BUL45D2/D [ETC]

High Speed, High Gain Bipolar NPN Power Transistor with Integrated Collector-Emitter Diode and Built-in Efficient Antisaturation Network ; 高速,高增益双极NPN功率晶体管,集成集电极发射二极管和内置高效抗饱和网络\n
BUL45D2/D
型号: BUL45D2/D
厂家: ETC    ETC
描述:

High Speed, High Gain Bipolar NPN Power Transistor with Integrated Collector-Emitter Diode and Built-in Efficient Antisaturation Network
高速,高增益双极NPN功率晶体管,集成集电极发射二极管和内置高效抗饱和网络\n

晶体 二极管 晶体管
文件: 总12页 (文件大小:203K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ON Semiconductort  
BUL45D2  
High Speed, High Gain Bipolar  
NPN Power Transistor with  
Integrated Collector-Emitter  
Diode and Built-in Efficient  
Antisaturation Network  
POWER TRANSISTORS  
5 AMPERES  
700 VOLTS  
75 WATTS  
The BUL45D2 is state–of–art High Speed High gain BIPolar  
transistor (H2BIP). High dynamic characteristics and lot to lot  
minimum spread (±150 ns on storage time) make it ideally suitable for  
light ballast applications. Therefore, there is no need to guarantee an  
h
FE  
window.  
Main features:  
Low Base Drive Requirement  
High Peak DC Current Gain (55 Typical) @ I = 100 mA  
C
Extremely Low Storage Time Min/Max Guarantees Due to the  
H2BIP Structure which Minimizes the Spread  
Integrated Collector–Emitter Free Wheeling Diode  
Fully Characterized and Guaranteed Dynamic V  
CE(sat)  
“6 Sigma” Process Providing Tight and Reproductible Parameter  
Spreads  
It’s characteristics make it also suitable for PFC application.  
CASE 221A–09  
TO–220AB  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
400  
700  
700  
12  
Unit  
Vdc  
Vdc  
Vdc  
Vdc  
Adc  
Collector–Emitter Sustaining Voltage  
Collector–Base Breakdown Voltage  
Collector–Emitter Breakdown Voltage  
Emitter–Base Voltage  
V
CEO  
V
CBO  
V
CES  
V
EBO  
Collector Current — Continuous  
— Peak (1)  
I
C
5
10  
I
CM  
Base Current — Continuous  
Base Current — Peak (1)  
I
2
4
Adc  
B
I
BM  
*Total Device Dissipation @ T = 25_C  
P
75  
0.6  
Watt  
W/_C  
_C  
C
D
*Derate above 25°C  
Operating and Storage Temperature  
T , T  
J
–65 to 150  
stg  
THERMAL CHARACTERISTICS  
Thermal Resistance  
— Junction to Case  
— Junction to Ambient  
_C/W  
R
R
1.65  
62.5  
θ
JC  
JA  
θ
Maximum Lead Temperature for Soldering Purposes:  
1/8from case for 5 seconds  
T
L
260  
_C  
(1) Pulse Test: Pulse Width = 5 ms, Duty Cycle 10%.  
Semiconductor Components Industries, LLC, 2001  
1
Publication Order Number:  
March, 2001 – Rev. 2  
BUL45D2/D  
BUL45D2  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS  
Collector–Emitter Sustaining Voltage  
(I = 100 mA, L = 25 mH)  
C
V
400  
700  
12  
450  
910  
14.1  
Vdc  
Vdc  
CEO(sus)  
Collector–Base Breakdown Voltage  
V
V
CBO  
EBO  
CEO  
(I  
CBO  
= 1 mA)  
Emitter–Base Breakdown Voltage  
(I = 1 mA)  
Vdc  
EBO  
Collector Cutoff Current  
(V = Rated V , I = 0)  
I
100  
µAdc  
µAdc  
CE  
CEO  
B
Collector Cutoff Current (V = Rated V  
, V = 0)  
EB  
@ T = 25°C  
I
100  
500  
100  
CE  
CES  
