CY7C344-15WI [ETC]

UV-Erasable/OTP PLD ; 紫外线可擦除/ OTP PLD\n
CY7C344-15WI
型号: CY7C344-15WI
厂家: ETC    ETC
描述:

UV-Erasable/OTP PLD
紫外线可擦除/ OTP PLD\n

可编程逻辑 输入元件 时钟
文件: 总13页 (文件大小:230K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C344  
32-Macrocell MAX® EPLD  
tional I/O pins communicate to one logic array block. In the  
CY7C344 LAB there are 32 macrocells and 64 expander prod-  
uct terms. When an I/O macrocell is used as an input, two  
expanders are used to create an input path. Even if all of the  
I/O pins are driven by macrocell registers, there are still 16  
“buried” registers available. All inputs, macrocells, and I/O pins  
are interconnected within the LAB.  
Features  
• High-performance, high-density replacement for TTL,  
74HC, and custom logic  
• 32 macrocells, 64 expander product terms in one LAB  
• 8 dedicated inputs, 16 I/O pins  
• 0.8-micron double-metal CMOS EPROM technology  
The speed and density of the CY7C344 makes it a natural for  
all types of applications. With just this one device, the designer  
can implement complex state machines, registered logic, and  
combinatorial “glue” logic, without using multiple chips. This  
architectural flexibility allows the CY7C344 to replace multi-  
chip TTL solutions, whether they are synchronous, asynchro-  
nous, combinatorial, or all three.  
• 28-pin, 300-mil DIP, cerDIP or 28-pin HLCC, PLCC  
package  
Functional Description  
Available in a 28-pin, 300-mil DIP or windowed J-leaded ce-  
ramic chip carrier (HLCC), the CY7C344 represents the dens-  
est EPLD of this size. Eight dedicated inputs and 16 bidirec-  
Logic Block Diagram[1]  
Pin Configurations  
HLCC  
15(22) INPUT  
15(23) INPUT  
INPUT  
1(8)  
Top View  
INPUT/CLK 2(9)  
27(6)  
28(7)  
INPUT  
INPUT  
INPUT  
INPUT  
13(20)  
14(21)  
4
3
2
1
28 27 26  
25  
5
6
7
8
9
10  
11  
I/O  
I/O  
I/O  
INPUT  
INPUT  
INPUT  
INPUT/CLK  
I/O  
24  
23  
22  
21  
20  
19  
MACROCELL 2  
MACROCELL 1  
I/O  
I/O  
I/O  
I/O  
I/O  
3(10)  
4(11)  
5(12)  
6(13)  
9(16)  
INPUT  
INPUT  
INPUT  
INPUT  
I/O  
MACROCELL 4  
MACROCELL 6  
MACROCELL 8  
MACROCELL 10  
MACROCELL 12  
MACROCELL 14  
MACROCELL 16  
MACROCELL 18  
MACROCELL 20  
MACROCELL 22  
MACROCELL 24  
MACROCELL 26  
MACROCELL 28  
MACROCELL 30  
MACROCELL 32  
MACROCELL 3  
MACROCELL 5  
MACROCELL 7  
MACROCELL 9  
MACROCELL 11  
MACROCELL 13  
MACROCELL 15  
MACROCELL 17  
MACROCELL 19  
MACROCELL 21  
MACROCELL 23  
MACROCELL 25  
MACROCELL 27  
MACROCELL 29  
MACROCELL 31  
G
L
I
O
O
B
A
L
I/O  
12 13 14 1516 1718  
C
O
N
T
I/O 10(17)  
I/O 11(18)  
I/O 12(19)  
I/O 17(24)  
I/O 18(25)  
I/O 19(26)  
I/O 20(27)  
I/O 23(2)  
I/O 24(3)  
I/O 25(4)  
I/O 26(5)  
C344–2  
CerDIP  
B
U
S
Top View  
R
O
L
INPUT  
INPUT  
INPUT  
I/O  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
INPUT/CLK  
I/O  
2
3
4
5
6
7
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
V
CC  
V
CC  
GND  
I/O  
GND  
I/O  
8
9
I/O  
I/O  
10  
11  
12  
13  
14  
C344–1  
32  
64 EXPANDER PRODUCT TERM ARRAY  
I/O  
I/O  
INPUT  
I/O  
I/O  
INPUT  
INPUT  
INPUT  
C344–3  
Selection Guide  
7C344-15  
7C344-20  
7C344-25  
25  
Maximum Access Time (ns)  
15  
20  
Maximum Operating Current  
(mA)  
Commercial  
Military  
200  
200  
220  
220  
150  
170  
170  
200  
220  
Industrial  
Commercial  
Military  
220  
150  
220  
Maximum Standby Current  
(mA)  
150  
170  
Industrial  
170  
170  
Note:  
1. Numbers in () refer to J-leaded packages.  
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose  
CA 95134  
408-943-2600  
July 18, 2000  
CY7C344  
Static Discharge Voltage  
