CLC440AJP [ETC]

IC-HI-SPD VOLT FBK OP-AMP ; IC- HI- SPD FBK VOLT OP- AMP\n
CLC440AJP
型号: CLC440AJP
厂家: ETC    ETC
描述:

IC-HI-SPD VOLT FBK OP-AMP
IC- HI- SPD FBK VOLT OP- AMP\n

光电二极管
文件: 总8页 (文件大小:363K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
August 1996  
N
Comlinear CLC440  
High-Speed, Low-Power, Voltage Feedback Op Amp  
General Description  
Features  
Unity-gain stable  
The Comlinear CLC440 is a wideband, low-power, voltage feedback  
op amp that offers 750MHz unity-gain bandwidth, 1500V/µs slew  
rate, and 90mA output current. For video applications, the CLC440  
sets new standards for voltage feedback monolithics by offering  
the impressive combination of 0.015% differential gain and  
0.025° differential phase errors while dissipating a mere 70mW.  
High unity-gain bandwidth: 750MHz  
Ultra-low differential gain: 0.015%  
Very low differential phase: 0.025°  
Low power: 70mW  
Extremely fast slew rate: 1500V/µs  
High output current: 90mA  
Low noise: 3.5nV/Hz  
Dual ±2.5V to ±6V or single 5V to 12V supplies  
The CLC440 incorporates the proven properties of Comlinear’s  
current feedback amplifiers (high bandwidth, fast slewing, etc.) into a  
“classical” voltage feedback architecture. This amplifier possesses  
truly differential and fully symmetrical inputs both having a high  
900kimpedance with matched low input bias currents.  
Furthermore, since the CLC440 incorporates voltage feedback, a  
specific R is not required for stability. This flexibility in choosing R  
Applications  
Professional video  
Graphics workstations  
Test equipment  
Video switching & routing  
Communications  
Medical imaging  
A/D drivers  
Photo diode transimpedance amplifiers  
Improved replacement for CLC420 or OPA620  
f
f
allows for numerous applications in wideband filtering and integration.  
Unlike several other high-speed voltage feedback op amps, the  
CLC440 operates with a wide range of dual or single supplies  
allowing for use in a multitude of applications with limited supply  
availability. The CLC440’s low 3.5nV/Hz(e ) and 2.5pA/Hz(i )  
Frequency Response (AV = +2V/V)  
n
n
noise sets a very low noise floor.  
Generator Waveforms  
Typical Application  
10MHz to 40MHz Square and Triangular Wave Generator  
Pinout  
DIP & SOIC  
© 1996 National Semiconductor Corporation  
Printed in the U.S.A.  
http://www.national.com  
(A = +2, R = R = 250: Vcc = + 5V, RL = 100unless specified)  
CLC440 Electrical Characteristics  
V
f
g
PARAMETERS  
CONDITIONS  
TYP  
MIN/MAX RATINGS  
0 to 70˚C -40 to 85˚C  
UNITS  
NOTES  
Ambient Temperature  
CLC440  
+25˚C  
+25˚C  
FREQUENCY DOMAIN RESPONSE  
-3dB bandwidth AV =+2  
Vout < 0.2Vpp  
out < 4.0Vpp  
Vout < 0.2Vpp  
out < 0.2Vpp  
260  
190  
750  
230  
0.05  
0.8  
165  
150  
165  
135  
135  
130  
MHz  
MHz  
MHz  
MHz  
dB  
deg  
%
B
V
-3dB bandwidth AV =+1  
gain bandwidth product  
gain flatness  
linear phase deviation  
differential gain  
V
V
V
< 2.0V DC to 75MHz  
< 2.0V DC to 75MHz  
0.15  
1.2  
0.03  
0.05  
0.20  
1.5  
0.04  
0.06  
0.20  
1.5  
0.04  
0.06  
out  
pp  
4o.4u3t MHz, pRpL=150Ω  
4.43MHz, RL=150Ω  
0.015  
0.025  
differential phase  
deg  
TIME DOMAIN RESPONSE  
rise and fall time  
2V step  
4V step  
2V step  
4V step  
1.5  
3.2  
10  
2.0  
4.2  
14  
2.2  
4.5  
16  
2.5  
5.0  
16  
ns  
ns  
ns  
settling time to 0.05%  