C
CES  
@ T = 125°C  
C
Collector Cutoff Current (V = 500 V, V = 0)  
@ T = 125°C  
C
CE  
EB  
Emitter–Cutoff Current  
(V = 10 Vdc, I = 0)  
I
100  
µAdc  
EBO  
EB  
C
ON CHARACTERISTICS  
Base–Emitter Saturation Voltage  
(I = 0.8 Adc, I = 80 mAdc)  
V
V
Vdc  
BE(sat)  
@ T = 25°C  
0.8  
0.7  
1
0.9  
C
B
C
@ T = 125°C  
C
(I = 2 Adc, I = 0.4 Adc)  
@ T = 25°C  
0.89  
0.79  
1
0.9  
C
B
C
@ T = 125°C  
C
Collector–Emitter Saturation Voltage  
(I = 0.8 Adc, I = 80 mAdc)  
Vdc  
CE(sat)  
@ T = 25°C  
0.28  
0.32  
0.4  
0.5  
C
B
C
@ T = 125°C  
C
(I = 2 Adc, I = 0.4 Adc)  
@ T = 25°C  
0.32  
0.38  
0.5  
0.6  
C
B
C
@ T = 125°C  
C
(I = 0.8 Adc, I = 40 mAdc)  
@ T = 25°C  
0.46  
0.62  
0.75  
1
C
B
C
@ T = 125°C  
C
DC Current Gain  
(I = 0.8 Adc, V = 1 Vdc)  
C
h
FE  
@ T = 25°C  
22  
20  
34  
29  
CE  
C
@ T = 125°C  
C
(I = 2 Adc, V = 1 Vdc)  
@ T = 25°C  
10  
7
14  
9.5  
C
CE  
C
@ T = 125°C  
C
DIODE CHARACTERISTICS  
Forward Diode Voltage  
V
EC  
V
(I = 1 Adc)  
@ T = 25°C  
1.04  
0.7  
1.5  
1.6  
1.2  
EC  
C
@ T = 125°C  
C
(I = 2 Adc)  
EC  
@ T = 25°C  
1.2  
C
@ T = 125°C  
C
(I = 0.4 Adc)  
EC  
@ T = 25°C  
0.85  
0.62  
C
@ T = 125°C  
C
Forward Recovery Time (see Figure 27)  
T
fr  
330  
ns  
(I = 1 Adc, di/dt = 10 A/µs)  
F
@ T = 25°C  
C
(I = 2 Adc, di/dt = 10 A/µs)  
@ T = 25°C  
360  
320  
F
C
(I = 0.4 Adc, di/dt = 10 A/µs)  
F
@ T = 25°C  
C
http://onsemi.com  
2
BUL45D2  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
DYNAMIC CHARACTERISTICS  
Current Gain Bandwidth  
f
13  
50  
MHz  
pF  
T
(I = 0.5 Adc, V = 10 Vdc, f = 1 MHz)  
C
CE  
Output Capacitance  
C
75  
ob  
(V = 10 Vdc, I = 0, f = 1 MHz)  
CB  
E
Input Capacitance  
C
340  
500  
pF  
ib  
(V = 8 Vdc)  
EB  
DYNAMIC SATURATION VOLTAGE  
@ 1 µs  
@ 3 µs  
@ 1 µs  
@ 3 µs  
@ T = 25°C  
V
3.7  
9.4  
V
V
V
V
C
CE(dsat)  
I
= 1 A  
= 100 mA  
= 300 V  
@ T = 125°C  
C
C
Dynamic Saturation  
Voltage:  
Determined 1 µs and  
3 µs respectively  
I
V
B1  
@ T = 25°C  
0.35  
2.7  
C
CC  
@ T = 125°C  
C
@ T = 25°C  
3.9  
12  
C
after rising I  
B1  
I
C
= 2 A  
= 0.8 A  
= 300 V  
@ T = 125°C  
C
reaches 90% of final  
I
B1  
I
B1  
@ T = 25°C  
0.4  
1.5  
C
V
CC  
@ T = 125°C  
C
SWITCHING CHARACTERISTICS: Resistive Load (D.C. 10%, Pulse Width = 20 µs)  
Turn–on Time  
Turn–off Time  
Turn–on Time  
Turn–off Time  
@ T = 25°C  
t
on  
t
off  
t
on  
t
off  
90  
105  
150  
1.3  
150  
2.4  
ns  
µs  
ns  
µs  
C
I
= 2 Adc, I = 0.4 Adc  
B1  
@ T = 125°C  
C
C
C
I
B2  
= 1 Adc  
@ T = 25°C  
1.15  
1.5  
C
V
CC  
= 300 Vdc  
@ T = 125°C  
C
@ T = 25°C  
90  
110  
C
I
= 2 Adc, I = 0.4 Adc  
@ T = 125°C  
B1  
C
I
= 0.4 Adc  
= 300 Vdc  
B2  
@ T = 25°C  
2.1  
C
V
CC  
@ T = 125°C  
3.1  
C
SWITCHING CHARACTERISTICS: Inductive Load (V  
= 300 V, V = 15 V, L = 200 µH)  
CC  
clamp  
Fall Time  
@ T = 25°C  
t
90  
93  
150  
0.9  
ns  
µs  
ns  
ns  
µs  
ns  
C
f
@ T = 125°C  
C
I
= 1 Adc  
= 100 mAdc  
= 500 mAdc  
C
Storage Time  