(per MIL-STD-883, Method 3015) ............................. >2001V  
Maximum Ratings  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
DC Output Current, per Pin ......................25 mA to +25 mA  
[2]  
DC Input Voltage .........................................3.0V to +7.0V  
Storage Temperature .................................65°C to +150°C  
DC Program Voltage................................................... +13.0V  
Ambient Temperature with  
Power Applied...................................................0°C to +70°C  
Operating Range  
Maximum Junction Temperature (Under Bias).............150°C  
Supply Voltage to Ground Potential ............... 2.0V to +7.0V  
Maximum Power Dissipation...................................1500 mW  
Ambient  
Range  
Commercial  
Industrial  
Military  
Temperature  
V
CC  
0°C to +70°C  
5V ±5%  
5V ±10%  
5V ±10%  
DC V or GND Current............................................500 mA  
CC  
40°C to +85°C  
55°C to +125°C (Case)  
[3]  
Electrical Characteristics Over the Operating Range  
Parameter  
Description  
Output HIGH Voltage  
Output LOW Voltage  
Input HIGH Level  
Test Conditions  
Min.  
Max.  
Unit  
V
V
V
= Min., I = 4.0 mA  
2.4  
V
V
OH  
CC  
CC  
OH  
V
= Min., I = 8 mA  
0.45  
+0.3  
CC  
OL  
OL  
V
V
2.2  
0.3  
10  
40  
30  
V
V
IH  
IL  
Input LOW Level  
0.8  
V
I
I
I
I
Input Current  
GND V V  
CC  
+10  
+40  
90  
150  
170  
200  
220  
100  
100  
µA  
µA  
mA  
mA  
mA  
mA  
mA  
ns  
ns  
IX  
IN  
Output Leakage Current  
Output Short Circuit Current  
V
V
= V or GND  
CC  
OZ  
O
[4, 5]  
= Max., V = 0.5V  
OUT  
OS  
CC  
Power Supply  
Current (Standby)  
V = V or GND (No Load)  
Commercial  
CC1  
I
CC  
Military/Industrial  
Commercial  
I
Power Supply Current  
V = V or GND (No Load)  
I CC  
CC2  
[4,6]  
f = 1.0 MHz  
Military/Industrial  
t
t
Recommended Input Rise Time  
Recommended Input Fall Time  
R
F
Capacitance  
Parameter  
Description  
Input Capacitance  
Output Capacitance  
Test Conditions  
= 2V, f = 1.0 MHz  
Max.  
10  
Unit  
pF  
C
C
V
V
IN  
IN  
= 2.0V, f = 1.0 MHz  
10  
pF  
OUT  
OUT  
AC Test Loads and Waveforms[7]  
R1 464  
R1 464  
5V  
5V  
ALL INPUT PULSES  
OUTPUT  
OUTPUT  
3.0V  
GND  
90%  
10%  
90%  
10%  
R2  
250  
R2  
250  
50 pF  
5 pF  
t
f
6 ns  
6 ns  
INCLUDING  
JIG AND  
SCOPE  
t
t
F
R
C3444  
C3445  
(a)  
(b)  
Equivalent to:  
THÉVENIN EQUIVALENT (commercial/military)  
163  
OUTPUT  
1.75V  
C3446  
Notes:  
2. Minimum DC input is 0.3V. During transitions, the inputs may undershoot to 2.0V for periods less than 20 ns.  
3. Typical values are for TA = 25°C and VCC = 5V.  
4. Guaranteed by design but not 100% tested.  
5. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. VOUT = 0.5V has been chosen to avoid  
test problems caused by tester ground degradation.  
6. Measured with device programmed as a 16-bit counter.  
7. Part (a) in AC Test Load and Waveforms is used for all parameters except tER and tXZ, which is used for part (b) in AC Test Load and Waveforms. All external timing  
parameters are measured referenced to external pins of the device.  
2
CY7C344  
When expander logic is used in the data path, add the appro-  
Timing Delays  
priate maximum expander delay, t  
to t . Determine which of  
EXP  
S1  
Timing delays within the CY7C344 may be easily determined  
using Warp, Warp Professional, or Warp Enterprise™  
software. The CY7C344 has fixed internal delays, allowing the  
user to determine the worst case timing delays for any design.  
1/(t  
+ t ), 1/t  
, or 1/(t  
+ t ) is the lowest frequency. The  
WH  
WL  
CO1  
EXP S1  
