CY7C462-15JC [ETC]

IC-SM 16KX9 CMOS FIFO ; IC- SM 16KX9 CMOS FIFO\n
CY7C462-15JC
型号: CY7C462-15JC
厂家: ETC    ETC
描述:

IC-SM 16KX9 CMOS FIFO
IC- SM 16KX9 CMOS FIFO\n

内存集成电路 先进先出芯片 时钟
文件: 总14页 (文件大小:239K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C460A/CY7C462A  
CY7C464A/CY7C466A  
Asynchronous, Cascadable 8K/16K/32K/64K x9 FIFOs  
Features  
Functional Description  
• High-speed, low-power, first-in first-out (FIFO)  
memories  
• 8K x 9 FIFO (CY7C460A)  
• 16K x 9 FIFO (CY7C462A)  
• 32K x 9 FIFO (CY7C464A)  
• 64K x 9 FIFO (CY7C466A)  
• 10-ns access times, 20-ns read/write cycle times  
• High-speed 50-MHz read/write independent of  
depth/width  
• Low operating power  
The CY7C460A, CY7C462A, CY7C464A, and CY7C466A are  
respectively, 8K, 16K, 32K, and 64K words by 9-bit wide first-in  
first-out (FIFO) memories. Each FIFO memory is organized  
such that the data is read in the same sequential order that it  
was written. Full and Empty flags are provided to prevent over-  
run and underrun. Three additional pins are also provided to  
facilitate unlimited expansion in width, depth, or both. The  
depth expansion technique steers the control signals from one  
device to another by passing tokens.  
The read and write operations may be asynchronous; each  
can occur at a rate of up to 50 MHz. The write operation occurs  
when the Write (W) signal is LOW. Read occurs when Read  
(R) goes LOW. The nine data outputs go to the high-imped-  
ance state when R is HIGH.  
— I = 60 mA  
CC  
— I =8 mA  
SB  
• Asynchronous read/write  
• Empty and Full flags  
• Half Full flag (in standalone mode)  
• Retransmit (in standalone mode)  
• TTL-compatible  
A Half Full (HF) output flag is provided that is valid in the stan-  
dalone (single device) and width expansion configurations. In  
the depth expansion configuration, this pin provides the expan-  
sion out (XO) information that is used to tell the next FIFO that  
it will be activated.  
• Width and Depth Expansion Capability  
In the standalone and width expansion configurations, a LOW  
on the Retransmit (RT) input causes the FIFOs to retransmit  
the data. Read Enable (R) and Write Enable (W) must both be  
HIGH during a retransmit cycle, and then R is used to access  
the data.  
5V 10% supply  
±
• PLCC, LCC, 300-mil and 600-mil DIP packaging  
• Three-state outputs  
• Pin compatible density upgrade to CY7C42X/46X family  
• Pin compatible and functionally equivalent to IDT7205,  
IDT7206, IDT7207, IDT7208  
The CY7C460A, CY7C462A, CY7C464A, and CY7C466A are  
fabricated using Cypress’s advanced 0.5µ RAM3 CMOS tech-  
nology. Input ESD protection is greater than 2000V and  
latch-up is prevented by careful layout and the use of guard  
rings.  
Pin Configurations  
Logic BlockDiagram  
DATAINPUTS  
DIP  
Top View  
(D D  
)
PLCC/LCC  
Top View  
0
8
1
28  
V
CC  
W
2
3
4
27  
26  
D
D
4
WRITE  
CONTROL  
8
4
3
2
1
32 31 30  
29  
W
D
2
D
D
5
6
7
6
D
D
5
3
DUAL PORT  
RAM ARRAY  
8K x 9  
16K x 9  
32K x 9  
64K x 9  
D
D
28  
27  
7
1
D
25  
24  
23  
22  
21  
D
6
2
WRITE  
POINTER  
READ  
POINTER  
NC  
0
5
D
D
1
7
7C460A  
7C462A  
7C464A  
7C466A  
7C460A  
7C462A  
7C464A  
7C466A  
XI  
FL/RT  
MR  
8
9
26  
25  
24  
23  
D
0
XI  
FF  
6
FL/RT  
MR  
EF  
FF  
7
Q
0
EF  
10  
11  
8
Q
1
XO/HF  
Q
9
20  
19  
18  
17  
16  
15  
0
XO/HF  
THREE–  
NC  
Q
7
6
12  
13  
22  
21  
Q
1
10  
11  
12  
13  
Q
STATE  
7
Q
2
Q
BUFFERS  
Q
6
Q
2
14 15 16 17 18 19 20  
Q
3
Q
8
Q
5
DATAOUTPUTS  
Q
4
(Q -Q  
0
)
8
14  
R
GND  
MR  
FL/RT  
RESET  
LOGIC  
C46XA–2  
READ  
CONTROL  
R