Crossover Time  
Fall Time  
@ T = 25°C  
t
s
t
c
0.72  
1.05  
C
I
I
B1  
B2  
@ T = 125°C  
C
@ T = 25°C  
95  
95  
150  
150  
2.25  
300  
C
@ T = 125°C  
C
@ T = 25°C  
t
f
80  
105  
C
@ T = 125°C  
C
I
C
= 2 Adc  
= 0.4 Adc  
= 0.4 Adc  
Storage Time  
Crossover Time  
@ T = 25°C  
t
t
1.95  
C
s
I
I
B1  
B2  
@ T = 125°C  
2.9  
C
@ T = 25°C  
225  
450  
C
c
@ T = 125°C  
C
http://onsemi.com  
3
BUL45D2  
TYPICAL STATIC CHARACTERISTICS  
100  
80  
60  
40  
20  
0
100  
V
CE  
= 1 V  
V
CE  
= 5 V  
T = 125°C  
T = 125°C  
J
80  
60  
40  
20  
0
J
T = 25°C  
J
T = 25°C  
J
T = -ā20°C  
J
T = -ā20°C  
J
0.001  
0.01  
0.1  
1
10  
10  
10  
0.001  
0.01  
0.1  
1
10  
10  
10  
I , COLLECTOR CURRENT (AMPS)  
C
I , COLLECTOR CURRENT (AMPS)  
C
Figure 1. DC Current Gain @ 1 Volt  
Figure 2. DC Current Gain @ 5 Volt  
4
3
2
10  
T = 25°C  
J
I /I = 5  
C B  
T = 25°C  
J
1
T = 125°C  
J
5 A  
3 A  
1
0
2 A  
4 A  
T = -ā20°C  
J
1 A  
I = 500 mA  
C
0.1  
0.001  
0.001  
0.01  
0.1  
I , BASE CURRENT (AMPS)  
1
0.01  
0.1  
1
I , COLLECTOR CURRENT (AMPS)  
C
B
Figure 3. Collector Saturation Region  
Figure 4. Collector–Emitter Saturation Voltage  
10  
10  
I /I = 10  
C B  
I /I = 20  
C B  
1
1
T = 125°C  
J
T = 25°C  
J
T = -ā20°C  
T = -ā20°C  
J
J
T = 125°C  
J
T = 25°C  
J
0.1  
0.001  
0.1  
0.001  
0.01  
0.1  
1
0.01  
0.1  
1
I , COLLECTOR CURRENT (AMPS)  
C
I , COLLECTOR CURRENT (AMPS)  
C
Figure 5. Collector–Emitter Saturation Voltage  
Figure 6. Collector–Emitter Saturation Voltage  
http://onsemi.com  
4
BUL45D2  
TYPICAL STATIC CHARACTERISTICS  
10  
10  
I /I = 5  
C B  
I /I = 10  
C B  
T = 25°C  
J
T = -ā20°C  
J
1
1
T = -ā20°C  
J
T = 125°C  
J
T = 125°C  
J
T = 25°C  
J
0.1  
0.1  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
I , COLLECTOR CURRENT (AMPS)  
C
I , COLLECTOR CURRENT (AMPS)  
C
Figure 7. Base–Emitter Saturation Region  
Figure 8. Base–Emitter Saturation Region  
10  
10  
I /I = 20  
C B  
25°C  
1
1
T = -ā20°C  
J
125°C  
T = 125°C  
J
T = 25°C  
J
0.1  
0.1  
0.001  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
I , COLLECTOR CURRENT (AMPS)  
C
REVERSE EMITTER-COLLECTOR CURRENT (AMPS)  
Figure 9. Base–Emitter Saturation Region  
Figure 10. Forward Diode Voltage  
1000  
100  
1000  
900  
800  
700  
600  
T = 25°C  
T = 25°C  
J
J
C
ib  
(pF)  
BVCER @ 10 mA  
f
= 1 MHz  
(test)  
C
ob  
(pF)  
10  
1
BVCER(sus) @ 200 mA  
500  
400  
1
10  
100  
10  
100  
()  
1000  
V , REVERSE VOLTAGE (VOLTS)  
R
R
BE  
Figure 11. Capacitance  
Figure 12. BVCER = f(ICER)  
http://onsemi.com  
5
BUL45D2  
TYPICAL SWITCHING CHARACTERISTICS  
5
1000  
800  
600  
400  
I = I  
Bon Boff  
I
= I  
T = 125°C  
T = 25°C  
J
Bon Boff  
J
V
CC  
= 300 V  
V
= 300 V  
I /I = 10  
C B  
CC  
4
3
2
PW = 20 µs  
PW = 20 µs  
I /I = 10  
C B  
I /I = 5  
C B  
I /I = 5  
C B  
1
0
T = 125°C  
T = 25°C  
J
J
200  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4
4
I , COLLECTOR CURRENT (AMPS)  
C