lowest of these frequencies is the maximum data-path frequency for  
the synchronous configuration.  
When calculating external asynchronous frequencies, use  
t
if all inputs are on dedicated input pins. If any data is applied to  
AS1  
Design Recommendations  
an I/O pin, t  
must be used as the required set-up time. If (t  
+
AS2  
AS2  
t
) is greater than t  
, 1/(t  
+ t ) becomes the limiting fre-  
AH  
ACO1  
AS2 AH  
Operation of the devices described herein with conditions  
above those listed under Maximum Ratingsmay cause per-  
manent damage to the device. This is a stress rating only and  
functional operation of the device at these or any other condi-  
tions above those indicated in the operational sections of this  
data sheet is not implied. Exposure to absolute maximum rat-  
ings conditions for extended periods of time may affect device  
reliability. The CY7C344 contains circuitry to protect device  
pins from high-static voltages or electric fields; however, normal  
precautions should be taken to avoid applying any voltage high-  
er than maximum rated voltages.  
quency in the data-path mode unless 1/(t  
1/(t  
+ t  
) is less than  
AWH  
AWL  
+ t ).  
AS2  
AH  
When expander logic is used in the data path, add the appro-  
priate maximum expander delay, t to t . Determine which  
of 1/(t  
Thelowest of these frequencies is themaximum data-path frequency  
for the asynchronous configuration.  
EXP  
AS1  
+ t  
), 1/t  
, or1/(t  
+ t ) is the lowest frequency.  
AWH AWL  
ACO1  
EXP AS1  
The parameter t indicates the system compatibility of this device  
when driving other synchronous logic with positive input hold times,  
which is controlled by the same synchronous clock. If t is greater  
OH  
OH  
For proper operation, input and output pins must be con-  
than the minimum required input hold time of the subsequent syn-  
chronous logic, then the devices are guaranteed to function properly  
with a common synchronous clock under worst-case environmental  
and supply voltage conditions.  
strained to the range GND (V or V  
) V . Unused inputs  
IN  
OUT  
CC  
must always be tied to an appropriate logic level (either V or GND).  
CC  
Each set of V and GND pins must be connected together directly  
CC  
at the device. Power supply decoupling capacitors of at least 0.2 µF  
The parameter t  
vice when driving subsequent registered logic with a positive hold  
time and using the same clock as the CY7C344. In general, if t  
indicates the system compatibility of this de-  
AOH  
must be connected between V and GND. For the most effective  
CC  
decoupling, each V pin should be separately decoupled.  
CC  
AOH  
is greater than the minimum required input hold time of the subse-  
quent logic (synchronous or asynchronous), then the devices are  
guaranteed to function properly under worst-case environmental and  
supply voltage conditions, provided the clock signal source is the  
same. This also applies if expander logic is used in the clock signal  
path of the driving device, but not for the driven device. This is due to  
the expander logic in the second devices clock signal path adding an  
Timing Considerations  
Unless otherwise stated, propagation delays do not include  
expanders. When using expanders, add the maximum ex-  
pander delay t  
to the overall delay.  
EXP  
When calculating synchronous frequencies, use t if all inputs  
S1  
are on the input pins. t should be used if data is applied at an I/O  
S2  
additional delay (t  
), causing the output data from the preceding  
EXP  
pin. If t is greater than t  
, 1/t becomes the limiting frequency  
S2  