C46XA–3  
FLAG  
LOGIC  
EF  
FF  
EXPANSION  
LOGIC  
XI  
XO/HF  
C46XA–1  
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose  
CA 95134  
408-943-2600  
October 4, 1999  
CY7C460A/CY7C462A  
CY7C464A/CY7C466A  
Selection Guide  
7C460A-10  
7C462A-10  
7C464A-10  
7C466A-10  
7C460A-15  
7C460A-25  
7C462A-25  
7C464A-25  
7C466A-25  
7C462A-15  
7C464A-15  
7C466A-15  
Frequency (MHz)  
50  
10  
40  
15  
28.5  
25  
Maximum Access Time (ns)  
Output Current, into Outputs (LOW)............................ 20 mA  
Maximum Ratings  
Static Discharge Voltage ........................................... >2001V  
(per MIL-STD-883, Method 3015)  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Latch-Up Current..................................................... >200 mA  
Storage Temperature ..................................65°C to +150°C  
Ambient Temperature with  
Power Applied.............................................55°C to +125°C  
Operating Range  
Ambient  
Supply Voltage to Ground Potential ............... 0.5V to +7.0V  
Range  
Commercial  
Industrial  
Temperature  
V
CC  
DC Voltage Applied to Outputs  
in High Z State ............................................... 0.5V to +7.0V  
0°C to + 70°C  
5V ± 10%  
5V ± 10%  
5V ± 10%  
40°C to +85°C  
55°C to +125°C  
DC Input Voltage............................................ 0.5V to +7.0V  
[1]  
Power Dissipation ..........................................................1.0W  
Military  
[2]  
Electrical Characteristics Over the Operating Range  
7C460A/462A/464A/466A  
(-10,-15,-25)  
Parameter  
Description  
Output HIGH Voltage  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage  
Input Leakage Current  
Output Leakage Current  
Operating Current  
Test Conditions  
= Min., I = 2.0 mA  
Min.  
Max.  
Unit  
V
V
V
2.4  
V
V
OH  
CC  
OH  
V
= Min., I = 8.0 mA  
0.4  
OL  
CC  
OL  
V
2.2  
0.5  
10  
10  
V
V
IH  
IL  
CC  
V
0.8  
+10  
+10  
60  
V
I
I
I
GND < V < V  
CC  
µA  
µA  
mA  
IX  
I
R > V , GND < V < V  
OZ  
CC  
IH  
O
CC  
V
= Max.,  
CC  
I
= 0 mA, Freq. = 20 MHz  
OUT  
I
Standby Current  
All Inputs = V min.  
8
mA  
SB  
IH  
Capacitance[4]  
Parameter  
Description  
Test Conditions  
Max.  
10  
Unit  
pF  
C
C
Input Capacitance  
Output Capacitance  
T = 25°C, f = 1 MHz,  
IN  
A
V
= 4.5V  
CC  
12  
pF  
OUT  
Notes:  
1. A is the instant oncase temperature.  
2. See the last page of this specification for Group A subgroup testing information.  
T
3. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 1 second.  
4. Tested initially and after any design or process changes that may affect these parameters.  
2
CY7C460A/CY7C462A  
CY7C464A/CY7C466A  
AC Test Loads and Waveforms  
R1 500  
R1 500  
ALL INPUT PULSES  
5V  
5V  
3.0V  
GND  
OUTPUT  
OUTPUT  
90%  
90%  
10%  
10%  
R2  
333  
R2  
333  
30 pF  
5 pF  
5 ns  
5 ns  
INCLUDING  
JIG AND  
SCOPE  
INCLUDING  
JIG AND  
SCOPE  
C460A6  
C460A4  
C460A5  
(a)  
(b)  
Equivalent to:  
THÉVENIN EQUIVALENT  
200  
OUTPUT  
2V  
[2, 5]  
Switching Characteristics Over the Operating Range  
7C460A-10  
7C462A-10  
7C464A-10  
7C466A-10  
7C460A-15  
7C462A-15  
7C464A-15  
7C466A-15  
7C460A-25  
7C462A-25  
7C464A-25  
7C466A-25  
Parameter  
Description  
Read Cycle Time  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tRC  
20  
25  
35  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Access Time  
10  
15  
25  
A
Read Recovery Time  
Read Pulse Width  
10  
10  
3
10  
15  
3
10  
25  
3
RR  
PR  
Read LOW to Low Z  
Data Valid After Read HIGH  
Read HIGH to High Z  
