
Figure 1-2. Bt457/Bt458 84-Pin PGA Package  
COMP GND VAA P7D P7B  
P6E P6C P6B  
P7A P6D P6A  
P5E  
P5D  
P5C P5B  
P4B  
12  
11  
10  
IOB GND VAA  
IOG FSADJ VREF  
VAA IOR  
P7E P7C  
P5A P4C P4A  
P4D P4B SYNC*  
BLK* LD*  
9
8
7
6
5
4
3
2
C1  
R/W  
CO  
CLK* CLK  
VAA  
VAA VAA  
P3E GND  
Bt457/458  
(TOP VIEW)  
GND GND  
CE* D[7]  
P3C P3D  
D[6] D[5]  
P3A  
P3B  
D[4] D[2] D[0]  
P2A P2C P2E  
P1D P1E P2D  
D[3] D[1] OL0B OL0E OL1B OL1E P0B P0D  
OL0A OL0C OL0D OL1A OL1C OL1D P0A P0C  
P1A  
P0E  
J
P1B P1C P2B  
1
B
A
C
D
E
F
G
H
K
L
M
Alignment Marker (on top)  
12  
11  
10  
P4E  
P4A  
P5B P5C P5E P6B  
P4C P5A P5D P6A  
P6C P6E  
P7B  
P7D VAA GND COMP  
P7E VAA GND IOB  
VREF FSADJ IOG  
P6D P7A P7C  
SYNC* P4B P4D  
9
8
7
6
5
4
3
2
LD*  
BLK*  
CLK*  
IOR  
R/W  
VAA  
C1  
CLK  
VAA  
VAA  
P3E  
CO  
VAA  
(BOTTOM VIEW)  
GND  
GND  
GND  
P3D  
P3B  
P2E  
P2D  
P3C  
D7  
CE*  
D[6]  
D[4]  
D[3]  
P3A  
D[5]  
D[0] D[2]  
P2C P2A  
P1E P1D P1A P0D  
P0B OL1E OL1B OL0E OL0B D[1]  
1
P2B P1C P1B P0E P0C  
P0A OL1D OL1C OL1A OL0D OL0C OL0A  
M
L
K
J
H
G
F
E
D
C
B
A
Pin Bt458 Bt457  
IOG IOUT  
A10  
A11  
IOB  
PLL  
N/C  
B9 IOR  
457-8_003  
1-2  
Conexant  
L45801 Rev. N  
Bt457/Bt458  
1.0 Circuit Description  
125 MHz/135 MHz/165 MHz Monolithic CMOS 256 Color Palette RAMDAC  
1.2 Pin Descriptions  
1.2 Pin Descriptions  
Table 1-1. Pin Descriptions (1 of 2)  
Pin Name  
Description  
BLANK*  
Composite blank control input (TTL compatible). A logical 0 drives the analog outputs to the blanking level, as  
specified in Table 1-5. BLANK* is latched on the rising edge of LD*. When BLANK* is a logical 0, the pixel and  
overlay inputs are ignored.  
SYNC*  
LD*  
Composite sync control input (TTL compatible). A logical 0 on this input switches off a 40 IRE current source on  
the IOG output (see Figure 1-4). SYNC* does not override any other control or data input, as illustrated in  
Table 1-5; therefore, it should be asserted only during the blanking interval. It is latched on the rising edge of  
LD*.  
If sync information is not generated on the IOG output, this pin should be connected to GND.  
Load control input (TTL compatible). The P[7:0] {AE}, OL[1,0] {AE}, BLANK*, and SYNC* inputs are latched on  
the rising edge of LD*. While LD* is either one fourth or one fifth the CLOCK rate, it can be phase independent of  
the CLOCK and CLOCK* inputs. LD* can have any duty cycle within the limits specified in the AC Characteristics  
section.  
P[7:0]  
{AE}  
Pixel select inputs (TTL compatible). These inputs are used to specify, on a pixel basis, which of the 256 entries  
in the color palette RAM is used to provide color information. Either 4 or 5 consecutive pixels (up to 8 bits per  
pixel) are input through this port. They are latched on the rising edge of LD*. Unused inputs should be connected  
to GND.  
The {A} pixel is output first, followed by the {B} pixel, then the {C} pixel, etc., until all 4 or 5 pixels have been  
output, at which point the cycle repeats.  
OL[1,0]  
{AE}  
Overlay select inputs (TTL compatible). These control inputs are latched on the rising edge of LD*. In conjunction  
with bit 6 of the command register, they specify which palette is to be used for color information, as follows:  
OL1  
OL0  
CR6 = 1  
CR6 = 0  
0
0
1
1
0
1
0
1
Color Palette RAM  
Overlay Color 1  
Overlay Color 2  
Overlay Color 3  
Overlay Color 0  
Overlay Color 1  
Overlay Color 2  
Overlay Color 3  
When accessing the overlay palette, the P[7:0] {AE} inputs are ignored. Overlay information bits (up to 2 bits per  
pixel) for either 4 or 5 consecutive pixels are input through this port. Unused inputs should be connected to GND.  
IOR, IOG,  
IOB, IOUT  
Red, green, and blue video current outputs. These high-impedance current sources can directly drive a doubly  
terminated 75 coaxial cable (see Figure 3-2). The Bt457 outputs IOUT rather than IOR, IOG, and IOB.  
L45801 Rev. N  
Conexant  
1-3  
1.0 Circuit Description  
Bt457/Bt458  
1.2 Pin Descriptions  
125 MHz/135 MHz/165 MHz Monolithic CMOS 256 Color Palette RAMDAC  
Table 1-1. Pin Descriptions (2 of 2)  
Pin Name  
Description  
PLL  
Phase lock loop current outputBt457 only. This high-impedance current source is used to enable multiple  
Bt457s to be synchronized with subpixel resolution when used with an external PLL. A logical 1 on the BLANK*  
input results in no current being output onto this pin, while a logical 0 results in the following current being  
output:  
PLL (mA) = 3,227 * VREF (V) / RSET ()  
If subpixel synchronization of multiple devices is not required, this output should be connected to GND (either  
directly or through a resistor up to 150 ).  
COMP  
Compensation pin. This pin provides compensation for the internal reference amplifier. A 0.1 µF ceramic  
capacitor must be connected between this pin and VAA (Figure 3-2). Connecting the capacitor to VAA rather than  
to GND provides the highest possible power supply noise rejection. The COMP capacitor must be as close to the  
device as possible to keep lead lengths to an absolute minimum and to maximize the capacitor's self-resonant  
frequency to be greater than the LD* frequency. The PC Board Layout Considerations section contains critical  
layout criteria.  
FSADJUST  
Full-scale adjust control. A resistor (RSET) connected between this pin and GND controls the magnitude of the  
full-scale video signal (Figure 3-1). The IRE relationships in Figure 1-4 are maintained, regardless of the full-scale  
output current.  
The relationship between RSET and the full-scale output current on IOG (or IOUT for the Bt457) is as follows:  
RSET () = 11,294 * VREF (V) / IOG (mA)  
The full-scale output current on IOR and IOB (for the Bt458) for a given RSET is as follows:  
IOR, IOB (mA) = 8,067 * VREF (V) / RSET ()  
VREF  
Voltage reference input. An external voltage reference circuit, such as that illustrated in Figure 3-2, must supply  
this input with a 1.235 V (typical) reference. The use of a resistor network to generate the reference is not  
recommended, because any low-frequency power supply noise on VREF is directly coupled onto the analog  
outputs. A 0.1 µF ceramic capacitor is used to decouple this input to VAA, as shown in Figure 3-2. If VAA is  
excessively noisy, better performance can be obtained by decoupling VREF to GND. The decoupling capacitor  
must be as close to the device as possible to keep lead lengths to an absolute minimum. Refer to the PC Board  
Layout Considerations section for critical layout criteria.  
CLOCK,  
CLOCK*  
Clock inputs. These differential clock inputs are driven by ECL logic configured for single-supply (+5 V)  
operation. The clock rate is typically the pixel clock rate of the system. Refer to the PC Board Layout  
Considerations section for critical layout criteria.  
CE*  
Chip enable control input (TTL compatible). This input must be a logical 0 to enable data to be written to or read  
from the device. During write operations, data is internally latched on the rising edge of CE*. Glitches should be  
avoided on this edge-triggered input.  
R/W  
Read/write control input (TTL compatible). To write data to the device, both CE* and R/W must be a logical 0. To  
read data from the device, CE* must be a logical 0 and R/W must be a logical 1. R/W is latched on the falling edge  
of CE*.  
C[1,0]  
D[7:0]  
VAA  
Command control inputs (TTL compatible). C0 and C1 specify the type of read or write operation being  
performed, as presented in Table 1-3. They are latched on the falling edge of CE*.  
Data bus (TTL compatible). Data transfers into and out of the device over this 8-bit bidirectional data bus. D0 is  
the least significant bit.  
Analog power. All VAA pins must be connected together on the same PCB plane to prevent latchup. Refer to the  
PC Board Layout Considerations section for critical layout criteria.  
GND  
Analog ground. All GND pins must be connected together on the same PCB plane to prevent latchup. Refer to the  
PC Board Layout Considerations section for critical layout criteria.  
1-4  
Conexant  
L45801 Rev. N  
Bt457/Bt458  
1.0 Circuit Description  
125 MHz/135 MHz/165 MHz Monolithic CMOS 256 Color Palette RAMDAC  
1.2 Pin Descriptions  
Table 1-2. Pin Labels  
Pin Number  
Pin Label  
Pin Number  
Pin Label  
Pin Number  
Pin Label  
L9  
M10  
M9  
L8  
BLANK*  
SYNC*  
LD*  
K11  
L12  
K12  
J11  
J12  
P5A  
P5B  
P5C  
P5D  
P5E  
C12  
C11  
A9  
VAA  
VAA  
VAA  
VAA  
VAA  
VAA  
CLOCK*  
CLOCK  
L7  
M8  
M7  
A7  
G1  
G2  
H1  
H2  
J1  
P0A  
P0B  
P0C  
P0D  
P0E  
H11  
H12  
G12  
G11  
F12  
P6A  
P6B  
P6C  
P6D  
P6E  
B12  
B11  
M6  
B6  
GND  
GND  
GND  
GND  
GND  
A6  
J2  
K1  
L1  
K2  
L2  
P1A  
P1B  
P1C  
P1D  
P1E  
F11  
E12  
E11  
D12  
D11  
P7A  
P7B  
P7C  
P7D  
P7E  
A12  
B10  
C10  
COMP  
FS ADJUST  
VREF  
A5  
B8  
A8  
B7  
CE*  
R/W  
C1  
K3  
M1  
L3  
P2A  
P2B  
P2C  
P2D  
P2E  
A1  
C2  
B1  
C1  
D2  
OL0A  
OL0B  
OL0C  
OL0D  
OL0E  
C0  
M2  
M3  
C3  
B2  
B3  
A2  
A3  
B4  
A4  
B5  
D[0]  
D[1]  
D[2]  
D[3]  
D[4]  
D[5]  
D[6]  
D[7]  
L4  
M4  
L5  
P3A  
P3B  
P3C  
P3D  
P3E  
D1  
E2  
E1  
F1  
F2  
OL1A  
OL1B  
OL1C  
OL1D  
OL1E  
M5  
L6  
M11  
L10  
L11  
K10  
M12  
P4A  
P4B  
P4C  
P4D  
P4E  
A10  
A11  
B9  
IOG(IOUT)  
IOB (PLL)  
IOR (N/C)  
NOTE(S): Bt457 Pin names are in parentheses.  
L45801 Rev. N  
Conexant  
1-5  
1.0 Circuit Description  
Bt457/Bt458  
1.3 MPU Interface  
125 MHz/135 MHz/165 MHz Monolithic CMOS 256 Color Palette RAMDAC  