overshoot  
7
13  
13  
13  
%
slew rate  
4V step, ±0.5V crossing  
1500  
900  
750  
600  
V/µs  
DISTORTION AND NOISE RESPONSE  
2nd harmonic distortion  
2Vpp, 5MHz  
-64  
-52  
-70  
-51  
-59  
-46  
-65  
-45  
-59  
-46  
-64  
-43  
-59  
-46  
-64  
-43  
dBc  
dBc  
dBc  
dBc  
2Vpp, 20MHz  
2Vpp, 5MHz  
2Vpp, 20MHz  
B
B
3rd harmonic distortion  
equivalent input noise  
voltage  
>1MHz  
>1MHz  
3.5  
2.5  
4.5  
3.5  
5.0  
4.0  
5.0  
4.0  
nV/Hz  
pA/Hz  
current  
STATIC DC PERFORMANCE  
input offset voltage  
average drift  
input bias current  
average drift  
1.0  
5.0  
10  
3.0  
30  
3.5  
10  
35  
50  
4.0  
10  
40  
60  
mV  
µV/°C  
µA  
A
A
30  
nA/°C  
input offset current  
average drift  
power supply rejection ratio  
common-mode rejection ratio  
supply current  
0.5  
3.0  
65  
80  
7.0  
2.0  
2.0  
10  
58  
60  
8.0  
3.0  
10  
58  
60  
8.0  
µA  
nA/°C  
dB  
dB  
mA  
A
A
A
DC  
DC  
RL= ∞  
58  
65  
7.5  
MISCELLANEOUS PERFORMANCE  
input resistance  
input capacitance  
common-mode  
900  
1.2  
0.5  
±3.0  
±2.5  
±3.0  
±90  
500  
2.0  
1.0  
±2.8  
±2.3  
±2.8  
±80  
400  
2.0  
1.0  
±2.7  
±2.2  
±2.7  
±65  
300  
2.0  
1.0  
±2.7  
±2.2  
±2.7  
±45  
kΩ  
pF  
pF  
V
V
V
common-mode  
differential-mode  
common-mode  
RL= 100Ω  
input voltage range  
output voltage range  
output voltage range  
output current  
RL= ∞  
mA  
Min/max ratings are based on product characterization and simulation. Individual parameters are tested as noted. Outgoing quality levels are  
determined from tested parameters.  
Absolute Maximum Ratings  
voltage supply  
Ordering Information  
±6V  
Model  
Temperature Range  
Description  
Iout is short circuit protected to ground  
common-mode input voltage  
CLC440AJP  
CLC440AJE  
CLC440ALC  
CLC440A8B  
-40 C to +85 C  
8-pin PDIP  
8-pin SOIC  
dice  
8-pin hermetic CerDIP,  
MIL-STD-883  
dice, MIL-STD-883  
˚
˚
±
Vcc  
-40 C to +85 C  
˚
˚
maximum junction temperature  
storage temperature range  
+175 C  
˚
-40 C to +85 C  
˚
˚
-55 C to +125 C  
-65 C to +150 C  
˚
˚
˚
˚
lead temperature (soldering 10 sec)  
+300 C  
˚
CLC440AMC  
Contact factory for SMD number.  
-55 C to +125 C  
˚ ˚  
Package Thermal Resistance  
Notes  
Package  
θjc  
θja  
A) J-level: spec is 100% tested at +25 C, sample tested at +85 C.  
LC/MC-level: spec is 100% wafer probed at +25 C.  
B) J-level: spec is sample tested at +25 C.  
˚
˚
Plastic (AJP)  
Surface Mount (AJE)  
CerDip  
90 /W  
105 /W  
˚
˚
˚
110 /W  
130 /W  
˚
˚
40 /W  
130 /W  
˚
˚
˚
http://www.national.com  
2
(A = +2, R = 250: Vcc = + 5V, RL = 100unless specified)  
CLC440 Typical Performance Characteristics  
V
f
Non-Inverting Frequency Response  
Inverting Frequency Response  
Frequency Response vs. Load  
AV = 1(Rf = 0)  
AV = -1  
RL=1K  
Gain  
Gain  
Gain  
AV = 2  
AV = -2  
RL=100  
AV = -10  
AV = 5  
(Rf = 500)  
RL=50  
AV = 10  
AV = -5  
AV = 2  
AV -1  
RL=1K  
Phase  
Phase  
Phase  
RL=50  
0
-180  
-225  
-270  
-315  
-360  
0
AV = 1  
-45  
-90  
-135  
-180  
-45  
-90  
-135  
-180  
AV = 10  
AV -10  
AV = 5  
AV -5  
A
V -2  
RL=100  
100  
1
10  
100  
1000  
1
10  
100  
1000  
1
10  
1000  
Frequency (MHz)  
Frequency (MHz)  
Frequency (MHz)  
Frequency Response vs. Vout  
Frequency Response vs. Capacitive Load  
Gain Flatness and Linear Phase  