CO1  
S2  
device to change prior to the arrival of the clock signal at the following  
devices register.  
in the data-path mode unless 1/(t  
+ t ) is less than 1/t .  
WL S2  
WH  
EXPANDER  
DELAY  
t
EXP  
REGISTER  
LOGIC ARRAY  
OUTPUT  
DELAY  
t
CONTROLDELAY  
CLR  
INPUT  
t
LAC  
t
PRE  
OUTPUT  
t
OD  
INPUT  
DELAY  
IN  
t
LOGIC ARRAY  
DELAY  
t
RSU  
RD  
t
XZ  
t
t
COMB  
LATCH  
t
ZX  
t
t
RH  
t
LAD  
SYSTEM CLOCK DELAYt  
ICS  
CLOCK  
DELAY  
I/O  
I/O DELAY  
I/O  
t
IC  
t
IO  
FEEDBACK  
DELAY  
t
C3447  
FD  
Figure 1. CY7C344 Timing Model.  
3
CY7C344  
External Synchronous Switching Characteristics[7] Over Operating Range  
7C344-15  
7C344-20  
7C344-25  
Parameter  
Description  
Min. Max. Min. Max. Min. Max. Unit  
[8]  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Dedicated Input to Combinatorial Output Delay  
Coml/Ind  
Mil  
15  
15  
15  
15  
30  
30  
30  
30  
20  
20  
20  
20  
10  
10  
20  
20  
20  
20  
20  
20  
30  
30  
30  
30  
20  
20  
20  
20  
12  
12  
22  
22  
25  
25  
25  
25  
40  
40  
40  
40  
25  
25  
25  
25  
15  
15  
29  
29  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PD1  
PD2  
PD3  
PD4  
EA  
[9]  
I/O Input to Combinatorial Output Delay  
Coml/Ind  
Mil  
Dedicated Input to Combinatorial Output Delay Coml/Ind  
[10]  
with Expander Delay  
Mil  
I/O Input to Combinatorial Output Delay with  
Coml/Ind  
Mil  
[4, 11]  
Expander Delay  
[4]  
Input to Output Enable Delay  
Coml/Ind  
Mil  
[4]  
Input to Output Disable Delay  
Coml/Ind  
Mil  
ER  
CO1  
CO2  
S
Synchronous Clock Input to Output Delay  
Coml/Ind  
Mil  
Synchronous Clock to Local Feedback to Com- Coml/Ind  
[4, 12]  
binatorial Output  
Mil  
Dedicated Input or Feedback Set-Up Time to  
Synchronous Clock Input  
Coml/Ind  
Mil  
10  
10  
0
12  
12  
0
15  
15  
0
[7]  
Input Hold Time from Synchronous Clock Input  
Coml/Ind  
Mil  
H
0
0
0
[4]  
Synchronous Clock Input HIGH Time  
Coml/Ind  
Mil  
6
7
8
WH  
WL  
RW  
RR  
RO  
PW  
PR  
PO  
CF  
6
7
8
[4]  
Synchronous Clock Input LOW Time  
Coml/Ind  
Mil  
6
7
8
6
7
8
[4]  
Asynchronous Clear Width  
Coml/Ind  
Mil  
20  
20  
20  
20  
20  
20  
20  
20  
25  
25  
25  
25  
[4]  
Asynchronous Clear Recovery Time  
Coml/Ind  
Mil  
Asynchronous Clear to Registered Output  
Coml/Ind  
Mil  
15  
15  
20  
20  
25  
25  
[4]  
Delay  
[4]  
Asynchronous Preset Width  
Coml /Ind  
Mil  
20  
20  
20  
20  
20  
20  
20  
20  
25  
25  
25  
25  
[4]  
Asynchronous Preset Recovery Time  
Coml /Ind  
Mil  
Asynchronous Preset to Registered Output  
Coml /Ind  
Mil  
15  
15  
4
20  
20  
4
25  
25  
7
[4]  
Delay  
[4, 13]  
[4]  
Synchronous Clock to Local Feedback Input  
Coml /Ind  
Mil  
4
4
7
External Synchronous Clock Period (1/f  
)
MAX3  
Coml/Ind  
Mil  
13  
13  
14  
14  
16  
16  
P
4
CY7C344  
External Synchronous Switching Characteristics[7] Over Operating Range (continued)  
7C344-15  
7C344-20  
7C344-25  
Parameter  
Description  
External Maximum Frequency(1/(t  
Min. Max. Min. Max. Min. Max. Unit  
[4, 14]  
f
f
f
f
t
+t ))  
Coml/Ind  
Mil  
50.0  
50.0  
71.4  
71.4  
83.3  
83.3  
83.3  
83.3  
3
41.6  
41.6  
62.5  
62.5  
71.4  
71.4  
71.4  
71.4  
3
33.3  
33.3  
45.4  
45.4  
62.5  
62.5  
62.5  
62.5  
3
MHz  
MHz  
MHz  
MHz  
ns  
MAX1  
MAX2  
MAX3  
MAX4  
OH  
CO1  
S
Maximum Frequency with Internal Only  
Coml/Ind  
Mil  
[4, 15]  
Feedback (1/(t + t ))  
CF  
S
Data Path Maximum Frequency, least of  
Coml/Ind  
Mil  
[4, 16]  
1/(t + t ), 1/(t + t ), or (1/t )  
WL  
WH  
S
H
CO1  
Maximum Register Toggle Frequency  
Coml/Ind  
Mil  
[4, 17]  