1.3 MPU Interface  
As illustrated in the functional block diagram on the cover page, the Bt457/458  
supports a standard MPU bus interface, allowing the MPU direct access to the  
internal control registers and color/overlay palettes. The dual-port color palette  
RAM and dual-port overlay registers allow color updating, without contention,  
with the display refresh process.  
As presented in Table 1-3, the C0 and C1 control inputs, in conjunction with  
the internal address register, specify which control register, color palette RAM  
entry, or overlay register is accessed by the MPU.  
The 8-bit address register (ADDR[7:0]) is used to address the internal RAM  
and registers, eliminating the requirement for external address multiplexers.  
ADDR0 corresponds to D[0] and is the least significant bit.  
Table 1-3. Address Register (ADDR) Operation  
ADDR[7:0]  
C1  
C0  
Addressed by MPU  
$xx  
$00$FF  
$00  
0
0
1
1
1
1
1
1
1
1
0
1
1
1
1
1
0
0
0
0
Address Register  
Color Palette RAM  
Overlay Color 0  
$01  
Overlay Color 1  
$02  
Overlay Color 2  
$03  
Overlay Color 3  
$04  
Read Mask Register  
Blink Mask Register  
Command Register  
Control/Test Register  
$05  
$06  
$07  
Bt458 Reading/Writing  
Color Data  
To write color data, the MPU loads the address register with the address of the  
color palette RAM location or overlay register to be modified. The MPU  
performs three successive write cycles (red, green, and blue), using C0 and C1 to  
select either the color palette RAM or overlay registers. During the blue write  
cycle, the three bytes of color information are concatenated into a 24-bit word and  
written to the location specified by the address register. The address register then  
increments to the next location, which the MPU can modify by writing another  
sequence of red, green, and blue data.  
To read color data, the MPU loads the address register with the address of the  
color palette RAM location or overlay register to be read. The MPU performs  
three successive read cycles (red, green, and blue), using C0 and C1 to select  
either the color palette RAM or overlay registers. Following the blue read cycle,  
the address register increments to the next location, which the MPU can read by  
reading another sequence of red, green, and blue data.  
1-6  
Conexant  
L45801 Rev. N  
Bt457/Bt458  
1.0 Circuit Description  
125 MHz/135 MHz/165 MHz Monolithic CMOS 256 Color Palette RAMDAC  
1.3 MPU Interface  
When accessing the color palette RAM, the address register resets to $00 after  
a blue read or write cycle to location $FF. When accessing the overlay registers,  
the address register increments to $04 following a blue read or write cycle to  
overlay register three. To keep track of the red, green, and blue read/write cycles,  
the address register has two additional bits that count modulo three. They are reset  
to 0 when the MPU reads or writes to the address register. The MPU does not  
have access to these bits. The other 8 bits of the address register (ADDR[7:0]) are  
accessible to the MPU.  
Bt457 Reading/Writing  
Color Data  
To write color data, the MPU loads the address register with the address of the  
color palette RAM location or overlay register to be modified. The MPU  
performs a color write cycle, using C0 and C1 to select either the color palette  
RAM or the overlay registers. The address register then increments to the next  
location, which the MPU can modify by writing another color.  
Reading color data is similar to writing it, except the MPU executes read  
cycles.  
(Normal Mode)  
This mode is useful if a 24-bit data bus is available, because 24 bits of color  
information (8 bits each of red, green, and blue) can be read or written to three  
Bt457s in a single MPU cycle. In this application, the CE* inputs of all three  
Bt457s are connected together. If only an 8-bit data bus is available, the CE*  
inputs must be individually selected during the appropriate color write cycle (red  
CE* during red write cycle, blue CE* during blue write cycle, and green CE*  
during green write cycle).  
When accessing the color palette RAM, the address register resets to $00 after  
a read or write cycle to location $FF. When accessing the overlay registers, the  
address register increments to $04 following a read or write cycle to overlay  
register three.  
Bt457 Reading/Writing  
Color Data (RGB Mode)  
To write color data, the MPU loads the address register with the address of the  
color palette RAM location or overlay register to be modified. The MPU  
performs three successive write cycles (8 bits each of red, green, and blue), using  
C0 and C1 to select either the color palette RAM or the overlay registers. After  
the blue write cycle, the address register then increments to the next location,  
which the MPU can modify by writing another sequence of red, green, and blue  
data. Reading color data is similar to writing it, except the MPU executes read  
cycles.  
This mode is useful if only an 8-bit data bus is available. Each Bt457 is  
programmed to be a red, green, or blue RAMDAC and responds only to the  
assigned color read or write cycle. In this application, the Bt457s share a common  
8-bit data bus. The CE* inputs of all three Bt457s must be asserted  
simultaneously only during color read/write cycles and address register write  
cycles.  
When accessing the color palette RAM, the address register resets to $00 after  
a blue read or write cycle to location $FF. When accessing the overlay registers,  
the address register increments to $04 following a blue read or write cycle to  
overlay register three. To keep track of the red, green, and blue read/write cycles,  
the address register has two additional bits that count modulo three. They are reset  
to 0 when the MPU reads or writes to the address register. The MPU does not  
have access to these bits. The other 8 bits of the address register (ADDR[7:0]) are  
accessible to the MPU.  
L45801 Rev. N  
Conexant  
1-7  
1.0 Circuit Description  
Bt457/Bt458  
1.3 MPU Interface  
125 MHz/135 MHz/165 MHz Monolithic CMOS 256 Color Palette RAMDAC  
Additional Information  
Although the color palette RAM and overlay registers are dual-ported, if the pixel  
and overlay data are addressing the same palette entry being written to by the  
MPU during the write cycle, one or more of the pixels on the display screen can  
be disturbed. A maximum of one pixel is disturbed if the write data from the  
MPU is valid during the entire chip enable time.  
The control registers are also accessed through the address register in  
conjunction with the C0 and C1 inputs, as specified in Table 1-3. All control  
registers can be written to or read by the MPU at any time. The address register  
does not increment following read or write cycles to the control registers,  
facilitating read-modify-write operations.  
If an invalid address loads into the address register, data written to the device  
is ignored, and invalid data is read by the MPU.  
Frame Buffer Interface  
To enable pixel data to be transferred from the frame buffer at TTL data rates, the  
Bt457/458 incorporates internal latches and multiplexers. As illustrated in  
Figure 1-3, on the rising edge of LD*, sync and blank information, color (up to 8  
bits per pixel), and overlay (up to 2 bits per pixel) information, for either 4 or 5  
consecutive pixels, are latched into the device. With this configuration, the sync  
and blank timing is recognized only with 4- or 5-pixel resolution. Typically, the  
LD* signal is used to clock external circuitry to generate basic video timing.  
Each clock cycle, the Bt457/458 outputs color information based on the {A}  
inputs, followed by the {B} inputs, then the {C} inputs, etc., until all 4 or 5 pixels  
have been output, at which point the cycle repeats.  
Figure 1-3. Video Input/Output Timing  
LD*  
P[7:0] (AE),  
OL[1,0] (AE),  
DATA  
SYNC*, BLANK*  
IOR, IOG, IOB  
(IOUTBt457)  
CLOCK  
457-8_014  
The overlay inputs can have pixel timing, facilitating the use of additional bit  
planes in the frame buffer to control overlay selection on a pixel basis. On the  
other hand, they can be controlled by external character or cursor generation  
logic.  
To simplify the frame buffer interface timing, LD* can be phase shifted in any  
amount relative to CLOCK. This enables the LD* signal to be derived by  
externally dividing CLOCK by 4 or 5 independent of the propagation delays of  
the LD* generation logic. As a result, the pixel and overlay data are latched on the  
rising edge of LD*, independent of the clock phase.  
1-8  
Conexant  
L45801 Rev. N  
Bt457/Bt458  
1.0 Circuit Description  
125 MHz/135 MHz/165 MHz Monolithic CMOS 256 Color Palette RAMDAC  
1.3 MPU Interface  
Internal logic maintains an internal LOAD signal synchronous to CLOCK and  
is guaranteed to follow the LD* signal by at least one, but not more than four,  
clock cycles. This LOAD signal transfers the latched pixel and overlay data into a  
second set of latches, which are then internally multiplexed at the pixel clock rate.  
If 4:1 multiplexing is specified, only one rising edge of LD* should occur  
every four clock cycles. If 5:1 multiplexing is specified, only one rising edge of  
LD* should occur every five clock cycles. Otherwise, the internal LOAD  
generation circuitry assumes it is not locked onto the LD* signal and  
continuously attempts to resynchronize itself to LD*.  
Color Selection  
Each clock cycle, 8 bits of color information (P7:0) and 2 bits of overlay  