CL = 10pF  
Vout = 200mVpp  
Vout = 2Vpp  
R
s = 50  
Gain  
Gain  
Gain  
CL = 100pF  
s = 30  
CL = 1000pF  
Rs = 5  
R
Vout = 5Vpp  
Vout = 2Vpp  
CL = 10pF  
CL = 100pF  
Phase  
Phase  
0
0
Phase  
CL = 1000pF  
-45  
-90  
-135  
-180  
-45  
-90  
-135  
-180  
Vout = 5Vpp  
+
Rs  
-
CL 1k  
Vout = 200mVpp  
1
10  
100  
1000  
1
10  
100  
1000  
0
75  
Frequency (MHz)  
Frequency (MHz)  
BW vs. Gain for Transimpedance Configuration  
Frequency (7.5MHz/div)  
Open Loop Gain and Phase  
Equivalent Input Noise  
80  
60  
40  
20  
0
0
4
400  
320  
240  
160  
80  
10  
10  
Gain  
C
= 1pF  
d
Cf  
Example  
Cf  
Rf  
BW  
123  
0
8
Voltage = 3.5nV/Hz  
Current = 2.5pA/Hz  
C
d
= 5pF  
1000  
1.6  
Phase  
See dashed lines  
-90  
-180  
-270  
12  
16  
C
= 20pF  
d
BW  
1000  
-20  
20  
0
1
100M  
1
10k  
100k  
1M  
1k  
10M  
100M  
100  
10000  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Rf  
Frequency (Hz)  
Harmonic Distortion vs. Frequency  
PSRR, CMRR, and Closed Loop Rout  
1dB Compression  
45  
35  
25  
15  
5
100  
-45  
-55  
-65  
-75  
-85  
-95  
Vo = 2Vpp  
5MHz  
CMRR  
PSRR  
80  
60  
40  
20  
20MHz  
50MHz  
2nd RL = 100  
+
-
Pout  
50  
100MHz  
3rd RL = 100  
2nd RL = 1k  
3rd RL = 1k  
50Ω  
250Ω  
250Ω  
Rout  
0
0.1  
1
10  
50  
10k  
1M  
10M  
-4  
0
4
8
12  
16  
100k  
100M  
Frequency (MHz)  
Frequency (Hz)  
Output Power (Pout  
)
2-Tone, 3rd Order Intermodulation Intercept  
Input and Output VSWR  
Differential Gain and Phase  
50  
Input  
2.2  
1.8  
1.4  
1.0  
+
50Ω  
0.12  
0.08  
0.04  
0
Phase  
Positive Sync  
40  
30  
20  
10  
0
50Ω  
-
250Ω  
50Ω  
Output  
Gain  
Negative Sync  
Output  
Input  
+
50Ω  
50Ω  
Pout  
Phase  
Negative Sync  
-
250Ω  
250Ω  
Gain  
Positive Sync  
1
10  
100  
0
40  
80  
120  
160  
200  
1
2
3
4
Frequency (MHz)  
Frequency (20MHz/div)  
Number of 150Loads  
3
http://www.national.com  
(A = +2, R = 250: Vcc = + 5V, RL = 100unless specified)  
CLC440 Typical Performance Characteristics  
V
f
Pulse Response  
Typical DC Errors vs. Temperature  
0.05% Settling Time vs. Capacitive Load  
2.0  
1.0  
0
0.4  
6
80  
60  
55  
45  
Rs  
AV = +2  
0
2
los  
-0.4  
-0.8  
-1.2  
-2  
-6  
-10  
+
Rs  
40  
20  
0
35  
25  
15  
-
CL 1k  
lb  
Vio  
-1.0  
-2.0  
AV = -2  
Ts  
-1.6  
-14  
Time (5ns/div)  
-60  
-20  
20  
60  
140  
10  
100  
100  
1000  
Temperature (C°)  
Load Capacitance CL (pF)  
Short Term Settling Time  
Long Term Settling Time  
Ib and Ios vs. Common-Mode Voltage  
0.2  
0.2  
20  
10  
0
2.0  
0.1  
0
0.1  
0
1.0  
0
Ib  
los  
-10  
-20  
-1.0  
-2.0  
-0.1  
-0.2  
-0.1  
-0.2  
0
20  
40  
60  
80  
100  
10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100  
-4.0  
-2.4  
-0.8  
0.8  
2.4  
4.0  
Time (ns)  
Time (s)  
Common-Mode Input Voltage (V)  
APPLICATION INFORMATION  
General Design Equations  
Output Drive and Settling Time Performance  
The CLC440 is a unity gain stable voltage feedback  
amplifier. The matched input bias currents track well over  
temperature. This allows the DC offset to be minimized  
by matching the impedance seen by both inputs.  
The CLC440 has large output current capability. The  
90mA of output current makes the CLC440 an excellent  
choice for applications such as:  
Video Line Drivers  
Distribution Amplifiers  
Gain  
The non-inverting and inverting gain equations for the  