Write Cycle Time  
LZR  
DVR  
HZR  
WC  
[6]  
[6]  
3
3
3
15  
15  
18  
20  
10  
5
25  
15  
5
35  
25  
5
Write Pulse Width  
PW  
Write HIGH to Low Z  
Write Recovery Time  
Data Set-Up Time  
HWZ  
WR  
10  
9
10  
9
10  
9
SD  
Data Hold Time  
0
0
0
HD  
MR Cycle Time  
20  
10  
10  
10  
10  
20  
10  
10  
25  
15  
10  
15  
15  
25  
15  
10  
35  
25  
10  
25  
25  
35  
25  
10  
MRSC  
PMR  
RMR  
RPW  
WPW  
RTC  
PRT  
RTR  
EFL  
MR Pulse Width  
MR Recovery Time  
Read HIGH to MR HIGH  
Write HIGH to MR HIGH  
Retransmit Cycle Time  
Retransmit Pulse Width  
Retransmit Recovery Time  
MR to EF LOW  
20  
20  
20  
10  
10  
25  
25  
25  
15  
15  
35  
35  
35  
25  
25  
MR to HF HIGH  
HFH  
FFH  
REF  
RFF  
MR to FF HIGH  
Read LOW to EF LOW  
Read HIGH to FF HIGH  
Notes:  
5. Test conditions assume signal transmission time of 5 ns or less, timing reference levels of 1.5V and output loading of the specified IOL/IOH and 30-pF load  
capacitance, as in part (a) of AC Test Loads, unless otherwise specified.  
6. tHZR and tDVR use capacitance loading as in part (b) of AC Test Loads.  
3
CY7C460A/CY7C462A  
CY7C464A/CY7C466A  
[2, 5]  
Switching Characteristics Over the Operating Range  
(continued)  
7C460A-10  
7C462A-10  
7C464A-10  
7C466A-10  
7C460A-15  
7C462A-15  
7C464A-15  
7C466A-15  
7C460A-25  
7C462A-25  
7C464A-25  
7C466A-25  
Parameter  
Description  
Write HIGH to EF HIGH  
Write LOW to FF LOW  
Write LOW to HF LOW  
Read HIGH to HF HIGH  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
25  
Unit  
ns  
t
t
t
t
t
10  
10  
10  
10  
10  
15  
15  
15  
15  
15  
WEF  
25  
ns  
WFF  
WHF  
RHF  
RAE  
35  
ns  
35  
ns  
Effective Read from Write  
HIGH  
25  
ns  
t
t
t
t
t
Effective Read Pulse Width  
After EF HIGH  
10  
10  
15  
15  
25  
25  
ns  
ns  
ns  
ns  
ns  
RPE  
WAF  
WPF  
XOL  
XOH  
Effective Write from Read  
HIGH  
10  
15  
25  
Effective Write Pulse  
Width After FF HIGH  
Expansion Out LOW  
Delay from Clock  
10  
10  
15  
15  
25  
25  
Expansion Out HIGH  
Delay from Clock  
4
CY7C460A/CY7C462A  
CY7C464A/CY7C466A  
Switching Waveforms[7]  
Asynchronous Read and Write  
t
t
PR  
RC  
t
A
t
t
A
RR  
R
t
t
t
HZR  
LZR  
DVR  
DATA VALID  
DATA VALID  
Q
Q
8
0
t
WC  
t
t
t
PW  
PW  
WR  
W
t
t
t
t
HD  
SD  
HD  
SD  
DATA VALID  
DATA VALID  
D D  
0 8  
C460A7  
Master Reset  
[9]  
t
MRSC  
t
PMR  
MR  
[8]  
R, W  
t
RPW  
t
EFL  
t
WPW  
EF  
t
RMR  
t
HFH  
HF  
FF  
t
FFH  
C460A8  
Half FullFlag  
HALF FULL  
HALF FULL+1  
HALF FULL  
RHF  
W
R
t
t
WHF  
HF  
C460A9  
Notes:  
7. A HIGH-to-LOW transition of either the write or read strobe causes a HIGH-to-LOW transition of the responding flag. Correspondingly, a LOW-to-HIGH strobe  
transition causes a LOW-to-HIGH flag transition.  
8. W and R = VIH around the rising edge of MR.  
9.  
tMSRC = t PMR + t RMR  
5
CY7C460A/CY7C462A  
CY7C464A/CY7C466A  
Switching Waveforms[7] (continued)  
Last Write to First ReadFullFlag  
ADDITIONAL  
READS  
LAST WRITE  
R
FIRST READ  
FIRST WRITE  
W
t
t
RFF  
WFF  
FF  
C460A10  
Last READ to First WRITE Empty Flag  
ADDITIONAL  
WRITES  
LAST READ  
W
FIRST WRITE  
FIRST READ  
R
t
t
WEF  
REF  
EF  
t
A
VALID  
VALID  
DATA OUT  
C460A11  
Retransmit[10,11]  
t
RTC  
t
PRT  
FL/RT  
R,W  
t
RTR  
t
t
RTR  
RTC  
C460A12  
Notes:  
10.  
tRTC = tPRT + tRTR.  
11. EF, HF, andFF maychange state during retransmit as a result of the offset of the read and write pointers, but flags willbe valid at tRTC, except for the CY7C46x-20  
(Military), whose flags will be valid after tRTC + 10 ns.  