1/(t + t  
)
WL  
WH  
Output Data Stable Time from Synchronous  
Coml/Ind  
Mil  
[4, 18]  
Clock Input  
3
3
3
Notes:  
8. This parameter is the delay from an input signal applied to a dedicated input pin to a combinatorial output on any output pin. This delay assumes no expander  
terms are used to form the logic function.  
9. This parameter is the delay associated with an input signal applied to an I/O macrocell pin to any output. This delay assumes no expander terms are used to  
form the logic function.  
10. This parameter is the delay associated with an input signal applied to a dedicated input pin to combinatorial output on any output pin. This delay assumes  
expander terms are used to form the logic function and includes the worst-case expander logic delay for one pass through the expander logic. This parameter  
is tested periodically by sampling production material.  
11. This parameter is the delay associated with an input signal applied to an I/O macrocell pin to any output pin. This delay assumes expander terms are used to  
form the logic function and includes the worst-case expander logic delay for one pass through the expander logic. This parameter is tested periodically by  
sampling production material.  
12. This specification is a measure of the delay from synchronous register clock input to internal feedback of the register output signal to a combinatorial output  
for which the registered output signal is used as an input. This parameter assumes no expanders are used in the logic of the combinatorial output and the  
register is synchronously clocked. This parameter is tested periodically by sampling production material.  
13. This specification is a measure of the delay associated with the internal register feedback path. This delay plus the register set-up time, tS, is the minimum  
internal period for an internal state machine configuration. This parameter is tested periodically by sampling production material.  
14. This specification indicates the guaranteed maximum frequency at which a state machine configuration with external only feedback can operate.  
15. This specification indicates the guaranteed maximum frequency at which a state machine with internal-only feedback can operate. If register output states  
must also control external points, this frequency can still be observed as long as it is less than 1/tCO1. This specification assumes no expander logic is used. This  
parameter is tested periodically by sampling production material.  
16. This frequency indicates the maximum frequency at which the device may operate in data-path mode (dedicated input pin to output pin). This assumes that  
no expander logic is used.  
17. This specification indicates the guaranteed maximum frequency in synchronous mode, at which an individual output or buried register can be cycled by a  
clock signal applied to either a dedicated input pin or an I/O pin.  
18. This parameter indicates the minimum time after a synchronous register clock input that the previous register output data is maintained on the output pin.  
[7]  
External Asynchronous Switching Characteristics Over Operating Range  
7C344-15  
7C344-20  
7C344-25  
Parameter  
Description  
Min. Max. Min. Max. Min. Max. Unit  
t
t
t
t
t
t
t
Asynchronous Clock Input to Output Delay  
Coml/Ind  
Mil  
15  
15  
30  
30  
20  
20  
30  
30  
25  
25  
37  
37  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ACO1  
ACO2  
AS  
Asynchronous Clock Input to Local Feedback to  
Coml/Ind  
Mil  
[19]  
Combinatorial Output  
Dedicated Input or Feedback Set-Up Time to  
Asynchronous Clock Input  
Coml/Ind  
Mil  