CLC440 are as follows:  
When driving a capacitive load or coaxial cable, include  
a series resistance R to back match or improve settling  
s
time. Refer to the “Settling Time vs. Capacitive Load”  
plot in the typical performance section to determine the  
recommended resistance for various capacitive loads.  
R
f
Non-inverting Gain: 1+  
R
g
R
R
f
When driving resistive loads of under 500, settling time  
performance diminishes. This degradation occurs  
because a small change in voltage on the output causes  
a large change of current in the power supplies. This  
current creates ringing on the power supplies. A small  
resistor will dampen this effect if placed in series with the  
6.8µF bypass capacitor.  
Inverting Gain:  
g
Gain Bandwidth Product  
The CLC440 is a voltage feedback amplifier, whose  
closed-loop bandwidth is approximately equal to the  
gain-bandwidth product (GBP) divided by the gain (Av).  
For gains greater than 5, Av sets the closed-loop band-  
width of the CLC440.  
Noise Figure  
Noise Figure (NF) is a measure of noise degradation  
caused by an amplifier.  
GBP  
Closed Loop Bandwidth =  
A
v
2
R +R  
S /N  
e
ni  
(
)
g
f
i
i
NF = 10LOG  
= 10LOG  
A =  
v
2
S /N  
e
R
o
o
t
g
where,  
GBP = 230MHz  
e = Total Equivalent Input Noise Density  
ni  
Due to the Amplifier  
e = Thermal Voltage Noise (  
For gains less than 5, refer to the frequency response  
plots to determine maximum bandwidth.  
)
seq  
t
4kTR  
http://www.national.com  
4
Noise Figure vs. Source Resistance  
Figure 1 shows the noise model for the non-inverting  
amplifier configuration. The model includes all of the  
following noise sources:  
25  
R () NF Unterminated NF Terminated  
s
50  
12.03dB  
3.13dB  
17.90dB  
6.15dB  
20  
15  
10  
5
R
OPT  
Input voltage noise (e )  
n
Input current noise (i = i = i )  
Terminated  
n
n+  
n-  
Thermal Voltage Noise (e ) associated with each  
external resistor  
t
Ropt = 2800  
Unterminated  
en  
+
*
CLC440  
Rseq  
in+  
*
*
Ropt = 1400Ω  
1k  
-
0
4kTR  
10  
100  
10k  
100k  
seq  
*
Rf  
Source Resistance ()  
*
4kTR  
in-  
f
Rg  
4kTR  
Figure 2: Noise Figure vs. Source Resistance  
These boards were laid out for optimum, high-speed  
performance. The ground plane was removed near the  
input and output pins to reduce parasitic capacitance.  
And all trace lengths were minimized to reduce series  
inductances.  
g
*
Rseq = Rs for Unterminated Systems  
seq = Rs II RT for Terminated Systems  
R
Figure 1: Non-inverting Amplifier Noise Model  
Supply bypassing is required for the amplifiers  
performance. The bypass capacitors provide a low  
impedance return current path at the supply pins. They  
also provide high frequency filtering on the power supply  
traces. 6.8µF tantalum, 0.01µF ceramic, and 500pF  
ceramic capacitors are recommended on both supplies.  
Place the 6.8µF capacitors within 0.75 inches of the  
power pins, and the 0.01µF and 500pF capacitors less  
than 0.1 inches from the power pins.  
The total equivalent input noise density is calculated  
by using the noise model shown. Equations 1 and 2  
represent the noise equation and the resulting equation  
for noise figure.  
2
2
eni  
=
en2 +in Rseq2 + R IIR  
+ 4kTRseq + 4kT R IIR  
(
)
(
)
g
g
f
f
Equation 1: Noise Equation  
2
Dip sockets add parasitic capacitance and inductance  