I , COLLECTOR CURRENT (AMPS)  
C
Figure 14. Resistive Switch Time, toff  
Figure 13. Resistive Switch Time, ton  
5
4
3
2
4
3
2
I
= I  
Bon Boff  
= 15 V  
I
= I  
Bon Boff  
= 15 V  
I /I = 5  
C B  
V
CC  
V
CC  
V = 300 V  
Z
V = 300 V  
Z
L = 200 µH  
C
L = 200 µH  
C
1
0
1
0
T = 125°C  
J
T = 125°C  
J
T = 25°C  
J
T = 25°C  
J
0
1
2
3
4
0
1
2
3
I , COLLECTOR CURRENT (AMPS)  
C
I , COLLECTOR CURRENT (AMPS)  
C
Figure 16. Inductive Storage Time,  
Figure 15. Inductive Storage Time,  
tsi @ IC/IB = 5  
t
si @ IC/IB = 10  
600  
500  
400  
300  
200  
400  
300  
200  
I
= I  
Bon Boff  
= 15 V  
T = 125°C  
J
I
= I  
Boff Bon  
= 15 V  
V
CC  
T = 25°C  
J
V
CC  
V = 300 V  
Z
V = 300 V  
Z
L = 200 µH  
C
t
c
L = 200 µH  
C
100  
0
100  
0
T = 125°C  
J
T = 25°C  
J
t
fi  
0
1
2
3
0
1
2
3
4
I , COLLECTOR CURRENT (AMPS)  
C
I , COLLECTOR CURRENT (AMPS)  
C
Figure 17. Inductive Switching,  
tc & tfi @ IC/IB = 5  
Figure 18. Inductive Switching,  
tfi @ IC/IB = 10  
http://onsemi.com  
6
BUL45D2  
TYPICAL SWITCHING CHARACTERISTICS  
1500  
1000  
5
I
= I  
Bon Boff  
= 15 V  
T = 125°C  
T = 25°C  
J
I
= I  
Boff Bon  
= 15 V  
T = 125°C  
T = 25°C  
J
J
J
V
CC  
V
CC  
V = 300 V  
Z
V = 300 V  
Z
I = 1 A  
C
L = 200 µH  
C
L = 200 µH  
C
4
500  
3
2
I = 2 A  
C
0
0
1
2
3
4
0
5
10  
15  
20  
I , COLLECTOR CURRENT (AMPS)  
C
h
FE  
, FORCED GAIN  
Figure 19. Inductive Switching,  
tc @ IC/IB = 10  
Figure 20. Inductive Storage Time  
450  
350  
250  
1400  
1200  
1000  
800  
I
= I  
Boff Bon  
= 15 V  
T = 125°C  
T = 25°C  
J
I
= I  
Bon Boff  
= 15 V  
T = 125°C  
T = 25°C  
J
J
J
V
CC  
V
CC  
V = 300 V  
Z
V = 300 V  
Z
I = 1 A  
C
L = 200 µH  
C
L = 200 µH  
C
I = 2 A  
C
600  
400  
150  
50  
200  
0
I = 2 A  
C
I = 1 A  
C
2
4
6
8
10  
12  
14  
16  
18  
20  
2
4
6
8
10  
h , FORCED GAIN  
FE  
12  
14  
16  
18  
20  
h
FE  
, FORCED GAIN  
Figure 21. Inductive Fall Time  
Figure 22. Inductive Crossover Time  
3000  
2000  
360  
340  
I = I  
B1 B2  
I
= I  
Bon Boff  
= 15 V  
V
dI/dt = 10 A/µs  
T = 25°C  
C
CC  
V = 300 V  
Z
L = 200 µH  
C
I = 50 mA  
B
I = 100 mA  
B
1000  
320  
300  
I = 200 mA  
B
I = 500 mA  
B
I = 1 A  
B
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
0
0.5  
1
1.5  
2
I , COLLECTOR CURRENT (AMPS)  
C
I , FORWARD CURRENT (AMP)  
F
Figure 23. Inductive Storage Time, tsi  
Figure 24. Forward Recovery Time tfr  
http://onsemi.com  
7
BUL45D2  
TYPICAL SWITCHING CHARACTERISTICS  
10  
V
CE  
9
I
C
90% I  
C
dyn 1 µs  
8
7
6
t
fi  
t
si  
dyn 3 µs  
10% I  
C
0 V  
V
10% V  
clamp  
clamp  
5
4
3
2
t
c
90% I  
B
I
B
90% I  
B1  
1 µs  
I
B
1
0
3 µs  
0
1
2
3
4
5
6
8
7
TIME  
TIME  
Figure 25. Dynamic Saturation  
Voltage Measurements  
Figure 26. Inductive Switching Measurements  
V
FRM  
V
(1.1 V unless  
F
otherwise specified)  
FR  
V
F
V
F
t
fr  
0.1 V  
F
0
I
F
10% I  
F
0
2
4
6
8
10  
Figure 27. tfr Measurements  
http://onsemi.com  
8
BUL45D2  
TYPICAL SWITCHING CHARACTERISTICS  