7
7
7
7
6
6
7
7
9
9
9
9
7
7
9
9
12  
12  
12  
12  
9
Input Hold Time from Asynchronous Clock Input  
Coml/Ind  
Mil  
AH  
[4, 20]  
Asynchronous Clock Input HIGH Time  
Coml/Ind  
Mil  
AWH  
AWL  
ACF  
9
[4]  
Asynchronous Clock Input LOW Time  
Coml/Ind  
Mil  
11  
11  
[4, 21]  
Asynchronous Clock to Local Feedback Input  
Coml/Ind  
Mil  
18  
18  
18  
18  
21  
21  
5
CY7C344  
[7]  
External Asynchronous Switching Characteristics Over Operating Range (continued)  
7C344-15  
7C344-20  
7C344-25  
Parameter  
Description  
Min. Max. Min. Max. Min. Max. Unit  
[4]  
t
f
f
f
f
t
External Asynchronous Clock Period (1/f  
)
MAX4  
Coml/Ind  
13  
13  
16  
16  
20  
20  
ns  
AP  
Mil  
External Maximum Frequency in Asynchronous  
Coml/Ind 45.4  
34.4  
34.4  
37  
27  
MHz  
MHz  
MHz  
MHz  
ns  
MAXA1  
MAXA2  
MAXA3  
MAXA4  
AOH  
[4, 22]  
Mode 1/(t  
+ t  
)
ACO1  
AS  
Mil  
45.4  
40  
27  
Maximum Internal Asynchronous Frequency  
Coml/Ind  
Mil  
30.3  
30.3  
40  
[4, 23]  
1/(t  
+ t ) or 1/(t  
+ t  
)
ACF  
AS  
AWH  
AWL  
40  
37  
Data Path Maximum Frequency in Asynchronous  
Coml/Ind 66.6  
Mil 66.6  
Coml/Ind 76.9  
50  
[4, 24]  
Mode  
50  
40  
Maximum Asynchronous Register Toggle  
62.5  
62.5  
15  
50  
[4, 25]  
Frequency 1/(t  
+ t  
)
AWH AWL  
Mil  
76.9  
15  
50  
Output Data Stable Time from Asynchronous Clock Coml/Ind  
15  
[4, 26]  
Input  
Mil  
15  
15  
15  
Notes:  
19. This specification is a measure of the delay from an asynchronous register clock input to internal feedback of the registered output signal to a combinatorial  
output for which the registered output signal is used as an input. Assumes no expanders are used in logic of combinatorial output or the asynchronous clock  
input. This parameter is tested periodically by sampling production material.  
20. This parameter is measured with a positive-edge-triggered clock at the register. For negative edge triggering, the tAWH and tAWL parameters must be swapped.  
If a given input is used to clock multiple registers with both positive and negative polarity, tAWH should be used for both tAWH and tAWL  
.
21. This specification is a measure of the delay associated with the internal register feedback path for an asynchronously clocked register. This delay plus the  
asynchronous register set-up time, tAS, is the minimum internal period for an asynchronously clocked state machine configuration. This delay assumes no expander logic  
in the asynchronous clock path. This parameter is tested periodically by sampling production material.  
22. This parameter indicates the guaranteed maximum frequency at which an asynchronously clocked state machine configuration with external feedback can  
operate. It is assumed that no expander logic is employed in the clock signal path or data path.  
23. This specification indicates the guaranteed maximum frequency at which an asynchronously clocked state machine with internal-only feedback can operate.  
If register output states must also control external points, this frequency can still be observed as long as this frequency is less than 1/tACO1. This specification  
assumes no expander logic is utilized. This parameter is tested periodically by sampling production material.  
24. This specification indicates the guaranteed maximum frequency at which an individual output or buried register can be cycled in asynchronously clocked  
mode. This frequency is least of 1/(tAWH + tAWL), 1/(tAS + tAH), or 1/tACO1. It also indicates the maximum frequency at which the device may operate in the asynchronously  
clocked data-path mode. Assumes no expander logic is used.  