information (OL1,0) for each pixel are processed by the read mask, blink mask,  
and command registers. Through the control registers, individual bit planes can  
be enabled or disabled for display, and/or blinked at one of four blink rates and  
duty cycles.  
To ensure blinking does not cause a color change to occur during the active  
display time (i.e., in the middle of the screen), the Bt457/458 monitors the  
BLANK* input to determine vertical retrace intervals. A vertical retrace interval  
is recognized by determining that BLANK* has been a logical 0 for at least 256  
LD* cycles.  
The processed pixel data is then used to select which color palette entry or  
overlay register is to provide color information. P[0] is the LSB when addressing  
the color palette RAM. Table 1-4 is the truth table used for color selection.  
Table 1-4. Palette and Overlay Select Truth Table  
CR[6]  
OL[1]  
OL[0]  
P[7:0]  
Addressed by Frame  
1
1
:
0
0
:
0
0
:
$00  
$01  
:
Color Palette Entry $00  
Color Palette Entry $01  
:
1
0
x
x
x
0
0
0
1
1
0
0
1
0
1
$FF  
$xx  
$xx  
$xx  
$xx  
Color Palette Entry $FF  
Overlay Color 0  
Overlay Color 1  
Overlay Color 2  
Overlay Color 3  
Video Generation  
Every clock cycle, the selected color information, from the color palette RAMs or  
overlay registers, is presented to the D/A converters.  
The SYNC* and BLANK* inputs are pipelined to maintain synchronization  
with the pixel data. They add appropriately weighted currents to the analog  
outputs, producing the specific output levels required for video applications, as  
described in Figure 1-4.  
Varying output current from each D/A converter produces a corresponding  
voltage level, used to drive the color CRT monitor. Only the green output (IOG)  
on the Bt458 contains sync information. Table 1-5 details how the SYNC* and  
BLANK* inputs modify the output levels.  
The D/A converters on the Bt457 and Bt458 use a segmented architecture in  
which bit currents are routed to either the current output or GND by a  
sophisticated decoding scheme. This architecture eliminates the need for  
L45801 Rev. N  
Conexant  
1-9  
1.0 Circuit Description  
Bt457/Bt458  
1.3 MPU Interface  
125 MHz/135 MHz/165 MHz Monolithic CMOS 256 Color Palette RAMDAC  
precision component ratios and greatly reduces the switching transients  
associated with turning current sources on or off. Monotonicity and low glitch are  
guaranteed by using identical current sources and current steering their outputs.  
An on-chip operational amplifier stabilizes the D/A converters full-scale output  
current against temperature and power supply variations.  
Figure 1-4. Composite Video Output Waveforms  
NO SYNC  
MA  
19.05 0.714 26.67 1.000  
SYNC  
V
MA  
V
WHITE LEVEL  
92.5 IRE  
BLACK LEVEL  
BLANK LEVEL  
1.44 0.054  
0.00 0.000  
9.05 0.340  
7.62 0.286  
7.5 IRE  
40 IRE  
0.000  
0.00  
SYNC LEVEL  
457-8_004  
Table 1-5. Video Output Truth Table  
IOG (Iout)  
IOR, IOB  
(mA)  
Description  
Sync*  
BLANK*  
DAC Input Data  
(mA)  
White  
DATA  
26.67  
data + 9.05  
data + 1.44  
9.05  
19.5  
1
1
0
1
0
1
0
1
1
1
1
1
0
0
$FF  
data  
data  
$00  
$00  
$xx  
$xx  
data + 1.44  
DATA - SYNC  
BLACK  
data + 1.44  
1.44  
1.44  
0
BLACK-SYNC  
BLACK  
1.44  
7.62  
SYNC  
0
0
NOTE(S): Typical with full-scale IOG = 26.67 mA. RSET = 523 and VREF = 1.235 V.  
1-10  
Conexant  
L45801 Rev. N  
2
2.0 Registers  
2.1 Internal  
2.1.1 Command Register  
The command register can be written or read by the MPU at any time and is not  
initialized. For proper operation, it must be initialized by the user after power-up.  
CR0 corresponds to data bus bit D[0].  
Table 2-1. Command Registers (1 of 2)  
Function  
Description  
CR7  
Multiplex select  
4:1 Multiplexing  
This bit specifies whether 4:1 or 5:1 multiplexing is to be used for the  
pixel and overlay inputs. If 4:1 is specified, the {E} pixel and {E} overlay  
inputs are ignored and should be connected to GND, and the LD* input  
should be one fourth the CLOCK rate. If 5:1 is specified, all of the pixel  
and overlay inputs are used, and the LD* input should be one fifth the  
CLOCK rate.  
(0)  
(1)  
5:1 Multiplexing  
The pipeline delay of the Bt457/458 can be reset to a fixed eight clock  
cycles. In this instance, each time the input multiplexing is changed, the  
Bt457/458 must again be reset to a fixed pipeline delay.  
CR6  
RAM Enable  
When the overlay select bits are 00, this bit specifies whether to use the  
color palette RAM or overlay color 0 to provide color information.  
(0)  
(1)  
Use Overlay Color 0  
Use Color Palette RAM  
CR5,4  
Blink Rate Selection  
These 2 bits control the blink rate cycle time and duty cycle, and are  
specified as the number of vertical retrace intervals. The numbers in  
parentheses specify the duty cycle (percent on/off).  
(00)  
(01)  
(10)  
(11)  
16 on, 48 off (25/75)  
16 on, 16 off (50/50)  
32 on, 32 off (50/50)  
64 on, 64 off (50/50)  
CR3  
OL1 Blink Enable  
If a logical 1, this bit forces the OL1 {AE} inputs to toggle between a  
logical 0 and the input value at the selected blink rate prior to palette  
section. A value of logical 0 does not affect the value of the OL1 {AE}  
inputs. In order for overlay 1 bit plane to blink, bit CR1 must be set to a  
logical 1.  
L45801 Rev. N  
Conexant  
2-1  
2.0 Registers  
Bt457/Bt458  
2.1 Internal  
125 MHz/135 MHz/165 MHz Monolithic CMOS 256 Color Palette RAMDAC  
Table 2-1. Command Registers (2 of 2)  
Function  
Description  
CR2  
OL0 Blink Enable  
If a logical 1, this bit forces the OL0 {AE} inputs to toggle between a  
logical 0 and the input value at the selected blink rate prior to palette  
selection. A value of the logical 0 does not affect the value of the OL0  
{AE} inputs. In order for overlay 0 bit plane to blink, bit CR0 must be set  
to a logical 1.  
CR1  
CR0  
OL1 Display Enable  
If a logical 0, this bit forces the OL1 {AE} inputs to a logical 0 prior to  
selecting the palettes. A value of a logical 1 does not affect the value of  
the OL1 {AE} inputs.  
(0)  
(1)  
Disable  
Enable  
OL0 Display Enable  
If a logical 0, this bit forces the OL0 {AE} inputs to a logical 0 prior to  
selecting the palettes. A value of a logical 1 does not affect the value of  
the OL0 {AE} inputs.  
(0)  
(1)  
Disable  
Enable  
2-2  
Conexant  
L45801 Rev. N  
Bt457/Bt458  
2.0 Registers  
125 MHz/135 MHz/165 MHz Monolithic CMOS 256 Color Palette RAMDAC  
2.2 Read Mask Register  
2.2 Read Mask Register  
The read mask register enables (logical 1) or disables (logical 0) a bit plane from  
addressing the color palette RAM. D[0] corresponds to bit plane 0 (P0 {AE}),  
and D[7] corresponds to bit plane 7 (P7 {AE}). Each register bit is logically  
ANDed with the corresponding bit plane input. This register can be written to or  
read by the MPU at any time and is not initialized. For proper operation, it must  
be initialized by the user after power-up.  
2.3 Blink Mask Register  
The blink mask register enables (logical 1) or disables (logical 0) a bit plane from  
blinking at the blink rate and duty cycle specified by the command register. D[0]  
corresponds to bit plane 0 (P0 {AE}), and D[7] corresponds to bit plane 7 (P7  
{AE}). In order for a bit plane to blink, the corresponding bit in the read mask  
register must be a logical 1. This register can be written to or read by the MPU at  
any time and is not initialized. For proper operation, it must be initialized by the  
user after power-up.  
2.4 Bt458 Test Register  
The test register provides diagnostic capability by enabling the MPU to read  
the D/A converters inputs. It can be written to or read by the MPU at any time and  
is not initialized. For proper operation, it must be initialized by the user after  
power-up. When writing to the register, the upper 4 bits (D[7:4]) are ignored.  
The contents of the test register are defined as follows:  
Table 2-2. Bt458 Test Register  
D[7:4]  
Color Information  
D[3]  
D[2]  
D[1]  
D[0]  
Low (Logical 1) or High (Logical 0) Nibble  
Blue Enable  
Green Enable  
Red Enable  
To use the test register, the host MPU writes to it, setting only one of the red,  
green, or blue enable bits. These bits specify which four bits of color information  
the MPU wishes to read (R[3:0], G[3:0], B[3:0], R[7:4], G[7:4], or B[7:4]). When  
the MPU reads the test register, the four bits of color information from the DAC  
L45801 Rev. N  
Conexant  
2-3  
2.0 Registers  
Bt457/Bt458  
2.4 Bt458 Test Register  
125 MHz/135 MHz/165 MHz Monolithic CMOS 256 Color Palette RAMDAC  
inputs are contained in the upper four bits, and the lower four bits contain the red,  
green, blue, and low or high nibble enable information previously written. Either  
the CLOCK must be slowed down to the MPU cycle time, or the same pixel and  
overlay data must be presented to the device during the entire MPU read cycle.  
For example, to read the upper four bits of red color information being  
presented to the D/A converters, the MPU writes to the test register, setting only  
the red enable bit. The MPU then reads the test register, keeping the pixel data  
stable, which results in D[7:4] containing R[7:4] color bits and D[3:0] containing  
red, green, blue, and low or high nibble enable information, as illustrated below:  
D[7]  
D[6]  
D[5]  
D[4]  
R7  
R6  
R5  
R4  
D[3]  
D[2]  
D[1]  
D[0]  
0
0
0
1
2-4  
Conexant  
L45801 Rev. N  
Bt457/Bt458  
2.0 Registers  
125 MHz/135 MHz/165 MHz Monolithic CMOS 256 Color Palette RAMDAC  