6
CY7C460A/CY7C462A  
CY7C464A/CY7C466A  
Switching Waveforms[7] (continued)  
Full Flag and Write Data Flow-Through Mode  
R
t
t
t
WAF  
WPF  
W
t
WFF  
RFF  
FF  
t
HD  
DATA IN  
DATA VALID  
t
A
t
SD  
DATA OUT  
DATA VALID  
C460A1
Empty Flag and Read Data Flow-Through Mode  
DATA IN  
W
t
RAE  
R
t
RPE  
t
REF  
EF  
t
WEF  
t
A
t
HWZ  
DATA OUT  
DATA VALID  
C460A14  
7
CY7C460A/CY7C462A  
CY7C464A/CY7C466A  
Switching Waveforms[7] (continued)  
Expansion TimingDiagrams  
W
t
WR  
t
t
XOL  
XOH  
[12]  
XO (XI )  
1
2
t
t
HD  
HD  
t
t
SD  
SD  
DATA VALID  
DATA VALID  
D
0
D
8
C460A15  
R
t
RR  
t
XOH  
t
XOL  
[12]  
XO (XI )  
1
2
t
HZR  
t
DVR  
t
t
DVR  
LZR  
DATA  
VALID  
DATA  
VALID  
Q
Q
8
0
t
A
t
A
C460A16  
Note:  
12. Expansion out of device 1 (XO1) is connected to expansion in of device 2 (XI2).  
is available in standalone and width expansion modes. FF  
goes LOW t after the falling edge of W, during the cycle in  
Architecture  
WFF  
Resetting the FIFO  
which the last available location is filled. Internal logic prevents  
overrunning a full FIFO. Writes to a full FIFO are ignored and  
Upon power-up, the FIFO must be reset with a master reset  
(MR) cycle. This causes the FIFO to enter the empty condition  
signified by the Empty flag (EF) being LOW, and both the Half  
Full (HF), and Full flags (FF) being HIGH. Read (R) and Write  
the write pointer is not incremented. FF goes HIGH t  
a read from a full FIFO.  
after  
RFF  
Reading Data from the FIFO  
(W) must be HIGH t  
/t  
before and t  
after the rising  
RPW WPW  
RMR  
The falling edge of R initiates a read cycle if the EF is not LOW.  
Data outputs (Q Q ) are in a high-impedance condition be-  
edge of MR for a valid reset cycle. If reading from the FIFO  
after a reset cycle is attempted, the outputs will all be in the  
high-impedance state.  
0
8
tween read operations (R HIGH), when the FIFO is empty, or  
when the FIFO is not the active device in the depth expansion  
mode.  
Writing Data to the FIFO  
The availability of at least one empty location is indicated by a  
HIGH FF. The falling edge of W initiates a write cycle. Data  
When one word is in the FIFO, the falling edge of R initiates a  
HIGH-to-LOW transition of EF. When the FIFO is empty, the  
outputs are in a high-impedance state. Reads to an empty  
FIFO are ignored and do not increment the read pointer. From  
appearing at the inputs (D D ) t before and t after the  
0
8
SD  
HD  
rising edge of W will be stored sequentially in the FIFO.  
the empty condition, the FIFO can be read t  
write.  
after a valid  
WEF  
The EF LOW-to-HIGH transition occurs t after the first  
WEF  
LOW-to-HIGH transition of W for an empty FIFO. HF goes  
LOW t after the falling edge of W following the FIFO actu-  
WHF  
Retransmit  
ally being half full. Therefore, the HF is active once the FIFO  
is filled to half its capacity plus one word. HF will remain LOW  
while less than one half of total memory is available for writing.  
The retransmit feature is beneficial when transferring packets  
of data. It enables the receipt of data to be acknowledged by  
the receiver and retransmitted if necessary. The retransmit  
(RT) input is active in the standalone and width expansion  
modes. The retransmit feature is intended for use when a num-  
The LOW-to-HIGH transition of HF occurs t  
after the rising  
RHF  
edge of R when the FIFO goes from half full +1 to half full. HF  
8
CY7C460A/CY7C462A  
CY7C464A/CY7C466A  
ber of writes equal-to-or-less-than the depth of the FIFO have  