Table 1. Inductive Load Switching Drive Circuit  
+15 V  
I PEAK  
C
100 µF  
1 µF  
100 Ω  
3 W  
MTP8P10  
150 Ω  
3 W  
V
CE  
PEAK  
V
CE  
MTP8P10  
R
B1  
MPF930  
I 1  
B
MUR105  
MJE210  
MPF930  
I
+10 V  
out  
I
B
A
I 2  
B
50 Ω  
R
B2  
COMMON  
MTP12N10  
150 Ω  
3 W  
V
(BR)CEO(sus)  
L = 10 mH  
Inductive Switching  
L = 200 µH  
RBSOA  
L = 500 µH  
500 µF  
R
B2  
CC  
= ∞  
= 20 Volts  
= 100 mA  
R
= 0  
= 15 Volts  
selected for  
R
= 0  
= 15 Volts  
selected for  
B2  
B2  
V
V
CC  
V
CC  
1 µF  
I
R
B1  
desired I  
R
B1  
C(pk)  
-V  
off  
desired I  
B1  
B1  
TYPICAL CHARACTERISTICS  
100  
6
T
125°C  
C
5
GAIN 5  
L = 2 mH  
1 µs  
10  
1
C
10 µs  
1 ms  
4
3
2
5 ms  
DC  
-5 V  
0.1  
1
0
0 V  
-1.5 V  
600  
0.01  
10  
100  
, COLLECTOR-EMITTER VOLTAGE (VOLTS)  
1000  
200  
300  
400  
500  
700  
800  
V
CE  
V , COLLECTOR-EMITTER VOLTAGE (VOLTS)  
CE  
Figure 28. Forward Bias Safe Operating Area  
Figure 29. Reverse Bias Safe Operating Area  
http://onsemi.com  
9
BUL45D2  
TYPICAL CHARACTERISTICS  
1
0.8  
0.6  
SECOND BREAKDOWN  
DERATING  
THERMAL DERATING  
0.4  
0.2  
0
20  
40  
60  
80  
100  
120  
140  
160  
T , CASE TEMPERATURE (°C)  
C
Figure 30. Forward Bias Power Derating  
There are two limitations on the power handling ability of  
a transistor: average junction temperature and second  
T
may be calculated from the data in Figure 31. At any  
J(pk)  
case temperatures, thermal limitations will reduce the power  
that can be handled to values less than the limitations  
imposed by second breakdown. For inductive loads, high  
voltage and current must be sustained simultaneously during  
turn–off with the base to emitter junction reverse biased. The  
safe level is specified as a reverse biased safe operating area  
(Figure 29). This rating is verified under clamped conditions  
so that the device is never subjected to an avalanche mode.  
breakdown. Safe operating area curves indicate I –V  
C
CE  
limits of the transistor that must be observed for reliable  
operation; i.e., the transistor must not be subjected to greater  
dissipation than the curves indicate. The data of Figure 28 is  
based on T = 25°C; T  
is variable depending on power  
C
J(pk)  
level. Second breakdown pulse limits are valid for duty  
cycles to 10% but must be derated when T > 25°C. Second  
C
breakdown limitations do not derate the same as thermal  
limitations. Allowable current at the voltages shown on  
Figure 28 may be found at any case temperature by using the  
appropriate curve on Figure 30.  
TYPICAL THERMAL RESPONSE  
1
0.5  
0.2  
0.1  
P
(pk)  
R
R
(t) = r(t) R  
θ
JC  
= 2.5°C/W MAX  
θ
JC  
JC  
0.1  
0.05  
θ
D CURVES APPLY FOR POWER  
PULSE TRAIN SHOWN  
READ TIME AT t  
0.02  
t
1
1
t
2
SINGLE PULSE  
T
- T = P  
C
R (t)  
θ
JC  
J(pk)  
(pk)  
DUTY CYCLE, D = t /t  
1 2  
0.01  
0.01  
0.1  
1
10  
100  
1000  
t, TIME (ms)  
Figure 31. Typical Thermal Response (ZθJC(t)) for BUL45D2  
http://onsemi.com  
10  