2.5 Bt457 Control/Test Register  
2.5 Bt457 Control/Test Register  
The control/test register provides diagnostic capability by enabling the MPU to  
read the D/A converter inputs. It can be written to or read by the MPU at any time  
and is not initialized. For proper operation, it must be initialized by the user after  
power-up. When writing to the register, the upper four bits (D[7:4]) are ignored.  
The contents of the test register are defined as follows:  
Table 2-3. Bt457 Control Test Register  
D[7:4]  
Color Information  
D[3]  
D[2]  
D[1]  
D[0]  
Low (Logical 1) or High (Logical 0) Nibble  
Blue Channel Enable  
Green Channel Enable  
Red Channel Enable  
To use the control/test register, the MPU writes to it, specifying the low or  
high nibble of color information. When the MPU reads the register, the four bits  
of color information from the DAC inputs are contained in the upper four bits,  
and the lower four bits contain whatever was previously written to the register.  
Either the CLOCK must be slowed down to the MPU cycle time, or the same  
pixel and overlay data must be presented to the device during the entire MPU read  
cycle.  
The red, green, and blue enable bits specify the mode in which color data is  
written to and read from, the Bt457. If all three enable bits are logical 0s, each  
write cycle to the color palette RAM or overlay registers loads 8 bits of color data.  
During each read cycle of the color palette RAM or overlay registers, 8 bits of  
color data are output onto the data bus. If a 24-bit data bus is available, three  
Bt457s can be accessed simultaneously.  
If any of the red, green, or blue enable bits is a logical 1, the Bt457 assumes  
the MPU is reading and writing color information using red-green-blue cycles,  
such as are used in the Bt458. Setting the appropriate enable bit configures the  
Bt457 to output or input color data only for the color read/write cycle  
corresponding to the enabled color. Thus, if the green enable bit is a logical 1, and  
a red-green-blue write cycle occurred, the Bt457 would input data only during the  
green write cycle. If a red-green-blue read cycle occurred, the Bt457 would output  
data only during the green read cycle. CE* must be a logical 0 during each of the  
red-green-blue cycles. Only one of the enable bits must be a logical 1. This mode  
of operation is useful when only an 8-bit data bus is available and the software  
drivers are written for RGB operation.  
L45801 Rev. N  
Conexant  
2-5  
2.0 Registers  
Bt457/Bt458  
2.5 Bt457 Control/Test Register  
125 MHz/135 MHz/165 MHz Monolithic CMOS 256 Color Palette RAMDAC  
2-6  
Conexant  
L45801 Rev. N  
3
3.0 PC Board Layout Considerations  
3.1 PC Board Considerations  
The Bt457 and Bt458 layouts should be optimized for lowest noise on their power  
and ground lines by shielding the digital inputs and providing good decoupling.  
The trace length between groups of VAA and GND pins should be as short as  
possible to minimize inductive ringing.  
A well-designed power distribution network is critical to eliminate digital  
switching noise. The ground plane must provide a low-impedance return path for  
the digital circuits. A PC board with a minimum of six layers is recommended.  
The ground layer is used as a shield to isolate noise from the analog traces with  
layer 1 (top) the analog traces, layer two the ground plane, layer three the analog  
power plane, and the remaining layers used for digital traces and digital power  
supplies.  
The optimum layout enables the Bt457 and Bt458 to be located as close as  
possible to the power supply connector and the video output connector.  
L45801 Rev. N  
Conexant  
3-1  
3.0 PC Board Layout Considerations  
Bt457/Bt458  
3.2 Power and Ground Planes  
125 MHz/135 MHz/165 MHz Monolithic CMOS 256 Color Palette RAMDAC  
3.2 Power and Ground Planes  
Power and ground planes need isolation gaps to minimize digital switching noise  
effects on the analog signals and components. These gaps need to be at least  
1/8-inch wide. They are placed so that digital currents cannot flow through a  
peninsula that contains the analog components, signals, and video connector.  
Figure 3-1 illustrates a sample layout.  
Figure 3-1. Sample Layout Showing Power and Ground Plane Isolation Gaps  
Digital Area  
Analog  
RAMDAC  
Area  
Digital Area  
Edge of PCB  
457-8_005  
3-2  
Conexant  
L45801 Rev. N  
Bt457/Bt458  
3.0 PC Board Layout Considerations  
125 MHz/135 MHz/165 MHz Monolithic CMOS 256 Color Palette RAMDAC  
3.3 Device Decoupling  
3.3 Device Decoupling  
For optimum performance, all capacitors should be located as close as possible to  
the device, using the shortest possible leads (consistent with reliable operation) to  
reduce the lead inductance. Chip capacitors are recommended for minimum lead  
inductance. Radial lead ceramic capacitors can be substituted for chip capacitors  
and are better than axial lead capacitors for self-resonance. Values chosen have  
self-resonance above the pixel clock.  
3.4 Power Supply Decoupling  
The best power supply decoupling performance is obtained by providing a 0.1 µF  
ceramic capacitor in parallel with a 0.01 µF chip capacitor to decouple each group  
of VAA pins to GND. The capacitors should be placed as close as possible to the  
device VAA and GND pins.  
The 10 µF capacitor illustrated in Figure 3-2 is for low-frequency power  
supply ripple; the 0.1 µF and 0.01 µF capacitors are for high-frequency power  
supply noise rejection. The decoupling capacitors should be connected at the  
VAA and GND pins, using short, wide traces.  
When using a linear regulator, the power-up sequence must be verified to  
prevent latchup. A linear regulator is recommended to filter the analog power  
supply if the power supply noise is greater than 200 mV. This is especially  
important when using a switching power supply and the switching frequency is  
close to the raster scan frequency.  
NOTE: About 10 percent of power supply hum and ripple noise less than 1 MHz  
will couple onto the analog outputs.  
L45801 Rev. N  
Conexant  
3-3  
3.0 PC Board Layout Considerations  
Bt457/Bt458  
3.4 Power Supply Decoupling  
125 MHz/135 MHz/165 MHz Monolithic CMOS 256 Color Palette RAMDAC  
Figure 3-2. Typical Connection Diagram  
COMP  
C8  
ANALOG POWER PLANE  
VAA  
C9  
R4  
C2C4  
C5C7  
+5 V (VCC)  
VREF  
+
C1  
C10  
Z1  
Bt457/458  
GROUND  
(POWER SUPPLY  
CONNECTOR)  
GND  
RSET  
R1 R2 R3  
FS ADJUST  
(N/C) IOR  
(1)  
(1)  
P
P
TO  
VIDEO  
(OUT) IOG  
(PLL) IOB  
CONNECTOR  
VAA  
P
P
1N4148/9  
TO MONITOR  
1N4148/9  
DAC  
OUTPUT  
NOTE(S):  
(1)  
Not used with Bt457.  
2. Bt457 pin names are in parentheses. Each pair of device VAA and GND pins must be separately decoupled with 0.1 µF and  
0.01 µF capacitors  
457-8_006  
3-4  
Conexant  
L45801 Rev. N  
Bt457/Bt458  
3.0 PC Board Layout Considerations  
125 MHz/135 MHz/165 MHz Monolithic CMOS 256 Color Palette RAMDAC  
3.4 Power Supply Decoupling  
Table 3-1. Typical Parts List  
Location  
C1C4, C8, C9  
Description‘  
Vendor Part Number  
0.1 µF Ceramic Capacitor  
0.01 µF Ceramic Chip Capacitor  
10 µF Tantalum Capacitor  
Ferrite Bead  
Erie RPE112Z5U104M50V  
AVX 12102T103QA1018  
Mallory CSR13G106KM  
Fair-Rite 2743001111  
Dale CMF-55C  
C5C7  
C10  
L1  
R1, R2, R3  
R4  
75 1% Metal Film Resistor  
1000 1% Metal Film Resistor  
523 1% Metal Film Resistor  
1.2 V Voltage Reference  
Dale CMF-55C  
RSET  
Z1  
Dale CMF-55C  
National Semiconductor LM385Z-1.2  
NOTE(S): The vendor numbers above are listed only as a guide. Substitution of devices with similar characteristics does not affect  
the performance of the Bt457/458. R3 is not used with Bt457 (see Section 4.0, Application Information).  
L45801 Rev. N  
Conexant  
3-5  
3.0 PC Board Layout Considerations  
Bt457/Bt458  
3.5 COMP Decoupling  
125 MHz/135 MHz/165 MHz Monolithic CMOS 256 Color Palette RAMDAC  
3.5 COMP Decoupling  
The COMP pin must be decoupled to VAA, typically with a 0.1 µF ceramic  
capacitor. Low-frequency supply noise requires a larger value. The COMP  
capacitor must be as close as physically possible to the COMP and VAA pins. A  
surface-mount ceramic chip capacitor is preferred for minimal lead inductance,  
which degrades the noise rejection of the circuit. Short, wide traces also reduce  
lead inductance.  
If the display has a ghosting problem, additional capacitance connected in  
parallel with the COMP capacitor can help.  
3.6 Digital Signal Interconnect  
Digital inputs to the Bt457 and Bt458 should be isolated as much as possible from  
the analog outputs and other analog circuitry. Also, these input signals should not  
overlay the analog power and output signals.  
Most noise on the analog outputs is caused by excessive edge rates (less than 3  
ns), overshoot, undershoot, and ringing on the digital inputs.  
The digital edge rates should be no faster than necessary, because feedthrough  
noise is proportional to the digital edge rates. Lower speed applications benefit  
from using lower speed logic (35 ns edge rates) to reduce data-related noise on  
the analog outputs.  
Transmission lines mismatch if the lines do not match the source and  
destination impedance. This degrades signal fidelity if the line length reflection  
time is greater than one fourth the signal edge time. Line termination or line  
length reduction is the solution. For example, logic edge rates of 2 ns require line  
lengths of less than four inches without using termination. Ringing can be  