which can cause peaking in the frequency response and  
overshoot in the time domain response. If sockets are  
necessary, flush-mount socket pins are recommended.  
The device holes in the 730055 evaluation board are  
sized for Cambion P/N 450-2598 socket pins, or their  
functional equivalent.  
2
2
2
e
+ i  
R
+ R IIR  
+ 4kTR  
+ 4kT R IIR  
(
)
(
)
n
n
seq  
g
seq  
g
f
f
NF = 10LOG  
4kTR  
seq  
Equation 2: Noise Figure Equation  
The noise figure is related to the equivalent source  
resistance (R ) and the parallel combination of R and  
seq  
f
R
To minimize noise figure, the following steps are  
g.  
Applications Circuits  
recommended:  
Transimpedance Amplifier  
Minimize R IIR  
Choose the optimum R (R  
f
g
The low 2.5pA/Hz input current noise and unity gain  
stability make the CLC440 an excellent choice for  
transimpedance applications. Figure 3 illustrates a  
low noise transimpedance amplifier that is commonly  
implemented with photo diodes. R sets the transimped-  
ance gain. The photo diode current multiplied by R  
)
s
OPT  
R
is the point at which the NF curve reaches a  
minimum and is approximated by:  
OPT  
e
i
n
f
R
OPT  
n
f
determines the output voltage.  
Figure 2 is a plot of NF vs R with R = 0, R = (A = +1).  
s
f
g
v
The NF curves for both Unterminated and Terminated  
systems are shown. The Terminated curve assumes R  
Cf  
s
= R . The table indicates the NF for various source resis-  
T
Rf  
tances including R = R  
.
Photo Diode  
s
OPT  
Representation  
-
Layout Considerations  
Vout  
CLC440  
Cd  
A proper printed circuit layout is essential for achieving  
high frequency performance. Comlinear provides  
evaluation boards for the CLC440 (730055-DIP, 730060-  
SOIC) and suggests their use as a guide for high  
frequency layout and as an aid in device testing and  
characterization.  
Iin  
+
Vout = -Iin Rf  
*
Figure 3: Transimpedance Amplifier Configuration  
5
http://www.national.com  
The capacitances are defined as:  
Rectifier  
The large bandwidth of the CLC440 allows for high speed  
rectification. A common rectifier topology is shown in  
C = Internal Input Capacitance of the CLC440  
in  
(typ 1.2pF)  
Figure 6. R and R set the gain of the rectifier. V for  
1
2
out  
C = Equivalent Diode Capacitance  
d
a 5MHz, 2V sinusoidal input is shown in Figure 7.  
pp  
C = Feedback Capacitance  
f
D1  
The transimpedance plot in the typical performance  
section provides the recommended C and expected  
f
D2  
Vout  
R2  
bandwidth for different gains and diode capacitances.  
The feedback capacitances indicated on the plot  
give optimum gain flatness and stability. If a smaller  
capacitance is used, then peaking will occur. The  
frequency response shown in Figure 4 illustrates the  
influence of the feedback capacitance on gain flatness.  
R1  
Vin  
-
CLC440  
+
Transimpedance Amplifier  
Frequency Response  
Figure 6: Rectifier Topology  
80  
Cf = 0  
70  
Rectifier Output  
Cf = 1pF  
2.0  
Cf = 2pF  
60  
1.6  
1.2  
0.8  
0.4  
0
Cf = 2.5pF  
50  
Cf = 5pF  
Cf  
40  
1k  
-
CLC440  
+
30  
-0.4  
-0.8  
5pF  
Iin  
100  
20  
-1.2  
-1.6  
-2.0  
10k  
100k  
1M  
10M  
100M  
1G  
Frequency (Hz)  
0
100  
200  
300  
400  
500  
Figure 4  
Time (ns)  
The total input current noise density (i ) for the basic  
ni  
Figure 7: Rectifier Output  