occurred since the last MR cycle. A LOW pulse on RT resets  
the internal read pointer to the first physical location of the  
Depth Expansion Mode (see Figure 1)  
Depth expansion mode is entered when, during a MR cycle,  
expansion out (XO) of one device is connected to expansion  
in (XI) of the next device, with XO of the last device connected  
to XI of the first device. In the depth expansion mode, the first  
load (FL) input, when grounded, indicates that this is the first  
part to be loaded. All other devices must have this pin HIGH.  
To enable the correct FIFO, XO is pulsed LOW when the last  
physical location of the previous FIFO is written to and is  
pulsed LOW again when the last physical location is read. Only  
one FIFO is enabled for Read and one is enabled for Write at  
any given time. All other devices are in standby.  
FIFO. R and W must both be HIGH while and t  
after re-  
RTR  
transmit is LOW. With every read cycle after retransmit, previ-  
ously accessed data is read and the read pointer incremented  
until equal to the write pointer. Full, Half Full, and Empty flags  
are governed by the relative locations of the read and write  
pointers and are updated during a retransmit cycle. Data writ-  
ten to the FIFO after activation of RT are transmitted also.  
The full depth of the FIFO can be repeatedly retransmitted.  
Standalone/Width Expansion Modes  
FIFOs can also be expanded simultaneously in depth and  
width. Consequently, any depth or width FIFO can be created  
with word widths in increments of nine. When expanding in  
depth, a composite FF is created by ORing the FFs together.  
Likewise, a composite EF is created by ORing EFs together.  
HF and RT functions are not available in depth expansion  
mode.  
Standalone and width expansion modes are set by grounding  
expansion in (XI) and tying first load (FL) to V prior to a MR  
CC  
cycle. FIFOs can be expanded in width to provide word widths  
greater than nine in increments of nine. During width expan-  
sion mode, all control line inputs are common to all devices,  
and flag outputs from any device can be monitored.  
XO  
R
W
EF  
FL  
FF  
D
Q
0-8  
0-8  
9
9
9
CY7C460A  
CY7C462A  
CY7C464A  
CY7C466A  
V
CC  
XI  
XO  
FULL  
EF  
FL  
FF  
EMPTY  
9
CY7C460A  
CY7C462A  
CY7C464A  
CY7C466A  
XI  
XO  
*
EF  
FL  
FF  
CY7C460A  
CY7C462A  
CY7C464A  
CY7C466A  
9
RS  
XI  
* FIRSTDEVICE  
C460A17  
Figure 1. Depth Expansion  
9
CY7C460A/CY7C462A  
CY7C464A/CY7C466A  
Ordering Information  
8K x 9 Asynchronous FIFO  
Speed  
Package  
Name  
Operating  
Range  
(ns)  
Ordering Code  
Package Type  
10  
CY7C460A-10JC  
CY7C460A-10PC  
CY7C460A-10PTC  
CY7C460A-10JI  
CY7C460A-15JC  
CY7C460A-15PC  
CY7C460A-15PTC  
CY7C460A-25JC  
CY7C460A-25PC  
CY7C460A-25PTC  
J65  
P15  
P21  
J65  
J65  
P15  
P21  
J65  
P15  
P21  
32-Lead Plastic Leaded Chip Carrier  
28-Lead (600-Mil) Molded DIP  
28-Lead (300-Mil) Molded DIP  
32-Lead Plastic Leaded Chip Carrier  
32-Lead Plastic Leaded Chip Carrier  
28-Lead (600-Mil) Molded DIP  
28-Lead (300-Mil) Molded DIP  
32-Lead Plastic Leaded Chip Carrier  
28-Lead (600-Mil) Molded DIP  
28-Lead (300-Mil) Molded DIP  
Commercial  
Industrial  
15  
25  
Commercial  
Commercial  
16K x 9 Asynchronous FIFO  
Speed  
Package  
Name  
Operating  
Range  
(ns)  
Ordering Code  
Package Type  
32-Lead Plastic Leaded Chip Carrier  
28-Lead (600-Mil) Molded DIP  
28-Lead (300-Mil) Molded DIP  
32-Lead Plastic Leaded Chip Carrier  
32-Lead Plastic Leaded Chip Carrier  
28-Lead (600-Mil) Molded DIP  
28-Lead (300-Mil) Molded DIP  