reduced by damping the line with a series resistor (30300 ).  
Radiation of digital signals can also be picked up by the analog circuitry. This  
is prevented by reducing the digital edge rates (rise/fall time), minimizing ringing  
with damping resistors, and minimizing coupling through PC board capacitance  
by routing the signals 90 degrees to any analog signals.  
The clock driver and all other digital devices on the circuit board must be  
adequately decoupled to prevent the noise generated by digital devices from  
coupling into the analog circuitry.  
3-6  
Conexant  
L45801 Rev. N  
Bt457/Bt458  
3.0 PC Board Layout Considerations  
125 MHz/135 MHz/165 MHz Monolithic CMOS 256 Color Palette RAMDAC  
3.7 Analog Signal Interconnect  
3.7 Analog Signal Interconnect  
The Bt457 and Bt458 should be located as close as possible to the output  
connectors. This minimizes noise pickup and reflections caused by impedance  
mismatch.  
Analog outputs are susceptible to crosstalk from digital lines; digital traces  
must not be routed under or adjacent to the analog output traces.  
To maximize the high-frequency power supply rejection, the video output  
signals should not overlay the analog power plane.  
For maximum performance, the analog video output impedance, cable  
impedance, and load impedance should be the same.  
Analog output video edges exceeding the CRT monitor bandwidth can be  
reflected, producing cable-length dependent ghosts. Simple pulse filters can  
reduce high-frequency energy, reducing EMI and noise. The filter impedance  
must match the line impedance.  
3.8 Analog Output Protection  
The Bt457 and Bt458 analog outputs should be protected against high-energy  
discharges, such as those from monitor arc-over or from hot-switching”  
AC-coupled monitors.  
The diode protection circuit illustrated in Figure 3-2 can prevent latchup under  
severe discharge conditions without adversely degrading analog transition times.  
The 1N4148/9 are low-capacitance, fast-switching diodes, which are available in  
multiple-device packages (FSA250X or FSA270X) or surface-mountable pairs  
(BAV99 or MMBD7001).  
L45801 Rev. N  
Conexant  
3-7  
3.0 PC Board Layout Considerations  
Bt457/Bt458  
3.8 Analog Output Protection  
125 MHz/135 MHz/165 MHz Monolithic CMOS 256 Color Palette RAMDAC  
3-8  
Conexant  
L45801 Rev. N  
4
4.0 Application Information  
4.1 Clock Interfacing  
Because of the high clock rates at which the Bt457 and Bt458 can operate, they  
will accept differential clock signals (CLOCK and CLOCK*). These clock inputs  
are generated by ECL logic operating at +5 V. The CLOCK and CLOCK* inputs  
require termination resistors (220 to GND) that should be located as close as  
possible to the clock driver. A 150 chip resistor connected between the  
RAMDACs CLOCK and CLOCK* pins is also required to ensure proper  
termination. It should be located as close as possible to the RAMDAC. Figure 4-1  
illustrates the location.  
Figure 4-1. Generating the Bt458 Clock Signals  
+5V  
14  
+5V  
CLOCK  
CLOCK  
MONITOR  
PRODUCTS  
970E  
220  
330  
220  
220  
150  
Bt458  
7
CLOCK*  
CLOCK*  
Bt438  
LDA*  
LDA  
VAA  
0.1  
VREF  
VREF  
1K  
457-8_007  
L45801 Rev. N  
Conexant  
4-1  
4.0 Application Information  
Bt457/Bt458  
4.1 Clock Interfacing  
125 MHz/135 MHz/165 MHz Monolithic CMOS 256 Color Palette RAMDAC  
Applications of 165 MHz require robust ECL clock signals with strong  
pulldown (20 mA at VOH) and double termination for clock trace lengths  
greater than 2 inches.  
The CLOCK and CLOCK* inputs must be differential signals and greater  
than 0.6 V peak to peak because of the noise margins of the CMOS process. The  
Bt457/458 will not function if it uses a single-ended clock with CLOCK*  
connected to ground.  
Typically, LD* is generated by dividing CLOCK by 4 or 5 (depending on  
whether 4:1 or 5:1 multiplexing was specified) and translating the result to TTL  
levels. As LD* can be phase shifted relative to CLOCK, propagation delays need  
not be considered when the LD* signal is derived. LD* can be used as the shift  
clock for the video DRAMs and to generate the fundamental video timing of the  
system (e.g., SYNC* and BLANK*).  
It is recommended that the Bt438 or Bt439 Clock Generator Chips be used to  
generate the clock and load signals. Both support the 4:1 and 5:1 input  
multiplexing of the Bt457/458, and set the pipeline delay of the Bt457 and Bt458  
to eight clock cycles. Figure 4-1 and Figure 4-2 illustrate use of the Bt438 with  
the Bt457/458.  
When a single Bt457 is used, the PLL output is ignored and should be  
connected to GND (either directly or through a resistor up to 150 ).  
Figure 4-2. Generating the Bt457 Signals (Monochrome Application)  
+5V  
14  
+5V  
CLOCK  
CLOCK  
MONITOR  
PRODUCTS  
970E  
220  
330  
220  
220  
150  
Bt457  
7
CLOCK*  
CLOCK*  
Bt438  
LDA*  
LDA  
VAA  
0.1  
VREF  
VREF  
1K  
457-8_008  
Setting the Pipeline  
Delay (Bt457 and Bt458)  
The pipeline delay of the Bt457/458, although fixed after a power-up condition,  
can be anywhere from six to ten clock cycles. The Bt457/458 contains additional  
circuitry enabling the pipeline delay to be fixed at eight clock cycles. The Bt438  
and Bt439 Clock Generator Chips support this mode of operation when they are  
used with the Bt457/458.  
To reset the Bt457/458, it should be powered up with LD*, CLOCK, and  
CLOCK* running. The CLOCK and CLOCK* signals should be stopped with  
CLOCK high and CLOCK* low for at least three rising edges of LD*. The device  
can be held with CLOCK and CLOCK* stopped for an unlimited time.  
4-2  
Conexant  
L45801 Rev. N  
Bt457/Bt458  
4.0 Application Information  
125 MHz/135 MHz/165 MHz Monolithic CMOS 256 Color Palette RAMDAC  
4.1 Clock Interfacing  
CLOCK and CLOCK* should be restarted so that the first edge of the signals  
is as close as possible to the rising edge of LD*. (The falling edge of CLOCK  
leads the rising edge of LD* by no more than 1 clock cycle or follows the rising  
edge of LD* by no more than 1.5 clock cycles). When the clocks are restarted, the  
minimum clock pulse width must not be violated.  
When the Bt457/458 is reset to an eight-clock-cycle pipeline delay, the blink  
counter circuitry is not reset. Therefore, if multiple Bt457/458s are used in  
parallel, the on-chip blink counters cannot be synchronized. In this instance, the  
blink mask register should be $00, and the overlay blink enable bits should be  
logical 0s. Software can control blinking through the read mask register and  
overlay display enable bits.  
In standard operation, the Bt457/458 must be reset only following a power-up  
or reset condition. Under these circumstances the on-chip blink circuitry can be  
used.  
Bt457 Color Display  
Applications  
For color display applications in which up to four Bt457s are used, it is  
recommended that the Bt439 Clock Generator Chip be used to generate the clock  
and load signals. It supports the 4:1 and 5:1 input multiplexing of the Bt457,  
synchronizes the clock and load signals to subpixel resolution, and sets the  
pipeline delay of the Bt457 to eight clock cycles. The Bt439 can also be used to  
interface the Bt457 to a TTL clock. Figure 4-3 illustrates use of the Bt439 with  
the Bt457.  
L45801 Rev. N  
Conexant  
4-3  
4.0 Application Information  
Bt457/Bt458  
4.1 Clock Interfacing  
125 MHz/135 MHz/165 MHz Monolithic CMOS 256 Color Palette RAMDAC  
Figure 4-3. Generating the Bt457 Clock Signals (Color Application)  
+5V  
PLL0  
PLL  
Q1  
R2  
14  
+5V  
CLOCK 0  
CLOCK  
R1  
R1  
CLOCK 0*  
MONITOR  
PRODUCTS  
970E  
220  
330  
CLOCK*  
Bt457  
#1  
VAA  
7
Bt439  
+5V  
PLL  
PLL1  
CLOCK1  
CLOCK1*  
Q1  
R2  
+5V  
R1  
R1  
CLOCK  
CLOCK*  
Q1  
2.2K  
430  
Bt457  
#2  
2N3904  
LD*  
VAA  
TO  
Bt439  
FROM  
Bt457  
VREF  
70  
Q1  
R2  
PLL2  
PLL  
CLOCK 2  
CLOCK  
R1  
R1  
CLOCK2*  
CLOCK*  
LD*  
R1  
R2  
Bt457  
#3  
LD  
220  
150  
VAA  
VREF  
VREF  
457-8_009  
Subpixel synchronization is supported by the PLL output. Essentially, PLL  
provides a signal to indicate the amount of analog output delay of the Bt457  
relative to CLOCK. The Bt439 compares the phase of the PLL signals generated  
by up to four Bt457s, and adjusts the phase of each of the CLOCK and CLOCK*  
signals to the Bt457s to minimize the PLL phase difference. There should be  
minimal layout skew in the CLOCK and PLL trace paths to ensure proper clock  
alignment.  
If subpixel synchronization of multiple Bt457s is not necessary, the Bt438  
Clock Generator Chip can be used rather than the Bt439. In this instance, the  
CLOCK, CLOCK*, and LD* inputs of up to four Bt457s are connected together  
and driven by a single Bt438 (daisy chain with single balanced termination for  
<100 MHz or through a 10H116 buffer for >100 MHz). The VREF inputs of the  
Bt457s must still have a 0.1 µF bypass capacitor to VAA. The PLL outputs would  
not be used and should be connected to GND (either directly or through a resistor  
up to 150 ).  
4-4  
Conexant  
L45801 Rev. N  
Bt457/Bt458  
4.0 Application Information  
125 MHz/135 MHz/165 MHz Monolithic CMOS 256 Color Palette RAMDAC  
4.2 Using Multiple Devices  
4.2 Using Multiple Devices  
When multiple RAMDACs are used, each RAMDAC should have its own power  
plane ferrite bead. In addition, a single voltage reference can drive multiple  
devices; however, isolation resistors are recommended to reduce color channel  
crosstalk.  
Higher performance can be obtained if each RAMDAC has its own voltage  