25. This specification indicates the guaranteed maximum frequency at which an individual output or buried register can be cycled in asynchronously clocked  
mode by a clock signal applied to an external dedicated input or an I/O pin.  
26. This parameter indicates the minimum time that the previous register output data is maintained on the output pin after an asynchronous register clock input  
to an external dedicated input or I/O pin.  
[7]  
Typical Internal Switching Characteristics Over Operating Range  
7C344-15  
7C344-20  
7C344-25  
Parameter  
Description  
Min. Max. Min. Max. Min. Max. Unit  
t
Dedicated Input Pad and Buffer Delay  
Coml/Ind  
Mil  
4
4
4
4
8
8
7
7
5
5
4
4
7
7
5
5
7
7
ns  
ns  
ns  
ns  
ns  
ns  
ns  
IN  
t
t
t
t
t
t
I/O Input Pad and Buffer Delay  
Expander Array Delay  
Coml/Ind  
Mil  
5
7
IO  
5
7
Coml/Ind  
Mil  
10  
10  
9
15  
15  
10  
10  
7
EXP  
LAD  
LAC  
OD  
ZX  
Logic Array Data Delay  
Coml/Ind  
Mil  
9
Logic Array Control Delay  
Output Buffer and Pad Delay  
Coml/Ind  
Mil  
7
7
7
Coml/Ind  
Mil  
5
5
5
5
[27]  
Output Buffer Enable Delay  
Coml/Ind  
Mil  
8
11  
11  
8
6
CY7C344  
[7]  
Typical Internal Switching Characteristics Over Operating Range (continued)  
7C344-15  
7C344-20  
7C344-25  
Parameter  
Description  
Output Buffer Disable Delay  
Min. Max. Min. Max. Min. Max. Unit  
t
Coml/Ind  
7
7
8
8
11  
11  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
XZ  
Mil  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Register Set-Up Time Relative to Clock Signal Coml/Ind  
at Register  
5
5
7
7
5
5
9
9
8
8
RSU  
RH  
Mil  
Register Hold Time Relative to Clock Signal at Coml/Ind  
Register  
12  
12  
Mil  
Flow-Through Latch Delay  
Register Delay  
Coml/Ind  
Mil  
1
1
1
1
1
1
1
1
1
1
1
1
3
3
1
1
3
3
LATCH  
RD  
Coml/Ind  
Mil  
[28]  
Transparent Mode Delay  
Coml/Ind  
Mil  
COMB  
CH  
Clock HIGH Time  
Coml/Ind  
Mil  
6
6
6
6
7
7
7
7
8
8
8
8
Clock LOW Time  
Coml/Ind  
Mil  
CL  
Asynchronous Clock Logic Delay  
Synchronous Clock Delay  
Feedback Delay  
Coml/Ind  
Mil  
7
7
1
1
1
1
5
5
5
5
8
8
2
2
1
1
6
6
6
6
10  
10  
3
IC  
Coml/Ind  
Mil  
ICS  
3
Coml/Ind  
Mil  
1
FD  
1
Asynchronous Register Preset Time  
Asynchronous Register Clear Time  
Asynchronous Preset and Clear Pulse Width  
Coml/Ind  
Mil  
9
PRE  
CLR  
PCW  
PCR  
9
Coml/Ind  
Mil  
9
9
Coml/Ind  
Mil  
5
5
5
5
5
5
5
5
7
7
7
7
Asynchronous Preset and Clear Recovery Time Coml/Ind  
Mil  
Notes:  
27. Sample tested only for an output change of 500 mV.  
28. This specification guarantees the maximum combinatorial delay associated with the macrocell register bypass when the macrocell is configured for combi-  
natorial operation.  
7
CY7C344  
Switching Waveforms  
External Combinatorial  
DEDICATED INPUT/  
I/O INPUT  
t
/t  
PD1 PD2  
COMBINATORIAL  
OUTPUT  
t
ER  
COMBINATORIAL OR  
REGISTERED OUTPUT  
HIGH-IMPEDANCE  
THREE-STATE  
t
EA  
HIGH-IMPEDANCE  
THREE-STATE  
VALID OUTPUT  
C3448  
C3449  
C34410  
External Synchronous  
DEDICATED INPUTS OR  
REGISTERED FEEDBACK  
t
t
t
t
WL  
S
H
WH  
SYNCHRONOUS  
CLOCK  
t
t
/t  
t
/t  
CO1  
RW PW  
RR PR  
ASYNCHRONOUS  
CLEAR/PRESET  
t
OH  
t
/t  
RO PO  
REGISTERED  
OUTPUTS  
t
CO2  
COMBINATORIAL OUTPUT FROM  
[12]  
REGISTERED FEEDBACK  
External Asynchronous  
DEDICATED INPUTS OR  
REGISTERED FEEDBACK  
t
t
t
t
AH  
AWH  
AWL  
AS  
ASYNCHRONOUS  
CLOCK INPUT  
t
ACO1  
t
/t  
t
/t  
RW PW  
RR PR  
ASYNCHRONOUS  
CLEAR/PRESET  
t
AOH  
t
/t  
RO PO  
ASYNCHRONOUS REGISTERED  
OUTPUTS  
t
ACO2  
COMBINATORIAL OUTPUT FROM  
ASYNCH. REGISTERED  
[19]  
FEEDBACK  
8
CY7C344  