transimpedance configuration is shown in Equation 3.  
The plot of current noise density versus feedback  
resistance is shown in Figure 5.  
Tunable Low Pass Filter  
The center frequency of the low pass filter (LPF) can be  
adjusted by varying the CLC522 gain control voltage, V .  
g
Current Noise Density vs.  
Feedback Resistance  
40  
Ra  
Rf  
-
35  
30  
Rg  
RT  
CLC522  
+
(Total)  
ini  
20  
25  
20  
15  
Vg  
C2  
C1  
en  
Rf  
R
R1  
-
if  
R2  
Vin  
-
CLC440  
+
10  
5
Rin  
Vout  
CLC440  
in  
+
0
0.1  
1.0  
10  
V
RC2  
R1R2C1C2  
Rf  
in (max)  
k
Q =  
k
Rg  
=
Av (max) = k =1.85  
ωo  
=
Feedback Resistance (k)  
R1R2C1C2  
1.8mA  
Rg  
Figure 5  
Figure 8: Tunable Low Pass Filter  
2
e
2
f
4kT  
n
i
= i +  
+
n
ni  
R
R
f
Equation 3: Total Equivalent Input Referred Current  
Noise Density  
http://www.national.com  
6
This page intentionally left blank.  
7
http://www.national.com  
Customer Design Applications Support  
National Semiconductor is committed to design excellence. For sales, literature and technical support, call the  
National Semiconductor Customer Response Group at 1-800-272-9959 or fax 1-800-737-7018.  
Life Support Policy  
National’s products are not authorized for use as critical components in life support devices or systems without the express written approval  
of the president of National Semiconductor Corporation. As used herein:  
1. Life support devices or systems are devices or systems which, a) are intended for surgical implant into the body, or b) support or  
sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can  
be reasonably expected to result in a significant injury to the user.  
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to  
cause the failure of the life support device or system, or to affect its safety or effectiveness.  
National Semiconductor  
Corporation  
National Semiconductor  
Europe  
National Semiconductor  
Hong Kong Ltd.  
National Semiconductor  
Japan Ltd.  
1111 West Bardin Road  
Arlington, TX 76017  
Tel: 1(800) 272-9959  
Fax: 1(800) 737-7018  
Fax: (+49) 0-180-530 85 86  
E-mail: europe.support.nsc.com  
Deutsch Tel: (+49) 0-180-530 85 85  
English Tel: (+49) 0-180-532 78 32  
Francais Tel: (+49) 0-180-532 93 58  
Italiano Tel: (+49) 0-180-534 16 80  
13th Floor, Straight Block  
Ocean Centre, 5 Canton Road  
Tsimshatsui, Kowloon  
Hong Kong  
Tel: (852) 2737-1600  
Fax: (852) 2736-9960  
Tel: 81-043-299-2309  
Fax: 81-043-299-2408  
N
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said  
circuitry and specifications.  
http://www.national.com  
8
Lit #150440-003  

相关型号:

CLC440AMC

IC OP-AMP, 3000 uV OFFSET-MAX, 230 MHz BAND WIDTH, UUC, DIE, Operational Amplifier
NSC

CLC440SMD

Voltage-Feedback Operational Amplifier
ETC

CLC446

400MHz, 50mW Current-Feedback Op Amp
NSC

CLC446A8B

400MHz, 50mW Current-Feedback Op Amp
NSC

CLC446AJ

400MHz, 50mW Current-Feedback Op Amp
NSC

CLC446AJE

400MHz, 50mW Current-Feedback Op Amp
NSC

CLC446AJE-TR13

Operational Amplifier, 1 Func, 11000uV Offset-Max, BIPolar, PDSO8, 0.150 INCH, PLASTIC, SOIC-8
ROCHESTER

CLC446AJP

400MHz, 50mW Current-Feedback Op Amp
NSC

CLC446ALC

400MHz, 50mW Current-Feedback Op Amp
NSC

CLC446AMC

400MHz, 50mW Current-Feedback Op Amp
NSC

CLC449

1.1GHz Ultra-Wideband Monolithic Op Amp
NSC

CLC449A8B

Current-Feedback Operational Amplifier
ETC