reference. This can further reduce the amount of color channel crosstalk and color  
palette interaction.  
Each RAMDAC must still have its own RSET resistor, analog output  
termination resistors, power supply bypass capacitors, COMP capacitor, and  
VREF capacitor.  
4.3 Bt457 Nonvideo Applications  
The Bt457 can be used in nonvideo applications by disabling the video-specific  
control signals. SYNC* should be a logical 0, and BLANK* should be a logical 1.  
The relationship between RSET and the full-scale output current (Iout) in this  
configuration is as follows:  
RSET () = 7,457 * VREF (V) / Iout (mA)  
With the DAC data inputs at $00, there is a DC offset current (Imin) defined  
as follows:  
Imin (mA) = 610 * VREF (V) / RSET ()  
Therefore, the total full-scale output current is Iout + Imin.  
L45801 Rev. N  
Conexant  
4-5  
4.0 Application Information  
Bt457/Bt458  
4.4 Initializing the Bt458  
125 MHz/135 MHz/165 MHz Monolithic CMOS 256 Color Palette RAMDAC  
4.4 Initializing the Bt458  
Following a power-on sequence, the Bt458 must be initialized. If the clock/LD*  
sequence is controlled to reset the pipeline delay of the Bt458 to a fixed pipeline  
delay of eight clock cycles, this initialization sequence must be performed after  
the reset sequence. The command register must also be reinitialized when the  
multiplex selection changes (e.g., from 4:1 to 5:1 input multiplexing).  
This sequence configures the Bt458 as follows:  
4:1 Multiplexed Operation  
No Overlays  
No Blinking  
Control Register Initialization  
Write $04 to address register  
C1,C0  
00  
Write $FF to read mask register  
Write $05 to address register  
10  
00  
Write $00 to blink mask register  
Write $06 to address register  
10  
00  
Write $40 to command register  
Write $07 to address register  
10  
00  
Write $00 to test register  
10  
Color Palette RAM Initialization  
Write $00 to address register  
00  
01  
01  
01  
01  
01  
01  
:
Write red data to RAM (location $00)]  
Write green data to RAM (location $00)  
Write blue data to RAM (location $00)  
Write red data to RAM (location $01)  
Write green data to RAM (location $01)  
Write blue data to RAM (location $01)  
:
Write red data to RAM (location $FF)  
Write green data to RAM (location $FF)  
Write blue data to RAM (location $FF)  
Overlay Color Palette Initialization  
Write $00 to address register  
01  
01  
01  
00  
11  
11  
11  
11  
Write red data to overlay (location $00)  
Write green data to overlay (location $00)  
Write blue data to overlay (location $00)  
Write red data to overlay (location $01)  
4-6  
Conexant  
L45801 Rev. N  
Bt457/Bt458  
4.0 Application Information  
125 MHz/135 MHz/165 MHz Monolithic CMOS 256 Color Palette RAMDAC  
4.4 Initializing the Bt458  
Write green data to overlay (location $01)  
Write blue data to overlay (location $01)  
:
11  
11  
:
Write red data to overlay (location $03)  
Write green data to overlay (location $03)  
Write blue data to overlay (location $03)  
11  
11  
11  
L45801 Rev. N  
Conexant  
4-7  
4.0 Application Information  
Bt457/Bt458  
4.5 Initializing the Bt457 (Monochrome) 125 MHz/135 MHz/165 MHz Monolithic CMOS 256 Color Palette RAMDAC  
4.5 Initializing the Bt457 (Monochrome)  
Following a power-on sequence, the Bt457 must be initialized. If the clock/LD*  
sequence is controlled to reset the pipeline delay of the Bt457 to a fixed pipeline  
delay of eight clock cycles, this initialization sequence must be performed after  
the reset sequence. The command register must also be reinitialized when the  
multiplex selection changes (e.g., from 4:1 to 5:1 input multiplexing).  
This sequence configures the Bt457 as follows:  
4:1 Multiplexed Operation  
No Overlays  
No Blinking  
Color data written/read every cycle  
Control Register Initialization  
Write $04 to address register  
Write $FF to read mask register  
Write $05 to address register  
Write $00 to blink mask register  
Write $06 to address register  
Write $40 to command register  
Write $07 to address register  
Write $00 to test register  
C1,C0  
00  
10  
00  
10  
00  
10  
00  
10  
Color Palette RAM Initialization  
Write $00 to address register  
Write data to RAM (location $00)  
Write data to RAM (location $01)  
:
00  
01  
01  
:
Write data to RAM (location $FF)  
Overlay Color Palette Initialization  
Write $00 to address register  
Write data to overlay (location $00)  
Write data to overlay (location $01)  
:
01  
00  
11  
11  
:
Write data to overlay (location $03)  
11  
4-8  
Conexant  
L45801 Rev. N  
Bt457/Bt458  
4.0 Application Information  
125 MHz/135 MHz/165 MHz Monolithic CMOS 256 Color Palette RAMDAC4.6 Initializing the Bt457 (Color) 24-bit MPU  
4.6 Initializing the Bt457 (Color) 24-bit MPU  
Data Bus  
In this example, three Bt457s are used in parallel to generate true color. A 24-bit  
MPU data bus is available to access all three Bt457s in parallel.  
The operation and initialization are the same as the monochrome application  
of the Bt457.  
4.7 Initializing the Bt457 (Color) 8-bit MPU Data  
Bus  
In this example, three Bt457s are used in parallel to generate true color. An 8-bit  
MPU data bus is available to access the Bt457s.  
While accessing the command, read mask, blink mask, and control/test and  
address registers, each Bt457 must be accessed individually. While accessing the  
color palette RAM or overlay registers, all three Bt457s are accessed  
simultaneously.  
Following a power-on sequence, the Bt457s must be initialized. If the  
clock/LD* sequence is controlled to reset the pipeline delay of the Bt457s to a  
fixed pipeline delay of eight clock cycles, this initialization sequence must be  
performed after the reset sequence. The command register must also be  
reinitialized when the multiplex selection changes (e.g., from 4:1 to 5:1 input  
multiplexing).  
This sequence configures the Bt457s as follows:  
4:1 Multiplexed Operation  
No Overlays  
No Blinking  
Each Bt457 initialized as a red, green, or blue device  
Control Register Initialization  
Red Bt457  
C1,C0  
Write $04 to address register  
Write $FF to read mask register  
Write $05 to address register  
Write $00 to blink mask register  
Write $06 to address register  
Write $40 to command register  
Write $07 to address register  
Write $00 to test register  
00  
10  
00  
10  
00  
10  
00  
10  
L45801 Rev. N  
Conexant  
4-9  
4.0 Application Information  
Bt457/Bt458  
4.7 Initializing the Bt457 (Color) 8-bit MPU Data Bus 125 MHz/135 MHz/165 MHz Monolithic CMOS 256 Color Palette  
Green Bt457  
Write $04 to address register  
00  
10  
00  
10  
00  
10  
00  
10  
Write $FF to read mask register  
Write $05 to address register  
Write $00 to blink mask register  
Write $06 to address register  
Write $40 to command register  
Write $07 to address register  
Write $02 to test register  
Blue Bt457  
Write $04 to address register  
00  
10  
00  
10  
00  
10  
00  
10  
Write $FF to read mask register  
Write $05 to address register  
Write $00 to blink mask register  
Write $06 to address register  
Write $40 to command register  
Write $07 to address register  
Write $04 to test register  
Color Palette RAM Initialization  
Write $00 to all three address registers  
Write red data to RAM (location $00)  
Write green data to RAM (location $00)  
Write blue data to RAM (location $00)  
Write red data to RAM (location $01)  
Write green data to RAM (location $01)  
Write blue data to RAM (location $01)  
:
00  
01  
01  
01  
01  
01  
01  
:
Write red data to RAM (location $FF)  
Write green data to RAM (location $FF)  
Write blue data to RAM (location $FF)  
Overlay Color Palette Initialization  
Write $00 to all three address registers  
Write red data to overlay (location $00)  
Write green data to overlay (location $00)  
Write blue data to overlay (location $00)  
Write red data to overlay (location $01)  
Write green data to overlay (location $01)  
Write blue data to overlay (location $01)  
:
01  
01  
01  
00  
11  
11  
11  
11  
11  
11  
:
Write red data to overlay (location $03)  
Write green data to overlay (location $03)  
Write blue data to overlay (location $03)  
11  
11  
11  
4-10  
Conexant  
L45801 Rev. N  
5
5.0 Parametric Information  
5.1 DC Electrical Parameters  
Table 5-1. Recommended Operating Conditions  
Parameter  
Power Supply  
Symbol  
Min  
Typ  
Max  
Units  
VAA  
TA  
4.75  
0
5.00  
5.25  
+70  
V
°C  
V
Ambient Operating Temperature  
Output Load  
RL  
37.5  
1.235  
523  
Reference Voltage  
VREF  
RSET  
1.20  
1.26  
FS ADJUST Resistor  
L45801 Rev. N  
Conexant  
5-1  
5.0 Parametric Information  
Bt457/Bt458  
5.1 DC Electrical Parameters  
125 MHz/135 MHz/165 MHz Monolithic CMOS 256 Color Palette RAMDAC  
Table 5-2. Absolute Maximum Ratings  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
VAA (Measured to GND)  
GND0.5  
7.0  
VAA +0.5  
V
V
Voltage on Any Signal Pin(1)  
Analog Output Short-Circuit Duration to  
Any Power Supply or Common  
ISC  
Indefinite  
Ambient Operating Temperature  
Storage Temperature  
Junction Temperature  
Ceramic Package  
TA  
TS  
55  
65  
°C  
°C  
°C  
°C  
°C  
+125  
+150  
+175  
+150  
260  
TJ  
Plastic Package  
Soldering Temperature  
TSOL  
(5 Seconds, 1/4from Pin)  
Vapor Phase Soldering (1 Minute)  
TVSOL  
220  
°C  
NOTE(S):  
(1)  
This device uses high-impedance CMOS devices on all signal pins. It should be handled as an ESD-sensitive device. Voltage  