BUL45D2  
PACKAGE DIMENSIONS  
TO–220AB  
CASE 221A–09  
ISSUE AA  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
SEATING  
PLANE  
–T–  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION Z DEFINES A ZONE WHERE ALL  
BODY AND LEAD IRREGULARITIES ARE  
ALLOWED.  
C
S
B
F
T
4
1
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN  
14.48  
9.66  
4.07  
0.64  
3.61  
2.42  
2.80  
0.46  
12.70  
1.15  
4.83  
2.54  
2.04  
1.15  
5.97  
0.00  
1.15  
---  
MAX  
15.75  
10.28  
4.82  
0.88  
3.73  
2.66  
3.93  
0.64  
14.27  
1.52  
5.33  
3.04  
2.79  
1.39  
6.47  
1.27  
---  
A
K
Q
Z
A
B
C
D
F
G
H
J
0.570  
0.380  
0.160  
0.025  
0.142  
0.095  
0.110  
0.018  
0.500  
0.045  
0.190  
0.100  
0.080  
0.045  
0.235  
0.000  
0.045  
---  
0.620  
0.405  
0.190  
0.035  
0.147  
0.105  
0.155  
0.025  
0.562  
0.060  
0.210  
0.120  
0.110  
0.055  
0.255  
0.050  
---  
2
3
U
H
K
L
L
R
J
N
Q
R
S
T
U
V
Z
V
G
D
N
0.080  
2.04  
http://onsemi.com  
11  
BUL45D2  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes  
without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,  
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be  
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.  
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or  
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold  
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable  
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.  
PUBLICATION ORDERING INFORMATION  
NORTH AMERICA Literature Fulfillment:  
CENTRAL/SOUTH AMERICA:  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST)  
Email: ONlit–spanish@hibbertco.com  
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada  
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada  
Email: ONlit@hibbertco.com  
Toll–Free from Mexico: Dial 01–800–288–2872 for Access –  
then Dial 866–297–9322  
ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support  
Phone: 1–303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)  
Toll Free from Hong Kong & Singapore:  
Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada  
N. American Technical Support: 800–282–9855 Toll Free USA/Canada  
001–800–4422–3781  
EUROPE: LDC for ON Semiconductor – European Support  
German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET)  
Email: ONlit–german@hibbertco.com  
French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)  
Email: ONlit–french@hibbertco.com  
Email: ONlit–asia@hibbertco.com  
JAPAN: ON Semiconductor, Japan Customer Focus Center  
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031  
Phone: 81–3–5740–2700  
Email: r14525@onsemi.com  
English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT)  
Email: ONlit@hibbertco.com  
ON Semiconductor Website: http://onsemi.com  
EUROPEAN TOLL–FREE ACCESS*: 00–800–4422–3781  
For additional information, please contact your local  
Sales Representative.  
*Available from Germany, France, Italy, UK, Ireland  
BUL45D2/D  