32-Lead Plastic Leaded Chip Carrier  
28-Lead (600-Mil) Molded DIP  
28-Lead (300-Mil) Molded DIP  
10  
CY7C462A-10JC  
J65  
P15  
P21  
J65  
J65  
P15  
P21  
J65  
P15  
P21  
Commercial  
CY7C462A-10PC  
CY7C462A-10PTC  
CY7C462A-10JI  
CY7C462A-15JC  
CY7C462A-15PC  
CY7C462A-15PTC  
CY7C462A-25JC  
CY7C462A-25PC  
CY7C462A-25PTC  
Industrial  
15  
25  
Commercial  
Commercial  
32K x 9 Asynchronous FIFO  
Speed  
Package  
Name  
Operating  
Range  
(ns)  
Ordering Code  
Package Type  
32-Lead Plastic Leaded Chip Carrier  
28-Lead (600-Mil) Molded DIP  
10  
CY7C464A-10JC  
J65  
P15  
P21  
J65  
J65  
P15  
P21  
L55  
J65  
P15  
P21  
Commercial  
CY7C464A-10PC  
CY7C464A-10PTC  
CY7C464A-10JI  
28-Lead (300-Mil) Molded DIP  
32-Lead Plastic Leaded Chip Carrier  
32-Lead Plastic Leaded Chip Carrier  
28-Lead (600-Mil) Molded DIP  
Industrial  
15  
25  
CY7C464A-15JC  
CY7C464A-15PC  
CY7C464A-15PTC  
CY7C464A-15LMB  
CY7C464A-25JC  
CY7C464A-25PC  
CY7C464A-25PTC  
Commercial  
28-Lead (300-Mil) Molded DIP  
32-Pin Rectangular Leadless Chip Carrier  
32-Lead Plastic Leaded Chip Carrier  
28-Lead (600-Mil) Molded DIP  
Military  
Commercial  
28-Lead (300-Mil) Molded DIP  
10  
CY7C460A/CY7C462A  
CY7C464A/CY7C466A  
Ordering Information (continued)  
64K x 9 Asynchronous FIFO  
Speed  
Package  
Name  
Operating  
Range  
(ns)  
Ordering Code  
Package Type  
10  
CY7C466A-10JC  
J65  
P15  
P21  
J65  
J65  
P15  
P21  
L55  
J65  
P15  
P21  
32-Lead Plastic Leaded Chip Carrier  
28-Lead (600-Mil) Molded DIP  
Commercial  
CY7C466A-10PC  
CY7C466A-10PTC  
CY7C466A-10JI  
28-Lead (300-Mil) Molded DIP  
32-Lead Plastic Leaded Chip Carrier  
32-Lead Plastic Leaded Chip Carrier  
28-Lead (600-Mil) Molded DIP  
Industrial  
15  
25  
CY7C466A-15JC  
CY7C466A-15PC  
CY7C466A-15PTC  
CY7C466A-15LMB  
CY7C466A-25JC  
CY7C466A-25PC  
CY7C466A-25PTC  
Commercial  
28-Lead (300-Mil) Molded DIP  
32-Pin Rectangular Leadless Chip Carrier  
32-Lead Plastic Leaded Chip Carrier  
28-Lead (600-Mil) Molded DIP  
Military  
Commercial  
28-Lead (300-Mil) Molded DIP  
11  
CY7C460A/CY7C462A  
CY7C464A/CY7C466A  
MILITARY SPECIFICATIONS  
Group A Subgroup Testing  
DC Characteristics  
Switching Characteristics  
Parameter  
Subgroups  
1, 2, 3  
Parameter  
Subgroups  
9, 10, 11  
V
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
OH  
RC  
A
V
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
9, 10, 11  
9, 10, 11  
9, 10, 11  
9, 10, 11  
9, 10, 11  
9, 10, 11  
9, 10, 11  
9, 10, 11  
9, 10, 11  
9, 10, 11  
9, 10, 11  
9, 10, 11  
9, 10, 11  
9, 10, 11  
9, 10, 11  
9, 10, 11  
9, 10, 11  
9, 10, 11  
9, 10, 11  
9, 10, 11  
9, 10, 11  
9, 10, 11  
9, 10, 11  
9, 10, 11  
9, 10, 11  
9, 10, 11  
9, 10, 11  
9, 10, 11  
9, 10, 11  
9, 10, 11  
9, 10, 11  
9, 10, 11  
9, 10, 11  
9, 10, 11  
9, 10, 11  
OL  
V
IH  
RR  
PR  
V Max.  
IL  
I
I
I
I
I
I
IX  
LZR  
DVR  
HZR  
WC  
CC  
SB1  
SB2  
OS  
OZ  
PW  
HWZ  
WR  
SD  
HD  
MRSC  
PMR  
RMR  
RPW  
WPW  
RTC  
PRT  
RTR  
EFL  
HFH  
FFH  
REF  
RFF  
WEF  
WFF  
WHF  
RHF  
RAE  
RPE  
WAF  
WPF  
XOL  
XOH  
Document #: 38-00627-A  
12  
CY7C460A/CY7C462A  
CY7C464A/CY7C466A  
Package Diagrams  
32-Lead Plastic Leaded Chip Carrier J65  
51-85002-B  
32-Pin Rectangular Leadless Chip Carrier L55  
MIL-STD-1835 C-12  
51-80068  
13  
CY7C460A/CY7C462A  
CY7C464A/CY7C466A  
Package Diagrams (continued)  
28-Lead (600-Mil) Molded DIP P15  
51-85017-A  
28-Lead (300-Mil) Molded DIP P21  
51-85014-B  
© Cypress Semiconductor Corporation, 1999. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  