on any signal pin that exceeds the power supply voltage by more than +0.5 V can induce destructive latchup.  
2. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress  
rating only, and functional operation of the device at these or any other conditions above those listed in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may  
affect device reliability.  
5-2  
Conexant  
L45801 Rev. N  
Bt457/Bt458  
5.0 Parametric Information  
125 MHz/135 MHz/165 MHz Monolithic CMOS 256 Color Palette RAMDAC  
5.1 DC Electrical Parameters  
Table 5-3. DC Characteristics (1 of 2)  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Analog Outputs  
8 (4)  
8 (4)  
8 (4)  
Resolution (Each DAC)  
Accuracy (Each DAC)  
Bits  
Integral Linearity Error  
IL  
1 (1/8)  
1 (1/16)  
5
LSB  
Differential Linearity Error  
Gray-Scale Error  
DL  
LSB  
%Gray Scale  
Monotonicity  
Guaranteed  
Binary  
V
Coding  
Digital Inputs (Except CLOCK, CLOCK*)  
Input High Voltage  
VIH  
VIL  
IIH  
IIL  
2.0  
GND 0.5  
VAA + 0.5  
0.8  
1
Input Low Voltage  
V
Input High Current (Vin = 4.0 V)  
Input Low Current (Vin = 0.4 V)  
Input Capacitance (f = 1 MHz, Vin = 2.4 V)  
Clock Inputs (CLOCK, CLOCK*)  
Differential Input Voltage  
Input High Current (Vin = 4.0 V)  
Input Low Current (Vin = 0.4 V)  
Input Capacitance (f = 1 MHz, Vin = 4.0 V)  
Digital Outputs D[7:0]  
µA  
µA  
pF  
1  
CIN  
4
10  
V
VIN  
IKIH  
IIKIL  
CKIN  
0.6  
6
1
µA  
µA  
pF  
1  
4
10  
V
Output High Voltage (IOH = 800 µA)  
Output Low Voltage (IOL = 6.4 mA)  
3-State Current  
VOH  
VOL  
IOZ  
CDOUT  
2.4  
0.4  
10  
V
µA  
pF  
Output Capacitance  
10  
Analog Outputs  
mA  
mA  
mA  
µA  
mA  
µA  
Output Current  
White Level Relative to Blank  
White Level Relative Black  
Black Level Relative to Blank  
Blank Level on IOR, IOB  
Blank Level on IOG or IOUT  
Sync Level on IOG or IOUT  
LSB Size  
17.69  
16.74  
0.95  
0
19.05  
17.62  
1.44  
5
20.40  
18.50  
1.90  
50  
6.29  
0
7.62  
5
8.96  
50  
L45801 Rev. N  
Conexant  
5-3  
5.0 Parametric Information  
Bt457/Bt458  
5.1 DC Electrical Parameters  
125 MHz/135 MHz/165 MHz Monolithic CMOS 256 Color Palette RAMDAC  
Table 5-3. DC Characteristics (2 of 2)  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Bt457, Bt458  
69.1  
2
5
µA  
%
DA0-to-DAC Matching(1)  
Output Compliance  
Output Impedance  
VOC  
0.5  
50  
13  
+1.2  
V
RAOUT  
CAOUT  
kΩ  
pF  
Output Capacitance  
20  
(f = 1 MHz, IOUT = 0 mA)  
Voltage Reference Input Current  
IREF  
10  
µA  
Power Supply Rejection Ratio  
(COMP = 0.1 µF, f = 1 kHz)  
PSRR  
0.5  
% / %VAA  
NOTE(S):  
(1)  
Does not apply to the Bt457.  
2. Test conditions (unless otherwise specified): Recommended Operating Conditionswith RSET = 523 and VREF = 1.235 V.  
As the parameters are guaranteed over the full temperature range, temperature coefficients are not specified or required.  
Typical values are based on nominal temperature, i.e., room temperature, and nominal voltage, i.e., 5 V.  
5-4  
Conexant  
L45801 Rev. N  
Bt457/Bt458  
5.0 Parametric Information  
125 MHz/135 MHz/165 MHz Monolithic CMOS 256 Color Palette RAMDAC  
5.2 AC Electrical Parameters  
5.2 AC Electrical Parameters  
Table 5-4. AC Characteristics for 165 MHz and 135 MHz Devices (1 of 2)  
165 MHz Devices  
135 MHz Devices  
Min Typ Max  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Clock Rate  
LD* Rate  
Fmax  
LDmax  
1
0
12  
2
165  
41.25  
75  
15  
8
0
12  
2
135  
33.75  
75  
15  
8
MHz  
MHz  
ns  
R/W, C0, C1 Setup Time  
R/W, C0, C1 Hold Time  
CE* Low Tiime  
2
15  
50  
25  
7
15  
50  
25  
7
ns  
3
ns  
CE* High Time  
4
ns  
CE* Asserted to Data Bus Driven  
CE* Asserted to Data Valid  
CE* Negated to Data Bus 3-Stated  
Write Data Setup Time  
Write Data Hold Time  
5
ns  
6
35  
3
35  
3
ns  
7
ns  
8
ns  
9
ns  
Pixel and Control Setup Time  
Pixel and Control Hold Time  
Clock Cycle Time  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
3
3
ns  
2
2
ns  
6.06  
2.6  
2.6  
24.24  
10  
10  
6
7.4  
3
ns  
Clock Pulse Width High Time  
Clock Pulse Width Low Time  
LD* Cycle Time  
ns  
3
ns  
29.63  
12  
12  
ns  
LD* Pulse Width High Time  
LD* Pulse Width Low Time  
Analog Output Delay  
ns  
ns  
ns  
Analog Output Rise/Fall Time  
Analog Output Settling Time  
Clock and Data Feedthrough(1)  
Glitch Impulse(1)  
ns  
35  
50  
0
35  
50  
0
ns  
2
2
pVsec  
pVsec  
ns  
Analog Output Skew(2)  
Pipeline Delay  
10  
Clocks  
L45801 Rev. N  
Conexant  
5-5  
5.0 Parametric Information  
Bt457/Bt458  
5.2 AC Electrical Parameters  
125 MHz/135 MHz/165 MHz Monolithic CMOS 256 Color Palette RAMDAC  
Table 5-4. AC Characteristics for 165 MHz and 135 MHz Devices (2 of 2)  
165 MHz Devices  
135 MHz Devices  
Parameter  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
Units  
VAA Supply Current(3)  
IAA  
310  
n/a  
370  
n/a  
mA  
mA  
Bt458  
Bt457  
235  
207  
340  
257  
NOTE(S):  
(1)  
Clock and data feedthrough is a function of the number of edge rates and the amount of overshoot and undershoot on the  
digital inputs. For this test, the TTL digital inputs have a 1 k resistor to GND and are driven by 74HC logic. Settling time  
does not include clock and data feedthrough. Glitch impulse includes clock and data feedthrough, and 3 dB test  
bandwidth = 2x clock rate.  
Does not apply to the Bt457.  
At Fmax. IAA (typ) at VAA = 5.0 V and TA = 20° C. IAA (max) at VAA = 5.25 V and TA = 0° C.  
(2)  
(3)  
4. Test conditions (unless otherwise specified): "Recommended Operating Conditions" with RSET = 523 and VREF = 1.235 V.  
TTL input values are 03 V with input rise/fall times 4 ns, measured between the 10% and 90% points. ECL input values are  
VAA0.8 to VAA1.8 V with input rise/fall times 2 ns, measured between the 20% and 80% points. Timing reference points  
at 50% for inputs and outputs. Analog output load 10 pF and D[7:0] output load 75 pF. See timing notes in Figure 5-1. As  
the above parameters are guaranteed over the full temperature range, temperature coefficients are not specified or required.  
Typical values are based on nominal temperature, i.e., room temperature, and nominal voltage, i.e., 5 V.  
5-6  
Conexant  
L45801 Rev. N  
Bt457/Bt458  
5.0 Parametric Information  
125 MHz/135 MHz/165 MHz Monolithic CMOS 256 Color Palette RAMDAC  
5.2 AC Electrical Parameters  
Table 5-5. AC Characteristics for 125 MHz and 110 MHz Devices (1 of 2)  
125 MHz Devices  
110 MHz Devices  
Min Typ Max  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Clock Rate  
LD* Rate  
Fmax  
LDmax  
1
0
12  
2
125  
31.25  
75  
15  
8
0
12  
2
110  
27.5  
75  
15  
8
MHz  
MHz  
ns  
R/W, C0, C1 Setup Time  
R/W, C0, C1 Hold Time  
CE* Low Time  
2
15  
50  
25  
7
15  
50  
25  
7
ns  
3
ns  
CE* High Time  
4
ns  
CE* Asserted to Data Bus Driven  
CE* Asserted to Data Valid  
CE* Negated to Data Bus 3-Stated  
Write Data Setup Time  
Write Data Hold Time  
5
ns  
6
35  
3
35  
3
ns  
7
ns  
8
ns  
9
ns  
Pixel and Control Setup Time  
Pixel and Control Hold Time  
Clock Cycle Time  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
3
3
ns  
2
2
ns  
8
9.09  
4
ns  
Clock Pulse Width High Time  
Clock Pulse Width Low Time  
LD* Cycle Time  
3.2  
3.2  
3.2  
13  
13  
6
ns  
4
ns  
36.36  
15  
15  
6
ns  
LD* Pulse Width High Time  
LD* Pulse Width Low Time  
Analog Output Delay  
ns  
ns  
ns  
Analog Output Rise/Fall Time  
Analog Output Settling Time  
Clock and Data Feedthrough(1)  
Glitch Impulse(1)  
ns  
35  
50  
0
35  
50  
0
ns  
2
2
pVsec  
pVsec  
ns  
Analog Output Skew(2)  
Pipeline Delay  
10  
10  
Clocks  
L45801 Rev. N  
Conexant  
5-7  
5.0 Parametric Information  
Bt457/Bt458  
5.2 AC Electrical Parameters  
125 MHz/135 MHz/165 MHz Monolithic CMOS 256 Color Palette RAMDAC  
Table 5-5. AC Characteristics for 125 MHz and 110 MHz Devices (2 of 2)  
125 MHz Devices  
110 MHz Devices  
Parameter  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
Units  
VAA Supply Current(3)  
IAA  
mA  
mA  
Bt458  
Bt457  
225  
200  
330  
250  
210  
190  
315  
240  
NOTE(S):  
(1)  
Clock and data feedthrough is a function of the number of edge rates and the amount of overshoot and undershoot on the  
digital inputs. For this test, the TTL digital inputs have a 1 k resistor to GND and are driven by 74HC logic. Settling time  
does not include clock and data feedthrough. Glitch impulse includes clock and data feedthrough, and 3 dB test  
bandwidth = 2x clock rate.  
Does not apply to the Bt457.  
At Fmax. IAA (typ) at VAA = 5.0 V and TA = 20° C. IAA (max) at VAA = 5.25 V and TA = 0° C.  
(2)  
(3)  
4. Test conditions (unless otherwise specified): "Recommended Operating Conditions" with RSET = 523 and VREF = 1.235 V.  
TTL input values are 03 V with input rise/fall times 4 ns, measured between the 10% and 90% points. ECL input values are  
VAA0.8 to VAA1.8 V with input rise/fall times 2 ns, measured between the 20% and 80% points. Timing reference points  
at 50% for inputs and outputs. Analog output load 10 pF and D[7:0] output load 75 pF. See timing notes in Figure 5-1. As  
the above parameters are guaranteed over the full temperature range, temperature coefficients are not specified or required.  
Typical values are based on nominal temperature, i.e., room temperature, and nominal voltage, i.e., 5 V.  
5-8  
Conexant  
L45801 Rev. N  
Bt457/Bt458  
5.0 Parametric Information  
125 MHz/135 MHz/165 MHz Monolithic CMOS 256 Color Palette RAMDAC  
5.2 AC Electrical Parameters  
Table 5-6. AC Characteristics for 80 MHz Device (1 of 2)  
80 MHz Devices  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Clock Rate  