相关型号:

BUL45D2AF

暂无描述
ONSEMI

BUL45D2AJ

5A, 400V, NPN, Si, POWER TRANSISTOR, PLASTIC, TO-220AB, 3 PIN
ONSEMI

BUL45D2AK

暂无描述
ONSEMI

BUL45D2AN

5A, 400V, NPN, Si, POWER TRANSISTOR, PLASTIC, TO-220AB, 3 PIN
ONSEMI

BUL45D2AS

TRANSISTOR 5 A, 400 V, NPN, Si, POWER TRANSISTOR, PLASTIC, TO-220AB, 3 PIN, BIP General Purpose Power
ONSEMI

BUL45D2AU

5A, 400V, NPN, Si, POWER TRANSISTOR, PLASTIC, TO-220AB, 3 PIN
ONSEMI

BUL45D2BA

5A, 400V, NPN, Si, POWER TRANSISTOR, PLASTIC, TO-220AB, 3 PIN
ONSEMI

BUL45D2BC

TRANSISTOR 5 A, 400 V, NPN, Si, POWER TRANSISTOR, PLASTIC, TO-220AB, 3 PIN, BIP General Purpose Power
ONSEMI

BUL45D2BD

5A, 400V, NPN, Si, POWER TRANSISTOR, PLASTIC, TO-220AB, 3 PIN
ONSEMI

BUL45D2BG

5A, 400V, NPN, Si, POWER TRANSISTOR, PLASTIC, TO-220AB, 3 PIN
ONSEMI

BUL45D2BS

5A, 400V, NPN, Si, POWER TRANSISTOR, PLASTIC, TO-220AB, 3 PIN
ONSEMI

BUL45D2BU

5A, 400V, NPN, Si, POWER TRANSISTOR, PLASTIC, TO-220AB, 3 PIN
ONSEMI