相关型号:

CY7C462-15JCR

FIFO, 16KX9, 15ns, Asynchronous, CMOS, PQCC32, PLASTIC, LCC-32
CYPRESS

CY7C462-15JCT

FIFO, 16KX9, 15ns, Asynchronous, CMOS, PQCC32, PLASTIC, LCC-32
CYPRESS

CY7C462-15LC

x9 Asynchronous FIFO
ETC

CY7C462-15LMB

FIFO, 16KX9, 15ns, Asynchronous, CMOS, CQCC32, LCC-32
CYPRESS

CY7C462-20LMB

x9 Asynchronous FIFO
ETC

CY7C462-25DC

x9 Asynchronous FIFO
ETC

CY7C462-25JCR

FIFO, 16KX9, 25ns, Asynchronous, CMOS, PQCC32, PLASTIC, LCC-32
CYPRESS

CY7C462-25LC

x9 Asynchronous FIFO
ETC

CY7C462-25PI

x9 Asynchronous FIFO
ETC

CY7C462-40DC

x9 Asynchronous FIFO
ETC

CY7C462-40JCR

FIFO, 16KX9, 40ns, Asynchronous, CMOS, PQCC32, PLASTIC, LCC-32
CYPRESS

CY7C462-40JCT

FIFO, 16KX9, 40ns, Asynchronous, CMOS, PQCC32, PLASTIC, LCC-32
CYPRESS