Switching Waveforms (continued)  
Internal Combinatorial  
t
IN  
INPUT PIN  
I/O PIN  
t
PIA  
t
IO  
t
EXP  
EXPANDER  
ARRAY DELAY  
t
, t  
LAC LAD  
LOGIC ARRAY  
INPUT  
LOGIC ARRAY  
OUTPUT  
C34411  
Internal Asynchronous  
t
t
AWL  
AWH  
t  
R  
t
F
CLOCK PIN  
t
IN  
CLOCK INTO  
LOGIC ARRAY  
t
IC  
CLOCK FROM  
LOGIC ARRAY  
t
t
RH  
RSU  
DATA FROM  
LOGIC ARRAY  
t
,t  
t
FD  
t
,t  
t
FD  
RD LATCH  
CLR PRE  
REGISTER OUTPUT  
TO LOCAL LAB  
LOGIC ARRAY  
t
PIA  
REGISTER OUTPUT  
TO ANOTHER LAB  
C34412  
Internal Synchronous (Input Path)  
t
t
CL  
CH  
SYSTEM CLOCK PIN  
t
IN  
t
ICS  
SYSTEM CLOCK  
AT REGISTER  
t
t
RH  
RSU  
DATA FROM  
LOGIC ARRAY  
C34413  
9
CY7C344  
Switching Waveforms (continued)  
Internal Synchronous (Output Path)  
CLOCK FROM  
LOGIC ARRAY  
t
t
OD  
RD  
DATA FROM  
LOGIC ARRAY  
t
XZ  
t
ZX  
HIGH Z  
OUTPUT PIN  
C34414  
Ordering Information  
Speed  
(ns)  
Package  
Name  
Operating  
Range  
Ordering Code  
Package Type  
15  
CY7C344-15HC/HI  
CY7C344-15JC/JI  
CY7C344-15PC/PI  
CY7C344-15WC/WI  
CY7C344-20HC/HI  
CY7C344-20JC/JI  
CY7C344-20PC/PI  
CY7C344-20WC/WI  
CY7C344-20HMB  
CY7C344-20WMB  
CY7C344-25HC/HI  
CY7C344-25JC/JI  
CY7C344-25PC/PI  
CY7C344-25WC/WI  
CY7C344-25HMB  
CY7C344-25WMB  
H64  
J64  
28-Lead Windowed Leaded Chip Carrier  
28-Lead Plastic Leaded Chip Carrier  
28-Lead (300-Mil) Molded DIP  
Commercial/Industrial  
P21  
W22  
H64  
J64  
28-Lead Windowed CerDIP  
20  
25  
28-Lead Windowed Leaded Chip Carrier  
28-Lead Plastic Leaded Chip Carrier  
28-Lead (300-Mil) Molded DIP  
Commercial/Industrial  
P21  
W22  
H64  
W22  
H64  
J64  
28-Lead Windowed CerDIP  
28-Lead Windowed Leaded Chip Carrier  
28-Lead Windowed CerDIP  
Military  
28-Lead Windowed Leaded Chip Carrier  
28-Lead Plastic Leaded Chip Carrier  
28-Lead (300-Mil) Molded DIP  
Commercial/Industrial  
P21  
W22  
H64  
W22  
28-Lead Windowed CerDIP  
28-Lead Windowed Leaded Chip Carrier  
28-Lead Windowed CerDIP  
Military  
MILITARY SPECIFICATIONS  
Group A Subgroup Testing  
Switching Characteristics  
Parameter  
Subgroups  
t
t
t
t
t
t
t
t
t
t
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
PD1  
DC Characteristics  
PD2  
PD3  
CO1  
S
Parameter  
Subgroups  
1, 2, 3  
V
OH  
V
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
OL  
V
V
IH  
IL  
H
ACO1  
ACO1  
AS  
I
I
I
IX  
OZ  
CC1  
AH  
Document #: 3800127I  
MAX is a registered trademark of Altera Corporation.  
Warp, Warp Professional, and Warp Enterprise are trademarks of Cypress Semiconductor.  
10  
CY7C344  
Package Diagrams  
28-Pin Windowed Leaded Chip Carrier H64  
51-80077  
11  
CY7C344  
Package Diagrams (continued)  
28-Lead Plastic Leaded Chip Carrier J64  
51-85001-A  
28-Lead (300-Mil) Molded DIP P21  
51-85014-B  
12  
CY7C344  
Package Diagrams (continued)  
(300-Mil)  
28-Lead  
Windowed CerDIP W22  
MIL-STD-1835 D-15 Config. A  
51-80087  
© Cypress Semiconductor Corporation, 2000. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  

相关型号:

CY7C344-20DC

UV-Erasable/OTP PLD
ETC

CY7C344-20DI

OT PLD, 30ns, PAL-Type, CMOS, CDIP28, 0.300 INCH, CERDIP-28
CYPRESS

CY7C344-20HC/HI

32-Macrocell MAX EPLD
CYPRESS

CY7C344-20HI

UV-Erasable/OTP PLD
ETC

CY7C344-20HMB

32-Macrocell MAX EPLD
CYPRESS

CY7C344-20JC

UV-Erasable/OTP PLD
ETC

CY7C344-20JC/JI

32-Macrocell MAX EPLD
CYPRESS

CY7C344-20JCR

OT PLD, 30ns, CMOS, PQCC28, PLASTIC, LCC-28
CYPRESS

CY7C344-20JCT

OT PLD, 20ns, CMOS, PQCC28, PLASTIC, LCC-28
CYPRESS

CY7C344-20JI

32-Macrocell MAX® EPLD
CYPRESS

CY7C344-20JIR

暂无描述
CYPRESS

CY7C344-20JIT

OT PLD, 20ns, CMOS, PQCC28, PLASTIC, LCC-28
CYPRESS