LD* Rate  
Fmax  
LDmax  
1
0
12  
2
80  
20  
75  
15  
8
MHz  
MHz  
ns  
R/W, C0, C1 Setup Time  
R/W, C0, C1 Hold Time  
CE* Low Time  
2
15  
50  
25  
7
ns  
3
ns  
CE* High Time  
4
ns  
CE* Asserted to Data Bus Driven  
CE* Asserted to Data Valid  
CE* Negated to Data Bus 3-Stated  
Write Data Setup Time  
Write Data Hold Time  
5
ns  
6
35  
3
ns  
7
ns  
8
ns  
9
ns  
Pixel and Control Setup Time  
Pixel and Control Hold Time  
Clock Cycle Time  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
4
ns  
2
ns  
12.5  
5
ns  
Clock Pulse Width High Time  
Clock Pulse Width Low Time  
LD* Cycle Time  
ns  
5
ns  
50  
20  
20  
6
ns  
LD* Pulse Width High Time  
LD* Pulse Width Low Time  
Analog Output Delay  
ns  
ns  
ns  
Analog Output Rise/Fall Time  
Analog Output Settling Time  
Clock and Data Feedthrough(1)  
Glitch Impulse(1)  
ns  
35  
50  
0
ns  
2
pVsec  
pVsec  
ns  
Analog Output Skew(2)  
Pipeline Delay  
10  
Clocks  
L45801 Rev. N  
Conexant  
5-9  
5.0 Parametric Information  
Bt457/Bt458  
5.2 AC Electrical Parameters  
125 MHz/135 MHz/165 MHz Monolithic CMOS 256 Color Palette RAMDAC  
Table 5-6. AC Characteristics for 80 MHz Device (2 of 2)  
80 MHz Devices  
Typ  
Parameter  
VAA Supply Current(3)  
Symbol  
Min  
Max  
Units  
IAA  
mA  
mA  
Bt458  
Bt457  
200  
170  
285  
220  
NOTE(S):  
(1)  
Clock and data feedthrough is a function of the number of edge rates and the amount of overshoot and undershoot on the  
digital inputs. For this test, the TTL digital inputs have a 1 k resistor to GND and are driven by 74HC logic. Settling time does  
not include clock and data feedthrough. Glitch impulse includes clock and data feedthrough, and 3 dB test bandwidth = 2x  
clock rate.  
Does not apply to the Bt457.  
At Fmax. IAA (typ) at VAA = 5.0 V and TA = 20° C. IAA (max) at VAA = 5.25 V and TA = 0° C.  
(2)  
(3)  
4. Test conditions (unless otherwise specified): "Recommended Operating Conditions" with RSET = 523 and VREF = 1.235 V.  
TTL input values are 03 V with input rise/fall times 4 ns, measured between the 10% and 90% points. ECL input values are  
VAA0.8 to VAA1.8 V with input rise/fall times 2 ns, measured between the 20% and 80% points. Timing reference points  
at 50% for inputs and outputs. Analog output load 10 pF and D[7:0] output load 75 pF. See timing notes in Figure 5-1. As  
the above parameters are guaranteed over the full temperature range, temperature coefficients are not specified or required.  
Typical values are based on nominal temperature, i.e., room temperature, and nominal voltage, i.e., 5 V.  
5-10  
Conexant  
L45801 Rev. N  
Bt457/Bt458  
5.0 Parametric Information  
125 MHz/135 MHz/165 MHz Monolithic CMOS 256 Color Palette RAMDAC  
5.3 Timing Waveforms  
5.3 Timing Waveforms  
Figure 5-1. Video Input/Output Timing  
15  
16  
17  
LD*  
P[7:0]{AE},  
OL[1.0]{AE},  
SYNC*, BLANK*  
10  
20  
11  
IOR, IOG, IOB  
(IOUTBt457)  
19  
12  
13  
CLOCK  
14  
NOTE(S):  
1. Output delay time is measured from the 50% point of the rising clock edge to the 50% point of full-scale transition.  
2. Output settling time is measured from the 50% point of full-scale transition to the output settling within 1 LSB for the  
Bt457/458.  
3. Output rise/fall time is measured between the 10% and 90% points of full-scale transition.  
457-8_010  
L45801 Rev. N  
Conexant  
5-11  
5.0 Parametric Information  
Bt457/Bt458  
5.3 Timing Waveforms  
125 MHz/135 MHz/165 MHz Monolithic CMOS 256 Color Palette RAMDAC  
Figure 5-2. MPU Read/Write Timing  
2
1
VALID  
R/W, CO, C1  
3
CE*  
4
6
5
7
DATA OUT (RW = 1)  
DATA IN (RW = 0)  
D[7:0](READ)  
D[7:0](WRITE)  
8
9
457-8_011  
5-12  
Conexant  
L45801 Rev. N  
Bt457/Bt458  
5.0 Parametric Information  
125 MHz/135 MHz/165 MHz Monolithic CMOS 256 Color Palette RAMDAC  
5.4 Package Drawing  
5.4 Package Drawing  
Figure 5-3. 84-Pin Plastic J-Lead (PLCC)  
D
D1  
SEE DETAIL "A"  
.042  
.048  
.042  
.056  
X 45 º  
.056 BSC.  
D2  
E2  
D3  
E3  
E E1  
D2  
E2  
A1  
A
.025/.045 R.  
S
Y
M
INCHES  
MIN. NOM. MAX.  
MILLIMETERS  
MIN. NOM. MAX.  
B
O
L
A
A1  
.165  
.090  
.200  
.130  
4.20  
2.29  
5.08  
3.30  
.026  
.032  
D
D1  
D2 .545  
D3  
1.185  
1.150  
1.195 30.10  
1.158 29.21  
.565 13.84  
30.35  
29.41  
14.35  
1.000 REF.  
25.40 REF.  
.013  
.021  
E
1.185  
1.150  
.545  
1.195 30.10  
1.158 29.21  
.565 13.84  
30.35  
29.41  
14.35  
E1  
E2  
E3  
1.000 REF.  
25.40 REF.  
.020 MIN.  
DETAIL "A"  
NOTE(S):  
1. Dimensions are in inches [millimeters].  
2. Tolerances are: .xxx 0.005 [0.127].  
3. PLCC Packages are intended for surface mounting on solder lands on 0.050 [1.27] centers.  
457-8_012  
L45801 Rev. N  
Conexant  
5-13  
5.0 Parametric Information  
Bt457/Bt458  
5.4 Package Drawing  
125 MHz/135 MHz/165 MHz Monolithic CMOS 256 Color Palette RAMDAC  
Figure 5-4. 84-Pin Ceramic PGA  
1.1000 TYP  
[27.94]  
0.100  
0.050 TYP  
[1.27]  
1.215 SQ  
[30.86]  
TYP  
0.075  
[1.91]  
[2.54]  
PIN NO. 1  
IDENTIFIER  
NO. 1 INDEX  
0.1500.170  
[3.814.318]  
0.018  
[0.457]  
DIA  
SEE DETAIL A  
0.045 [1.143]  
0.024 [0.609]  
0.050 [1.27]  
DETAIL A  
4 PL  
NOTE(S):  
1. Dimensions are in inches [millimeters].  
2. Tolerances are: .xxx 0.005 [0.127].  
3. Pins are intended for insertion in hole rows on 0.100" [2.54] centers.  
457-8_013  
5-14  
Conexant  
L45801 Rev. N  
Bt457/Bt458  
5.0 Parametric Information  
125 MHz/135 MHz/165 MHz Monolithic CMOS 256 Color Palette RAMDAC  
5.5 Revision History  
5.5 Revision History  
Table 5-7. Revision History  
Datasheet Revision  
Change From Previous Revision  
I
Expanded PC Board Layout Considerations section. Changed AC parameter "CE* asserted to  
data bus driven" from 10 ns to 7 ns minimum.  
J
Changed AC parameter "VAA Supply Current (Max)" for the Bt457: 80 MHz changed from  
190 mA to 220 mA, 110 MHz changed from 210 mA to 240 mA, and 125 MHz changed from  
220 mA to 250 mA.  
K
Changed speed grade from 170 MHz to 165 MHz. Changed PLL feedback circuitry.  
Consolidated Bt458 power specifications. Changed AC Characteristics CLOCK, Load Cycle,  
and Pulse Width times. Changed typical analog output delay times.  
L
M
N
Added 135 MHz speed grade.  
Revised PCB Layout section.  
Bt451 obsolete.  
L45801 Rev. N  
Conexant  
5-15  
5.0 Parametric Information  
Bt457/Bt458  
5.5 Revision History  
125 MHz/135 MHz/165 MHz Monolithic CMOS 256 Color Palette RAMDAC  
5-16  
Conexant  
L45801 Rev. N  
0.0 Sales Offices  
Further Information  
literature@conexant.com  
Hong Kong  
Phone: (852) 2827 0181  
1-800-854-8099 (North America)  
33-14-906-3980 (International)  
Fax: (852) 2827 6488  
India  
Web Site  
www.conexant.com  
Phone: (91 11) 692 4780  
Fax: (91 11) 692 4712  
Korea  
Phone: (82 2) 565 2880  
Fax: (82 2) 565 1440  
World Headquarters  
Conexant Systems, Inc.  
4311 Jamboree Road  
P. O. Box C  
Phone: (82 53) 745 2880  
Fax: (82 53) 745 1440  
Newport Beach, CA  
92658-8902  
Phone: (949) 483-4600  
Fax: (949) 483-6375  
Europe Headquarters  
Conexant Systems France  
Les Taissounieres B1  
1681 Route des Dolines  
BP 283  
U.S. Florida/South America  
Phone: (727) 799-8406  
Fax: (727) 799-8306  
06905 Sophia Antipolis Cedex  
FRANCE  
Phone: (33 1) 41 44 36 50  
Fax: (33 4) 93 00 33 03  
U.S. Los Angeles  
Phone: (805) 376-0559  
Fax: (805) 376-8180  
Europe Central  
Phone: (49 89) 829 1320  
Fax: (49 89) 834 2734  
U.S. Mid-Atlantic  
Phone: (215) 244-6784  
Fax: (215) 244-9292  
Europe Mediterranean  
Phone: (39 02) 9317 9911  
Fax: (39 02) 9317 9913  
U.S. North Central  
Phone: (630) 773-3454  
Fax: (630) 773-3907  
Europe North  
Phone: (44 1344) 486 444  
Fax: (44 1344) 486 555  
U.S. Northeast  
Phone: (978) 692-7660  
Fax: (978) 692-8185  
Europe South  
Phone: (33 1) 41 44 36 50  
Fax: (33 1) 41 44 36 90  
U.S. Northwest/Pacific West  
Phone: (408) 249-9696  
Fax: (408) 249-7113  
Middle East Headquarters  
Conexant Systems  
Commercial (Israel) Ltd.  
P. O. Box 12660  
U.S. South Central  
Phone: (972) 733-0723  
Fax: (972) 407-0639  
Herzlia 46733, ISRAEL  
Phone: (972 9) 952 4064  
Fax: (972 9) 951 3924  
U.S. Southeast  
Phone: (919) 858-9110  
Fax: (919) 858-8669  
Japan Headquarters  
Conexant Systems Japan Co., Ltd.  
Shimomoto Building  
1-46-3 Hatsudai,  
U.S. Southwest  
Phone: (949) 483-9119  
Fax: (949) 483-9090  
Shibuya-ku, Tokyo  
151-0061 JAPAN  
Phone: (81 3) 5371-1567  
Fax: (81 3) 5371-1501  
APAC Headquarters  
Conexant Systems Singapore, Pte.  
Ltd.  
1 Kim Seng Promenade  
Great World City  
#09-01 East Tower  
SINGAPORE 237994  
Phone: (65) 737 7355  
Fax: (65) 737 9077  
Taiwan Headquarters  
Conexant Systems, Taiwan Co., Ltd.  
Room 2808  
International Trade Building  
333 Keelung Road, Section 1  
Taipei 110, TAIWAN, ROC  
Phone: (886 2) 2720 0282  
Fax: (886 2) 2757 6760  
Australia  
Phone: (61 2) 9869 4088  
Fax: (61 2) 9869 4077  
China  
Phone: (86 2) 6361 2515  
Fax: (86 2) 6361 2516  

相关型号:

BT457KPJ110

Video DAC with Color Palette (RAMDAC)
ETC

BT457KPJ125

Video DAC with Color Palette (RAMDAC)
ETC

BT457KPJ80

Video DAC with Color Palette (RAMDAC)
ETC

BT458KG110

Video DAC with Color Palette (RAMDAC)
ETC

BT458KG125

Converter IC
ETC

BT458KG135

Video DAC with Color Palette (RAMDAC)
ETC

BT458KG80

Video DAC with Color Palette (RAMDAC)
ETC

BT458LG165

Video DAC with Color Palette (RAMDAC)
ETC

BT458LPJ110

Video DAC with Color Palette (RAMDAC)
ETC

BT458LPJ125

Video DAC with Color Palette (RAMDAC)
ETC

BT458LPJ135

Video DAC with Color Palette (RAMDAC)
ETC

BT458LPJ165

Video DAC with Color Palette (RAMDAC)
ETC